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Resumo

Como qualquer outra tarefa evolucionária, a aplicação de refatoramentos em software
orientado a objetos normalmente afeta código-fonte e seus modelos relacionados, au-
mentando a dificuldade de manutenção de artefatos corretos e consistentes. Devido à
distância de representação entre artefatos de modelagem e programação, o esforço lig-
ado a refatoramentos logo torna-se duplicado e custoso. Neste contexto, suporte de
ferramentas utilizado atualmente, em especial ferramentas de Round-Trip Engineering
(RTE), falha em automatizar tarefas de evolução. Conseqüentemente, a maioria dos
projetos de software descarta artefatos de modelagem precocemente, adotando aborda-
gens centradas unicamente em código-fonte. Esta tese propõe uma abordagem formal
para consistentemente refatorar modelos de objeto e programas orientados a objetos,
baseando o refatoramento apenas em modelos de objetos. Refatoramento de modelos
é fundamentado com transformaçoẽs formais primitivas – leis de modelagem – que são
garantidamente preservadoras de semântica. Cada refatoramento aplicado a um mod-
elo de objetos é associado a uma seqüência semi-automática de aplicações de leis de
programação preservadoras de comportamento, chamadas estratégias. Estratégias são
aplicadas na dependência de um relacionamento espećıfico de conformidade entre mode-
los de objetos e programas, que devem satisfazer também um dado grau de confinamento.
Este trabalho formaliza 14 estratégias, duas para cada lei de modelagem que afeta es-
truturas do programa. Estas estratégias são formalizadas como táticas de refinamento.
Desta forma, refatoramento correto de programas pode ser realizado com reduzida in-
tervenção manual do desenvolvedor, baseado apenas nas transformações que o mesmo
aplicou ao modelo. Neste cenário, refatoramentos complexos que afetam as principais
estruturas do programa podem ser aplicados a um artefato de mais alto ńıvel de ab-
stração, deixando a atualização semi-automática dos detalhes de implementação para
as estratégias. Além disso, invariantes do modelo podem ser usados para aprimorar
ferramentas especializadas em refatoramento, já que modelos de objetos oferecem in-
formação semântica que permite refatoramentos automáticos mais poderosos. Esta tese
considera Alloy como linguagem de modelagem formal, além de uma linguagem de pro-
gramação similar a Java que chamamos BN. Para esta linguagem, introduzimos quatro
novos refatoramentos e leis de programação orientada a objetos, com suas provas e
derivações correspondentes. Adicionalmente, as leis de programação foram aplicadas
em uma semântica de referências, mais próxima de linguages de programação utilizadas
na prática. Com o intuito de delimitar a aplicabilidade desta abordagem, formalizamos
uma noção de conformidade entre modelos de objetos e programas, a partir de um
framework formal para definição de relacionamentos de conformidade; as definições for-
mais relacionadas foram especificadas e checadas quanto ao tipo na ferramenta PVS.
Além disso, estabelecemos e provamos manualmente um teorema para a corretude das
estratégias, definindo que elas preservam comportamento e conformidade dos programas
refatorados. Mesmo sendo uma abordagem formal, temos a preocupação de discutir sua
utilização prática, além de aplicá-la em três estudos de caso. Os problemas apresentados
nesta tese certamente serão enfrentados em qualquer abordagem de desenvolvimento di-
rigida por modelos, no momento em que se lida com evolução.
Palavras-chave. Alloy, refatoramento, confinamento, desenvolvimento dirigido por
modelos.
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Abstract

Refactoring object-oriented software, as any other evolutionary task, usually affects
source code and object models, burdening developers to keep those artifacts correct and
up to date. Due to the gap between modeling and programming artifacts, refactoring
efforts soon become duplicate and considerably expensive. In this context, currently
used tool support, in special Round-Trip Engineering (RTE) tools, fails to fully auto-
mate evolution tasks. Consequently, most projects discard object models early in the
life cycle, adhering to code-driven approaches. This thesis proposes a formal approach
to consistently refactor object models and object-oriented programs of a system in a
model-driven manner. Model refactoring is backed by formal laws of modeling, which
are guaranteed to be semantics preserving. Each refactoring, a composition of laws, ap-
plicable to an object model, is associated with a semi-automatic sequence of applications
of laws of programming, called strategy. Strategies are applied by relying on a specific
conformance relationship between object models and programs, which must fulfill a spe-
cific degree of confinement. We formalized 14 strategies, two for each law of modeling
that affects program structures. These strategies have been formalized as refinement
tactics. In such scenario, complex refactorings that affect main program structures can
be applied abstractly, leaving the update of implementation details to strategies. Also,
model invariants can be used to improve refactoring automation, as they provide run-
time information that allows automation of more powerful program refactorings. This
thesis considers Alloy as the formal modeling language, along with a simplified Java-like
programming language that we call BN. For this programming language, we introduced
four new refactorings and laws of object-oriented programming, with their correspondent
derivations and proofs. Also, the laws of programming have been used in a reference
semantics context, which is closer to current mainstream programming languages. In
order to delimitate the applicability of model-driven refactorings, we formalize a specific
conformance relationship, using a underlying general framework for formalizing confor-
mance relationships; the related formal definitions have been specified and type-checked
with PVS. In addition, we establish and manually prove a soundness theorem for strate-
gies, guaranteeing that they preserve the target program’s behavior and conformance.
Despite of its formality, we also regard the utilization of this theory in practical object-
oriented development, by discussion and three case studies that simulate refactoring
situations for object models and programs. The results presented here shows evidence
on issues that will surely recur in other Model-Driven Development contexts.
Keywords. Alloy, refactoring, confinement, model-driven development.
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Chapter 1

Introduction

During software development, evolution is acknowledged as a demanding activity. Soft-
ware is changed more often than it is written, and these changes can be notably
costly [69]. Evolution is further complicated by the adoption of models, which constrain
the behavior of software with decisions made by designers in a more abstract context.
For instance, object models [58, 70] specify structures, relationships and invariants over
the state of object-oriented programs. In this scenario, it is useful that abstractions in
models and source code evolve consistently; however, this task is time-consuming and
costly in practice.

In particular, the originally defined structure of software usually does not smoothly
accommodate adaptations or additions, demanding new ways of reorganization, in order
to allow smoother and cheaper evolution. Modern development practices, such as refac-
toring [37, 82], improve the design of programs while maintaining its observing behavior,
mainly for preparing software for changing requirements. Refactoring must be executed
with care, as the task must maintain the observable behavior of the target program. In
the context of model-driven development, these tasks become even more complex, with
additional forces to consider, such as code generation, evolution and conformance.

1.1 Problem

When evolving programs or object models, maintaining those artifacts consistent is
usually hard, requiring manual updates, even with state-of-the-art tool support. As a
consequence, projects commonly discard models during development, adhering to code-
driven approaches. The same issues are observed when refactoring multiple artifacts,
limiting the benefits of working with models in restructuring tasks.

Currently used tool support, in special Round-Trip Engineering (RTE) tools [90],
fails to fully automate evolution tasks due to the abstraction gap between models and
programs. For instance, if programs are refactored, models can be generated by reverse
engineering. Producing correct and abstract models from modified programs – as de-
picted in Figure 1.1(a) – usually yields undesired results, in which the generated models
usually correspond to source code visualizations, hindering comprehension of key de-
sign decisions. Consistency conditions between object models and programs – hereafter
called conformance relationship – are established but not detailed here, for simplicity.

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: Software evolution approaches with RTE tools

In an alternative situation, source code generation is often applied to accelerate
implementation tasks with code skeletons. Nevertheless, in the context of refactoring,
code generation-based development is ineffective. Assuming that the model is refac-
tored, structures may be modified; for instance, one of these modified structures may
be implemented as a class in the program. A usual technique in RTE tools marks frag-
ments edited by programmers as immutable, in the original program, in order to avoid
overwriting during code regeneration. However, this immutable code may rely on design
structures that were modified in the model, resulting in an incorrect program. From
the refactored model, code is generated, and the class relating to the changes structure
is also changed. In this scenario, the program changes make the previously user-edited
source code incorrect – as depicted in Figure 1.1(b) –, which requires manual updates
for conformance.

As such, the artifacts quickly end up outdated, as manual updates gradually become
more expensive. Therefore the problem statement is established: refactoring when mod-
els and programs are involved is mostly a manual and nonproductive task; little is known
about the relationship between object model and object-oriented program constructs,
and current tool support often fails in achieving conformance maintenance.

Alternative approaches for using models as primary development artifacts are linked
to Model-Driven Development (MDD) [49]. In special, the Model-Driven Architecture
(MDA) [66] encourages the use of UML as a development language with executable
semantics [7], using action semantics [1] or statecharts, which generates code for several
implementation technologies. This executable models is realized either in a high-level
programming language or by direct compilation to executable representations like as-
sembly languages. Therefore, the accepted idea of abstraction in MDA is linked to
implementation platforms, not programming logic – the latter is included as part of
the models itself. If source code is manipulated somehow, the aforementioned problems
will recur. Differently, Domain-Specific Languages (DSL) [35] are used as modeling lan-
guages for constrained contexts, such as embedded systems for a given domain, such as
avionics or computer games. In this case, developers are not supposed to change source
code, as seen in tools exemplified by SCADE [33] and Perfect Developer [32].

This thesis focus on two aspects of this problem: conformance between models and
source code, and how to feasibly co-evolve these artifacts. In terms of conformance,
research approaches have been investigating issues in terms of automating conformance
checking and generation [53, 84, 27], with little on formalizing these conformance rela-
tionships.
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Into evolution among several conforming artifacts, coupled [67] and bi-directional
transformations [14] establish theories for elements that must evolve in conjunction,
lacking a more in-depth solution for specific modeling artifacts, as object models (subject
to study in this thesis). Other approaches [76, 55, 85] provide more concrete guidelines
for maintaining conformance during evolution, although considering rather concrete
models (design models).

1.2 Relevance

The use of abstract information is acknowledged as a powerful instrument for coping
with complexity during software development. Software modeling offers means to ex-
ploit the benefits of abstract information in tackling complexity and size. However,
as models are not source artifacts, evolution makes them obsolete very quickly. This
is the manifestation of the tension between dealing with complexity and dealing with
change [49]. Methods and tools for partially or even totally removing human interaction
in the process are invaluable to the refactoring practice, due to productivity needs in
software development.

Furthermore, discussions over model and program conformance often reduce to the
problem of defining a specific conformance relationship between models and source code
elements. The correspondence between what changes in the source code from what
changes in the model is in the core of automatic evolution tasks. For that, several
aspects must be considered; primarily, the level of abstraction must be established,
in order to define a policy for constraining programs that are in conformance with a
model. For instance, changing a set of objects in an object model may affect only a
single class, if there is a direct implementation of the set as a class in the program. For
model refactoring, this seems appropriate, as refactoring aims at restructuring design
decisions. Although automation in this case is relatively simple, similar one-to-one
correspondence may restrain abstraction. The problem of establishing the right level of
abstraction in a model-driven context permeates software evolution in general, defining
how two artifacts can evolve in synchronization.

1.3 Research Questions

This thesis aims to provide answers to the following research questions; these questions
are enumerated for later reference:

1. Is there a satisfactory conformance relationship between object models and object-
oriented programs that allows both refactorings with some degree of automation
and a high level of abstraction? What is its formal definition?

2. For this conformance relationship, how can we deal with source code synchroniza-
tion in an incremental way, when part of the model has been refactored? What is
the degree of automation that is possible in this approach?

3. Is this approach sound in terms of, among other properties, behavior and confor-
mance preservation?
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4. What are the consequences of applying this approach in real-world contexts?

1.4 Solution

This thesis proposes a formal approach to consistently refactor object models and cor-
responding object-oriented programs in a model-driven manner. A sequence of formal
behavior-preserving program transformations, which we call strategy, is associated to
each predefined model refactoring. Applying a model refactoring triggers the corre-
sponding strategy, which, in a semi-automated way, (1) updates code abstractions as
refactored in the model and (2) adapts implementation details according to the modified
abstractions; this is accomplished with model invariants, which are assumed through-
out all program’s executions, through a conformance relationship. Although developers
only apply refactorings to object models, in this approach both artifacts get refactored,
reducing manual updates on source code.

Our approach is a formal investigation of evolution tasks, showing evidence about
issues with keeping object models and their implementations in conformance during
refactoring. We establish our approach on formal languages relying on previous work
in object modeling and program refinement. For instance, we consider object models
in Alloy [58], which includes structures for expressing objects, relations and invariants
equivalent to the core concepts of UML class diagrams and OCL [98]. For programs,
we consider a small object-oriented language inspired by the language presented in
Banerjee and Naumann’s work [8], which we call BN (from the authors’ last name
initials), developed for reasoning about object-oriented programming.

In order to precisely determine what changes in the program for each model refactor-
ing, this thesis offers a formal conformance relationship, based on syntactic and semantic
constraints. From this result, a formal framework for defining conformance relationships
between object models and programs was devised; its formal definitions were specified
and type-checked in the (Prototype Verification System (PVS) [83]. Also, the sound-
ness of each strategy is enunciated as a theorem, manually proved for a representative
subset of the strategies proposed in this thesis. In this soundness proof, we ensure that
strategies are program refinements (as expected for refactorings), and the refactored
program is in conformance with the refactored model. In addition, we further evaluate
our approach in three case studies, in order to investigate its effect in software artifacts.

1.5 Summary of Contributions

Accordingly, we summarize the contributions of this thesis as follows:

• A formal conformance relationship between Alloy models and object-oriented pro-
grams for refactoring purposes;

• An approach that relates object model refactorings with strategies of program
transformations, offering semi-automatic program refactoring based only on the
available model information (they cannot be fully automatic, mainly due to class
refinement and refactoring quality issues);
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• Formalization of strategies as refinement tactics;

• Establishment and proof of soundness theorems for strategies, which ensure re-
finement and conformance;

• Three case studies using our approach;

• A formal framework for defining conformance relationships, specified and type-
checked in PVS;

• Four new refactorings and laws of object-oriented programming, with the corre-
sponding derivations and proofs;

• Proofs, in a reference semantics, for laws originally developed for copy semantics.
The proofs are backed by a theory of confinement;

• Formalization, as refinement tactics, of critical steps of normal form reduction for
an object-oriented program.

1.6 Organization

In the next chapter, we survey the state of the art on refactoring and model-driven
evolution. We provide some background on primitive transformations and the involved
object modeling language in Chapter 3, while Chapter 4 establishes our contributions
for defining a programming language and a catalog of laws over which our approach is
based. Chapter 5 builds the foundation of our approach, establishing a notion of con-
formance between Alloy models and object-oriented programs, followed by the general
formal framework that allows definition of conformance relationships between object
models and programs. In Chapter 6, we present our approach in detail, including strat-
egy definitions as refinement tactics. The general theorem and soundness proofs are
presented in Chapter 7, while Chapter 8 evaluates our approach in small case studies.
Finally, Chapter 9 summarizes the contributions of the thesis, related and future work
(Appendices A, B, C, D, E provide additional content for the thesis, including catalogs
of modeling and programming laws, strategy descriptions and complete proofs).



Chapter 2

Background

This chapter presents some efforts related to the state of the art in evolution and refac-
toring considering programs and models, laying the ground for this thesis.

2.1 Software Evolution

Software development aims at the delivery of a software product which satisfies user
requirements. Accordingly, the software product must change or evolve. Once in opera-
tion or still during development, defects are uncovered, operating environments change,
and new user requirements surface. As a consequence, software maintenance can be
considered one of the most expensive development task. Since most domains depend on
software today, it must operate in complete synchronism with the ever-changing business
to be automated [69]. In the context of evolution supported by tools, transformations –
the act of changing one program to another, not necessarily written in distinct languages
– are usually applied to operational software, in order to perform the desired changes
and generate a new version of the software system.

A software process usually contains a comprehensive set of activities for software
evolution. The procedure for dealing with evolution determines a classification criterion
for software processes, as follows.

• Up-front design: in a process driven by this approach, most of the software archi-
tecture is defined previously during the software life cycle, exploring opportunities
for reuse and extensibility. Risks are mitigated as early as possible, defining most
requirements in early phases of the project. In this context, most evolutionary
changes are expected to occur in this architectural phase. Industrial Processes
based on the Unified Process [61] strongly rely on these principles.

• Evolutionary design: this approach guides software developers to design software
for the requirements at hand at a given moment. Design and implementation ac-
tivities take into consideration the concerns involving the current requirements,
simplifying design decisions. However, as new requirements arise and changes are
needed, developers apply techniques for improving the existing design – refactor-
ing [37, 82] –, in order to smoothly apply changes and maintain the quality prop-

6
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erties. Agile methods such as Extreme Programming [12] employ this approach as
one of their main guidelines.

Developers involved in evolutionary practices usually perform activities comprising
four key characteristics, according to Pfleeger [86]:

• Maintaining control over the software system’s day-to-day functions;

• Maintaining control over software modification;

• Perfecting existing functions;

• Preventing software performance from degrading to unacceptable levels.

2.1.1 Issues Related to Evolution

A few technical issues related to evolution recur as developers face the task of evolving
systems, either during development or maintenance activities. For instance, limited un-
derstanding is often present, referring to how quickly a software engineer can understand
where to modify or correct software which this individual did not develop. Comprehen-
sion is more difficult in text-oriented representation (in source code, for example), where
it is often difficult to trace the evolution of software through its releases if changes are
not documented, especially when the developers are not available to explain it, which
is often the case.

Testing is also a critical concern in evolution. The cost of repeating full testing on a
major piece of software can be significant in terms of time and money. Regression tests
– the selective re-testing of a software or component to check whether modifications
have not caused unintended effects – are crucial to evolution, as modifications might
affect more than one software component in unexpected ways, given strong dependencies
between modules.

In evolution contexts, impact analysis describes how to conduct, cost-effectively,
a complete analysis of the impact of a change in existing software. Developers must
possess an intimate knowledge of the software’s structure and content [86]. They use
that knowledge to perform impact analysis, which identifies all software artifacts affected
by a change request, and develops an estimate of the resources needed to accomplish
the change [5]. Several potential solutions are provided and then a recommendation is
made, as the likely best course of action.

Also an important evolution-related aspect, maintainability can be defined as the
ease with which software can be maintained, enhanced, adapted, or corrected to sat-
isfy specified requirements. Maintainability factors must be specified, reviewed, and
controlled during software development activities in order to reduce evolution costs.
Nevertheless, developers are normally concerned with other aspects and often disregard
the evolutionary requirements.

2.2 Program Restructuring

As software evolves, it usually becomes more complex, especially due to unanticipated
changes. In general, addition of new requirements that were not foreseen by the orig-
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inal design tend to degenerate structure [13]. When the need for change arises, some
decisions motivating the original structure may no longer be valid. Some changes may
cross modules’ boundaries, demanding non-local modifications to module interfaces and
implementations, which may be troublesome modifications that compromise software re-
liability, extensibility and reusability, among others [51]. In some cases, although seeking
productivity, developers try to evolve or maintain software in the fastest possible way,
ignoring early design decisions and adding brittleness.

A former technique for addressing evolution-related problems was named program
restructuring, which intends to reduce software complexity by incrementally improv-
ing its structure. Restructuring is applied for making programs easier to understand
and change, as they become less susceptible to errors when future changes are made.
This technique is not supposed to modify functionality from the previously working sys-
tem, as they only enhance program structure to better accommodate later increments.
Arnold [4] refers to the process of reorganizing the logical structure of existing software
systems in order to improve particular quality attributes of programs. Some examples of
software restructuring are: improvement of coding style, documentation edition, trans-
formation of program components (by renaming variables or moving expressions) and
enhancement of functional structures (like relocating functional components into other
modules).

Concerned with how programmers perform restructuring tasks, Griswold [51] ex-
plores behavior-preserving transformations in order to automatically restructure pro-
grams, arguing that global restructuring can be cost-effective, but only if automated
and separated from other qualitatively different evolution tasks. His transformations
deal with program restructuring for aiding maintenance, significantly influencing its
cost. As such, restructuring can isolate a design decision in a module so that changing
it will avoid non-local complex changes.

2.3 Program Refactoring

In the context of object-oriented programming, restructuring is widely known as refac-
toring. The term was coined in Opdyke’s Ph.D. thesis [82]. With refactorings, program-
mers rewrite part of an object-oriented program in order to improve certain qualities,
such as reusability and extensibility, making the system structure easier to understand
and change [37]. Refactoring initiatives tend to enforce coding standards, reduce dupli-
cation and the size of the program, improve modularity, and cause new abstractions to
emerge from the code. Also, refactoring may minimize impact of changes, easing the
task of impact analysis on programs, in addition to overcoming some technical issues
related to evolution, such as limited understanding and maintainability.

Fowler, in his popular book [37], presents an extensive catalog of refactorings, pri-
marily based on industrial experience. These refactorings include their motivations
and step-by-step guidelines for their application, including the small changes needed
to accomplish a refactoring effort in a practical way. Representative refactorings from
Fowler’s book include extracting a new class from a low-cohesive class, moving attributes
between class hierarchies and replacing inheritance or delegation by one another, de-
pending on the context.
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Refactoring is often applied during maintenance activities, in which the lack of
structure may be more evident. Nevertheless, agile methodologies, such as Extreme
Programming [12], bring about refactoring as a constant practice in early design and
implementation activities. Mostly it depends on programmers being taught to tell good
code from bad code and being told to correct bad code whenever they see it. XP prac-
titioners also have to be taught to balance time refactoring with time spent adding new
features.

2.3.1 Refactoring Tools

Refactoring tasks can be performed by hand, by following a checklist of tasks to be ac-
complished in order to apply the refactoring as safely as possible, in the style of Fowler’s
mechanics [37]. In fact, these tasks can either be mixed with usual programming, per-
formed in an ad hoc way, or separate from activities that add new features, as indicated
by XP [12]. However, manual refactoring is tedious and error-prone, sometimes aided
only by some primitive tools, featuring search and replace functions. This scenario may
intimidate refactoring, restraining its benefits, such as high-quality and correct source
code.

Program refactoring tools make it easier to refactor programs, being highly desirable
to minimize the tiresome debugging and testing that must be performed, as the confi-
dence in the final result of the refactoring is increased. These tools leave the developer in
control of the subjective activities of choosing the appropriate structure for the redesign,
which is the intelligent part of the refactoring process. While a catalog of refactorings
can help developers choose the correct new design to apply, a refactoring tool helps
the developer to apply the chosen design, especially performing global changes, affecting
several parts of the program that depend on the changed structures (classes, interfaces,
attributes). This feature can help developers overcome the technical issue of testing.

Significant research work has been carried out on the subject of refactoring tools.
Roberts’ Ph.D. thesis [88] pioneered in describing a refactoring tool, for the Smalltalk
programming language. This tool offers a number of predefined refactorings, each of
which including a number of preconditions. If the program subject to refactoring satisfies
such preconditions, the tool guarantees that the transformation preserves the correctness
and behavior of the resulting program. Roberts also argues that refactoring performed
by a tool may even depreciate up-front design as consolidated in modern methodologies,
since it reduces the cost of the overall process, leading to cheaper design changes after
implementation has taken place.

In the context of Java, foremost tools, such as Eclipse [30] and IntelliJ IDEA [62],
offer advanced support for refactoring programs, from changes as simple as moving
and renaming members to more elaborate modifications, such as Extract Interface and
Generalize Type. For the Eclipse IDE, Tip et al. [97] devised a novel approach for
implementing refactorings with subtyping, using static properties of class hierarchies.
The authors realized that, even though some refactorings having preconditions not fully
satisfied by a program, they may be applied to program fragments presenting properties
related to generalization. These properties are type constraints, which provide formal
support so that some refactorings can be applied safely, such as Extract Interface and
Pull up Members [97]. The type constraints – statically extracted from source code –
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help the tool in identifying the correct program fragments that may be changed, ruling
out the ones that might produce incorrect results. This approach is an example of how
research is being carried out for improving confidence on refactoring tools.

2.3.2 Behavior Preservation in Refactoring

In refactoring, the observable behavior of the program must be maintained, outputting
the same results for specific input data. Usually tool support approaches are not con-
cerned with mathematical guarantee that the implemented refactorings preserve be-
havior (program semantics). There is no proof that, by satisfying its preconditions, a
refactoring preserves semantics. This is important for the refactoring practice and for
justifying the validity of changes accomplished by refactoring tasks. In the context of
formal methods, laws of programming address this issue of behavior preservation. Laws
include two transformations, and one of these can be considered a refactoring, in the
sense that they may be a step to improve quality factors in a program. In fact, laws
formalize some of the primitive refactorings shown in Roberts’ work [88].

A notion of equivalence or refinement between programs is important in the context
of laws of programming [56, 16], in order to refactor programs or support stepwise devel-
opment. This establishes an algebraic approach, which consists in postulating general
properties of the language constructs, typically as laws that relate language constructs.
Further, equational reasoning, which can be easily automated by term rewriting, is
immediately available as a framework for reasoning and transforming programs.

However, in order to avoid postulating an unsound set of laws, these laws must be
linked to a formal semantics in which the laws can be proved. Once the laws have been
proved, in whatever model, they should serve as tools for carrying out program transfor-
mations. Laws are called algebraic, since they are presented as equations, possibly with
provisos (that must be satisfied for the successful application of the law). Two program
transformations are defined by each law, taking a program to a (possibly) alternative
program that presents the same semantics, in each direction. Such laws can be valuable
not only for reasoning about programs, but also for designing correct compilers [89] and
supporting informal programming practices, such as refactoring.

In order to illustrate the use of the algebraic approach in imperative programs,
consider two laws related to the assignment command (:=) in an imperative language.
skip denotes a command having no effect, always terminating, whereas x and y denote
sets of variables and e and f equal-length list of expressions. The following law states
that the assignment of the value of a variable to itself has no effect.

Law 〈void assignment〉

(x := x ) = skip

As a consequence, this void assignment can also occur as part of a multiple assign-
ment, as formalized in the following law.



CHAPTER 2. BACKGROUND 11

Law 〈identity assignment〉

(x , y := e, y) = (x := e)

Since they are extensively used in this thesis, other examples of laws of programming
– mainly for object-oriented programs – can be seen in Section 4.2.

2.4 Refinement Calculus

In addition to using equivalence laws, program refactoring may require programs that
do not behave exactly as the original ones, but possibly better (refinement). For this
purpose, an ordering relation on programs is considered: p1 v p2 holds when p2 is
at least as good as p1 in the sense that it will meet every purpose and satisfy every
specification satisfied by p1. This relation may also be regarded as p2 possibly reducing
nondeterminism in p1.

Nondeterminism can be understood as allowing choices to be made. Formal pro-
gram development usually starts with abstract specifications which leave several design
decisions for the programmer to take. In order to explore the power of nondeterminism
for specifying program behavior, it is suitable to embed a more abstract specification
notation into a programming language. As a single notation is used both for program-
ming and specification, program development reduces to transformations of specifica-
tions within a uniform framework. Examples of these approaches are the refinement
calculi by Back [6] and Morgan [77]. An interesting feature from the latter is the speci-
fication statement, w : [pre, post ], which describes a program that, when executed in a
state satisfying the precondition predicate pre, terminates in a state satisfying the post-
condition predicate post , possibly modifying the values of variables in the list (frame)
w .

Morgan’s calculus includes several laws that allow transforming specification state-
ments into executable programs. Some laws relate specification statements, defining a
process known as algorithmic or control refinement. Two of these laws formally cap-
ture the notion of refinement in program development. One states that a program can
be made more applicable (defined for a larger domain or set of states) when refined,
weakening its precondition.

w : [pre, post ] v w : [pre ′, post ]
provided pre ⇒ pre ′

Concerning the postcondition, refinement might lead to a more deterministic or
predictable program, closer to possible execution. The variable w must be replaced by
w0 in the formulation due to the convention that initial values of framed variables in the
postcondition are subscripted.

w : [pre, post ] v w : [pre, post ′]
provided pre[w 0/w ] ∧ post ′ ⇒ post
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2.4.1 Data refinement

Complementary to algorithmic refinement, a different type of refinement involves change
of data representation, which is particularly useful for refactorings [26]. As a program
evolves, the initially defined abstract data types, which may not be even available in the
target programming language, give rise to more concrete representations, supporting
stepwise development.

Intuitively, the program encompassing the concrete representation refines its abstract
counterpart, although attempting to prove this refinement using the laws for algorithmic
refinement reveals that a direct comparison between the two programs is not possible
at all, due to its different data spaces. The missing connection is a relation between the
abstract and the concrete states; if this relation is functional, it is known as abstraction
function.

As a simple example, consider the specification statement that adds a new element
to a set.

s : [e 6∈ s , s = s0 ∪ {e}]

Then consider a possible implementation using a sequence, as a concrete represen-
tation of a set.

t : [e 6∈ set t , t = t0 _ 〈e〉]

The operation set t yields a set with the elements of the sequence t , 〈e〉 stands for
the singleton sequence with element e, and _ represents sequence concatenation. In
order to guarantee that this refinement is correct, the following abstraction function is
appropriate.

s = set t

As exemplified by Morgan’s refinement calculus [77], data refinement is formulated
at the level of programming modules. A module includes state variables, a state initial-
ization, and procedures which act on the module state. Broadly, the technique involves
adding the concrete variables to the module being data refined, making the abstract
variables auxiliary, and then removing the auxiliary (abstract) variables. Encapsulated
variables can then be added or removed, based on a coupling invariant, which relates
the new and old variables, guaranteeing that the previous behavior is maintained.

2.5 Model Refactoring

As in other engineering fields, modeling can be a useful activity for tackling significant
problems in software design, raising the level of abstraction. With models, developers
can explicitly express the intent of how to address problems, information that is usually
captured in an informal way, if captured at all, by traditional code-driven approaches.
For instance, object models [70] structurally classify objects and their relationships,
enriched by constraints over those objects. They are specially useful for analyzing
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system domains, giving a design for their main abstractions. As an example, we use a
simple object model of a file system, as implemented in mainstream operating systems.
We depict these model elements in Figure 2.1 as a class diagram in the Unified Modeling
Language (UML) [15]. Directories and files are classes, representing two types of file
system objects. name is a binary relation from file system objects to names, constrained
to one multiplicity. Likewise, file system objects may have contents. Root is a subtype
of Directory.

Figure 2.1: Object model for a file system

The invariants for the file system are represented with a logic-based syntax based
on the Alloy language [58]. The formulas respectively state that there is only one root
directory, and only directories have contents. The one keyword states that the expression
yields exactly one object. The (-) symbol denotes set difference. The join operator (.)
represents relational dereference. For instance, the expression o.contents yields the
set of all file system objects for which there exists an element of o related to it by the
contents relation (the no invariant states the emptiness of this set).

Many notations and languages exist to represent software models on different stages
of the life cycle. Some notations may be visual, others textual, as long as they apply
abstraction as a principle. Visual modeling notations are usually effective in providing
documentation for human consumption. In terms of modeling languages, the UML has
become a standard for communication and documentation during the software process.
UML offers a notation for class diagram, in order to express object models; the language
introduces constructions for classes of objects and relationships. Furthermore, UML
includes a logical language, the Object Constraint Language (OCL) [98], which can
be used to express logical constraints on models, such as preconditions, postconditions
and invariants. OCL was introduced into UML as part of the standardization process,
although not supported by tools as expected. For instance, the two invariants showed
in Figure 2.1 may be written in OCL as well. On the other hand, Alloy [58] is a formal
object-oriented specification language, used for specifying, verifying and validating (with
tool support) properties about object models. As the language in our solution, Alloy is
described in Chapter 3.

Similar to source code, model evolution may also lead to software entropy, lowering
quality factors. In order to address this situation, refactorings can also be applied to
models. Applying refactoring to models rather than to source code can encompass a
number of benefits [38]. First, software developers can simplify design evolution and
maintenance, since the need for structural changes can be more easily identified and



CHAPTER 2. BACKGROUND 14

addressed on an abstract representation. Second, developers are able to address defi-
ciencies uncovered by model evaluation, improving specific quality attributes directly on
the model. Third, a designer can explore alternative design decisions in a cheaper way.
For instance, the introduction of patterns [39] can be approached as model refactoring.

As a recent research trend, several approaches have been proposed for refactorings
targeting UML models [68, 47, 94]. Among those, a well accepted approach is to break
a complex model refactoring into a set of small primitive semantics-preserving transfor-
mations. If the semantics holds during each transformation, the composite refactoring
is considered to be semantics-preserving. In this thesis, the method applied for model
refactoring is based on laws of modeling, as detailed in Chapter 3.

2.6 Conformance

Software models include system objects and mechanisms which implementations should
conform to. For the context of this thesis, informally conformance consists in design
decisions being fulfilled by all executions of a program. Regarding object models, we
consider that a program is in conformance with a model when it meets all of the spec-
ified constraints throughout every execution. For the example in Figure 2.1, a brief
description of a conforming program consists in not having more than one instance of
root directories, and no file objects have contents. This relationship between models
and programs can be further constrained with syntactic requirements. Also in the file
system example, a syntactic conformance constraint could enforce that a program class
FSObject declares a contents field, as specified in the object model.

In general, the challenge in co-evolution is to maintain models and implementations
in conformance through evolving changes such as requirement shifts and refactorings.
Conformance checking consists in automatically verifying whether a program is a valid
implementation for a given model, complementing traditional co-evolution support. This
approach is becoming practical in several contexts, as conformance checking tool support
is in constant evolution. Several techniques have been applied for checking conformance,
including code inspection, testing and formal verification. These techniques can be
separated into two categories: static or runtime checking.

Static checking only applies to the implementation’s source code. In other words,
static conformance checking can be used to check the consistency of a program’s code
against models. Such an approach has two key elements: the language for the models
themselves and the analysis mechanism by which the constraints are checked. Alterna-
tively, runtime checking makes use of information available during the implementation’s
execution; it is not limited to artifacts available at compile time. An execution may
not cover all functionality of an implementation, leading to a less comprehensive con-
formance checking. In addition, this analysis may interfere with the implementation’s
execution, which is slowed down by the checking itself. The analysis may be limited to
specific user-defined breakpoints.

As an alternative to keeping models and programs as distinct artifacts and facilitate
conformance checking, annotation languages combine invariants and source code into
one artifact. The Java Modeling Language (JML) is probably the most important ex-
emplar [18]. JML is a language for specifying assertions about the design of Java classes
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and interfaces, including pre- and post-conditions on methods, using a Java-like syntax.
The following code fragment shows examples of JML annotations as commentary within
a Java class named Person. An invariant is a conjunction of properties that must hold
for every Person object, indicated by the JML identifier invariant – in this case, no
person may present an empty string as name or a negative weight. In addition, pre- and
post-condition for the addKgs method, which increases a person’s weight, are denoted by
the JML identifiers requires and ensures, respectively. Before the method execution,
the sum of the current weight and the additional kilograms must be non-negative – oth-
erwise the class invariant could be broken. Also, after its execution, the method must
yield an object state in which the new weight is defined from the sum of the previous
weight value with the parameter.

class Person {
private St r ing name ;
private int weight ;
/∗@

@ invariant !name. equals(””) && weight >= 0;
@∗/

/∗@
@ requires weight + kgs >= 0;
@ ensures weight == \old(weight) + kgs ;
@∗/

public void addKgs ( int kgs ) { . . }
}

These assertions can be compiled into expanded runtime checks. JML’s runtime
assertion checker tool [100] is composed of two components: a translator yielding a
program with extra Java code to perform the runtime checks, and an assertion checker,
used during the program’s execution. Annotation languages may be also subject of static
conformance checks, warning the user about possibly erroneous program fragments such
as null dereferences and array overflow errors [10, 36].

2.7 Model-driven Development

Model-Driven Development (MDD) consists in the application of models and related
technologies to raise the level of abstraction at which developers create and evolve
software, for both simplifying and formalizing several development activities, making
automation possible [54]. Models may help the mechanization of general software prac-
tices; this turns them into an instrument to increase productivity in the following situ-
ations [49]:

• Parts of the source code can be automatically generated from models. The de-
gree of completeness of the generated source code is reliant on models’ level of
abstraction and the specificity of the modeling language;

• Routine tasks, such as generating one artifact from another, may be fully auto-
mated. For instance, test cases and scripts can usually be produced from structural
and behavioral models;

• Abstract descriptions as models may be used in migrating software to distinct
implementation technologies with minimum manual work.
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In fact, model-driven approaches [64] go further in promoting models to first-class
development artifacts. As such, they explicitly convey intent in a formal way, so tools
can interpret this information to provide more advanced forms of automation. The
manipulation of models may bring faster and more accurate responses to changes in re-
quirements, as developers deal with abstract descriptions instead of getting into source
code details. However, the effectiveness of such process in avoiding source code manip-
ulation, partially or completely, is still limited.

Model-driven Architecture (MDA) [66] is a particular realization of MDD that distin-
guishes models that include details of the implementation technology from technology-
independent models, as described in more detail in the following section. However, MDA
represents only one view of MDD, perhaps the most prevalent one; others include Agile
MDD [2], Software Factories [49] and Domain-oriented programming [96].

2.7.1 Model-Driven Architecture

The Model-Driven Architecture (MDA) [66] involves manipulation of abstract models
in UML-based languages and, backed by specific patterns, generates platform-specific
models by automatic transformations. Developing an application with MDA consists
in first building platform-independent models (PIMs) at the conceptual level, including
specification of business functionality and behavior; then a tool is used to adapt these
models to a target platform, resulting in platform-specific models (PSMs). Finally,
source code is generated for the target platform from PSMs. Interface definitions are
included for specifying how a base model is implemented on a different middleware
platform.

The key idea behind MDA is the separation of the application logic from the plat-
form it is intended to execute, in order to minimize the impact of technology evolution
on development. The set of technologies for MDA are positioned around UML-based
languages, which is considered impractical by some authors [49, 64], due to UML’s lack
of formal semantics and inappropriate language definition.

Further, MDA encourages the use of UML as a development language with executable
semantics [7], using action semantics [1] or statecharts. This “executable code” is real-
ized either in a high-level programming language or by direct compilation to executable
representations like assembly languages. Therefore, the accepted idea of abstraction
in MDA is linked to implementation platforms, not programming logic. The latter is
included as part of the models itself.

2.8 Co-Evolution Tools

As the importance of software modeling advances, issues with software evolution with
models become more apparent. As models are subject to evolutionary changes, their
supported implementation should be able to migrate jointly towards a desired target
state, for documenting the design decisions appropriately and increasing productivity.
Even in MDD approaches, model evolution and its implications to related artifacts have
not been explored in depth. Evolving models can bring value to software development,
since dealing with abstractions minimizes complexity and makes design explorations
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cheaper. As the idea of refactoring models adds simplicity to software evolution, au-
tomation and semantics preservation are even more complex issues regarding models
and their implementations.

In practice, models are hardly kept up-to-date. Because models are not the main
artifact, they are not forced to change as software changes, quickly becoming obsolete.
Models produced during early stages of analysis and design, for example, are discarded
when source code becomes the primary artifact, given that the cost of conformance may
outweigh the benefits that models provide – a trade-off between dealing with complexity
(models) and dealing with change (evolution) [49].

Methods and tools for partially or even totally removing human interaction in the
process are valuable to evolution, thus automatic support to address evolutionary change
is highly desirable. This practice enables developers to reason and develop on models,
and changes to models can be consistently transferred to source code, being the basis of
MDD. In the context of embedded systems, for example, this is a common practice, since
the domain is precisely defined, allowing for generation of several systems from the same
model, by changing model parameters or state transition diagrams [29]. In this context,
developers must guarantee that programs conform to models. Several techniques are
currently used, such as round-trip engineering and MDD tools, which are described in
the following sections.

Round-Trip Engineering

One of the most popular techniques for model-program co-evolution is round-trip en-
gineering (RTE), which comprises automatic consistency of changing software artifacts
within a CASE tool. Changes to analysis and design models are propagated to programs
through forward engineering, whereas changes to the implementation are propagated to
models through reverse engineering. Although the relationship between structural mod-
els (e.g. UML class diagrams) and source code is widely explored by modeling tools,
behavioral models are also becoming subject to model and code generation (especially
method bodies) [79].

In RTE, forward and reverse engineering are used for ensuring that software arti-
facts become synchronized at specific points in time. RTE usually presents issues not
seen in forward and reverse engineering performed in isolation. As stated by Sendall
and Küster [90], those tasks in isolation are typically single transformations, where
any updated information in the target artifact is not considered, possibly replacing the
previous version. Differently, RTE requires that information in the target artifact is pre-
served, reconciled with the newly-performed changes. For example, in round-tripping
UML class diagrams and Java programs, it is often undesirable that names and asso-
ciations changed in the class diagram are not reflected in the Java program. In this
case, traceability information must be persisted through transformation steps, as a way
to recognize generated versus user-defined code; placing markers in the artifacts is a
possible approach. Another approach, as described by Harrison et al [55], achieves a
similar effect by using programming mechanisms (class hierarchies) to isolate edited
source code.

Despite its benefits, limitations of RTE restrain model-program co-evolution. When
development activities focus on program changes, RTE helps with generation of an
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initial program structure from models and consequent evolution of models by reverse
engineering. This task generates concrete models from source code, promoting a graph-
ical visualization of a program’s structure and behavior. However, code visualization
using general-purpose languages like UML can actually be less appealing than working
directly with source code, as it is neither abstract enough to capture high-level design
concerns nor sufficiently concrete to capture implementation details.

Advanced modeling tools are capable of maintaining traceability information, in
order to simplify the generation of consistent models, although abstract business rules
(e.g. multiplicity in relationships) may not be possibly recreated from source code.
Usually inferring higher-level semantics from lower-level constructs is much harder than
the inverse [54]. For this purpose, program analysis tools detect abstract information
from programs. As an example, Daikon [31] is an implementation of dynamic detection
of likely invariants, as it reports likely program invariants. An invariant is a property
that holds at a certain point or points in a program, for analysis feasibility; these are
often seen in assert statements, documentation, and formal specifications. The tool is
based on dynamic analysis, in which program executions are analyzed, in order to detect
what kinds of properties are maintained during a set of executions.

Conversely, when models are changed, only concrete models may be able to yield
nearly-complete programs, when general-purpose modeling languages are used. In addi-
tion, it is unclear how specific program logic can be maintained after model changes, as
programs regenerated from model changes may require manual updates for consistency.
A usual technique marks previously edited code fragments as immutable, in order to
avoid problems that might be caused by code regeneration. Even so, this marked source
code may depend on design structures that were modified in the model, resulting in over-
writing changes to the generated artifacts when regeneration occurs. In this scenario,
models and programs end up outdated, as manual updates become more expensive.

MDA Tools

MDA tools represent an alternative to conventional RTE. As developers deal with mod-
els, a MDA-compliant tool is assumed to be able to generate PSMs and source code.
The transformation process is driven by a number of patterns and source code idioms,
allowing advanced program generation. We present below a brief description of the
most used MDA tools, along with a summarized analysis on their support to evolution.
Code generation and modeling tools developed prior to the specification of MDA are
not considered MDA tools, although they may be applicable to an MDA process.

OptimalJ. Built on Eclipse [30], the tool aims to generate a J2EE [93] application
from business rules specified as PIMs [25]. The code editor limits editing on free blocks
of generated code; if a portion of the application needs remodeling, models are edited
and code is regenerated. As long as edits were limited to these free blocks, which often
is not the case, changes are preserved.

ArcStyler. The tool also concentrates on the generation of Java applications, with
option also for Microsoft’s .NET platform. It establishes a cartridge architecture, in
which designers define specific transformations for generating PSMs for custom plat-
forms [80]. It is, to our knowledge, the only MDA tool that support invariants in OCL.

Rational Software Architect. Conventional model editing and RTE is observed
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in this tool, with subtle differences. Most importantly, after code generation, the tool
renders the existing code into UML form – more a code visualization than a PIM – and
when changes happen that affect the design, the UML views are instantly updated [91].
IBM argues that this is, in fact, how many of its customers work in practice today with
its legacy modeling tools [20].

AndroMDA. It is an open source code generation framework that follows the MDA
paradigm [3], which also adopts a cartridge-based architecture. It takes any number of
models (usually UML models stored in XMI produced from case-tools) combined with
any number plug-ins (cartridge and translation-libraries) and produces custom compo-
nents. AndroMDA is mostly used by developers working with J2EE technologies [3].

In conclusion, MDA tools seldom support OCL invariants, which cannot be enforced
in the underlying source code, limiting model expressiveness. Furthermore, although
these tools provide models as a clearer abstraction from programs, they are not suffi-
ciently mature to avoid changes made directly to source code. This scenario is due to
the fact that general-purpose modeling languages are not able to generate the complete
executable code. In this scenario, RTE problems recur, such as model evolution that
may affect previously edited source code, leading to incorrect programs. As an option to
these approaches, executable models require fluency in UML for the full benefits, with
a low level of abstraction.



Chapter 3

Alloy and Object Model Refactoring

This chapter describes the modeling language considered to establish our theoretical
approach. Alloy is the formal object-oriented language used to specify object models for
model-driven refactoring. Besides presenting the language, we give special attention to
its catalog of algebraic laws, which build the basis for refactoring in terms of semantics-
preserving transformations.

3.1 Language

Alloy is a formal object-oriented modeling language, based on first-order logic and a
notation called relational calculus, that gives a mathematical notation for specifying
objects and their relationships [58]. Alloy models are similar to UML class diagrams
combined to Object Constraint Language (OCL) [98], but Alloy has a simpler syntax,
type system and semantics, being designed for automatic analysis, which motivated us
to choose the language for this research work. The choice of this language is justified
by our focus on a formal investigation. Nevertheless, we believe that most contributions
can be extended almost directly to other popular languages, like UML and OCL [?]. In
fact, additional work by our research group prepares the ground for transferring results
to UML [72, 73].

The language assumes a universe of elements partitioned into subsets, each of which
associated with a defining type. An Alloy model contains a sequence of paragraphs ; one
kind of paragraph is called a signature, which is used for defining a new type. These
instances can be related by relations declared in the signatures. A signature paragraph
introduces a basic type and a collection of relations, along with their types and other
constraints on the values that they relate.

For the file system object model showed in Figure 2.1, the following Alloy fragment
defines signatures for FSObject and Name. The keyword sig declares a signature with
a name. Signature Name is an empty signature, while FSObject declares two relations.
For example, every instance of FSObject is related to exactly one instance of signature
Name by the relation name – the keyword one denotes a total function. Also, every file
system object may have contents; it is optional, and maybe contains more than one
instance, since it is annotated with the set keyword, which establishes no constraints
on the relation.

20
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sig Name {}
sig FSObject {

name: one Name,
contents: set FSObject

}

In Alloy, one signature can extend another – with the extends keyword –, establish-
ing that the extended signature is a subset of its supersignature. Signature extension
introduces a subtype, establishing that each subsignature is disjoint. The following frag-
ment shows signatures called File and Dir, that are disjoint (FSObject instances may
be exclusively files or directories). In addition, Root is a subtype of Directory.

sig File extends FSObject {}
sig Dir extends FSObject {}
sig Root extends Dir {}

This object model can be further constrained with invariants, for complex domain
rules concerning the declared signatures and relations. For this purpose, an Alloy model
can be enriched with formula paragraphs called fact, which is used to package formulae
that always hold for the model. The following fragment introduces a fact establishing
general properties about the file system. The first formula states that there must be
exactly one Root instance in every file system, by the one keyword. Next, the second
formula defines that from all file system objects, only directories may present contents.
In the expression (FSObject-Dir).contents, the join operator (.) represents relational
dereference (in this case, yielding contents from the set of instances resulting from
FSObject instances that are not directories, with symbol - as set difference). The no

keyword establishes that the expression that follows results in an empty set, which gives
the constraint the following meaning: only directories have contents in the file system.

fact {
one Root
no (FSObject-Dir).contents

}

Other formula paragraphs can be used in order to build parametric constraints,
namely predicates and functions. The following predicate defines an optional constraint
to the file system, stating that file system objects are files or directories only; + is the
set union operator. In other words, FSObject could be an abstract signature, given the
following predicate is used in a fact in the model.

pred abstract() {
FSObject = File + Dir

}

Alloy was simultaneously designed with a fully automatic tool that can simulate
models and check properties about them (the Alloy Analyzer [59]). The tool translates
the model to be analyzed into a boolean formula, and this formula is solved using SAT
solvers. The analysis consists in binding instances to signatures and relations, searching
for a combination of values that make the translated boolean formula true.
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One of the analysis, namely simulation, generates structures without requiring the
user to provide sample inputs or test cases. If the tool finds a configuration of instances
making the formula true, a valid interpretation for the model is determined. In our
example, we can use the abstract predicate in order to simulate the model in the tool,
with the run command. The complement for 3 constrains the simulation to work on a
scope of at most three instances for each signature; the analysis is limited to a number
of instances, being sound and complete up to that specific number [59].

run abstract for 3

In this example the model is consistent, as at least one interpretation is found, as
showed in Figure 3.1, excerpted from the actual tool output. Each box represents an
instance with the name of the corresponding signature; for more than one instance,
numbers are concatenated to the signature name. A major benefit of this analysis is
that modeling errors, such as missing constraints, can be easier to find by visualizing
possible interpretations. In this case, two design decisions commonly seen in file systems
are unspecified: a directory having itself as contents (Root) and orphan files lacking a
parent directory (File1).

Figure 3.1: An interpretation for the file system model

These two problems can be tackled by adding two more invariants as a fact to the
model. The first states that no directory can be related to itself by contents, even
indirectly ; the symbol ^ yields the transitive closure of the relation. Additionally, the
second invariant defines that every file is contained within a directory; keywords some
and in represent existential quantification and element inclusion in a set, respectively.
While all represents the universal quantifier, no represents its negation.

fact {
no d:Dir | d in d.^contents
all f:File | some d:Dir | f in d.contents

}

If another execution is performed in the model, the yielded result is depicted in
Figure 3.2, confirming the effects of the introduced invariants.
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Figure 3.2: Interpretation for the modified model

3.2 Equivalence notion

Proposing primitive laws for Alloy demands a way to compare whether two models
have the same meaning. An equivalence notion was defined for Alloy [43], supporting
abstraction from names and elements when comparing models. This equivalence notion
is applicable to any language used to represent object models.

Consider the pair of Alloy models depicted in Figure 3.3 (drawn as UML class di-
agrams), presenting a small variation from the file system object model. Figure 3.3(a)
shows a model stating that each directory is related directly to a set of file system ob-
jects, while Figure 3.3(b) establishes that each directory is related to a collection, which
is then related to a set of file system objects.

Figure 3.3: Two alternative object models for the file system

The traditional equivalence notion, which compares whether two models have the
same semantics, is useful, but not flexible enough to compare equivalent models with
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auxiliary elements such as Collection, or with different forms of representing the same
concept, such as contents in Figure 3.3(a). Here we are interested in verifying whether
they have the same semantics and are, therefore, equivalent alternative designs. The
models are intuitively equivalent, taking into consideration the relationship between
directories and file system objects, which is maintained whether there is an intermediate
collection or not.

In order to compare models in such scenario, a flexible equivalence notion compares
the semantics of two object models only for a number of relevant model elements (sig-
natures and relations), abstracting the values assigned to the others. The set of relevant
elements is called alphabet (Σ). The names that are not in the alphabet are considered
auxiliary, or not relevant for the comparison. Assume that Σ contains only the Dir

and FSObject names. If both models have the same instances in valid interpretations
for those names, they are considered to be equivalent under this equivalence notion.
Other names, such as col, Collection and elems, are regarded as auxiliary, thus not
considered when searching for an equivalent interpretation in the corresponding model.
Accordingly, we may now compare the models depicted in Figure 3.3.

However, there might be model elements that, although relevant, cannot be com-
pared, since they are not present in both models. For instance, suppose that we include
contents to Σ. In this case, we cannot compare the models, since contents is not
part of the model in Figure 3.3(b). However, contents can actually be expressed as a
composition between col and elems. In those cases, a mapping is considered, called
view (v), establishing how an element of one model can be interpreted using elements of
another model. Views consist of a set of items such as n→exp, where n is an element’s
name and exp is an expression, specifying how the concept n can be expressed in terms
of other concepts. Notice that although the values of auxiliary names are not compared,
they can be used to yield an alternative meaning to relevant names. In the example,
we may choose a view containing the following item: contents→col .elems . Now we can
infer that both models are equivalent.

Two models can be equivalent with respect to an alphabet and a view (σ, v), and
the choice of a different alphabet or view yields a different equivalence. This notion
is more flexible, it supports abstraction from names and elements when comparing
models. By choosing specific alphabets and views, as desired, the developer can choose
the appropriate abstraction level for a given situation. In fact, the usual equivalence
notion is a particular instantiation of our notion when we simply take an empty view and
an alphabet containing all names in the model. More details about the formalization of
this equivalence notion, its properties and proofs can be found elsewhere [42, 43].

3.3 Laws and Refactoring

Using the previous equivalence notion, a catalog of primitive laws for Alloy is presented.
These laws state properties about several constructs of the language, including signa-
tures, relations and facts. Here we only show a subset of the laws proposed for Alloy;
a comprehensive catalog has been proposed [42], providing powerful guidance on the
derivation of complex transformations, such as model refactorings and optimizations, in
addition to being the basis for our model-driven approach to refactoring.



CHAPTER 3. ALLOY AND OBJECT MODEL REFACTORING 25

Each law defines two semantics-preserving transformations. As an example of a law,
we can introduce a new relation along with its definition, which is a formula of the form
r = exp, establishing a value for the relation, as formalized in Law 1. We can also
remove a relation that is not being used. rs represents relations, while forms represents
a set of formulas. Below the law, provisos are specified, which must be valid for the law
to be correctly applied. (←) defines provisos for application from Left-to-Right (L-R),
while (→) defines provisos for applying the law from Right-to-Left (R-L). ↔ defines
provisos for both directions. ps denotes a set of signature and fact paragraphs that are
not showed in the law template.
Law 1. 〈introduce relation and its definition〉

ps
sig S {

rs
}

fact F {

forms
}

=Σ,v

ps
sig S {

rs ,
r : set T

}

fact F {

forms
r=exp

}

provided
(↔) if r belongs to Σ, r does not appear in exp and v contains the r → exp item;
(→) (1) the family of S does not declare any relation named r ; (2) T is either S or
declared in ps ; (3) r does not appear in exp, or exp is r ; (4) exp is a subtype of r in
ps and forms ; (5) for all names in Σ that are not on the right-hand side model, v must
have exactly one valid item for it;
(←) (1) r is not mentioned in any constraints within ps ; (2) for all names in Σ that are
not on the left-hand side model, v must have exactly one valid item for it.

The family of a signature is the set of all signatures that extend or are extended
by it direct or indirectly. The exp expression can be either r or an expression having
the same type of r and not containing r . This law can be used to simply introduce a
relation, without any definition. It is only required to assign exp the r relation itself,
introducing a tautology that is later removed. Moreover, constraints involving Σ and
v must be considered. When introducing or removing a relation in Σ, the r→exp item
belongs to v and r does not appear in exp in order to avoid a recursive definition in v .

Law 2 introduces transformations for adding or removing a subsignature to an exist-
ing hierarchy. We can add an empty subsignature if declared with a fresh name. After
this transformation, the supersignature becomes abstract (defining no direct instances),
as denoted by the resulting invariant (X=U−S−T). Similarly, the subsignature can be
removed if it is not being used elsewhere and, in order to avoid type errors, there is no
invariant using its type (exp ≤ U , exp 6≤ S and exp 6≤ T ), where ≤ denotes subtype.
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Law 2. 〈introduce subsignature〉

ps
sig U { rsU }

sig S extends U {rsS}
sig T extends U {rsT}
fact F {forms} =Σ,v

ps
sig U {rsU }

sig S extends U {rsS}
sig T extends U {rsT}
sig X extends U {}
fact F {

forms
X = U − S − T

}

provided
(↔) if X belongs to Σ, v contains the X = (U − S − T ) item;
(→) (1) ps does not declare any paragraph named X ; (2) there is no signature in ps
that extends U (3) for all names in Σ that are not on the right side model, v must have
exactly one valid item for it;
(←) X does not appear in ps , rsU , rsS , rsT and forms ; (2) there is no expression exp,
where exp ≤ U and exp ≤ S and exp ≤ T , in ps or forms or any valid item in v ; (3) for
all names in Σ that are not on the left side model, v must have exactly one valid item
for it.

In addition to the presented laws, a catalog of laws of modeling for Alloy was pro-
posed [42], as listed in Table 3.1. This catalog has been proved to be semantics preserving
with the help of a theorem prover; also, a proof of compositionality is also provided [42].

1. introduce relation and its definition 12. separate relation declarations
2. introduce subsignature 13. replace relation expression
7. introduce signature 14. introduce formula
8. introduce generalization 15. introduce empty fact
9. remove abstract qualifier 16. split relation
10. remove signature cardinality qualifier 17. remove one relation
11. separate signature declarations 18. remove lone relation

Table 3.1: Alloy laws

The full catalog is presented in Appendix A. Furthermore, these laws can be used
as basis for several applications that require semantics-preserving transformations, for
instance model refactorings. Since laws are simpler – dealing with a few language con-
structs – they can be more easily proved to be semantics-preserving. By construction,
a composition of laws is also correct, providing safe refactorings for object models.

Refactoring 1 depicts, in UML, a refactoring rule for pushing down a relation down
the hierarchy. As defined in previous work, a relation may be pushed down if the model
presents an invariant stating that the relation only relates objects in the subclass S. A
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relation may be pulled up by adding this constraint to the model.

Refactoring 1. 〈Push Down Relation〉

provided
(→) exp.r , where exp≤U and exp 6≤S , does not appear in ps;
(←) S ’s family does not declare any relation named r .

This refactoring is derived by successive applications of Laws 1 and 2 mainly. It must
be clear that this derivation is carried out only once by a refactoring designer; once done,
the refactoring is ready to be applied as enunciated in Refactoring 1. In the file system
example, the developer would be able to apply this refactoring for pushing down the
contents relation to Dir, since the required invariant is explicitly defined in Figure 2.1
(no (FSObject-Dir).contents). The application of Refactoring 1 entails the following
law transformations (we take {FSObject , Dir , File, contents} as the alphabet, and a
view v = {contents 7→ contentsDir}):

1. Apply Law 2 (L-R) to introduce an auxiliary X subclass of FSObject, with which
X= FSObject-Dir-File;

2. Introduce three relations – Law 1(→) – from each subclass to FSObject, namely
contentsDir, contentsFile and contentsX;

3. Deduce and add invariant contents=contentsDir + contentsFile + contentsX

by using Law 14 from Table 3.1;

4. Remove contents based on the deduced formula, with Law 1(←);

5. Deduce that contentsFile and contentsX are always empty, based on the original
invariant no (FSObject-Dir).contents;

6. Remove X with Law 2(←);

7. Rename contentsDir to contents.



Chapter 4

Programming Language and
Refactoring

In this work, we use a small object-oriented language inspired by the language presented
in Banerjee and Naumann’s work [8], which we call BN (from the authors’ last name
initials). For establishing a formal basis for program refactorings in our model-driven
refactoring approach, we use laws of programming [56] as a basis for formal program
transformations. An extensive catalog of behavior-preserving laws of object-oriented
programming has been defined for ROOL [16], another subset of Java with a formal
semantics [21]. However, the language presents a copy semantics, restraining reasoning
for modern programming languages such as Java and C#, which are based on references.
On the other hand, BN follows Java’s reference semantics. Also, we apply confinement
as a required program property, since some of the laws are incorrect with references
without confinement, as shown in this section.

4.1 Language

A program is a set of classes, namely a class table CT , which always include a class
named Main, with a method main representing the execution starting point. A generic
class declaration is defined as follows

class C extends D { T̄ f̄ ; M̄ }

where barred identifiers like T̄ indicate finite lists. T̄ f̄ stands for typed fields in the
class, while M̄ represents a list of methods.

The grammar, showed in Table 4.1, is based on given sets of class names (with typical
element C and including at least Object), field names (codef), method names (m), and
names (x) for parameters and local variables. In most respects self and result are like
any other variables, but self cannot be the target of assignment.

The following code fragment declares the FSObject class from the file system exam-
ple. Fields are private and methods are public by default, although public fields can be
declared with the pub modifier. Also, a constructor can be declared with the constr

28
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Table 4.1: RN Grammar [8]

T ::= bool | unit | C data type
CL ::= class C extends C{T̄ f̄ ; M̄ } class declaration
M ::= T m(T̄ x̄ ){S} method declaration
S ::= x := e | e.f := e assign to variable, to field
| x := new C object construction
| x := e.m(ē) method call
| T x := e in S local variable block
| if e then S else S fi | S ; S conditional, sequence

e ::= x | null | true | false | it variable, constant
| e.f | e = e field access, equality test
| e is C | (C )e type test, cast

keyword. The set modifier establishes a collection variable (set of objects). Keywords
result and self denote a method’s return variable and the current object, respectively.

class FSObject{
Name name ;
pub set FSObject content s ;
constr { s e l f . name:= new Name }
Name getName ( ) { result := s e l f . name }
. . .

}

As in Java, there is also a class object with no fields or methods. Only bool and unit
(the empty type) are predefined as primitive types in the language; other primitives can
be similarly defined by the language designer, such as integers. Furthermore, expressions
do not have side effects. Object construction occurs only as a command – x:= new C.
This assigns the constructed object to a local variable. Similarly, method calls occur in
special assignments x:= e.m(ē) defining both side effect and a return value. Methods
can be defined recursively, so loops are omitted.

For the direct superclass of C, we define superC = D . Let M be in the list M̄ of
method declarations, with

M = T m(T̄2 x̄ ){S2}.

Typing information is recorded by defining mtype(m,C ) = T̄2 → T (T̄2 → T is not
a data type in the language). For the parameter names, pars(m,C ) = x̄ . If m has no
declaration in C but mtype(m,D) is defined, then m is an inherited method, for which
we define mtype(m,C ) = mtype(m,D) and pars(m,C ) = pars(m,D). For any variable,
type(x ) denotes its declaration type.

A typing context Γ is a finite mapping from variable and parameter names to data
types, such that self ∈ domΓ. Typing of commands for methods declared in class C
is expressed using judgements Γ ` S , where Γself = C . Further, if mtype(m,C ) =
T̄ → T and pars(m,C ) = x̄ then Γx̄ = T̄ and Γresult = T . The judgement Γ ` e : T
states that expression e has type T .
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Table 4.2: RN Semantics of Expressions [8]

J Γ ` x : T K (h, η) = ηx
J Γ ` null : B K (h, η) = nil
J Γ ` it : unit K (h, η) = it
J Γ ` true : bool K (h, η) = true
J Γ ` false : bool K (h, η) = false
J Γ ` e1 = e2 : T K (h, η) = let d1 =J Γ ` e1 : T1 K (h, η) in

let d2 =J Γ ` e2 : T2 K (h, η) in
if d1 = d2 then true else false

J Γ ` e.f : T K (h, η) = let ` =J Γ ` e : (Γself) K (h, η) in
if ` = nil then ⊥ else h`f

J Γ ` (B)e : B K (h, η) = let ` =J Γ ` e : D K (h, η) in
if ` = nil ∨ loctype ` ≤ B then ` else ⊥

J Γ ` e is B : bool K (h, η) = let ` =J Γ ` e : D K (h, η) in
if ` = nil ∧ loctype ` ≤ B then true else false

Finally, a denotational semantics is defined for RN. Here we present a simplified
version of the semantics described in detail in Banerjee and Naumann’s work [8]. Our
focus is on the semantics of expressions and commands, and the semantics of a class
table. The state of a method in execution includes a heap h, which is a finite partial
function from locations to object states, and a store η, which assigns locations and
primitive values to the local variables and parameters given by a typing context Γ. An
object state is a mapping from field names to values. Function application associates to
the left, so h`f is the value of field f of the object h` at location `.

A command denotes a function mapping each initial state (h0, η0) either to a final
state (h, η) or to the distinguished value ⊥. The improper value ⊥ represents nontermi-
nation as well as runtime errors: attempts to dereference nil or cast a location to a type
that it does not have. For locations, we assume that a countable set Loc is given, along
with a distinguished value nil not in Loc. To track the class of an object we assume given
a function loctype : Loc → ClassNames such that for each C there are infinitely many lo-
cations ` with loctype` = C . We write locsC for {` ∈ Loc | loctype` = C}, and locs(C ↓)
for {` | loctype` ≤ C} (≤ denotes subtyping). In addition, an allocator is a location-
valued function fresh such that loctype(fresh(C , h)) = C and fresh(C , h) 6∈ domh, for
all C , h.

For expressions and commands, the semantics is defined by induction on typing
derivations. We let (h, η) ∈ J Heap ⊗ Γ K in the definitions in Table 4.1. For semantic
values we use the identifier d , but sometimes ` for elements of the sets J C K. For
expressions the semantics is straightforward; the Java semantics is used for casts and
tests.

Next, Table 4.1 shows the semantic definitions for commands in RN. In the semantics
of commands, [fields 7→ defaults ] is the abbreviation for the function sending each
f ∈ dom(fields B) to the default value for type(f ,B). The defaults are false for bool,
it for unit, and nil for classes. Function update or extension is written like [η | x 7→ d ].



CHAPTER 4. PROGRAMMING LANGUAGE AND REFACTORING 31

Table 4.3: RN Semantics of Commands [8]

J Γ ` x := e K µ(h, η) = let ` =J Γ ` e : T K (h, η) in (h, [η | x 7→ d ]
J Γ ` e1.f := e2 K µ(h, η) = let ` =J Γ ` e1 : (Γself) K (h, η) in

if ` = nil then ⊥ else
let d =J Γ ` e2 : U K (h, η) in
([h | ` 7→ [h` | f 7→ d ]], η

J Γ ` x := new B K µ(h, η) = let ` = fresh(B , h0) in
let h = [h0 | ` 7→ [fieldsB 7→ default ]] in
(h, η0[x 7→ `])

J Γ ` x := e.m(ē) K µ(h, η) = let ` =J Γ ` e : B K (h0, η0) in
if ` = nil then ⊥ else
let x̄ = pars(m,B) in
let d̄ =J Γ ` ē : Ū K (h0, η0) in
let η = [x̄ 7→ d̄ , self 7→ `] in
let (h, d1) = µ(B)m(h0, η) in
([h, [η | x 7→ d1])

J Γ ` S1; S2 K µ(h, η) = let (h1, η1) =J Γ ` S1 K µ(h, η) in
J Γ ` S2 K µ(h1, η1)

J Γ ` if e then S1 else S2 fi K µ(h, η) = let b =J Γ ` e : bool K (h0, η0) in
if (b) then J Γ ` S1 K µ(h0, η0)
else J Γ ` S2 K µ(h0, η0)

J Γ ` T x := e in S K µ(h, η) = let d =J Γ ` e : U K (h, η) in
let η1 = [η | x 7→ d ] in
let (h1, η2) =J (Γ, x : T ) ` S K µ(h, η1) in
(h1, η2 � x )

The � symbol denotes domain restriction: if x is in the domain of η then η � x is
the function like η but with x removed from its domain. Symbol µ represents a method
environment, which keeps the semantics of all methods from the class table, being looked
up in method calls.

4.2 Laws of Programming

One classical approach for defining semantics of a programming language is the algebraic
approach, which consists in postulating general properties of the language constructs –
laws of programming [56]. Program transformations are defined by laws, taking a pro-
gram to a (possibly) alternative program that presents equivalent behavior. Such laws
can be valuable not only for reasoning about programs, but also for designing correct
compilers [89] and supporting informal programming practices, such as refactoring [26].

In this context, a comprehensive set of laws was developed for an object-oriented pro-
gramming language known as the Refinement Object-Oriented Language (ROOL) [16].
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Similarly to BN, it includes most OO language constructs, added to specification state-
ments of Morgan’s refinement calculus [77]. These laws, proved to be behavior-preserving
according to a formal semantics [21], provide a formal basis for defining program refac-
torings. The following law, for instance, allows introducing and eliminating class decla-
rations, which may change the context of development. Similar to Alloy laws, provisos
ensure that the transformations denoted by the law preserve semantics. In order to
improve reading, BN language’s syntax is used for depicting the laws (cd1 is the class
declaration to be removed).

Law 3. 〈class elimination〉

CT cd1 = CT

provided

(↔) cd1 6= Main;

(→) name(cd1) is not used in CT .

(←) (1) cd1 is a distinct name; (2) Field, method and superclass types in cd1 are
declared in CT .

In addition to equivalence laws, reasoning about classes usually requires a notion
of class refinement, for internal representation changes such as addition and removal of
private fields. Class refinement is directly related to traditional data refinement [77].
The following law changes private fields in a class, relating them to new fields. The
application of this law changes the bodies of the methods in the class. This law is not
numbered, as it is proposed for the ROOL language, which presents subtle differences in
syntax [16]: c is analogous to the main method, and � symbolizes refinement between
the two versions of class A.

Law 〈private field-coupling invariant〉

class A extends C
pri x : T ; ads
mts

end

�cds,c,CI

class A extends C
pri y : T ′; ads
CI (mts)

end

The coupling invariant CI relates abstract and concrete attributes. The notation
CI (mts) indicates the application of CI to each of the methods in mts , as stated by
traditional laws of data refinement [77]: every guard may assume the coupling invariant
and every command is extended by modifications to the concrete variables so that the
coupling invariant is maintained. Simulation is then established, in which the construc-
tor makes the coupling invariant true, and every method begins executing on a valid
state and results in another valid state.
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Additionally, the set of laws for ROOL is complete in the sense that it is sufficient
to reduce an arbitrary program to a normal form substantially close to an imperative
program. Another application of these laws is the formal derivation of refactorings; the
laws offer a basis for proving that the transformations preserve behavior and, therefore,
are indeed refactorings [16], similarly to object model refactorings with Alloy laws.

These laws have been proved, however, for a copy semantics, in which objects are
values, not referenced by pointers. This decision simplified the semantics to the point in
which certain laws – in special laws based on data refinement – require simpler proofs, as
aliasing can be ruled out, allowing direct modular reasoning. For instance, the ROOL
catalog includes the following assignment law, in which e2[e1/le] denotes the substitution
of le by the free occurrences of e1 in e2.

(le := e1; le := e2) = (le := e2[e1/le])

This law holds only with copy semantics; in general, it is unsound when le is a
shared object reference, in particular if le takes the form of le.a. Using the file system
as example, we assume that two variables – self and anotherFile refer to the same
File instance. Also, we include an integer field named size to File. Then the following
sequential statement cannot be subject to the previous law:

s e l f . s i z e :=0;
s e l f . s i z e := anothe rF i l e . g e t S i z e ( ) + 2048 ;
s e l f . s i z e := s e l f . s i z e + anothe rF i l e . g e t S i z e ( )

6=
s e l f . s i z e :=0;
s e l f . s i z e := ( anothe rF i l e . g e t S i z e ( ) + 2048) + anothe rF i l e . g e t S i z e ( )

The outcome for self.size in the first sequence of statements is 4096, whereas 2048
is the outcome in the transformed statement. This difference takes place due to aliasing,
in which the first assignment to self.size produces a side effect to anotherFile.size.

Although most object-oriented programming laws considered here do not rely on
copy semantics – except the simulation law for applying data refinement – most practi-
cal object-oriented programming languages have a reference semantics. Therefore, due
to the inconvenience of defining refactoring on a language that is disconnected from the
practice of object-oriented programming, we transferred the law catalog to a reference-
based language (BN), inspired by the work of Banerjee and Naumann [8], which guar-
antees modular reasoning by using confinement as a requirement for programs.

4.3 Confinement

Modular reasoning has been a core issue during software development and evolution.
The ability to develop and understand modules independently of the others is criti-
cal to extensibility and reusability. This data abstraction requires from programming
languages powerful encapsulation mechanisms, which have been tackled by advances
in language design. Nevertheless, encapsulation provided by language constructs often
presents a few concerns; for object-oriented languages, they usually fail in the presence
of aliasing, as showed in the previous section.
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Several disciplines have been proposed for controlling aliasing. The most relevant
ones define some form of ownership confinement [23], restricting access to designated
representation objects (reps), except through their owners, to avoid representation ex-
posure [8]. An owner is a class maintains representation objects stored in the fields
of its objects. We show next a program fragment depicting confinement and repre-
sentation independence, using as example a small version of classes FSObject (owner)
and Name (rep) from the file system example. FSObject declares accessor methods
(setName,getName), for basic operations on the name field. The constructor assigns a
new name to the file system object that is being constructed. In the Name class, fields
represent the two parts of a name (String defines a type as in Java).

class FSObject{
Name name ;
unit setName (Name n) { s e l f . name:= n }
Name getName ( ) { result := s e l f . name }
constr { s e l f . name:= new Name ; }

}
class Name{

St r ing l a b e l ;
S t r ing extens i on ;
unit s e tExtens ion ( St r ing ext ) { s e l f . ex t ens i on := ext }

}

Usually, directory names have no extension, differently from files. We define an
object invariant for FSObject, establishing the valid states for an instance of this class
(self is Dir ⇒ self .name.extension = null) – an instance of FSObject is in a valid
state only if its name has no extension, in case it is a directory. Regular information
hiding enforces a simple encapsulation rule – name is a private attribute. However, the
getName method leaks the reference to name, so the invariant can be broken from a
client code, as follows.

FSObject d i r := new Dir , Name n in
. .
n:= d i r . getName ( ) ;
n . s e tExtens ion ( "txt" ) ;

In this case, a directory is invalid, as the reference to the rep object is shared by
its owner and a client program. This issue raises the need for advanced encapsulation
mechanisms; ownership confinement institutes, for the owner FSObject, the confined
access to its rep objects, in this case Name instances. The FSObject can be simply
rewritten for ensuring confinement, as showed in the next program fragment. No direct
access is given for the rep object; instead, FSObject defines methods for changing the
members of a name indirectly, testing whether the instance is a directory.

class FSObject{
Name name ;
unit setName ( St r ing n) { s e l f . name . setName (n) }
unit s e tExtens ion ( St r ing ext ) {

i f ( s e l f i s Dir ) then
se l f . name . se tExtens ion ( ext )

}
}

Despite this simple example, confinement may be hard to ensure for any given pro-
gram. Techniques for statically checking confinement in source code have evolved, allow-
ing less restrictive verifications. Banerjee and Naumann [8] present a number of static
analysis rules for ensuring a property called by them safety, which is shown in their
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work to imply confinement. The input is a class table and its division into three sets
of classes: Own and Rep, defining the possibly non-disjoint sets of owner and represen-
tation classes, respectively, and Client with all other classes. The restrictions are weak
enough to admit interesting programs. Also, the analysis is modular, as only Own and
Rep code is constrained (with one exception, for new commands). They present the
following rules, as adopted in this thesis:

• Public methods declared in Own or subclasses cannot return Rep types; otherwise,
references to internal objects might leak to clients.

• Methods inherited or declared by Own cannot have parameters of Rep types;
otherwise, non-owner subclasses might have access to Rep instances;

• Rep classes cannot inherit any methods from non-Rep superclasses; for instance,
a method could return self to a client, which is highly undesirable;

• For any field access e.f , if e is of type Own, it cannot access fields of type Rep,
unless e is self ; this rule must be checked only for public fields, as it is guaranteed
by type safety for private fields;

• For assignments x:= new B in Client , B cannot be Rep or any of its subclasses;
otherwise, these clients would have direct access to Rep instances.

• For method calls x:= e.m(ē), (1) if e is a Client object, and the call is within Own
or Rep (or subclasses), m cannot have Rep parameters (otherwise Rep instances
could leak); also, (2) if the call is within Own, m is declared in Own, and e is self ,
parameters and return may be Rep type. The second case in fact weakens the
confinement constraints with a condition that can be detected by static analysis.

If public methods in Own return Rep objects, confinement can be easily broken by
any client with access to these objects. Regarding inheritance, parameters in methods
that can be inherited by subclasses of Own cannot be Rep, for the mentioned reason.
Clients cannot either instantiate Rep objects, and method calls must be controlled for
not passing Rep parameters to Client objects.

4.4 Proofs for laws

Although the catalog of laws is proved for a language with a copy semantics, most laws
are not affected by a change to reference semantics, except laws for change of data
representation [16]. Based on this property, we use the same catalog as a basis for this
thesis. Nevertheless, we chose five (5) representative command and ROOL catalog laws,
and developed a proof for their correctness on the denotational semantics of the BN
language described in Section 4.1. In this section, we present the proof for Law new
superclass [26]; other laws are class elimination, assumption guard, change attribute
type, and move redefined method to superclass. The proofs for these other four laws are
presented in Appendix C.

Law 4 establishes that we can replace instantiations of a class B by instantiations
of its superclass A, as long as B is an empty class. This change can occur either in the
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body of A’s methods or any method in the class table CT (CT [exp ′/exp] is the notation
for substitution of free occurrences of exp by exp ′). Instantiations of the superclass can
be used if expressions of type A are not cast with B and B instances are assigned only to
A-typed variables – type errors would be generated otherwise. The opposite application
is constrained by a proviso: tests involving A-typed variables with B may not work if
A’s instances become B instances.

Law 4. 〈new superclass〉

class A extends C {
ads
mts

}
class B extends A { }
CT

=CT

class A extends C {
ads
mts ′

}
class B extends A { }
CT ′

where

CT ′ = CT [new A/new B ]

mts ′ = mts [new A/new B ]

provided

(→) (1) B is not used in type casts or tests in CT or ops for expressions of type
A; (2) x := new B appears only if type(x ) ≤ A.

(←) Variables of type T ≤ A are not involved in tests with type B .

In order to prove this law, we first define the equivalence notion for class tables [8].
Class tables can only be equivalent if they are comparable. Comparable class tables
differ only in the implementation of a set of classes in the Own set – the owners in the
confinement notion. For this law, the methods’ signature is maintained in both versions
of Own. In the following definition, class tables are compared in terms of the classes
that do not change. For simplification, we consider well-formed class tables.

Definition 4.1. Suppose that Own, Own’ are subsets of class tables CT and CT’, re-
spectively. CT and CT’ are comparable iff:

1. CT −Own = CT ′ −Own ′;

2. dom Own = dom Own ′;

3. For any method in Own, either mtype(m,Own) and mtype(m,Own’) are both un-
defined or defined and equal.

A program consists in a class table CT together with a command Γ ` S , which
may be for instance the sequence of commands within the main method; Γ defines
the typing context, a finite mapping from variable and parameter names to data types
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(self ∈ dom Γ). Instances that are reachable from variables of Γ are considered the
inputs and outputs of the program. We only consider programs following the set of
confinement rules defined in Section 4.3. In BN’s denotational semantics, commands
denote functions on states. Thus an obvious notion of equivalence is that J Γ ` S K and
J Γ ` S ′ K are equal as functions; however, semantic domains differ for owner object
states which may have different private fields. Therefore, we use the concept of Own-
free program heaps (program states that do not contain instances of owner classes, as
explained in detail in Chapter 5), and compare command meanings on the Own-free
heaps only.

In order to ensure Own-free heaps after command execution, the collect function, as
defined next, yields the input heap from which objects from classes in Own are deleted,
if unreachable in the heap – this function can be compared to the operation of a garbage
collector.

Definition 4.2. For a list d̄ of values, the heap gc(d̄ , h) is the restriction of h to values
reachable from d̄. For (h, η) ∈ J Heap ⊗ Γ K, collect(h, η) = (gc(rng η, h), η), where
rng η is the set of values mapped in the store η.

The assumption is that the initial store η0, mapping local variables to their current
values, never defines a variable that will reach an object from Own. Next, we establish
the theorem for proving Law 4. In this theorem, both sides of the law define equivalent
programs, as they result in the same Own-free heaps after the execution of the S com-
mand in the main method. Taking two heaps, one from each compared program, they
only differ in the reference (`) types – from B to A.

Theorem 4.1. Let CT and CT ′ be two class tables, representing, respectively, the left-
hand and right-hand sides of Law 4, with Own = {A,B}. Then, for any Own-free heap
h0 and store η0 in CT, and any command S in the main method:

∀µ :J CT K, µ′ :J CT ′ K •
collect(J Γ ` S K µ(h0, η0)) = collect(J Γ ` S ′ K µ(h ′0, η

′
0))

where

S ′ = S [new A/new B ]

h ′0 = h0[` ∈ locsA/` ∈ locsB ]

η′0 = η0[` ∈ locsA/` ∈ locsB ]

The proof for this theorem expands semantic definitions from the language’s deno-
tational semantics described in Section 4.1.

Proof 4.1. The proof is developed by induction over the language commands. Here,
we consider two cases: new B commands and method calls on B objects. The proof
method starts from the program’s definition from the left-hand side of the law, and the
proof is concluded when the program’s definition from the right-hand side of the law is
deduced.
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Case x := new B .

collect(J Γ ` x := new B K µ(h0, η0))

= [by semantics of new]
let ` = fresh(B , h0) in

let h = [h0 | ` 7→ [fieldsB 7→ default ]] in
(h, η0[x 7→ `])

As in the law B is an empty class, A and B share the same fields (fieldsB denotes
all fields from class B, either declared or inherited).

= [by hypothesis, fieldsB = fieldsA]
let ` = fresh(B , h0) in

let h = [h0 | ` 7→ [fieldsA 7→ default ]] in
(h, η0[x 7→ `])

The heaps before and after the command only differ in locations of type B. Since
B ∈ Own, the heaps and stores can be considered as equal.

= [h0 is Own-free, so h0 = h ′0]
let ` = fresh(B , h ′0) in

let h = [h ′0 | ` 7→ [fieldsA 7→ default ]] in
(h, η′0[x 7→ `])

Because instances of A and B are structurally equivalent, and these objects get col-
lected, we can replace fresh(B , h ′0) by fresh(A, h ′0).

= [fresh(B , h ′0) = fresh(A, h ′0)]
let ` = fresh(A, h ′0) in

let h = [h ′0 | ` 7→ [fieldsA 7→ default ]] in
(h, η′0[x 7→ `])

= [by semantics of new]
collect(J Γ ` x := new A K µ′(h ′0, η

′
0))

Case x := e.m(ē), e is B .

collect(J Γ ` x := e.m(ē) K µ(h0, η0))

The semantic definition of method call first considers the case in which the target
expression e is null; the program must abort, which is represented by ⊥. Else, a bind-
ing for the parameter names (pars(m,B)) to the values of expressions ē is added to
store η. The resulting heap and store (h, d1), given by the semantics of the method call
µ(B)m(h0, η) are then added to the binding of the result variable.
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= [by semantics of method call]
let ` =J Γ ` e : B K (h0, η0) in

if ` = nil then ⊥ else
let x̄ = pars(m,B) in
let d̄ =J Γ ` ē : Ū K (h0, η0) in
let η = [x̄ 7→ d̄ , self 7→ `] in
let (h, d1) = µ(B)m(h0, η) in
([h, [η | x 7→ d1])

By the law template, B does not declare methods, so the semantics of any method
in both classes is the same.

= [µ(B)m = µ′(A)m]
let ` =J Γ ` e : B K (h0, η0) in

if ` = nil then ⊥ else
let x̄ = pars(m,A) in
let d̄ =J Γ ` ē : Ū K (h0, η0) in
let η = [x̄ 7→ d̄ , self 7→ `] in
let (h, d1) = µ′(A)m(h0, η) in
([h, [η | x 7→ d1])

Also from the law template, both classes have the same fields (fieldsA = fieldsB), so
objects in both heaps map to the same values.

= [J Γ ` e : B K (h0, η0) =J Γ ` e : A K (h ′0, η
′
0)]

let ` =J Γ ` e : A K (h ′0, η
′
0) in

if ` = nil then ⊥ else
let x̄ = pars(m,A) in
let d̄ =J Γ ` ē : Ū K (h ′0, η

′
0) in

let η = [x̄ 7→ d̄ , self 7→ `] in
let (h, d1) = µ′(A)m(h ′0, η) in
([h, [η | x 7→ d1])

= [by semantics of method call]
collect(J Γ ` x := e.m(ē) K µ′(h ′0, η

′
0))

2

Regarding ROOL laws that do not work with reference semantics, we extensively use
class refinement in this thesis. In this law, the internal representation of a class is mod-
ified, for instance with the addition or removal of private attributes. Although method
bodies change, its signature must be maintained, as these changes must be transparent
to the client of this class. In order to ensure the correctness of the refinement, a cou-
pling invariant [77] between the previous and new representation must be established
and ensured by the methods of the class. As pointed out in Section 4.2, this invariant
might not be guaranteed in programs with reference sharing.
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Nevertheless, work on a theory for refinement for programs with confinement [8]
provides a proof for the following proposition: if two class tables CT and CT ′ are
confined and the coupling relation establishes a simulation, then the refinement is correct
(CT v CT ′). The main corollary of this theorem is that laws related to class refinement
can be proved by simulation, and we use this corollary in our thesis for class refinement
in a language with references. The simulation property defines that a coupling invariant
between two classes:

• holds initially (execution of constructors);

• holds in the outcome of two versions of the same method, if these versions are
executed for initial states related by the coupling invariant.

We apply this theorem in proving correctness of transformations that include class re-
finement, as showed in Chapter 7.

4.5 Laws and refactorings enunciated for this work

The BN laws and refactoring rules presented in this section were stated during our
work; as laws of programming form the basis for our model-driven approach to program
refactoring, a number of program equivalences are used, hereafter identified as laws.
Refactorings can be derived from other laws; in these cases we show the derivation
steps. Nevertheless, Law 5 for distributing type tests, presented in this section, is likely
to be not derived (a primitive law). For that, we developed a proof in the semantics of
the BN programming language.

The following refactoring rule defines a way to eliminate references to a specific
abstract class within cast expressions. A command with a cast expression for class
B can be replaced by a sequence of if statements (denoted by if i , i = 1..n), whose
conditions correspond to each of B ’s subclasses. The command for each if is rewritten
with the subclass in the corresponding condition. During the proof, a special command,
assumption, is used. The command is given by {boolexp} S, being a syntactic sugar
for if (boolexp) then S else ⊥.
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Refactoring 2. 〈distribute casts〉
Considering the following class declarations, where Ci , i = 1..n encompasses all
subclasses of B in CT , and that no object values reachable from self.inout have
exact type B :

class B extends A {
fds ;
mts
}
class Ci extends B {

fdsi ;
mtsi

}

then, for any command cmd in CT :
cmd [(B)exp] = if i (exp is Ci) then cmd [(Ci)exp]

provided

(↔) x := new B does not appear in CT , mts or mtsi

Proof 4.2. This refactoring can be derived from other laws of programming and pred-
icate logic inference rules, as detailed in the following steps. The only command with a
cast expression considered in the derivation is assignment (x := (B)exp), since the casts
in other commands can be reduced to the assignment, by introducing a local variable
block.

x := (B)exp

= [Law 39(L-R) eliminate cast of expressions ]
{exp is B}x := exp

After replacing the cast expression with an assumption, the assumption formula is
replaced with a predicate stating one of the properties in inheritance when B is abstract
(if an object is an instance, it is also an instance of any of the subclasses).

= [Since B is abstract, property of inheritance (exp is B ⇒
∨

i(exp is Ci))]
{
∨

i(exp is Ci)}x := exp

With a law application, we can introduce if statements for each of the conditions in
the disjunction within the assumption. In the outcome, the assumption can be absorbed
by all the conditions in those statements, as the disjunction is valid, then trivially elim-
inated by predicate logic.

= [Law 25(R-L) if identical guarded commands ]
{
∨

i(exp is Ci)}if i(exp is Ci) then x := exp
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= [Law 21(L-R) absorb assumption]
if i((exp is Ci) ∧ (exp is Ci)) then x := exp

= [by predicate logic]
if i(exp is Ci) then x := exp

Assumptions now are introduced into each then clause with a primitive law. The
newly-introduce assumptions can be replaced by casts for each of the subclasses, which
finishes the derivation. Since all the steps are equalities, they can be generalized for the
refactoring’s reverse application.

= [Law 20(L-R) assumption guard ]
if i(exp is Ci) then {exp is Ci}x := exp

= [Law 39(R-L) eliminate cast of expressions ]
if i(exp is Ci) then x := (Ci)exp

2

The next law is similar, but for replacing type tests. Each type test with B is
replaced by an alternation of tests, one for each subclass. Again the only proviso states
that B must be an abstract class.

Law 5. 〈distribute type tests〉
Considering the following class declarations, where Ci , i = 1..n encompasses all
subclasses of B in CT , and that no object values reachable from self.inout have
exact type B :

class B extends A {
fds ;
mts
}
class Ci extends B {

fdsi ;
mtsi

}

then, for any command cmd in CT :
cmd [exp is B ] = cmd [

∨
i(exp is Ci)]

provided

(↔) x := new B does not appear in CT , mts or mtsi

We first establish the theorem for this specific law, over the type test expression.



CHAPTER 4. PROGRAMMING LANGUAGE AND REFACTORING 43

Theorem 4.2. For any heap h0 and store η0:

∀µ :J CT K •
J Γ ` exp is B : bool K (h0, η0) =
J Γ `

∨
i(exp is Ci) : bool K (h0, η0)

Proof 4.3. Direct proof. The expression loctype ` yields the exact type of object refer-
ence `.

J Γ ` exp is B : bool K µ(h0, η0)

= [by semantics of type test]
let ` =J Γ ` exp : D K (h0, η0) in

if ` 6= nil ∧ loctype` ≤ B then true else false

= [by property of inheritance, and B is abstract, loctype ` ≤ B ⇒
∨

i(loctype ` ≤ Ci)]
let ` =J Γ ` exp : D K (h0, η0) in

if ` 6= nil ∧
∨

i(loctype ` ≤ Ci) then true else false

= [by semantics of type test]
J Γ `

∨
i(exp is Ci) : bool K µ(h0, η0)

2

The next law states that an if command with the same body in both then and else
parts may be trivially eliminated. This law is only an adaptation for the BN syntax of
a similar law in ROOL for eliminating guards [26].

Law 6. 〈eliminate redundant if 〉
if ψ then cmd else cmd = cmd

Finally, we define a refactoring by specializing Law 34 method elimination with a
specific constraint: the superclass subject to change is abstract. In this law, a method
can be eliminated even if it is being called throughout the program. In this case, the
class must be abstract and all subclasses must redefine the method, thus calls to this
method surely refer to the redefined version.
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Refactoring 3. 〈method elimination-abstract class〉

class C extends D{
fds
T m(T̄ x̄ ) { cmd }
mts

}

=CT

class C extends D{
fds
mts

}

provided

(↔) (1) x := new C does not appear in CT , mts , mts ′ or cmd ; (2)
m is redefined in all subclasses of C in CT ;

4.6 Chapter summary

In contrast to the modeling language, the chosen programming language demanded con-
tributions from this thesis, as presented in this chapter. Mainly, this thesis’ approach
was applied to a reference-based programming language. In order to use laws of pro-
gramming as the basis for program refactoring, we reused part of the law catalog for
the ROOL language [16]; as this catalog was defined for copy semantics, we used own-
ership confinement as a guarantee that laws are correctly applied. We developed proofs
for laws in the semantics of the reference-based language (BN), and class refinement is
dealt with by directly applying a theorem from Banerjee and Naumann’s work [8]: if a
simulation is proved for a given confined owner class, the class refinement is entailed.
In addition, several laws and refactorings have been enunciated during their application
in this thesis.



Chapter 5

Object Model and Program
Conformance

A desirable property of object models is abstraction; ideally, they can be implemented
by several structurally-different programs as long as the invariants hold during their
executions. These programs are then in conformance with the object model. In order
to precisely define the level of abstraction for models that are subject to program con-
formance, we must establish a specific conformance relationship. Conformance, whose
motivation is described in Section 5.1, is given both in syntactic and semantic terms, as
shown in Sections 5.2 and 5.3, respectively. Also, we define a formal framework (Sec-
tion 5.4) for defining conformance relationships, which evolved from our specific notion.
Conformance relationships can be applied in several contexts. For instance, generation
of source code from models, reverse engineering and evolution activities in model-driven
methodologies, in which software is completely generated and evolved by manipulating
models – the case for this thesis.

5.1 Motivation

For our purposes, conformance consists in design decisions being fulfilled by all ex-
ecutions of a program. Regarding object models, we consider that a program is in
conformance with a model when it meets all of the specified invariants throughout every
execution. In order to investigate how this conformance can be maintained throughout
refactoring tasks, a formal definition of conformance is needed.

Structures in the model must be somehow implemented in the program, offering a
basis for evaluating whether the modeled constraints are met. In the file system exam-
ple, its implementation must offer a number of declarations representing directories and
files; the constraints over these concepts may then be analyzed, or even machine-checked.
We call this correspondence syntactic conformance. Given a syntactic conformance rela-
tionship, fulfilment of model invariants by the executions of a given program is regarded
as semantic conformance. An object model may be implemented by a virtually infinite
number of programs, around two axes: distinct statements, and different syntactic con-
formance relationships, as depicted in Figure 5.1. First, programs following the same
modeled structure may have completely diverse method implementations. Second, sev-

45
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eral programs with different implemented structures may be conforming with a given
object model. More on distinct conformance relationships can be seen in Section 5.4.

Figure 5.1: Possible conforming implementations for an object model

5.2 Syntactic Conformance

In an object model in Alloy, signatures and relations constitute the main elements, along
with invariants over these elements. These elements are given concrete representations
in the program, in terms of object-oriented programming language constructs (classes,
fields, inheritance, etc.). In this section, we detail the formal definitions of syntactic
conformance – and later for semantic conformance – using the PVS (Prototype Verifica-
tion System) specification language [83], on which these definitions were type-checked.
In fact, besides mixing some well-known mathematical symbols with PVS keywords
and functions, we consider a few extensions to the original PVS language for improving
readability.

A formal definition for models and programs is given, using uninterpreted types
(TYPE), in the following specification fragment – subtypes can be defined with the FROM

keyword. Names are unique, and for signatures and classes, they are taken from the
same set of names (same for relations and fields). Relation multiplicities may be defined
as single-valued – ONE LONE – or collection-valued – SOME SET; field multiplicities are
analogously defined as SINGLE or SET.

Model, Program: TYPE
Name: TYPE
SigClassName: TYPE FROM Name
RelFieldName: TYPE FROM Name

ONE_LONE, SOME_SET, SINGLE, SET: TYPE
RelMulti: TYPE = { ONE_LONE,SOME_SET }
FieldMulti: TYPE = { SINGLE, SET }
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The signature structure – defined as a record ([# #]) – is composed of a single
name and a list of parent signatures, encompassing all signatures from the immediate
supersignature to object, a special signature also in Alloy – Alloy allows only single
inheritance, so the extends is always a linear list (the first element of this list is the im-
mediate supersignature). Relations (and fields) are structured as a name, a multiplicity
value and two types, left and right – we consider only binary relations, even though Al-
loy permits n-ary relations – this choice is motivated not only for simplification, but also
due to the requirements of our solution, as common object-oriented programs are able
to implement only binary relations mostly. Although relations and fields are declared
within signatures and classes, they are separately specified. Furthermore, the function
declarations sigs, relations, classes, fields define how to recover all elements
from a model or a program; analogously, functions for gathering the names contained
in models and programs are declared (for instance, sigNames).

Sig: TYPE =
[# name: SigClassName,

extends: list[SigClassName]
#]
Relation: TYPE =
[# name: RelFieldName,

multiplicity: RelMulti,
leftType: SigClassName,
rightType: SigClassName

#]
Class: TYPE =
[# name: SigClassName,

extends: list[SigClassName]
#]
Field: TYPE =
[# name: RelFieldName,

multiplicity: FieldMulti,
leftType: SigClassName,
rightType: SigClassName

#]

sigs: Model → P Sig
sigNames: Model → P SigClassName
relations: Model → P Relation
relNames: Model → P RelFieldName
classes: Program → P Class
classNames: Model → P SigClassName
fields: Program → P Field
fieldNames: Model → P RelFieldName

Developers intended to reflect model refactoring to source code might also expect
some syntactic conformance, otherwise the approach would not be applicable. In model-
driven refactoring, we used a specific conformance relationship, as shown in the next
specification fragment. The syntactic mapping for signatures defines one direct class
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for each signature declared in the model (for simplicity, this specification rely on the
equality between names, although a mapping between names could be easily established
as well). Also, all supersignatures of a signature are included in the list of superclasses
of the corresponding class, indicating that more superclasses may be declared in the
program, but the hierarchy is maintained. in this case we used PVS function list2set

for converting lists into sets and comparing set containment.

sigMapping(s:Sig,p:Program): boolean =
∃ c:classes(p) • c.name=s.name ∧ list2set(s.extends) ⊆ list2set(c.extends)

Likewise, every relation is mapped to one field, with one additional constraint: rela-
tions with single multiplicity (yielding a scalar value) are mapped to single field, whereas
relations with set multiplicity must be mapped to collection-type fields. First, we define
predicates isScalar for relation and field multiplicities.

isScalarR(r:Relation): boolean =
r.multiplicity = ONE_LONE

isScalarF(f:Field): boolean =
f.multiplicity = SINGLE

relationMapping(r:Relation,p:Program): boolean =
∃ f:fields(p) • r.name=f.name ∧
r.leftType=f.leftType ∧ r.rightType=f.rightType ∧
(isScalarR(r) ⇒ isScalarF(f)) ∧
(¬ isScalarR(r) ⇒ ¬ isScalarF(f))

The syntactic conformance then reduces to checking the signature mapping for all
signatures and the relation mapping for all relations declared in the Alloy model. An
additional constraint establishes that any of the non-modeled intermediate classes in
a hierarchy between classes whose corresponding signatures are modeled must be ab-
stract, for which instances are not created (this constraint is due to a specific aspect
of our approach, as detailed in Section 6.6. The used abstract(c:Class,p:Program)

predicate tests whether class C is abstract in program P, which is true if the class is
never instantiated in the program.

abstractConstraint(m:Model, p:Program): boolean =
∀c:classes(p) •

c.name 6∈ sigNames(m) ∧ ∃c1,c2:classes(p) •
c1.name ∈ sigNames(m) ∧ c2.name ∈ sigNames(m) ∧
c ∈ list2set(c1.extends) ∧ c2 ∈ list2set(c.extends) ⇒ abstract(c,p)

syntConformance(m:Model, p:Program): boolean =
∀ s:sigs(m) • sigMapping(s,p) ∧
∀ r:relations(m) • relationMapping(r,p) ∧
abstractConstraint(m,p)
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5.3 Semantic Conformance

For a conforming program, model invariants must be preserved throughout the pro-
gram’s execution. If this is confirmed, the program is in semantic conformance with
the model; this concept is similar to data refinement. Since object models constrain the
valid states of a program, the focus is on the set of possible states of a program that
may be the result of an execution step – we ignore the transition between those states,
which for instance are tackled by behavioral modeling using UML state diagrams. First,
a semantic definition for both languages is provided, succeeded by a specific topic in the
program semantics, namely heaps of interest. Finally, conformance itself is described
based on the previous specifications.

5.3.1 Semantics

An Alloy model defines valid states for a given system. An Alloy state is an interpre-
tation [42], which contains mappings of signatures and relation names to sets of object
values, as declared next. Object values may be single objects for sets and pairs of ob-
jects for relations. The semantic definitions for Alloy that is presented in this thesis is
a simplification of the semantics defined by Gheyi [42], being sufficient for the problem
at hand.

Value: TYPE
objValue: TYPE FROM Value
objPairValue: TYPE FROM Value =
[# t1: objValue,

t2: objValue
#]

Interpretation: TYPE =
[# mapSig: SigClassName → P objValue,

mapRel: RelFieldName → P objPairValue
#]

We consider the semantics of an object model in Alloy as the set of all valid inter-
pretations satisfying all modeled invariants. Each of these interpretations consists in all
valid assignments of values to global constants – the signatures and the relation names.
A valid assignment satisfies all modeled invariants – implicit or explicit [42], which is in-
dicated in the following definition. Invariants are implicit when they constrain the model
but are not declared in facts; we consider only the implicit invariants from extends, in
which (1) instances of a subsignature must form a subset of the supersignature’s set of
instances and (2) values for subsignatures are disjoint. For explicit invariants, a valid
interpretation must satisfy the formulas contained in the model (given by the function
factInvs(m)). The satisfyFormula(f,i) predicate assigns values from i to the for-
mula f – we omit the definition here, as it is not used in our proof, being fully presented
in Gheyi’s thesis [42]. As an example, Figures 3.1 and 3.2 (pages 22) and 23) depict for
the file system example two valid interpretations, which are part of the semantics of the
corresponding model. For this definition, we only consider well-formed Alloy models.
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satisfyImpInvs(m:Model,i:Interpretation): boolean =
∀ s:sigs(m) •
i.mapSig(s.name) ⊆ i.mapSig(super(s).name) ∧

∀ s1,s2:sigs(m) • super(s1) = super(s2) ⇒
i.mapSig(s1.name) ∩ i.mapSig(s2.name) = ∅

satisfyExpInvs(m:Model,i:Interpretation): boolean =
∀ f:factInvs(m) • satisfyFormula(f,i)

semantics(m:Model): P Interpretation =
{i: Interpretation | satisfyImpInvs(m,i) ∧ satisfyExpInvs(m,i) }

Regarding object-oriented programs, states are formalized as heaps of object values,
defined in the following specification as a record mapping class names to sets of objects
and field names to pairs of object values (references). Since we deal with a programming
language with references, the semantic definition is very close to Alloy. If an object in
a heap contains a field storing a null value, no pair of values exists with that object as
the first member.

Heap: TYPE =
[# mapClass: SigClassName → P objValue,

mapField: RelFieldName → P objPairValue
#]

The semantics of a program is given by the set of sequences of heaps resulting from
all possible execution traces – depending on the possible program inputs. Again, the
complete definition of the Alloy semantics is presented in Gheyi’s thesis [42].

semantics(p:Program): P(seq Heap)

5.3.2 Heaps of interest

Our aim is to define how each relevant heap preserves the model invariant – we regard
a relevant heap as a stable program state that is important for conformance checking.
Even though the semantics of an object-oriented program encompasses a set of heap se-
quences resulting from all possible execution traces, for the purpose of verifying semantic
conformance with object models, we consider the set of heaps from those sequences. It
would be straightforward to consider a filter yielding all possible heaps from execution
traces; however, this approach does not truly reflect the real intentions of conformance
checking in most scenarios, since some of the heaps may be acceptably invalid at some
well-defined points of the program.

In order to illustrate the problem, consider the class Dir from the file system example,
extended with a method for moving its files and directories to another directory. In the
following method, the content of a directory is moved to d (line 3), before cleaning the
current directory (line 4).

1 class Dir{ . .
2 unit t r a n s f e r F i l e s T o ( Dir d){
3 d . setContents ( s e l f . contents ) ;
4 s e l f . contents := ∅
5 }
6 }
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Assuming an invariant from the model stating that two Dir instances cannot have
overlapping content, it is guaranteed before and after calls to the indicated method;
however, this is not true right after executing line 3 and before line 4 is executed. At
this moment, they have the same contents, breaking the invariant. Nevertheless, in
practice, this program is conforming to the invariant, since it is natural that methods
perform encapsulated state changes which are not perceived by clients. For that, we need
to restrict on which points of the program code the clients may rely on model invariants,
for example before entry and after execution of the transferFilesTo method. Heaps
of interest are then the program heaps that are valid for semantic conformance.

A suitable solution for making those program portions explicit is provided by Barnett
et al. [11], who present a specification methodology for enriching the program with con-
structs that indicate code on which invariants may be invalid. In their approach, every
object is added a special public field, named st (for “state”), of type {Invalid,Valid};
if obj.st=Valid, the object obj is considered valid, which means that the invariants
over its state should hold. Otherwise, this is not guaranteed. As a result, conformance
checking is performed only when all objects are valid.

In source code, the value of st can only be modified through the use of two special
statements, unpack and pack [11]. The command unpack obj changes obj.st to
Invalid, opening a portion of code that is not considered for conformance – this portion
is finalized with the pack obj command. These commands are exemplified in a new
version of the transferFilesTo method, in the following program fragment.

class Dir{ . .
unit t r a n s f e r F i l e s T o ( Dir d){

unpack se l f ;
d . setContents ( s e l f . contents ) ;
s e l f . contents := ∅ ;

pack se l f ;
}

}

These two commands can be seen as object transaction delimiters. Object trans-
actions include copy or removal of references, value changes and other operations for
consolidating major state changes. The invariants are known to hold before or after
those transactions. Also, their application may be straightforward, since they can be
subject to automatic generation.

We now extend our formal definitions in the light of the presented solution, for
defining a filter for heaps of interest. We first extend the definition of heaps including
the invalid field, which indicates the truth for class names whose any object presents
an invalid status, according to the st field.

Heap: TYPE =
[# mapClass: SigClassName → P objValue,

mapField: RelFieldName → P objPairValue,
invalid: SigClassName → boolean

#]

Now we can define a predicate that indicates invalid heaps for a set of class names.
A heap is invalid for a set of class names if, and only if, it is invalid for any of the
names in this set. The predicate is then used for determining heaps of interest from
the semantics of the program, as denoted by the following PVS fragment by the filter
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function. In addition, function toSet takes a set of sequences of heaps and a set of
class names, resulting in the set of valid heaps from those sequences, ignoring equivalent
heaps (using the PVS function seq2set [83]). The filter function may then be used
for gathering the set of heaps of interest for a program, as given by the heaps function.

invalidHeap(h:Heap, cNames: P SigClassName): boolean =
∃ n:cNames • h.invalid(n)

filter(h:Heap, p:Program): boolean =
¬invalidHeap(h,classNames(p))

toSet(ss:P(seq Heap)): P Heap =
{ y:Heap | ∃ t:ss • y ∈ seq2set(t) }

heaps(p:Program): P Heap =
{ h: Heap | h ∈ toSet(semantics(p)) ∧ filter(h,p)}

We can now establish the conditions on which programs are in semantic conformance
with an object model.

5.3.3 Conformance between interpretations and heaps

A program is in semantic conformance with a model if, and only if, it is in syntactic
conformance, and, for every filtered heap from its execution, there is a corresponding
interpretation from the semantics of the model.

semanticConformance(m:Model, p:Program): boolean =
syntConformance(m,p) ∧ heaps(p)6= ∅ ∧
∀ h: heaps(p) • ∃ i: semantics(m) •
∀ s: sigs(m) • i.mapSig(s.name) = h.mapClass(s.name) ∧
∀ r: relations(m) • i.mapRel(r.name) = h.mapField(r.name)

If semantic conformance is fulfilled, we say that the Alloy invariants hold during
executions of the program. The established relationship between heaps and interpreta-
tions in semantic conformance is depicted in Figure 5.2. From the sequences of heaps
in the program’s semantics, the filter yields a set of heaps of interest. The semantic
conformance is defined for these heaps having a counterpart in the model’s semantics,
only considering the modeled names. If a program presents an empty heaps(p) (main
method could be empty, for instance), it is not considered for semantic conformance.

5.4 General Framework for Conformance Relation-

ships

The conformance relationship presented in this chapter enforces a few constraints over
the syntax of the program, which is required for establishing the semantic conformance
predicate in the specification. In this case, the syntactic constraints are defined for a
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Figure 5.2: Semantic conformance

specific application – model-driven refactoring. However, object models may be imple-
mented in different ways, due to abstraction. In this context, an additional contribution
of this thesis is a formal framework for defining conformance relationships between ob-
ject models and object-oriented programs, allowing reasoning with more flexible rules
of syntactic conformance. It supports independence of model and program semantics,
by relying upon intermediate representations of interpretations and heaps, which are
related by a mapping formula that involves model and program syntactic constructs,
defining how a model element is implemented in the program.

This syntactic mapping is the framework’s hot spot, as provided by the user, offering
means for semantic conformance between models and programs, independently from
object modeling or programming languages. The chosen representation for model inter-
pretations is language independent, indicating how the semantics of the object model
is defined; mapping from names to values can describe interpretations of object models
written in Alloy or even UML class diagrams. In fact, any modeling language whose
semantics can be defined in terms of interpretations is applicable.

Usually, a traditional syntactic conformance consists in modeled sets or relations
being mapped to a single class or field, respectively. However, several possible confor-
mance relationships may be useful in practice. Using BN fragments, we show several
implementations of the object model for the file system example using different syntactic
conformance relationships.

Syntactic conformance 1. Using the traditional syntactic conformance, signatures
are directly implemented as single classes. The fields implement the modeled relations
– contents as a collection of file system objects, and name as a single variable. Dir

is implemented as a subclass of FSObject. The program declares several methods as
needed by the implementation.

class FSObject {
set FSObject content s ;
Name name ;
. .

}
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class Dir extends FSObject { . . }

The traditional conformance relationship favors the manipulation of those constructs
by CASE tools, especially for code generation and reverse engineering. For instance, a
skeleton declaration for the FSObject can be easily generated from the object model,
including the contents field; on the other hand, the object model sets and relations
can also be generated from the source code with minimal user intervention. Similarly,
semantic conformance with direct correspondence is usually easier to check. Although
useful and often applied, the traditional notion is too restrictive. Not so direct imple-
mentations are also seen in practice, as shown below.

Syntactic conformance 2. In another conformance relationship, the fields are
implemented as object collections, exemplified by the List of file system objects as
showed in the next program fragment. The method add includes new elements in the
list. The program declares several methods as needed by the implementation.

class FSObject {
L i s t contents ;
Name name ;
constr { s e l f . contents := new L i s t }
unit addContent ( FSObject obj ) { s e l f . contents . add ( obj ) }
. .

}

Another example, specific for signature conformance, is related to the subset relation-
ship from the model, which may not be implemented with inheritance in the program.

Syntactic conformance 3. Due to abstraction, another conformance relationship
allows implementations to be even more distinct from the object model. Here the
supertype relationship from the object model is implemented as a field in FSObject,
defining the type of each object (file or directory).

class FSObject {
int type ;
. .
unit setType ( int t ) { s e l f . type := t }
. .
/∗ added only when type = 1 (directory ) ∗/
unit addContent ( FSObject obj ) { i f ( s e l f . type = 1) then . . else . . }

}

Syntactic conformance relationships 2 and 3 limit the application of CASE tools,
since they require more intricate conformance relationships that most tools do not sup-
port. For instance, a complex algorithm is required to detect inheritance in the imple-
mentation of FSObject; similar conclusions are drawn in other approaches dealing with
relations [53, 55]. Alternatively, a tool could allow users to define custom mappings
for syntactic conformance. Well-known tools, such as Rational Software Architect [91]
and Poseidon [40] still offer the traditional notion for code generation and reverse en-
gineering. This scenario usually results in rather concrete reverse-engineered models,
cluttered with implementation details.

Regarding semantic conformance, it is much harder to verify that model invariants
hold in program heaps, when the program presents such disparate constructs for im-
plemented model elements. The user-defined syntactic mapping between model and
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program must be applied in this verification, in order to correctly relate values from
both worlds and check conformance.

5.4.1 Syntactic Mapping

In order to establish conformance, a correspondence between model and program decla-
rations is established. For instance, the traditional syntactic conformance takes classes
for representing signatures and fields for relations. If we define these rules in terms
of formulas, exemplars could be as follows, where m and p decorations indicate names
from the model or program, respectively.

FSObjectm=FSObjectp ∧ contentsm=contentsp

Likewise, more complex formulas can be provided, adding required flexibility for dif-
ferent categories of conformance. In our framework, the set of these definition formulas
for a given model and a program is defined as the mapping function, as shown in the
following specification:

mapping(m:Model, p:Program): Formula

The mapping formula is the hot spot of this framework, provided for a specific cor-
respondence between object model and program declarations. This formula can be
specified in a language based on first-order logic with transitive closure. For instance,
FSObjectm=FSObjectp is an example of equality formula between two expressions relat-
ing signature and class names. Although most formulas in conformance relationships
will use equalities, additional formulas include subset, negation, conjunction and uni-
versal quantification, allowing developers to specify more complex relationships between
model and program elements. The other kinds of formulas, such as existential quantifi-
cation and disjunction, can be appropriately derived from the core constructs. Moreover,
we consider some binary (union, intersection, difference, join and product) and unary
(transpose and transitive closure) expressions. We show the language’s formulas and
expressions as follows.

formula ::= expr ∈ expr | expr ⊆ expr | expr = expr |
¬formula | formula ∧ formula |
(∀ var: sigName | formula)

expr ::= setName | relName | className | fieldName | var |
expr binop expr | unop expr

binop ::= ∪ | ∩ | - | . | →
unop ::= ~ | ^

In our core language for mapping formulas, we consider twelve kinds of expressions,
which are specified next, using PVS datatypes [83]. There are expressions for signature,
class, relation, field and variable names. Moreover, there are five kinds of binary ex-
pressions representing the union, intersection, difference, join and product expressions.
Finally, there are the transpose and closure unary expressions.
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Expression: DATATYPE BEGIN
IMPORTING Names
VARIABLE(n: VarName): VARIABLE?: Expression
SIGNAME(n: SetName): SIGNAME?: Expression
RELNAME(n: RelName): RELNAME?: Expression
CLASSNAME(n: ClassName): SIGNAME?: Expression
FIELDNAME(n: AtribName): RELNAME?: Expression
UNION(l,r: Expression): UNION?: Expression
INTERSECTION(l,r: Expression): INTERSECTION?: Expression
DIFFERENCE(l,r: Expression): DIFFERENCE?: Expression
JOIN(l,r: Expression): JOIN?: Expression
PRODUCT(l,r: Expression): PRODUCT?: Expression
TRANSPOSE(exp: Expression): TRANSPOSE?: Expression
CLOSURE(exp: Expression): CLOSURE?: Expression

END Expression

A PVS datatype is specified by providing a set of constructors, recognizers and acces-
sors [83]. The previous datatype presented constructors, such as SIGNAME and UNION,
which allow the expressions to be constructed. For instance, the expression SIGNAME(n)

is an element of this datatype if n is a signature name. The UNION? and CLOSURE?

recognizers are predicates over the Expression datatype that are true when their ar-
gument is constructed using the corresponding constructor. For instance, CLOSURE?(e)
is true when e is a closure expression. Suppose that we have the UNION(e1,e2) union
expression, where e1 and e2 are expressions. We can use the l and r accessors to access
the left and right expressions. For example, the l(UNION(e1,e2)) expression yields the
e1 expression. When a datatype is type checked, a new theory is created that provides
the axioms and induction principles needed to ensure that the datatype is the initial
algebra defined by the constructors [83].

Additionally, the language defines seven kinds of formulas. Besides formulas rep-
resenting true and false, there are negations, conjunctions, universal quantifications,
subset and equality formulas. The set membership formula can be expressed in terms
of the subset formula. Similar to expressions, we create a PVS datatype for formulas.

Formula: DATATYPE BEGIN
IMPORTING Expression, Names
TRUE: TRUE?: Formula
FALSE: FALSE?: Formula
NOT(f: Formula): NOT?: Formula
AND(l,r: Formula): AND?: Formula
FORALL(x:VarName, t:SigName, f:Formula): FORALL?: Formula
SUBSET(l,r: Expression): SUBSET?: Formula
EQUAL(l,r: Expression): EQUAL?: Formula

END Formula

Semantic conformance now needs to be redefined for the general framework. The
satisfies predicate is defined as a recursive function. For example, assuming a univer-
sal quantification formula ∀ x:exp • f, the satisfies predicate checks whether the f

formula is valid in the original interpretation extended with a value given to the variable



CHAPTER 5. OBJECT MODEL AND PROGRAM CONFORMANCE 57

name x, as formalized next. Notice that the same predicate is recursively applied for
the quantification’s sub-formula.

∀ v: i.mapSig(T) |
satisfies(f,i ⊕ [i.mapSig:= i.mapSig ⊕ [x 7→ { v }]])

The predicate for semantic conformance states, for a given mapping formula, whether
every heap of a given program corresponds to a specific interpretation that satisfies the
formulas from mapping (represented by the satisfies predicate). In this case, the heap
satisfies the invariants from the model – there is a corresponding interpretation.

semanticConformance(m:Model, p:Program): boolean =
∀ h:heaps(p) •
∃ i:semantics(m) • satisfies(mapping(m,p),i,h)

The evaluations of other formulas are very similar and have an the standard seman-
tics. For example, an interpretation satisfies a conjunction formula when it satisfies each
sub-formula. Moreover, an interpretation satisfies an equality formula (exp1 = exp2)
when both subexpressions have the same values in the interpretation, as declared next.

evalExpression(exp1,i) = evalExpression(exp2,i)

The full specification of satisfies is declared next. For simplicity, we omit the details
for recursion specification in PVS. Also, we use standard logical and set operators rather
than PVS operators.

satisfies(f:Formula,i:Interpretation,h:Heap): RECURSIVE boolean=
CASES f OF
TRUE_: TRUE,
FALSE_: FALSE,
NOT_(f1): ¬satisfies(f1,i,h),
AND_(f1,f2):
satisfies(f1,i,h) ∧ satisfies(f2,i,h),

FORALL_(x,t,f1):
∀v:objValue • v ∈ i.mapSig(t) ⇒

satisfies(f1,i⊕[mapVar:=mapVar(i)⊕[x 7→{ v1:objValue|v=v1 }]],h),
EQUAL(e1, e2):
evalExpression(e1,i,h) = evalExpression(e2,i,h),

SUBSET(e1, e2):
evalExpression(e1,i,h) ⊆ evalExpression(e2,i,h)

ENDCASES

The evalExpression relation is a recursive PVS function that evaluates an expression
for the given interpretation and heap values. Next, we specify the evaluation of a union
expression (exp1 ∪ exp2).

evalExpression(e1,i,h) ∪ evalExpression(e2,i,h)
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The evaluation of other expressions is specified similarly. For instance, the evaluation of
a product expression is the product of each subexpression’s evaluation. Next we specify
the complete specification of evalExpression. We only consider a product with two
single values (two signatures in Alloy). Symbols ∼ and + denote relational inversion
and transitive closure, respectively.

evalExpression(e:Expression, i:Interpretation, h:Heap):RECURSIVE PValue=
CASES e OF
SIGNAME(n): i.mapSig(n),
RELNAME(n): i.mapRel(n),
CLASSNAME(n): h.mapClass(n),
ATRIBNAME(n): h.mapField(n),
UNION(e1,e2):
evalExpression(e1,i,h) ∪ evalExpression(e2,i,h),

INTERSECTION(e1,e2):
evalExpression(e1,i,h) ∩ evalExpression(e2,i,h),

DIFFERENCE(e1,e2):
evalExpression(e1,i,h) − evalExpression(e2,i,h),

JOIN(e1,e2):
{ v:Value|∃v1,v2:Value •

v1 ∈ evalExpression(e1,i,h) ∧
v2 ∈ evalExpression(e2,i,h) ∧
v = v1 o

9 v2
},

PRODUCT(e1,e2):
{ v:objPairValue|∃v1,v2: objValue •

v1 ∈ evalExpression(e1,i,h) ∧
v2 ∈ evalExpression(e2,i,h) ∧
v = v1 × v2

},
TRANSPOSE(e1):
evalExpression(e1,i,h)∼

CLOSURE_(e1):
evalExpression(e1,i,h)+

ENDCASES

5.4.2 Instantiations

The syntactic conformance relationship presented in Section 5.2 can be seen as an in-
stance of this general framework. We now instantiate the indicated hot spot for the
conformance relationships previously showed in this section. We also describe a tech-
nique for defining mapping formulas in terms of types of syntactic mappings observed
in practice.

When establishing conformance, a syntactic conformance relationship is provided,
linking each signature in the object model to a corresponding class in the heap (same for
relations). Rinard and Kuncak [87] provide a classification for usually applied relation-
ships. The traditional syntactic conformance for signatures and relations, respectively,
are described as follows:
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• Class-Based mapping. a set is mapped to all objects of a given class (including
its subclasses);

• Field-Based mapping. a relation is mapped to all values for the corresponding
field name – pairs of objects from the two corresponding classes.

Syntactic Conformance 1 uses class and field-based mappings (definitions sigMapping
and relationMapping; FSObject and Dir signatures are implemented as classes, with
contents and name as fields. These mappings were already formalized in Section 5.2 for
our conformance relationship. The following PVS theorem formalizes the definition of
mapping formula from these mappings. The theorem states that for every pair model-
program in syntactic conformance following the traditional mappings, a mapping set of
formulas is automatically defined, in terms of equalities for signature-class and relation-
field pairs of names. For each signature and class with the same name (for instance
FSObject), an equality formula (EQUAL) between those names is implied; the same is
observed for a relation and an field name.

mappingFromClassfieldBased: THEOREM
∀ m:Model,p:Program,s:sigs(m),r:relations(m) •
sigMapping(s,p) ∧ relationMapping(r,p) ⇒
mapping(m,p) =
{f:Formula_ |
∃ s:sigs(m),c:classes(p) •
s.name=c.name ∧
f = EQUAL(SIGNAME(s.name),CLASSNAME(c.name))

∨
∃ r:relations(m),a:fields(p)) •
r.name=a.name ∧
f = EQUAL(RELNAME(r.name),FIELDNAME(r.name))}

As an alternative for relation mapping, Syntactic Conformance 2 follows a collection-
based mapping:

• Collection-Based mapping. a relation is mapped to the values referenced by a
collection object.

In our example, relation contents in the model is mapped by associating a file system
object to the elements of its List objects in the heap. The following fragment defines
this mapping for all relations from a model m, in which targetType denotes the function
yielding its target type, which must be subtype of Collection, as in Java [48]. In the
mapping relation, the formula for the contents is given by contentsm=contentsp .elems ,
where elems denotes the field from the collection to its set of elements.

CollectionBasedmapping(r:Relation,p:Program): boolean =
∃ f:fields(p) • r.name=f.name ∧ leftType(r)=leftType(f) ∧
(isScalarR(r) ⇒ isScalarF(f) ∧ rightType(r)=rightType(f)) ∧
(¬(isScalarR(r)) ⇒ isScalarF(f) ∧ rightType(f)=Collection)
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The conformance framework can be general enough to allow the definition of different
kinds of mappings for elements in the same model. For instance, some relations may be
defined as class-based, while others use a collection-based mapping. In this case, only
parts of the mapping relation are generated by following these kinds of mappings; other
mappings can be used for particular names in the same model.

Although mapping types can be useful for developers in the indication of how con-
cepts are implemented in source code, more complex definitions can be used to indicate
this correspondence. In our example, Syntactic Conformance 3 indicates the subtype
relationship as a field type into the FSObject class; when the value of type is 1, it is
considered a directory. Therefore, there is no direct mapping for the Dir concept in the
program, indicating that correspondence is content based – the Dir concept in the heap
is represented by FSObject objects whose field has a particular value.

The language for mapping formulas presented allows for more flexible definitions
than simple correspondence between names, which offers the capability in defining com-
plex content-based relationships (not only for inheritance, for sets and relations as well).
For instance, the formulas for FSObject and Dir in Syntactic Conformance 3 could be
represented respectively as follows, where value 1 for type represents directories as a set
comprehension:

FSObjectm = FSObjectp
Dirm = {obj : FSObjectp | obj .type = 1}

Although some set comprehension constructs do not appear in our definition for the
formula language, we could easily derive it as shorthands for the core constructs, for
making this logic practical. For instance, the existential quantifier can be built from the
universal quantifier.

5.5 Chapter summary

In this chapter, we presented a formal definition for conformance between object models
and programs, in order to relate refactorings at both levels of abstraction. This con-
formance relationship is broken into two separate definitions: syntactic and semantic
conformance. These definitions have been specified and type-checked with the PVS lan-
guage [83]. For semantic conformance throughout program executions, we delimited a
notion of heaps of interest, using special statements unpack and pack. This defined
conformance relationship is used as basis for the model-driven approach to refactoring
detailed in the next chapter.

The notion of semantic conformance presented in this thesis can be applied as well
to other syntactic conformance relationships, using the formal framework presented in
Section 5.4. The hot spot of this framework is a correspondence definition between syn-
tactic declarations in object models and programs, which generates a mapping formula
used for establishing the semantic conformance.



Chapter 6

Model-Driven Formal Refactoring

Given a specific conformance relationship between object models and programs, we
relate refactorings on both levels. For model refactoring, we adopt the approach of
primitive transformations - based on sound laws of modeling - being composed into refac-
torings that may be applied by designers to improve object models. Our investigation
then lies on the relationship between these formal model transformations and program
refactoring; transferring those changes is still a challenge for model-driven development
approaches. Starting from investigations on the relationship of laws of modeling and
programming, we devised an approach to semi-automatically refactor programs, based
on model refactorings applied by designers.

In this chapter, we present the core contribution of this thesis: a model-driven
approach to refactoring. We first present a motivating example (Section 6.1), and the
approach itself is delineated in Section 6.2. The key concept for realizing model-driven
refactoring – strategies – is detailed in Section 6.3. Section 6.4 applies the solution to
the motivating example. Finally, complementary topics are discussed in the last three
sections.

6.1 Motivating Example

First, we present an example that illustrates problems in conformance maintenance dur-
ing evolution, specifically during refactoring. The following program fragment shows a
direct implementation for the file system model from Chapter 3, using the BN lan-
guage. The main method, within the Main class, reads a file system object from the user
(self.inout), and in the case of a directory, adds a new File; otherwise, none is added.
The keyword is corresponds to Java’s instanceof. Following the invariant from the
object model, only directories may have contents. In addition, the multiplicities are
guaranteed, as, for instance, every file system object has exactly one name, and there is
only one Root instance. We assume contents as a public field, to illustrate accesses in
the subclasses.

class FSObject{
Name name ;
pub set FSObject content s ;
set Dir getContents ( ) { result := s e l f . contents }
unit setContents ( set FSObject c ) { s e l f . contents := c }

}

61
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class Dir extends FSObject { . . . }
class F i l e extends FSObject{

constr { . . s e l f . contents := ∅ }

class Main{
unit main ( ){

F i l e f := new Fi l e , currentFSObj := null in . .
currentFSObj := ( FSObject ) s e l f . inout ;
i f ( currentFSObj i s Dir )

then currentFSObj . setContents ({ f })
else currentFSObj . setContents (∅)

}
}

The program shows a situation for refactoring: there is a field in the superclass –
contents – which is only useful in one of the subclasses – a “bad smell” [37]. The refac-
toring can be accomplished by moving contents declaration down to the Dir class.
Additional changes are needed for preserving behavior, such as updating accesses to
contents with casts. Issues with evolution arise as the object model is updated for con-
formance. Evidently manual updates to the model soon become impractical in evolving
systems, thus not considered here. RTE tools [90] are a popular choice for automation,
applying reverse engineering for recovering object models from code. Usually in this case
model invariants are hardly recovered or correctly modified. Also, models become rather
concrete, as simple visualizations of source code. This is commonly seen in generally
mainstream CASE tools [91], in which the reverse engineering task creates UML models
(usually class diagrams) that faithfully duplicate declarations and relationships taken
from the program. The process produces cluttered diagrams with difficult visualization.

On the other hand, the mentioned “bad smell” may also be detected at the object
model level. The binary relation may then be pushed down from FSObject to Dir. Like-
wise, conformance is desirable; in the context of RTE, a usual technique for automatic
updates to the source code marks previously edited code fragments as immutable, in
order to avoid loss of non-generated code that is marked by the tool. However, if the
field is simply moved to Dir, these immutable statements become incorrect ; for instance,
accesses to the field with left expressions not exactly typed as Dir within FSObject and
File, as highlighted in the following fragments.

class FSObject{ . .
set Dir getContents ( ) { result := s e l f . contents }
unit setContents ( set FSObject c ) { s e l f . contents := c } }

class F i l e extends FSObject{ . .
constr { . . s e l f . contents := ∅} }

Due to the representation gap between object models and programs, the immutable
code may rely on model elements that were modified, showing a recurring evolution
problem in RTE-based tools. Manual updates must be applied, making evolution more
expensive. Also, no evidence is provided on whether conformance is maintained, as the
updates are manual.

A few tools present an alternative by following the MDA [66]. Models in these tools
include programming logic written in a platform-independent language – for instance,
action semantics of executable UML [7]. Tool support then generates source code for that
logic in a specific implementation platform. Under such approach the model refactoring
in this section’s example would also include changes to the programming logic attached
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to models, maintaining an updated source code. Although the MDA approach might be
promising, it lacks a more abstract view of the domain given by object models, which
is still useful for an overall understanding. Our approach investigates model-driven
refactorings in this context.

6.2 The Approach

Our solution considers the context in which object models can be refactored using the
laws of modeling, directly or indirectly (in the latter case, by using refactorings derived
from primitive transformations). To each Alloy law from the catalog in Table 3.1 we
associate a set of conditional program transformations – strategies – to be applied to a
program, with minimal user intervention, guided by laws of programming.

The mechanics of the approach is depicted in Figure 6.1, where OM represents an
object model, and P a program. The first step, described in (a), repeats the first two law
applications from Refactoring 1 (push down relation); the model refactoring is the first
step, requiring intervention from the developer in choosing the appropriate refactoring
to apply. After the model refactoring, all law applications and information about the
intermediate models are recorded (for instance, in a CASE tool), for association with
the strategies. We associate each application direction of an Alloy law (depicted as
“corresponds” in Figure 6.1; for instance, Law 2 corresponds to Stg 2) with a specific
strategy, which semi-automatically refactors the program in (b), resulting in a program
consistent with the refactored program. Strategies are constructed as the semi-automatic
application of laws of programming, denoted as Lk .

Figure 6.1: Model-driven refactoring with strategies

A strategy carries out program refactoring by applying a set of transformations, on
the assumption of the conformance relationship defined in Chapter 5. Therefore, the
strategies are especially conceived to exploit the model invariants that are known to be
met by the program; hence, program transformations can be more powerful with high-
level assumptions about program entities, such as classes and fields. In fact, the only
preconditions for the application of strategies is that the program must have confinement
for a subset Own of classes and in syntactic and semantic conformance with the original
model (before the model refactoring), as depicted in Figure 6.2.

In this context, a strategy must exhibit the following characteristics:
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Figure 6.2: Conformance as Preconditions for Strategies

• It rewrites programs for updating correspondent abstractions that were refactored
in the object model;

• It preserves program behavior.

Therefore, every strategy fulfills a few requirements: its application results in programs
that are refinements and establish the conformance relationship with the refactored
model, syntactically and semantically. In addition, confinement is maintained. Proofs
of these properties are developed in Chapter 7.

Our approach differs from RTE as it avoids re-generation of source code from models,
which allows developers to avoid most manual updates. In fact, object model and
program refactorings take place independently. Similarly, MDA-based tools are different
as they include programming logic information, which yields more concrete models.

6.3 Strategies

Strategies are composed of a number of law applications in the program. The resulting
program refactoring preserves the behavior of the original program by construction,
resulting from the application of laws of programming. In addition, strategy steps were
designed to accept any program within the conformance relationship, which is relatively
open for a number of possible implementations. We formalized strategies in a notation
for refinement tactics, which we explain next. Examples of strategies corresponding to
two of the Alloy laws are fully explained afterwards.

6.3.1 Refinement Tactics: Angel

Strategies are formalized as refinement tactics, based on the Angel language [71]. The
language adds preciseness to the description, allowing easier implementation in the
transformation language of choice. Also, Angel constructs are appropriate for describing
law applications, with the needed parameters and features for repeating applications to
several elements throughout the program. In fact, the language is employed to document
strategies as refinement tactics, used later in our approach as single transformation rules.
In addition, the language presents a formal semantics [71].

The language allows tactics declarations. Atomic tactics may be a simple rule appli-
cations, which in this work are adapted to the called law application, indicating the law
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name to be applied with arguments. These arguments may be predicates, expressions,
variables, classes, fields or methods. A law application may have two possible outcomes:
if the law is applicable (all provisos are satisfied), then the application actually occurs,
and the program is changed. Otherwise, the application of the tactic fails. The following
fragment applies Law 3 (class elimination) to the program, with two arguments: the
class to be eliminated (C ) and the application direction (in this case, from Left to Right
→). Law names are reduced tags for the laws of programming presented in this work,
in Chapter 4 and Appendix B.

law classElimination(C ,→)

Similarly, atomic refactoring tactics can be applied with the refactoring clause, and
auxiliary tactics are applied with the tactic clause. There two possible outcomes after
applying an atomic tactic: if the law or refactoring matches the expression (program,
for instance) then the tactic is applied, producing a transformed expression. But if the
tactic does not match, then the application fails [71]. Two special atomic tactics may
be used: skip and fail. The first always succeeds, leaving the expression unchanged,
while the latter defines a failed application.

Tactics can be composed of sequences or alternations; in order to sequentially com-
posing two tactics, the t1; t2 construct can be used. t1 is first applied to the program,
and then t2 is applied to the result of the application of t1. If either t1 or t2 fails, so does
the whole composite tactics. Similarly, tactics combined in alternation have the form
(t1 | t2). First, t1 is applied to the program; if this application is successful, then the
composite tactic succeeds. Otherwise t2 is applied. Finally, if t2 fails, then the whole
tactic aborts (which is a more critical situation than failure). When the tactic contains
many choices, the first choice that succeeds is selected – an application of the angelic
nature of nondeterminism, from which the language earned its name [71].

We extended the language with built-in query functions with meta-information about
object-oriented declarations. For instance, firstCommonSuper(< C1..Cn >) yields a
class that is the first common superclass of the classes in the argument list. Similarly,
built-in operations are added for changing program declarations. setExtends(C ,CC )
replaces C ’s extends clause with class CC . These operations do not present any side
effects on the program, as it is only transformed by tactic applications.

Tactics are more often useful if repeatedly applied, until their application is im-
possible. A common need in strategies is quantification when applying tactics. For
repeated application of a single tactic (law or refactoring) to several declarations of
the same kind, we consider an additional parameter for a tactic. For instance, the
tactic law moveRedefinedMethodToSuperclass(redefinedMeths(X ), super(X ),→) ap-
plies Law 35 move redefined method to superclass repeatedly, from left to right, to all
redefined methods in class X (redefinedMeths(X )), moving these methods to X ’s
superclass (super(X )). For this to work, we consider that there are two versions for
each RN law, although not showed in the thesis: one for single application, and other
for multiple application (only the first version appears in Appendix B).

In addition, the language allows us to define pattern matching within a program,
with the constraint applies to. For instance, applies to cmd [(X )e] dot applied the t
tactic to every command in the program that includes an expression e cast with X . In
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particular, this pattern matching may be applicable to a specific program declarations; in
this case, we incorporate structural combinators in the tactic language [71], permitting
the controlled application of tactics to sub-expressions. For example, the following
fragment applies the t tactic only to methods of class S .

class S t } ;

The Tactic n(a) t end declaration defines a predefined tactic that can be applied
as a single law. Strategies in our approach are declared as such. Also, we extended
the syntax by introducing types to the parameters in a. Although law applications
may generate proof obligations, due to their provisos, in strategies we consider that law
applications are valid, an the provisos are fulfilled. The proof developed for ensuring
soundness of law applications are developed in Chapter 7 and Appendix E. In addition,
we take the closed-world assumption that strategies have access to the full source code
of a program.

6.3.2 Examples of strategies

For each recorded model transformation, strategies are semi-automatically applied fol-
lowing the correspondence in Table 6.1. Other Alloy laws from the relatively complete
catalog [42] do not correspond to strategies, as they deal with syntactic sugar in the
model, which does not affect source code. In this section, we describe a number of
strategies that will be applied in the file system example. These and other strategies
that we defined are presented in Appendix D.

Table 6.1: Strategies corresponding to Alloy laws
Alloy Law Strategy → Strategy ←

1.Introduce Relation introduceField removeField
2.Introduce Subsignature introduceSubclass removeSubclass
7.Introduce Signature introduceClass removeClass
8.Introduce Generalization introduceSuperclass removeSuperclass
16.Split Relation splitField removeIndirectReference
18.Remove Lone Relation fromOptionalToSetField fromSetToOptionalField
17.Remove One Relation fromSingleToSetField fromSetToSingleField

introduceSubclass

Alloy Law 2 (L-R) introduces a subsignature for one of the declared signatures. All ob-
jects that were instances of the supersignature are now instances of the newly-introduced
signature X, making the U supersignature abstract using an invariant (X=U-S-T). The
corresponding strategy – whose intuition is depicted in Figure 6.3 as a UML class dia-
gram representing the program’s classes and fields – accepts a conforming program, in
which there is a superclass U. However other (abstract) classes can be declared in the
hierarchy – we adopt a free representation of inheritance in which a dotted line replaces
a undetermined hierarchy. For instance, an additional class could be implemented for
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the file system model which is not in the model, but is declared in the program as a
subclass of FSObject and a superclass of Dir. The notation CT [X ] represents the other
declarations of the class table, also indicating that class X may be already declared in
CT .

Figure 6.3: Introduce subclass strategy

If class X is already present, it is freely renamed to X’, because X is considered in this
case an implementation detail that was not modeled; rename(X ,X ′) is a trivial law that
is applied to the entire program, renaming X to X’. If it fails (for the case in which the
class is not declared), nothing happens, with the skip tactic. Renaming contributes to
make conditions of the laws valid, affecting program declarations; this action does not
have impact on the conformance relationship, as the renamed declarations are not in the
model. The strategy introduces the new class X as a direct subclass of U, even though
the subclasses implementing other U’s subsignatures are not direct in the program –
setExtends defines U to be in X’s extends clause. Next, every U object creation in the
entire program is replaced by X instantiations, by Law 4 ([new X/new U]).

Tactic introduceSubclass(X ,U : Class)
(law rename(X ,X ′) | skip);
law classElimination(setExtends(X ,U ),←);
law newSuperclass(U ,X ,→);

end

The laws within a tactic are applicable; the strategy was developed for fulfilling every
proviso defined for the law – the previous law always adjusts the program for allowing
the application of the next law. However, for not cluttering strategy definitions, we
leave this discussion for the proofs in Chapter 7 and Appendix E, more specifically in
the refinement proof.

removeSubclass

The opposite direction of Alloy Law 2 removes subsignature X with the presence of the
invariant (X=U-S-T); S and T become the only U’s subsignatures. The strategy removes
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the corresponding X class, although, differently from the model, the program class may
declare fields and methods, and may have subclasses with no correspondence in the
model. These implementation details must be rearranged, as showed in Figure 6.4.

Figure 6.4: Remove subclass strategy

We describe the auxiliary tactics first, then the strategy’s main tactic. The auxil-
iary tactic moveUpFields pulls up the fields declared in X (fields(X )) to the immediate
superclass B. This operation is possible even if another superclass in the same hierarchy
declares a field with the same name – we ignore shadowing in the language. An alterna-
tion is presented for pulling up fields: if B has any superclass declaring the moving field,
Refactoring 5, as formalized by Cornélio [26], moves two or more fields with the same
name to the superclass in one step; if it is not the case, a simple law of programming
(Law 37) is applied. The query super(X ) returns X’s immediate superclass.

Tactic moveUpFields(X : Class)
(law moveFieldToSuperClass(fields(X ),X , super(X ),→) |

refactoring pullUpPushDownField(fields(X ), super(X ),→);
end

Next, X’s methods are pulled up as well, with the auxiliary tactic moveUpMethods .
In this case, the strategy must deal with two cases: redefined and non-redefined meth-
ods. For the first, the methods yielded by redefinedMeths(X ) are removed from
X and the corresponding method body in the superclass is modified with an if com-
mand that adds the body of the moved method (Law 35). Yet, these steps will not
work if any of these methods contain accesses to super; in this case, the auxiliary
tactic named adjustHierarchyForPullingUpMethods eliminates all super method calls
by inlining those calls from object to X, top-down in the hierarchy; for this, all pri-
vate fields in this hierarchy are first made public. Next, the non-redefined meth-
ods (nonRedefinedMeths(X )) must be copied to other B’s subclasses (immedSubs
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(super(X ))), with an empty body, so no type errors occur when B receives the moved
method declaration with Law 36 moveoriginalmethodtosuperclass .

Tactic adjustHierarchyForPullingUpMethods(C : Class)
law changeVisibilityPrivatePublic(getHierarchyTopDown(C ),

priFields(getHierarchyTopDown(C )),→);
law eliminateSuper(getHierarchyTopDown(C ),→);
applies to exp.x , exp.m(ē){isExactly(exp,C )} do

law introduceCastToExpression(C ,→);
end

Tactic moveUpMethods(X : Class)
law moveRedefinedMethodToSuperclass(redefinedMeths(X ), super(X ),→);
(law MethodElimination(immedSubs(super(X )),

nonRedefinedMeths(X ),←) | skip);
law moveOriginalMethodToSuperclass(meths(X ),→);

end

After removing its fields and methods, class X is replaced next by its superclass on
all declarations over the program, with tactic changeDeclarationsTypetoSuper .

Tactic changeDeclarationsTypetoSuper(C : Class)
applies to C x do law changeFieldType(x , super(C ),→);
applies to C x := e in do law changeVariableType(x , super(C ),→);
applies to T meth(C x , pars) do law changeParameterType(x ,

super(C ),→);
applies to C meth(pars) do law changeReturnType(x , super(C ),→);

end

The auxiliary tactic eliminateTypeTests removes type tests involving X works by
replacing inheritance as the source of typing information. For that, we create a string
field, named type, which is used for type tests, rather than the is command, which will
be removed for tests involving class X. The tactic begins by creating a method named
isX() that includes a test to X. Then all X type tests are replaced by a call to this
method, as exemplified in the following program fragment:

class B { . .
bool isX ( ){

result := s e l f i s B
}

}
. .
i f ( x=null )

then t e s t := f a l s e
else t e s t := x . isX ( )

This replacement is elaborate, since every occurrence of x is X must be replaced by a
special statement, a parameterized command [16], by Laws 22 var block-val (R-L), 23 var
block-res (L-R), 24 pcom elimination-res (R-L) and 25 if identical guarded commands
(R-L), in this order. A parameterized command of the form test:= (result:= x is X)

may then be replaced by a method call to isX. For avoiding null pointer errors, we
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introduce an if statement for ensuring that the expression being tested is not null. After
these replacements, field type is then introduced, with Law 28(R-L), and initializations
to this field are added to X’s constructor and every constructor in X’s subclasses, as
shown in the following declarations:

class B { . .
string type ; . .

}
class X extends B {

constr { . . ; s e l f . type := "X"}
}
class Z extends X {

constr { . . ; s e l f . type := "Z"}
}

Next, by class refinement, the remaining type test in method isX is replaced by a test
over the type field, in terms of the values given by the constructors, which maintains
the desired behavior for the test (either X or Z instances are typed X). The following
example considers Z as X’s only subclass.

class B { . .
string type ; . .
bool isX ( ) {

result := ( s e l f i s X) ∨ ( s e l f i s Z)
}

}

In the tactic, this replacement is represented as string concatenation involving names
of the subclasses – we added this feature to Angel, extending the language for repre-
senting statement construction. A special disjunction variable statement is created and
manipulated (with the createDisjunction operation and the addToDisj special law
applications), being constructing from the names of all X’s subclasses. The exemplified
isX() method is represented in the following tactic by the isMethod parameter. The
special function replace substitutes the fragment as argument by the second argument.

Tactic eliminateTypeTests(X : Class , isMethod : Method)
law methodElimination(isMethod , super(X ),←);
applies to cmd [x is X ] do

law varBlockValue(cmd [x is X ], test , true,→);
law varBlockResult(bool test := x is X , result,→);
law pcomEliminationResult(result := x is X ,←);
law ifIdenticalGuardedCommands(test := (result := x is X ),

‘‘x = null”, ‘‘test := false”, ‘‘test := (result := x is X )”,←);
law methodCallElimination(test := (result := x is X ),

‘‘test := x .isX ()”,←);
law varBlockValue(bool b,←);

law fieldElimination(‘‘string type”, super(X ),←);
applies to cmd [x is X ] do
law addtoEnd(constructor(cc), ‘‘self .type = ” + name(cc));

disjunction := createDisjunction();
addToDisj(subclasses(X ), disjunction, ‘‘self is ” + name(cc));
applies to isMethod do

law replace(‘‘self is X ”, ‘‘self .type = ” + name(X ) +‘‘∨” + disjunction);
end
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After the previous tactic, X declares only a constructor, which must be replaced, since
we intend to replace every new X with new B. Hereafter, we consider a command
of type x:= newX to be a syntactic sugar for the following sequential composition:
x:= new’ X; x.newX(), in which new’ is the regular instantiation of an object, whose
reference is assigned to x. It is followed by a call to newX, a method of class X containing
the actual constructor body, used for initializing fields. After defining this replacement
for every X instantiation, the strategy moves newX to the superclass B (which contains
the initialization for the type field). After this, the new’ X commands can be replaced
by new’ B commands in the whole program. An excerpt of the result can be seen next,
before the eliminateNew tactic.

class B { . .
string type ; . .
bool isX ( ) {

result := s e l f i s X ∨ s e l f i s Z
}
unit newX( ) {
{ . . s e l f . type := "X"}

}
}
class X extends B { }
. .
B x:= new’ B; x . newX ( ) ; . .

Tactic eliminateNew(X : Class)
applies to ‘‘x := new ” + name(X ) do

law replace(‘‘x := new ” + name(X ), ‘‘x := new ′”
+ name(X ) + ‘‘; x .newX ()”);

law moveOriginalMethodToSuperclass(X ,method(‘‘newX ”),→);
law newSuperclass(X , super(X ), rightarrow);

end

In the main tactic, casts to X are removed with Law 39 (type tests and new com-
mands are also eliminated, in rather elaborate tactics that we explain later in this
section). After changing the extends clause of X’s subclasses, X can finally be elimi-
nated.

Tactic removeSubclass(X : Class)

tactic moveUpFields(X );

tactic adjustHierarchyForPullingUpMethods(X );
tactic moveUpMethods(X );

tactic changeDeclarationsTypetoSuper(X );
applies to cmd [(X )e] do law eliminateCastExpressions(cmd [(X )e],→);
tactic eliminateTypeTests(X , ‘‘bool isX (){ result := self is X }”);
tactic eliminateNew(X );

law changeSuperfromEmptyToImmediateSuperclass(immedSubs(X ),
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super(X ),→);
law classElimination(X ,→);

end

introduceField

Alloy Law 1 introduces a relation to a given signature, along with a definition of its
values by means of an invariant. Any type-compatible expression can be assigned to the
new relation; for a conforming program, class refinement may be applied, since we may
add a new member to the target class, changing the methods in a way that satisfies a
coupling invariant. This context results in an issue for program refactoring: designing
a general solution for generating coupling invariants for any relation expression. This
problem is discussed in detail in Section 6.5; we developed strategies for a few specific
cases of relation expressions. Here, we show the strategy for introducing a new field
r whose values are taken from a composition of two other fields, x and y. Figure 6.5
depicts the intuition behind the strategy steps. From the syntactic conformance, fields x
and y are declared. The methods in class S must be modified for satisfying the coupling
invariant (from the model, self.r = self.x.y). Also, any name conflicts with the new
field are managed with renaming.

Figure 6.5: Introduce field strategy

The strategy changes the visibility of field y to pub, in order to make it visible from
S. The class refinement is applied: field r is introduced, then changes to the methods in
S are carried out, based on the coupling invariant. For instance, any writing to self.x.y
must be duplicated to self.r, in order to maintain the invariant; we freely adopt exp.f
when exp is a set, whose outcome is a set of objects that result from dereferencing f
in every element of exp (exp.f = {o | ∃ el : exp • el .f = o}). On the other hand,
we consider that the language does not allow method calls from set expressions, which
would bring additional complexity to the language. Also, from the confinement property
we consider that field y is changed only by method setY, and this method is added by
Refactoring 4 that encapsulates the field – formal program refactorings from Cornélio’s
thesis are applied in the strategy with the refactoring tactic. In this case, the getter
method has module scope (for a module containing S and U), so it cannot be called from
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client classes; for this kind of method, the confinement rules can be relaxed [8], then
getY is allowed in U. The validity of the class refinements applied in this strategy is
proved by simulation in Chapter 7.

Tactic introduceCompositionField(r , x , y : Field , S ,U : Class)
(law rename(r , r ′, S ) | skip);
(law changeVisibilityPrivatePublic(y ,U ,→) | skip);
law fieldElimination(r , S ,←);
refactoring selfEncapsulateField(y ,U ,←);

class S

applies to self .x .y := exp do
law replace(‘‘self .x .y := exp”,
‘‘unpack self ; self .x .setY (exp); self .r := {self .x .getY ()}; pack self”);

}
class S

applies to self .x := exp do
law replace(‘‘self .x := exp”,
‘‘unpack self ; self .x := exp; if (self .x = null) then self .r := ∅
else self .r := {self .x .getY ()}; pack self ”);

}
end

removeField

The opposite application of Alloy Law 1 removes a relation based on its invariant defi-
nition. Again, we exemplify the strategy for removing a field based on a composition of
two other fields, x and y. Figure 6.6 depicts the changes on the involved classes. The
methods in class S must be modified by using the model invariant for establishing the
refinement (self.r = self.x.y).

Figure 6.6: Remove field strategy

The refinement is the most important transformation in the strategy. First, the r

field must be made private, by Refactoring 4, which encapsulates r and creates the
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appropriate get/set methods. The methods in S can then be modified for removing
references to x, replaced by the x.y composition.

Tactic removeCompositionField(r , x , y : Field , S ,U : Class)
(refactoring selfEncapsulateField(r , S ) | skip);
(law changeVisibilityPrivatePublic(y ,U ,→) | skip);
replace(‘‘self .r := exp”, ‘‘self .x .y := exp; ”);
replace(‘‘exp[self .r ]”, ‘‘exp[self .x .y ]”);
law fieldElimination(r , S ,→);

end

6.4 Illustrating Strategies in the Example

In this section, we apply the presented approach with a few strategies to the motivating
example. Regarding the file system, the object model invariant guarantees that the
contents relation is empty for any instance of FSObject subclasses, except for Dir

instances. In our conformance relationship, the invariant is always true for any program
state, so we consider that a program in conformance maintains the invariant for all
executions. This allows strategies to be semi-automatically (as detailed in the next
section) applied for each law employed in the object model refactoring.

After the application of Alloy Refactoring 1, in fact a number of Alloy laws were
applied. First, Law 2 (L-R) was applied; it corresponds to the strategy introduceSubclass,
according to Table 6.1. Accordingly, the empty class X is introduced as a subclass of
FSObject (since FSObject is abstract, no new command is substituted).

Class X extends FSObject { }

Next, auxiliary fields contentsDir, contentsFile and contentsX are introduced
with strategy introduceField, establishing a new invariant for each subclass (self.-
contentsFile = self.contents ∧ self is File); this refinement cannot be automatic,
even though the coupling invariant may be generated from the model invariant; in this
case modifications based on this coupling invariant are not trivial (automation issues
are fully discussed in Section 6.5). Writings to self.contents are then extended with
additional commands, as exemplified for class File below. In the outcome the desired
invariant is enforced.

class F i l e { . .
constr {

pack se l f ;
s e l f . contents := ∅ ;

i f ( s e l f i s F i l e ) then ( ( F i l e ) s e l f ) . c o n t e n t s F i l e := s e l f . contents
unpack se l f ;

}
}

Next, manipulation of model formulas, such as the deduction of invariant contents =

contentsDir + contentsFile + contentsX, do not affect the source code, as identity
strategies are associated with these Alloy laws. Formulas can only be introduced when
they are implied by other invariants in the model, which by definition are fulfilled by
the program. The subsequent strategy – removeField – removes the contents field
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based on a given invariant definition for the corresponding relation in the model; this
strategy uses class refinement for removing the field, after replacing its occurrences with
the equivalent expression from the invariant. Also, auxiliary fields contentsFile and
contentsX can be removed, since they are always empty sets, from the model.

After renaming the new contentsDir field to contents and removing the auxiliary
subclass X (with strategy removeSubclass), a partial view of the resulting program is
showed in the following fragment. The access to the previous contents field is preceded
by if commands and casts, making the resulting program syntactically correct and
conforming to the refactored model.

class FSObject{ . .
set Dir getContents ( ) {

i f ( s e l f i s Dir ) then result := ( ( Dir ) s e l f ) . contents
}
unit setContents ( set FSObject c ) {

( ( Dir ) s e l f ) . contents := c
}

}
class Dir extends FSObject{

p r i set Dir contents . .
}
class F i l e extends FSObject{

constr { . . }
}
class Main{ . .

unit main ( ){ . .
i f ( currentFSObj i s Dir )

then currentFSObj . setContents ({ f })
else currentFSObj . setContents (∅)

. .
}

6.5 Discussion on Strategy Automation

When describing our approach, we mentioned that strategies are semi-automatic, as
their automation is limited by a number of issues, which are delineated in this section.
The main problems occur in strategies that include class refinement steps, whose proofs
are not automatic. Also, even though strategies refactor the program correctly, the
quality in the resulting program – an important requirement for refactorings – is not
guaranteed.

6.5.1 Data refinement

Some of the strategies involve changes in the internal representation of a class or hi-
erarchy. For instance, this is crucial in the strategies corresponding to Law 1, which
introduce a field with a class invariant, and a value for the field is enforced. The strat-
egy introduceCompositionField is defined as a class refinement that introduces a new
field, with an invariant establishing its value to be a composition of two other fields.
Other strategies demanding class refinement are fromOptionalToSetField and splitField
(Appendix D).

When introducing a field, the relation definition restricts possible implementations
of the newly-added field, having a clear impact on the strategies; the definition drives



CHAPTER 6. MODEL-DRIVEN FORMAL REFACTORING 76

how the coupling invariant for the simulation is specified. Since the law is open for any
equational definition, full automation of these strategies is impossible. In this context,
we chose to define strategies for two common definitions besides composition: empty
field (CI : self .r = ∅) and clone field (CI : self .r = self .t). These strategies are
showed in Appendix D.

The coupling invariants for those strategies are straightforward translations of the
formula in the Alloy model. However, this is not always the case; for example, in one
of the case studies in Chapter 8 a relation is defined as r = ~x + ~y (the ~ operator
yields the transpose from the operand relation). The generation of a coupling invariant
from this invariant is not straightforward (transpose of a field dereference is not directly
supported by currently used programming languages), and even harder it is to calculate
the refinement for an arbitrary class.

This problem is identified in thesis, albeit we do not intend to provide a solution –
we only discuss potential ways to tackle the problem. Two main challenges for general
class refinement became evident during our investigation: coupling invariant translation
and proof.

Invariant translation

In our approach, steps that apply class refinement are model-driven. Therefore, it is
feasible to adapt modeled invariants as coupling invariants. Alloy Law 1 allows modelers
to include a relation, as long as the relation is defined out of other previously declared
relations (relation r with no specific definition can be introduced as a special case of the
law, with definition r=r). In this context, coupling invariants can be easily established
from simple definitions. Figure 6.7 shows a coupling invariant that is established from
an Alloy formula defining a clone relation – r is created with the same values as t.
The coupling invariant is directly taken from the relation definition, and its semantic
effect is clearly the same as modeled. The simulation might be easily determined in the
constructor with an additional assignment self.r:= self.t, and this assignment must
be repeated within every method in mts that updates t.

However, invariants may take the form of any predicate formed by Alloy logical oper-
ators, which may not be directly translated to a programming language-based coupling
invariant. Although human-based analysis is successful in translating invariants, auto-
matic translation is a significant challenge. Table 6.2 shows two examples of invariants
involving relation r. The first example defines r for each S object to be lone – the
modifier means that the result is either empty or contains one element; in this case, the
coupling invariant is a disjunction over the cardinality of the resulting set of objects
(with the # operator). In the second example, r is taken from the set of pairs in the
transpose of relation x, but only pairs that have Type1 as the right type (in Alloy, & de-
notes set intersection while -> is cartesian product). The translated coupling is defined
as a set comprehension which define self.r as Type1 objects whose x field contains self
– the transpose forces invariants over the relation’s target, in this case Type1.

A possible solution to this problem is a mechanism for systematic translation between
Alloy operands to BN counterparts. Semantic equivalence of invariants and coupling is a
critical requirement, according to the semantic conformance specification in Chapter 5.
The definition of a general form of invariants might ease the translation, as it reduces
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Figure 6.7: Coupling invariant from clone relation

Model invariant Coupling Invariant
all s:S | lone s.r (#self.r=0) ∨ (#self.r=1)

r = ~x & (SuperType->Type1) self.r={s:Type1 | self ∈ s.x}

Table 6.2: Translation of relation definitions to coupling invariants

the scope; translation rules could then be defined for this reduced scope. The rules must
also be proved compositional to every invariant, which is beyond the scope of this thesis.

The conformance relationship we use in this thesis establishes that every signature
and relation is implemented as class and field, respectively, which makes translation
easier. Other aspects of improvement is the addition of extra checking on the left ex-
pressions of coupling invariants, in order to avoid errors, such as null pointer issues. For
instance, invariant r=x.y could be translated to self.x 6= null ⇒ self.r = self.x.y,
which will affect the result of the simulation in the changed methods.

Refinement calculation

After establishing a coupling invariant, the methods of the refined class must be modified
in order to incorporate the changed fields and satisfy the invariant. This is done in BN
by simulation, which enforces the following properties [8]:

• The coupling invariant holds initially (once the constructor has been executed);

• The two versions of every method are executed from related states, and the results
are also related by the coupling invariant.

For self.r = self.t, it is straightforward to enforce simulation: every writing to
self.r is augmented with the corresponding update self.t:= self.r. Yet, coupling
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invariants like self.r={s:Type1 | self ∈ s.x} demand human knowledge for carrying
out simulation. This particular case demands a refinement that also involves changes
to class Type1 – changes to field x must be introduced. Automation in these arbitrary
cases is far from trivial.

6.5.2 Quality of refactorings

According to Opdyke, who coined the term, program refactoring is “the process of
changing a software system in such a way that it does not alter the external behavior of
the code, yet improves its internal structure” [82]. The last sentence is critical to the
definition, meaning that some quality factors of the source code are improved after refac-
toring. Nevertheless, strategies, as defined in this thesis, in some circumstances present
deficiencies concerning quality, which are not captured by the proposed automation of
strategies.

Recalling the file system refactoring from Section 6.4, the outcome of the automatic
strategy applications is a program with the following characteristics:

• The program is in syntactic and semantic conformance with the refactored model;

• The program preserves the behavior of the original program;

• The program presents confinement for a subset of the class table.

These characteristics are the main goal of strategies. Nevertheless, quality factors such
as cohesion and legibility still requires some improvement in the resulting design. In
the file system example, the cohesion property in the Dir class could be increased by
moving the methods referring to contents – getContents and setContents – to Dir.
As a consequence, the casts and tests related to self could be eliminated, since these
methods would be declared in Dir. The following fragment depicts the resulting Dir

class.

class Dir extends FSObject{
p r i set Dir contents ; . .
set Dir getContents ( ) {

result := s e l f . contents
}
unit setContents ( set Dir c ) {

s e l f . contents := c
}

}

The transformations demanded by these improvements are formalized as laws of
programming from the catalog listed in Appendix B, applied in the following sequence:

1. Law 27 (L-R) makes the private field to be public first, with no further changes
in the program;

2. contents now is a public field, thus with Law 36 (R-L) methods setContents

and getContents are moved to Dir, which is valid as all accesses to the field are
made with a Dir left expression, and no access to private fields is made within the
methods;
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3. Law 41 (L-R) allows making the type test true to the if statement, which can
then be removed by Law 19 (L-R);

4. Finally, type casts on contents accesses are removed by using Law 40 (R-L).

Although theoretically feasible, these law applications could not be automatically
applied in the example, since our initial assumption is that each strategy is recorded
and independently applied in order, disregarding the enclosing refactoring (Push Down
Relation) that was applied to the model.

Nevertheless, we see user feedback as a possible answer to this challenge, in addition
to complementary strategies. In this case, the application of the whole model refactor-
ing could bring additional information that is then applied in the program refactoring,
according to feedback from the user of a supporting tool. If the user agrees, a com-
plementary strategy, containing the five indicated law applications, is automatically
applied. Figure 6.8 depicts this example; it is important to notice that the outcome of
the complementary strategy is an improved program, yet still conforming, syntactically
and semantically, to the refactored model. This additional strategy is conditional to the
employment of the whole model refactoring, not linked to any of the isolated strategies.
This solution could help tackling the quality issue with strategies, mainly in cases that
successive application of strategies could decline quality (as seen in the case studies
presented in Chapter 8).

Figure 6.8: Complementary strategy example

From other strategies, we can mention a few other examples that could benefit from
user interaction and complementary strategies. For instance, renaming operations in
strategies can prompt the user to provide the desired name, instead of a default primed
name. Also, strategies whose outcome contains public fields, which may be undesirable
for encapsulation and representation independence, may prompt users to encapsulate
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the field [37] – making the field private and creating its getter and setter methods. This
action would invoke a complementary strategy using Refactoring 4, which is based on
laws of programming [26]. Finally, a representative example of quality issue can be seen
in strategy removeField, which often results in programs with duplicate assignments, of
the form self.x:= exp; self.x:= exp, as one of the statements is a replacement from
the removed field, using the relation definition; in this case, x is replacing another field
y, whose definition was y = x.

6.6 Conformance Relationship and Strategies

The required conformance relationship for our approach was established during strat-
egy definition. In this work, several choices were considered, having impact on the
conformance relationship used as precondition. This scenario allowed us to gather evi-
dences on how the chosen conformance affects the final results of model-driven program
refactorings.

In this context, the more abstract are the models, the looser (different possible imple-
mentations for the same object model) the syntactic conformance relationship is. The
required syntactic mappings between model and program declarations drive the free-
dom of implementation for modeled signatures and relations. At the end, we adopted a
tighter conformance relationship than initially expected, probably due to inexperience
in conformance: signatures must be implemented as classes and relations as fields in the
corresponding class. Nevertheless, the required conformance relationship still preserves
some abstraction: methods and additional classes can be freely implemented, and hier-
archies can contain more classes then modeled. In addition, we concluded that for model
refactoring to be useful, the main declarations must be maintained. As refactoring is a
structural modification, the declarations in the model must be reflected in the source
code for desired transformation; otherwise, the task would be rather pointless.

The main conclusion from this investigation: the looser is the syntactic conformance,
the more complex the program transformations needed to refactor the program become.
When giving more freedom of implementation to a specific model declaration, strategies
must consider every implementation option for this declaration, in order to achieve
automation. In this context, strategies must be more elaborate, which, based on our
experience, often clutters the program, decreasing quality. Our main goal is to apply our
approach to the highest possible abstraction level, while still allowing interesting and
reasonable refactorings, that will not depreciate program quality.

In order to justify these conclusions, we present a few examples from our investiga-
tions. First, the Alloy extends clause could be implemented at least in two different
ways: regular extends between the corresponding classes or a content-based implemen-
tation, with a type field in the superclass. The first option is straightforward, thus
chosen as the single alternative in our syntactic conformance; the second option would
harden the strategy task, mainly when model transformations require changes to the
subsignature.

Another example related to inheritance is the flexibility for implementing signature
hierarchies. Our first option was to allow freedom of additional classes in a hierarchy
of modeled classes (the program’s hierarchy may be larger). However, during our work
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with strategy introduceSubclass , problems were detected with this choice, as it would be
much harder to maintain the desired invariant, consequently the semantic conformance
with the refactored model. As described in Section 6.3.2, the refactored model includes
an invariant over the newly-introduced subsignature X – X=U-S-T –, which takes val-
ues previously assigned exclusively to the superclass U. In the program, non-modeled
intermediate classes can contribute with instances to the invariant, so they have to
be made abstract. Making these classes abstract involves creating auxiliary subclasses
to each one, replacing the corresponding new statements, which would involve many
additional changes to the program with no direct relation to the desired refactoring.
Our choice: intermediate classes are allowed between modeled classes, although they
must already be abstract, as depicted in Figure 6.9. Even though this might be re-
strictive, these intermediate classes are implementation details, and commonly these
classes are only used to better organize the hierarchy. This constraint is represented
by the abstractConstraint() predicate from the syntactic conformance definition in
Section 5.2.

Figure 6.9: Constraint on classes in hierarchies between modeled classes

A third example is illustrated by our choice of implementation for relations, as set
or single fields. A simple and reasonable choice was to directly reflect the modeled de-
cisions: unconstrained (set) and more-than-one (some) relations must be implemented
by set fields; in contrast, zero-or-one (lone) and one (one) relations are implemented
as single fields. Freedom of implementation for this case would make strategies much
more complex, as for each case both options would be considered, without a relevant
benefit for abstraction.

Figure 6.10 shows the two extreme points that we see as likely conformance relation-
ships between object models and programs, taking into account the relative proximity
between Alloy and BN. The highest level of abstraction presents total freedom of imple-
mentation, whereas the lowest point represents models that include methods and some
form of attached programming logic. The conformance relationship chosen for this thesis
aims to be located in the leftmost point in this line that allows interesting refactorings
in the quality point of view, as indicated in the figure. Other conformance relationships
on this line could be specified with the formal framework for conformance presented in
Chapter 5.
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Figure 6.10: Conformance Relationships

6.7 Chapter summary

The main contribution of this thesis is presented in this chapter: a model-driven ap-
proach to formal refactoring, which is based on the correspondence of Alloy law applica-
tions to strategies, which define sets of programming law applications. Strategies differ
from common program refactoring as it uses the information given by the object model
for carrying out more powerful program transformations.

The strategies have been specified as refinement tactics. For each Alloy law that may
have impact on program structures we defined two strategies, one for each application
direction. In particular, strategy removeSubclass induces an additional contribution: the
need for eliminating a subclass induced a solution for eliminating type tests that may
be used to refine the reduction to a normal form in programming language definition,
which is useful for defining a relative completeness of a law catalog [16].

A key aspect of model-driven refactoring is observed in the introduceField and re-
moveField strategies, which are correspondent to the Alloy law 1 (introduce relation and
its definition). The automation degree achieved for these strategies is minimized due to
the generality of the involved class refinement. We designed strategies amenable to au-
tomation for basic cases of relation definition, although we provide a detailed analysis of
the issue and possible ways to solve the problem. Furthermore, we discuss several aspects
of program refactoring quality, proposing a feasible solution with extended strategies,
and establish a clearer relationship between conformance relationship and automation
within our investigation with strategies.



Chapter 7

Soundness of Strategies

Formal proofs are the verification method carried out for the results presented in the
previous chapter. In this chapter, we establish a soundness theorem for strategies, prov-
ing that they are applicable to any conforming pair object model-program. The semi-
automation of strategies in our approach depends on a specific syntactic and semantic
conformance relationship (Chapter 5) and two additional properties:

• they must express refinements ;

• they must preserve program confinement.

So, for each strategy, these properties configure proof obligations that must be dis-
charged. These proofs are accomplished manually in this thesis. Even though we used
the PVS language and tool for type-checking formal definitions, the associate prover
has not been applied; from the experience that our research group had with the PVS
prover [42], unifying two theories – for Alloy and RN – is beyond the scope of this work.
Additionally, the relatively low complexity of most proofs in this work did not justify
the adoption cost of the mentioned theorem prover.

Figure 7.1 graphically depicts these obligations for an arbitrary strategy. In Sec-
tion 7.1 we describe the general theorem, which is broken into lemmas that are proved
for every strategy. Also, Section 7.2 presents proofs for two of the representative strate-
gies that we have chosen to prove: introduceField and removeField , the most applied
in the examples throughout this thesis. The other proofs developed for this thesis are
detailed in Appendix E.

7.1 Definitions

Our approach to validate strategies is to develop soundness proofs, with which we ensure
that the goals for each strategy are fulfilled by their definitions. In fact, along with the
case studies presented in Chapter 8, the developed proofs helped us gathering a number
of bugs in strategies, also motivating changes to the required conformance relationship.
For instance, the abstract hierarchy constraint explained in Chapter 5 was added due
to problem found during the proof for strategy introduceSubclass.

First we provide the general theorem, proved for each strategy. In this definition,
an arbitrary object model is given by OM , and an arbitrary program is P . Refactored

83
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Figure 7.1: Soundness proof obligations

models or programs are indicated with the prime (′) symbol. The following predicates,
formally defined in Chapter 5, are applied in the definition and proofs. When we refactor
syntax and semantics of programs may change, which may break conformance; therefore
we need a theorem that guarantees its preservation in terms of syntax and semantics
after the refactoring.

• syntConformance(OM ,P) states that P obeys the required syntactic conformance
with model OM ;

• semanticConformance(OM ,P) states that P is in semantic conformance with OM
regarding its heaps of interest.

Furthermore, we use predicates that are straightforward from law definitions: Re-
fines(OM’,OM) or Refines(P’,P), in which the second argument refines the first, and
Confined(P), stating that P satisfies the adopted static analysis confinement rules [8]
for a subset Own of the class table. Several additional functions and predicates from
Chapter 5 are used to back up definitions in this chapter; for instance, sigs(OM ) yields
the set of signatures declares in OM . We explain these as they appear in definitions.

7.1.1 General Theorem

Based on the general format of model-driven refactoring with strategies, we formalize
a soundness proof for strategies using a premise that form the basis for proving the
obligations showed in Figure 7.1. For each of these obligations a supporting lemma is
defined and proved. Theorem 7.1 is generally defined for an arbitrary strategy. The
theorem’s meta-variables OM , OM ′, P and P ′ are specified in each of the strategies for
its proof in Section 7.2. OM ′ is the result of the respective Alloy law application to
OM ; similarly, P ′ results from the execution of the corresponding strategy to P .

Theorem 7.1. ∀ OM ,OM ′,P ,P ′ •
syntConformance(OM ,P) ∧ Confined(P) ∧

Refines(OM ′,OM ) ∧ semanticConformance(OM ,P) ⇒
syntConformance(OM ′,P ′) ∧ Confined(P ′) ∧

Refines(P ′,P) ∧ semanticConformance(OM ′,P ′)
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In general terms, the premise states that the refactored model OM ′ refines OM ,
which is the case as OM ′ is the result of an Alloy law application to OM [42]. Also, the
initial object model and program are assumed to be in syntactic and semantic confor-
mance, due to the precondition for strategy application. Finally, the initial program is
assumed to be confined, not allowing internal representation leaks from several classes
in the program.

Given the premise is valid, four lemmas must be proved for the soundness of strate-
gies. First, program manipulation in the strategy must result in a program that is in
syntactic conformance with the refactored model as indicated in the Alloy law. Second,
the refactored program is still confined for the same subset of the class table. Third,
the strategy refines the program subject to refactoring. The final predicate determines
that the refactored program is in semantic conformance with the refactored model.

In order to facilitate explanation and proof, we split this theorem in four lemmas
regarding each of the expected conclusions. First, we reduce the premise to the following
predicate:

premise(OM , OM ′, P) = syntConformance(OM ,P) ∧ Confined(P) ∧
Refines(OM ′,OM ) ∧ semanticConformance(OM ,P)

The four lemmas are enunciated in the following sections, by isolating the conclusions
from Theorem 7.1. Afterwards, the general theorem is proved based on the validity of
these lemmas.

7.1.2 Syntactic conformance lemma

This lemma states that from the premises, the resulting program maintains the syntactic
conformance with the refactored model. Once the lemma is valid, we ensure that model
and program declarations match according to the syntactic conformance relationship
defined for our approach.

Lemma 7.1. ∀OM ,OM ′,P ,P ′ • premise(OM ,OM ′, P)⇒ syntConformance(OM ′,P ′)

In order to prove Lemma 7.1 for a given strategy, we adopt the following methodol-
ogy: syntConf (OM ′,P ′) is written in terms of the syntConf (OM ,P) predicate, which
is taken as premise. Our goal is to make the predicate true after applying definitions
from Chapter 5 and logic rules of inference.

7.1.3 Confinement lemma

In this lemma, the resulting program preserves confinement, which is taken as valid in
the original program. It means that strategies do not break the confinement property,
which is used as premise for applying class refinement with reference semantics in the
programming language.

Lemma 7.2. ∀OM ,OM ′,P ,P ′ • premise(OM , OM ′, P)⇒ Confined(P ′)
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This lemma is proved by a case analysis over the confinement static analysis rules
presented in Chapter 4. For each strategy we define the Own and Rep sets of classes:
the first represents top-level classes that own instances of Rep classes, which denote the
representation classes of owners. We enumerate those rules for reference in the proof:

1. Public methods declared in Own or subclasses cannot return Rep types;

2. Methods inherited by Own cannot have parameters of Rep types;

3. Rep classes cannot inherit any methods from non-Rep superclasses;

4. For any field access e.f , if e is of type Own, it cannot access fields of type Rep,
unless e is self ;

5. For assignments x:= new B in Client , B cannot be Rep or any of its subclasses;

6. For method calls x:= e.m(ē), if e is a Client object, and the call is within Own
or Rep (or subclasses), m cannot have Rep parameters;

7.1.4 Refinement lemma

The refinement lemma establishes a critical property of refactoring: the original behavior
of the program must be preserved.

Lemma 7.3. ∀OM ,OM ′,P ,P ′ • premise(OM , OM ′, P)⇒ Refines(P ′,P)

The proof for this lemma is based on showing application of laws of programming;
behavior preservation is given by construction, in the same way as previous work on
refactoring [26]. In this case, we specify the laws used in the development of each
strategy, along with justifications on how their provisos are fulfilled by the program at
hand – we reference the catalog presented in Appendix B.

In addition, class refinement is commonly applied in strategies for changing class
and hierarchy declarations. In this case, the proof is not based on laws, as the law based
on class refinement is specific for copy semantics. Therefore our proof is founded on a
refinement theorem presented by Banerjee and Naumann [8]; they enunciate and prove
an abstraction theorem for the BN language: if the methods of a given confined class
module (Own, which may include several classes or a hierarchy) have the simulation
property, so do all methods of all classes, which entails representation independence. In
our proof, we establish a coupling invariant for two versions of this confined class module,
proving the simulation for the constructor and an arbitrary method of the main class.

7.1.5 Semantic conformance lemma

This lemma states that from the premises semantic conformance is maintained, but now
with the refactored model.

Lemma 7.4. ∀OM ,OM ′,P ,P ′ • premise(OM , OM ′, P) ⇒ semanticConformance
(OM ′, P ′)
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This lemma is the most complex to prove. The proof methodology is similar to
Lemma 7.1: from premise semanticConformance(OM,P), we proof predicate seman-
ticConformance(OM’,P’); several auxiliary lemmas are used in the proof, which are
enunciated and proved before the main proof. In special, we apply several definitions
from Alloy’s semantics as formalized in Gheyi’s work [42]. For instance, the semantics
of an Alloy model OM is given by the following definition. It is constituted by a set of
interpretations that satisfy two properties: implicit (satisfyImpInvs(OM,i)) and explicit
(satisfyExpInvs(OM,i)) invariants. While explicit invariants consist in invariants packed
in fact paragraphs, implicit invariants are given by signature and relation declarations.

semantics(OM ) = {i : Interpretation | satisfyImpInvs(OM , i)∧satisfyExpInvs(OM , i)}

The only implicit invariant that we consider is the one that comes with the extends
clause, in which the all instances of a subsignature are contained in the supersignature,
and subsignatures of the same directly extended signature are disjunct (as defined in
Section 5.3). Also, we always consider well-formed Alloy models.

7.1.6 Proof for the general theorem

Assuming that the lemmas are proved for each strategy, we developed a proof for the
general theorem. This result is then considered for every strategy.

Proof. We start with the predicate that defines Theorem 7.1 and, with inference rules,
reduces it to true.

∀OM ,OM ,P ,P ′ • premises(OM ,OM ′,P ′) ⇒
syntConformance(OM ′,P ′) ∧ Confined(P ′) ∧ Refines(P ′,P) ∧
semanticConformance(OM ′,P ′)

= [choosing arbitrary OM ,OM ,P ,P ′]
premises(OM ,OM ′,P ′) ⇒
syntConformance(OM ′,P ′) ∧ Confined(P ′) ∧ Refines(P ′,P) ∧

semanticConformance(OM ′,P ′)
= [definition of ⇒]
¬premises(OM ,OM ′,P) ∨
(syntConformance(OM ′,P ′) ∧ Confined(P ′) ∧ Refines(P ′,P) ∧
semanticConformance(OM ′,P ′))

= [distribution on ∨]
(¬premises(OM ,OM ′,P) ∨ syntConformance(OM ′,P ′)) ∧
(¬premises(OM ,OM ′,P) ∨ Confined(P ′)) ∧
(¬premises(OM ,OM ′,P) ∨ Refines(P ′,P)) ∧
(¬premises(OM ,OM ′,P) ∨ semanticConformance(OM ′,P ′))

= [definition of ⇒]
(premises(OM ,OM ′,P)⇒ syntConformance(OM ′,P ′)) ∧
(premises(OM ,OM ′,P)⇒ Confined(P ′)) ∧
(premises(OM ,OM ′,P)⇒ Refines(P ′,P)) ∧
(premises(OM ,OM ′,P)⇒ semanticConformance(OM ′,P ′))
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= [from the four lemmas proven for each strategy]
true

7.2 Proofs

The following strategies were proved, and their proofs are representative for the other
strategies not proved (as showed in parentheses).

1. introduceClass (removeClass);

2. introduceSuperclass;

3. removeSuperclass;

4. introduceSubclass;

5. removeSubclass;

6. introduceField – split (empty field, clone field);

7. removeField – split (empty field, clone field);

8. fromSetToOptionalField (optional to set, set to single, single to set);

9. splitField (Remove Indirect Reference).

The removeClass is not proved due to its similarity to introduceClass , which is
not seen in strategies introduceSuperclass,removeSuperclass,introduceSubclass and re-
moveSubclass ; in these cases, we prove strategies for both directions of the corresponding
laws of modeling. For introducing and removing fields, we only prove one of the three
cases that we chose to be automated by strategies (composition of other two fields).
Changing the qualifier of a field from set to optional was chosen for the proof, and
the other related strategies present a very similar proof. Also, splitField is proved, in
representation for Law 16.

In this chapter, we present and explain two of these proofs: introduceField and
removeField , since they are the most used strategies in examples and case studies in
this thesis. The other proofs are detailed in Appendix E.

7.2.1 introduceField

In this strategy, a new field is introduced with values from a composition of other two
fields. We define the meta-variables OM ,OM ′,P ,P ′ for this strategy as templates,
similarly to the notation used for laws of modeling and programming. Expressions in
the templates are defined in the where clause; in this clause, we make extensive use of
substitutions in the form e ′ = e[x/y ], which represents e ′ as taking e, but replacing all
occurrences of y by x . Program templates are taken from the strategy definition. For
simplicity, [extends] symbolizes any signature or class, being possibly empty.

Let OM ,OM ′ be any two object models and P ,P ′ two programs as follows:
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OM OM ′

ps
sig S [extends]{

rs
x : set U

}

sig U [extends]{
rs ′

y : set T
}

fact F{

forms
}

=⇒

ps
sig S [extends]{

rs
x : set U ,
r : set T

}

sig U [extends]{
rs ′

y : set T
}

fact F{

forms
r = x .y

}

P P ′

CT
class S [extends]{

fds ; X r ;
set U x ;
mts

}
class U [extends]{

fdsU ; set T y ;
mtsU

}

=⇒

CT
class S [extends]{

fds ; X r ′;
set U x ;
set T r ;
mts ′

}
class U [extends]{

fdsU ; set T y ;
mtsU

}

where:
mts ′′′ = mts [self .r ′/self .r ]
mts ′′ = mts ′′′[unpack self ; self .x .y := exp; self .r := exp; pack self/self .x .y :=

exp]
mts ′ = mts ′′[unpack self ; self .x := exp; if (self .x = ∅) then self .r := ∅ else

self .r := self .x .y ; pack self)/self .x := exp]

Assuming premise(OM , OM ′, P), we now prove the four lemmas enunciated in
Section 7.1, following the described methodology. We intercalate proof steps, formal
justifications and textual explanations.

Syntactic conformance

Proof. The goal is to prove validity of the predicate, based on the premise predicates,
mainly syntConf (OM ,P). We begin by expanding the lemma’s conclusion predicate,
from its definition in the required conformance relationship (every signature and relation
is accordingly mapped in the program, and the abstract hierarchy constraint is fulfilled).
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syntConf (OM ′,P ′)

= [definition]
∀ s : sigs(OM ′) • sigMapping(s ,P ′) ∧
∀ r : rels(OM ′) • relationMapping(r ,P ′) ∧
abstractConstraint(OM ′,P ′)

Replacements are then made by comparing signatures and relations before and after
the law application. In this case, signatures are not affected, and an additional relation
is declared in the refactored model (r : set T ). Later for signatures no effects are seen,
so the predicate takes the form of the premise.

= [from definitions of OM ,OM ′,sigs(OM ′) = sigs(OM ) and rels(OM ′) = rels(OM ) ∪
{r : set T}]
∀ s : sigs(OM ) • sigMapping(s ,P ′) ∧
∀ r : rels(OM ) ∪ {r : set T} • relationMapping(r ,P ′) ∧
abstractConstraint(OM ′,P ′)

= [from definitions of OM ′,P ,P ′, ∀ r : sigs(OM )• sigMapping(s ,P) = sigMapping(s ,P ′)]
∀ s : sigs(OM ) • sigMapping(s ,P) ∧
∀ r : rels(OM ) ∪ {r : set T} • relationMapping(r ,P ′) ∧
abstractConstraint(OM ′,P ′)

Since P ′ maintains the same classes from P , no class hierarchy is changed. Then from
the premise, abstractConstraint is still valid for OM ′ and P ′. Also from the premise,
the quantification over signatures is valid as well.

= [from definitions of OM ′,P ′, abstractConstraint(OM ′,P ′) = abstractConstraint(OM ,P),
valid from the premise]
∀ s : sigs(OM ) • sigMapping(s ,P) ∧
∀ r : rels(OM ) ∪ {r : set T} • relationMapping(r ,P ′)

= [from definition of syntConf (OM ,P), and premise, ∀ s : sigs(OM )•sigMapping(s ,P)
is valid]
∀ r : rels(OM ) ∪ {r : set T} • relationMapping(r ,P ′)

Now we concentrate efforts on the predicate concerning relations. From set theory,
we separate the united parts of the quantified set into two conjunctions, which allow us
to deal with the newly-introduced relation apart from the existing relations. Regarding
the latter, nothing changes, so the premise is applied.

= [set theory]
∀ r : rels(OM ) • relationMapping(r ,P ′) ∧ relationMapping(r : set T ),P ′)

= [from premise(OM ,OM ′, P),∀ r : rels(OM )• r 6= (r : set T )⇒ relationMapping(r ,P ′)⇔
relationMapping(r ,P), which is valid]
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relationMapping(r : set T ,P ′)

For the new relation, we expand the definition of the relationMapping predicate to
prove that r is properly implemented as a set field in the program. This is done by
giving the r field as an instance for the existential quantifier.

= [definition of relationMapping , simplified]
∃ f : fields(P ′) • (r : set T ).name = f .name ∧

(r : set T ).leftType = f .leftType ∧ (r : set T ).rightType = type2(f ) ∧
(¬isScalarR(r : set T )⇒ ¬isScalarF (f ))

= [predicate calculus, choose newly-introduced field r in P’]
(r : set T ).name = r .name ∧
(r : set T ).leftType = type1(r) ∧ (r : set T ).rightType = r .rightType ∧
(¬isScalarR(r : set T )⇒ ¬isScalarF (r))

= [from definition of P ′, names and types exactly match]
(¬isScalarR(r : set T )⇒ ¬isScalarF (r))

= [from definitions of OM ′,P ′, neither field nor relation are scalar]
true 2

Confinement

Proof. By case analysis on P ′ for the six static analysis rules of confinement. For
each rule, we justify its maintenance in terms of the premise and P ′. In this case, S ,U
∈ Own and U ,T ∈ Rep.

1. No method interface is changed, thus from premise(OM , OM ′, P) there are no
methods in Own with Rep return types;

2. No inherited methods are added, thus from premise(OM , OM ′, P) no inherited
methods have Rep parameters.

3. Same as above, thus from premise(OM , OM ′, P), Rep classes do not inherit
methods from non-Rep classes;

4. No public fields of Own classes are used outside their declaring module, thus from
premise(OM , OM ′, P) no e.f is seen, e ≤ Own, unless e is self ;

5. No new is changed, thus from premise(OM , OM ′, P) Rep instance is created
outside Own classes;

6. No method call is affected, thus from premise(OM , OM ′, P), e.m calls within
Own or Rep do not have Rep parameters.

2
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Refinement

Proof. For proving refinement, show that all strategy’s steps are refinements or apply
laws of programming from the catalog presented in Appendix B.

1. If r is already declared in class S, we rename it to r’, which is a straightforward
equivalence;

2. Law 28 Field Elimination (R-L) is applied, whose provisos are valid:

(a) r is not declared in S or in its super or subclasses in CT .

3. Refactoring 4 Self-Encapsulate Field (L-R) is applied, whose provisos are valid:

(a) getY or setY are not declared in super or subclasses in CT .

4. From the abstraction theorem for BN [8], refinement is given by a simulation proof.
In this case, the coupling invariant is self .r = self .x .y :

• Constructors in S force changes to field x and combination x.y to be duplicate
for field r, so the invariant is established;

• Same for methods, maintaining the invariant.

2

Semantic conformance

Finally, we prove semantic conformance, with the help of a few auxiliary lemmas.
Lemma 7.5 allows us to introduce any name and a set of values to this name to an
interpretation, and it still will be part of the model’s semantics. Next, Lemma 7.6 es-
tablishes a definition of semantics(OM ′) in terms of semantics(OM ), helping the proof
for the main lemma. Similarly, Lemma 7.7 establishes that heaps for P ′ can be defined
in terms of analogous heaps for P .

Lemma 7.5. Any interpretation can be augmented with mappings to the r relation,
assuming r is a new name.

∀OM : Model , r : Relation, i : Interpretation, v : PValue •
¬(r .name ⊆ relNames(OM )) ∧ i ∈ semantics(OM )⇒
{i ⊕ r .name 7→ v} ∈ semantics(OM )

Proof. The addition to any new mapping to an interpretation does not change its
condition as part of the model’s semantics, since interpretations are only checked over
the mappings for model names.

Lemma 7.6. The semantics of OM ′ can be defined in terms of semantics(OM ) as fol-
lows. In this mathematical domain, ⊕ and o

9 denote relational overriding and relation
composition, respectively.
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semantics(OM ′) = {i ⊕ (r : set T ).name 7→
i .mapRel(x : set U ) o

9 i .mapRel(y : set T ) | i ∈ semantics(OM )}

Proof. We start from the definition of semantics(OM ′). In this strategy, implicit
invariants are not affected. The most important substitution is related to value for
the newly-introduced relation r, defined as the composition of relations x and y, from
Lemma 7.5.

semantics(OM ′)
= [definition]
{i : Interpretation | satisfyImpInvs(OM ′, i) ∧ satisfyExpInvs(OM ′, i)}

= [when introducing r , no extends clause is affected, thus
satisfyImpInvs(OM , i) = satisfyImpInvs(OM ′, i)]
{i : Interpretation | satisfyImpInvs(OM , i) ∧ satisfyExpInvs(OM ′, i)}

= [from definition of satisfyExpInvs(OM ′, i)]
{i : Interpretation | satisfyImpInvs(OM , i) ∧ ∀ f : factInvs(OM ′)•

satisfyFormula(f , i)}

= [from definitions of OM ,OM ′,factInvs(OM ′) = factInvs(OM ) ∪ (r = x .y)]
{i : Interpretation | satisfyImpInvs(OM , i) ∧
∀ f : factInvs(OM ) ∪ {r = x .y} • satisfyFormula(f , i)}

= [set theory]
{i : Interpretation | satisfyImpInvs(OM , i) ∧
∀ f : factInvs(OM ) • satisfyFormula(f , i) ∧
satisfyFormula((r = x .y), i)}

= [from definition of semantics(OM )]
{i : Interpretation | i ∈ semantics(OM ) ∧ satisfyFormula((r = x .y), i)}

= [from Lemma 7.5, where v = i .mapRel(x : set U ) o
9 i .mapRel(x : set U )]

{i ⊕ (r : set T ).name 7→
i .mapRel(x : set U ) o

9 i .mapRel(y : set T ) | i ∈ semantics(OM )}

Lemma 7.7. For P and P ′:
heaps(P ′, filter) = {h ⊕ (set T r).name 7→

h.mapField((set U x ).name) o
9 h.mapField((set T y).name) | h ∈ heaps(P , filter)}

Proof. The changed commands do not add or remove heaps (as they are always included
within guarded blocks); all S instances include a new field, whose values are always equal
to the composition of sets x.y as dereferenced by each S instance.

Main proof. Lemma 7.4 is then proved, using the result of the three auxiliary lemmas
and the premise.
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semanticConformance(OM ′,P ′)
= [definition]
∀ h : heaps(P ′, filter)•
∃ i : semantics(OM ′)•
∀ s : sigs(OM ′) • i .mapSig(s .name) = h.mapClass(s .name) ∧
∀ r : rels(OM ′) • i .mapRel(r .name) = h.mapField(r .name)

Similarly to Lemma 7.1, sigs(OM ′) and rels(OM ′) are replaced accordingly. An
additional relation is declared in the refactored model (r : set T ). Later, set theory is
applied for relation mappings, isolating the mapping for r.

= [from definitions of OM ,OM ′,sigs(OM ′) = sigs(OM ) and rels(OM ′) = rels(OM ) ∪
{r : set T}]
∀ h : heaps(P ′, filter)•
∃ i : semantics(OM ′)•
∀ s : sigs(OM ) • i .mapSig(s .name) = h.mapClass(s .name) ∧
∀ r : rels(OM ) ∪ {r : set T} • i .mapRel(r .name) = h.mapField(r .name)

= [set theory]
∀ h : heaps(P ′, filter)•
∃ i : semantics(OM ′)•
∀ s : sigs(OM ) • i .mapSig(s .name) = h.mapClass(s .name) ∧
∀ r : rels(OM ) • i .mapRel(r .name) = h.mapField(r .name) ∧
i .mapRel(r : set T ).name) = h.mapField((r : set T ).name)

With Lemma 7.6 we can rewrite the refactored model’s semantic definition with the
definition for the original model. Further, Lemma 7.7 helps rewriting the set of heaps
from the program semantics.

= [Lemma 7.6]
∀ h : heaps(P ′, filter)•
∃ i : {i ⊕ (r : set T ).name 7→
i .mapRel(x : set U ) o

9 i .mapRel(y : set T ) | i ∈ semantics(OM )}•
∀ s : sigs(OM ) • i .mapSig(s .name) = h.mapClass(s .name) ∧
∀ r : rels(OM ) • i .mapRel(r .name) = h.mapField(r .name) ∧
i .mapRel((r : set T ).name) = h.mapField((r : set T ).name)

= [Lemma 7.7]
∀ h : {h⊕(set T r).name 7→ h.mapField((set U x ).name)o

9h.mapField((set T y).name) |
h ∈ heaps(P , filter)}•

∃ i : {i ⊕ (r : set T ).name 7→
i .mapRel(x : set U ) o

9 i .mapRel(y : set T ) | i ∈ semantics(OM )}•
∀ s : sigs(OM ) • i .mapSig(s .name) = h.mapClass(s .name) ∧
∀ r : rels(OM ) • i .mapRel(r .name) = h.mapField(r .name) ∧
i .mapRel((r : set T ).name) = h.mapField((r : set T ).name)
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From the program heaps, we use h1 as an arbitrary heap, eliminating the universal
quantifier. Next, we use the specific interpretation i1 to skolemize the predicate and
eliminate the existential quantifier. The chosen i1 has mappings to all names in OM ,
in addition to the specific mapping to r as a composition of x and y.

= [from predicate calculus, choosing an arbitrary h1]
∃ i : {i ⊕ (r : set T ).name 7→

i .mapRel(x : set U ) o
9 i .mapRel(y : set T ) | i ∈ semantics(OM )}•

∀ s : sigs(OM ) • i .mapSig(s .name) = h1.mapClass(s .name) ∧
∀ r : rels(OM ) • i .mapRel(r .name) = h1.mapField(r .name) ∧
i .mapRel((r : set T ).name) = h1.mapField((r : set T ).name)

= [for existential quantification, we choose interpretation i1 which repeats the mappings
for names in h1, adding the mapping to relation r as indicated]
∀ s : sigs(OM ) • i1.mapSig(s .name) = h1.mapClass(s .name) ∧
∀ r : rels(OM ) • i1.mapRel(r .name) = h1.mapField(r .name) ∧
i1.mapRel((r : set T ).name) = h1.mapField((r : set T ).name)

= [from premise(OM , OM ′, P)]
i1.mapRel((r : set T ).name) = h1.mapField((r : set T ).name)

= [from definitions of i1 and h1]
true

2

7.2.2 removeField

In this strategy, a specific field is removed, based on an invariant established in the
model – in this case, the field is a composition of two other fields.

Let OM ,OM ′ be any two object models and P ,P ′ two programs as follows:

OM OM ′

ps
sig S [extends]{

rs
r : set T

}

fact F{

forms
r = x .y

}

=⇒

ps
sig S [extends]{

rs
}

fact F{

forms
}
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P P ′

CT
class S [extends]{

fds ; set U x ;
set T r ;
mts

}
class U [extends]{

fdsU ; set T y ;
mtsU

}

=⇒

CT
class S [extends]{

fds ; set U x ;
mts ′

}
class U [extends]{

fdsU ; set T y ;
mtsU

}

where:
mts ′ = mts [self .x .setY (exp)/self .r := exp]
mts ′ = mts [exp[self .x .getY ()]/exp[self .r ]]

Notice that the program does not consider accesses to r outside S, due to the con-
finement assumption. We now prove the four lemmas enunciated in Section 7.1, based
on premise(OM , OM ′, P).

Syntactic conformance

Proof. We begin by expanding the lemma’s conclusion predicate, from its definition in
the required conformance relationship.

syntConf (OM ′,P ′)

= [definition]
∀ s : sigs(OM ′) • sigMapping(s ,P ′) ∧
∀ r : rels(OM ′) • relationMapping(r ,P ′) ∧
abstractConstraint(OM ′,P ′)

For replacements signatures are not affected, and a relation is not declared in the
refactored model (r : set T ). Next, for signatures no effects are seen, so the predicate
takes the form of the premise.

= [from definitions of OM ,OM ′,sigs(OM ′) = sigs(OM ) and rels(OM ′) = rels(OM ) −
{r : set T}]
∀ s : sigs(OM ) • sigMapping(s ,P ′) ∧
∀ r : rels(OM )− {r : set T} • relationMapping(r ,P ′) ∧
abstractConstraint(OM ′,P ′)

= [from definitions of OM ′,P ,P ′, ∀ r : sigs(OM )• sigMapping(s ,P) = sigMapping(s ,P ′)]
∀ s : sigs(OM ) • sigMapping(s ,P) ∧
∀ r : rels(OM )− {r : set T} • relationMapping(r ,P ′) ∧
abstractConstraint(OM ′,P ′)
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Also, abstractConstraint is valid for OM ′ and P ′. From the premise, the quantifica-
tion over signatures is valid.

= [from definitions of OM ′,P ′, abstractConstraint(OM ′,P ′) = abstractConstraint(OM ,P),
as hierarchies are not affected]
∀ s : sigs(OM ) • sigMapping(s ,P) ∧
∀ r : rels(OM )− {r : set T} • relationMapping(r ,P ′)

= [from definition of syntConf (OM ,P), and premise,∀ s : sigs(OM ) • sigMapping(s ,P)
is valid]
∀ r : rels(OM )− {r : set T} • relationMapping(r ,P ′)

Regarding relations, from set theory we extract an implication from the previous
quantification, in order to isolate the removed relation in the predicate.

= [set theory]
∀ r : rels(OM ) • (r 6= (r : set T ))⇒ relationMapping(r ,P ′)

We then choose an arbitrary relation, which is not r. For this arbitrary relation,
from the premise it is implemented as a field. The only field removed from P is r.

= [predicate calculus, choosing arbitrary r1]
(r1 6= (r : set T ))⇒ relationMapping(r1,P ′)

= [assuming (r1 6= (r : set T )) as a premise]
relationMapping(r1,P ′)

= [from definitions P ,P ′, no other field is removed but r , from premise(OM , OM ′, P),
relationMapping(r1,P ′) is valid]

true
2

Confinement

Proof. By case analysis on P ′ for the six static analysis rules of confinement. In this
case, S ,U ∈ Own and U ,T ∈ Rep.

1. No method interface is changed, thus from premise(OM , OM ′, P) there are no
methods in Own with Rep return types;

2. No inherited methods are added, thus from premise(OM , OM ′, P) no inherited
methods have Rep parameters.

3. Same as above, thus from premise(OM , OM ′, P), Rep classes do not inherit
methods from non-Rep classes;

4. No public fields are affected, so from premise(OM , OM ′, P) no e.f is seen,
e ≤ Own, unless e is self ;
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5. No new is changed, thus from premise(OM , OM ′, P) Rep instance is created
outside Own classes;

6. No method call is affected, thus from premise(OM , OM ′, P), e.m calls within
Own or Rep do not have Rep parameters. The new method calls to setY() are
within the module, thus it does not break confinement.

2

Refinement

Proof. For proving refinement, show that all strategy’s steps are refinements or apply
laws of programming from the catalog presented in Appendix B.

1. Refactoring 4 Self-Encapsulate Field (L-R) is applied, whose provisos are valid:

(a) getR or setR are not declared in super or subclasses in CT .

2. From the abstraction theorem for BN [8], refinement is given by a simulation proof.
The coupling invariant is also self .r = self .x .y :

• Constructors in S replaces changes to field self.r with self.x.setY(e), and
reads with self.x.getY(), following the invariant;

• Same for methods, which maintain the invariant.

3. Law 28 Field Elimination (L-R) is applied, whose provisos are valid:

(a) exp.r is not used in S, as all reads and writings were replaced by equivalent
expressions.

2

Semantic conformance

Finally, for semantic conformance, we first prove a few auxiliary lemmas as they are
used in the proof. Lemma 7.8 formalizes the relationships between interpretations for
the two models. Next, Lemma 7.9 establishes a definition of semantics(OM ′) in terms
of semantics(OM ), helping the proof for the main lemma. Similarly, Lemma 7.10 es-
tablishes that heaps for P ′ can be defined in terms of analogous heaps for P .

Lemma 7.8. Given factInvs(OM ′) = factInvs(OM ) − {r = exp} and factInvs(OM ′)
does not contain any formula with r, then:

∀OM : Model ,OM ′ : Model , r : rels(OM ), i : Interpretation•
i ∈ semantics(OM )⇒ i −B r .name ∈ semantics(OM ′)

Proof. If r is not defined in any formula except for its definition in the original model,
it does not have any influence on the interpretation values mapped to the remaining
model names. In this mathematical domain, −B denotes anti-domain restriction for the
mapping.
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Lemma 7.9. The semantics of OM ′ can be defined in terms of semantics(OM ) as fol-
lows.

semantics(OM ′) = {i : Interpretation | i ∈ semantics(OM )∧ i −B (r : set T ).name}

Proof. We start from the definition of semantics(OM ′).
semantics(OM ′)

= [definition]
{i : Interpretation | satisfyImpInvs(OM ′, i) ∧ satisfyExpInvs(OM ′, i)}

= [when removing r , no extends clause is affected, thus satisfyImpInvs(OM , i) =
satisfyImpInvs(OM ′, i)]
{i : Interpretation | satisfyImpInvs(OM , i) ∧ satisfyExpInvs(OM ′, i)}

= [from definition of satisfyExpInvs(OM ′, i)]
{i : Interpretation | satisfyImpInvs(OM , i)∧
∀ f : factInvs(OM ′) • satisfyFormula(f , i)}

= [from definitions of OM ,OM ′, factInvs(OM ′) = factInvs(OM )− {r = x .y}]
{i : Interpretation | satisfyImpInvs(OM , i) ∧
∀ f : factInvs(OM )− {r = x .y} • satisfyFormula(f , i)}

= [set theory]
{i : Interpretation | satisfyImpInvs(OM , i) ∧
∀ f : factInvs(OM ) • (f 6= (r = x .y))⇒ satisfyFormula(f , i)}

= [from Lemma 7.8, i is part of the semantics of OM ]
{i : Interpretation | i ∈ semantics(OM ) ∧ i −B r .name}

2

Lemma 7.10. For P and P ′:
heaps(P ′, filter) = {h : Heap | h ∈ heaps(P , filter) ∧ h −B name(set T r)}

Proof. The changed commands do not add or remove heaps; field r is private, so it was
only accessed in mts .

2

Main proof. Lemma 7.4 is then proved, using the result of the auxiliary lemmas and
premise.

= [definition]
∀ h : heaps(P ′, filter)•
∃ i : semantics(OM ′)•
∀ s : sigs(OM ′) • i .mapSig(s .name) = h.mapClass(s .name) ∧
∀ t : rels(OM ′) • i .mapRel(name(t)) = h.mapField(name(t))
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= [from definitions of OM ,OM ′,sigs(OM ′) = sigs(OM ) and rels(OM ′) = rels(OM ) −
{r : set T}]
∀ h : heaps(P ′, filter)•
∃ i : semantics(OM ′)•
∀ s : sigs(OM ) • i .mapSig(s .name) = h.mapClass(s .name) ∧
∀ t : rels(OM )− {r : set T} • i .mapRel(name(t)) = h.mapField(name(t))

= [set theory]
∀ h : heaps(P ′, filter)•
∃ i : semantics(OM ′)•
∀ s : sigs(OM ) • i .mapSig(s .name) = h.mapClass(s .name) ∧
∀ t : rels(OM ) • (t 6= (r : set T ))⇒ i .mapRel(name(t)) = h.mapField(name(t))

With Lemma 7.9 we can rewrite the refactored model’s semantic definition with the
definition for the original model. Further, Lemma 7.10 helps rewriting the set of heaps
from the program semantics.

= [Lemma 7.9]
∀ h : heaps(P ′, filter)•
∃ i : {i : Interpretation | i ∈ semantics(OM ) ∧ i −B r .name}•
∀ s : sigs(OM ) • i .mapSig(s .name) = h.mapClass(s .name) ∧
∀ t : rels(OM ) • (t 6= (r : set T ))⇒ i .mapRel(name(t)) = h.mapField(name(t))

= [Lemma 7.10]
∀ h : {h : Heap | h ∈ heaps(P , filter) ∧ h −B name(set T r)}•
∃ i : {interpretation | i ∈ semantics(OM ) ∧ i −B (r : set T ).name}•
∀ s : sigs(OM ) • i .mapSig(s .name) = h.mapClass(s .name) ∧
∀ t : rels(OM ) • (t 6= (r : set T ))⇒ i .mapRel(name(t)) = h.mapField(name(t))

= [from predicate calculus, choosing an arbitrary h1]
∃ i : {i : Interpretation | i ∈ semantics(OM ) ∧ −B(r : set T ).name}•
∀ s : sigs(OM ) • i .mapSig(s .name) = h1.mapClass(s .name) ∧
∀ t : rels(OM ) • (t 6= (r : set T ))⇒ i .mapRel(name(t)) = h1.mapField(name(t))

= [for existential quantification, we choose interpretation i1 which repeats the mappings
for names in h1, removing mappings from r .name]
∀ s : sigs(OM ) • i1.mapSig(s .name) = h1.mapClass(s .name) ∧
∀ t : rels(OM ) • (t 6= (r : set T ))⇒ i1.mapRel(name(t)) = h1.mapField(name(t))

= [from premise(OM , OM ′, P)]
∀ t : rels(OM ) • (t 6= (r : set T ))⇒ i1.mapRel(name(t)) = h1.mapField(name(t))

= [from definitions of i1 and h1]
true

2
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7.3 Chapter summary

The soundness of strategies is given by the proofs developed in this chapter. It begins by
providing the general definition of soundness for strategies, followed by the construction
of auxiliary lemmas that will make part of the proof. In this chapter, proofs for two
strategies are presented in detail. However, we developed proofs for a representative
subset of the defined strategies, which are completely developed in Appendix E.



Chapter 8

Case Studies

In this chapter, we present more extensive examples of our approach to model-driven
refactoring. An example from Martin Fowler’s book on refactoring [37] was used in Sec-
tion 8.1 as basis for a video store’s object model, whose implementation is refactored by
strategies. Next, in Section 8.2 we refactored the object model for a simple type-checker
based on the Java language [48]. Finally, we compared two versions of the Push Down
Relation refactoring presented in Chapter 4 to check whether the resulting programs
match the strategies. These case studies revealed a number of issues that strategies
must deal with, in particular regarding automation, helping pinpointing problems and
evolving the solution.

8.1 Video Store

This case study contemplates a recurring example for refactoring, taken from Fowler’s
book [37]. We extended Fowler’s example, generating the initial object model of the
video rental domain. From an initial model, we applied three refactorings to deal better
with domain-related elements, such as movie copies and different price options.

This initial object model contains signatures representing customers and movie
rentals, as in the mentioned book. We added Dependant, that is related to the pri-
mary registered customer by relation main. Both signatures relate to the rented movies
by separate relations, rentalsC and rentalsD. The Definitions fact includes an in-
variant stating that a given rental instance is never registered to both a customer and
one of its dependents, using the transpose operator.

sig Customer {
rentalsC: set Rental

}
sig Dependant {

main: one Customer,
rentalsD: set Rental

}
sig Rental {

movie: one Movie
}

102
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fact Invariants {
all r:Rental | one (r.~rentalsC + r.~rentalsD)

}

Signature Movie represents a DVD owned by the video store; each movie is related
to exactly one price code, which encapsulates pricing information.

sig Movie {
code: one PriceCode

}
sig PriceCode { }

We provided a conforming BN implementation for this initial model, which is par-
tially showed as follows. All classes contain additional fields. We assume that the main

method maintains the invariant, in which a customer and its dependents do not share
rentals, and the class constructors ensure the modeled multiplicities. We only show the
methods that will be affected by the refactorings.

class Customer {
string name ;
string id ;
set Rental r enta l sC ; . .

unit addRental ( Rental r ) {
s e l f . r enta l sC := s e l f . r enta l sC ∪ { r } ;

}
}
class Dependant {

string name ;
Customer main ;
set Rental renta l sD ; . .

}
class Rental {

Movie movie ;
int daysRented ; . .

}
class Movie {

string t i t l e ;
PriceCode code ; . .

}
class Pr i ce {

f l o a t p r i c e ; . .
}

8.1.1 Model refactoring

We prepared and applied three model refactorings, which are composed of Alloy law
applications. The refactorings are described as follows, with results highlighted in Fig-
ure 8.1(b), compared to the initial model in Figure 8.1(a), represented by UML class
diagrams:

A Extract a signature, Associate, defining a general structure for individuals who can
rent movies. This refactoring is made of generalization introduction and a new
relation (rentals), removing the original relations rentalsC and rentalsD;

B Add a new signature – Copy – between Rental and Movie, since more than one copy
is available for one movie. For this, we must split the relation movie into two new
relations, before its removal;
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C Restructure the relationship between a movie and its current status – new or regular
– based on the State Design Pattern [39]. For this, we must introduce New and
Regular, with the Price supersignature, and move code to Price.

Figure 8.1: Video store model refactoring.

For Refactoring A, the Associate signature is introduced as a generalization with
Alloy Law 8 (L-R), in which Customer and Dependant become their subsignatures –
invariant Associate = Customer + Dependant is included. Next, relation rentals is
introduced with Law 1, in terms of rentalsC and rentalsD.

sig Associate {
rentals: set Rental

}
sig Customer extends Associate {

rentalsC: set Rental
}
sig Dependant extends Associate {

main: one Customer,
rentalsD: set Rental

} ..
fact Invariants {

all r:Rental | one (r.~rentalsC + r.~rentalsD)
Associate = Customer + Dependant
rentals = rentalsC + rentalsD

}

Next, invariants for defining rentalsC and rentalsD are deduced and introduced
to fact Invariants with Law 14. In addition, from the original invariant over these
relations, we can deduce that every rental relates to exactly one associate.
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..
fact Invariants {

Associate = Customer + Dependant
rentals = rentalsC + rentalsD
rentalsC = rentals & (Customer -> Rental)
rentalsD = rentals & (Dependant -> Rental)
all r: Rental | one r.~rentals

}

The previous steps allows us to remove both rentalsC and rentalsD with Alloy
Law 1 (R-L), along with their definitions. This step concludes refactoring A.

sig Associate {
rentals: set Rental

}
sig Customer extends Associate { }
sig Dependant extends Associate {

main: one Customer
} ..
fact Invariants {
Associate = Customer + Dependant
all r: Rental | one r.~rentals

}

Refactoring B aims to introduce the concept of movie copies to the object model,
which is commonly used in the video rental domain. We first remove the multiplicity
of relation movie – written now as an invariant – in order to create an alternative path
from Rental to Movie afterwards, introducing a new signature (Copy) with two relations
(copy,copy of) and an invariant (movie = copy.copy of).

sig Rental {
movie: set Movie,
copy: set Copy

}
sig Copy {

copy of: set Movie
}
fact Invariants {
..
all r:Rental | one r.movie
movie = copy.copy of

}

Deductions from the invariants in the model allows us to introduce new formulas
replacing movie with copy.copy of. Therefore, the movie relation can then be removed
from the model, with Law 1 (R-L), establishing the expected outcome from refactoring
B.
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sig Rental {
copy: set Copy

}
sig Copy {

copy of: set Movie
}
fact Invariants {
..
all r:Rental | one r.copy.copy of

}

Finally, in the last refactoring, the State Design Pattern is introduced for types of
movies available in the video store. First, signatures New and Regular are included with
Alloy Law 7 (L-R), representing the types of movies that will establish the cost for each
rental. Next, both are made subsignatures of Price, a new signature added by Law 8
(L-R) representing the state abstract entity. The PriceCode signature now declares
relation mapsTo, with no definition.

sig Movie {
code: one PriceCode

}
sig Price { }
sig New extends Price { }
sig Regular extends Price { }
sig PriceCode {

mapsTo: set Price
}
..
fact Invariants {
..
Price = New + Regular

}

Next, we manipulate the code relation in Movie. The goal is to move the target of
this relation from PriceCode to Price, in order to establish the structure of the desired
pattern. Our technique is to reverse and move code to the Price signature, for finally
reversing the relation, as showed in Figure 8.2. Each step is carried out with the defining
invariant for each relation introduced with Alloy Law 1 (L-R) – while one relation is
created, the previous one is removed by deducing its defining formula and applying
Law 1 (R-L). For example, after introducing code’ with invariant code’=~code, code
can be removed with a deduced invariant code=~code’.

During these law applications, an interesting aspect of this example came up: we
cannot replace code’ by code’’ unless mapsTo is a bijective function (1:1 multiplicities
between Price and PriceCode, as depicted in Figure 8.2). Formally, the invariant for
removing code’ (code’=mapsTo.code’’) can only be deduced from the original invari-
ant ( code’’=(~mapsTo).code’) if mapsTo is a bijection. By analyzing the example
from the book, we realized that this relationship is informally assumed by Fowler when
moving the field in the program, but not explicitly stated [37]. Therefore, this is an
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Figure 8.2: Steps for moving the relation

evidence that our formal investigation on refactoring may bring light on similar issues
that arise in practice. We then assume this invariant for the refactoring to be applicable.
The resulting model is showed in the next Alloy fragment.

sig Movie {
code: one Price

}
sig Price { }
sig New extends Price { }
sig Regular extends Price { }
sig PriceCode {

mapsTo: set Price
}
..
fact Invariants {
..
Price = New + Regular
all p:Price | one p.~mapsTo
all pc:PriceCode | one pc.mapsTo

}

8.1.2 Program refactoring

From the sequence of applied laws of modeling in the three model refactorings, the
correspondent strategies are executed. Table 8.1 shows the matching laws and strategies.

For the first refactoring, the opening strategy automatically introduces the Associate
superclass. Other strategies include the new field rentals, replacing old references for
the previous fields rentalsC and rentalsD; this replacement cannot be made auto-
matically, due to class refinement issues – invariant translation and simulation proof.
Field rentals is public; after its introduction, part of the outcome is showed in the
following program fragment. Writings to self.rentalsC are augmented with writings
to self.rentals within class Customer.
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Table 8.1: Strategies for the Video Rental Case Study

Order Alloy law Strategy
1 Introduce Generalization(L-R)[Associate] introduceGeneralization
2 Introduce Relation(L-R)[rentals] introduceField
3 Introduce Formula(L-R)[rentalsC=rentals & (Customer->Rental)] identity
4 Introduce Formula(L-R)[rentalsD=rentals & (Dependant->Rental)] identity
5 Introduce Formula(L-R)[all r:Rental | one r.~rentals] identity
6 Introduce Relation(R-L)[rentalsC] removeField
7 Introduce Relation(R-L)[rentalsD] removeField
8 Remove One Relation(L-R)[movie] fromSingleToSetField
9 Split Relation(L-R)[copy,Copy,copy of] splitField
10 Introduce Relation(R-L)[movie] removeField
11 Introduce Signature(L-R)[New] introduceClass
12 Introduce Signature(L-R)[Regular] introduceClass
13 Introduce Generalization(L-R)[Price] introduceGeneralization
14 Introduce Relation(R-L)[code’] removeField
15 Introduce Formula(L-R)[code=~code’] identity
16 Introduce Relation(R-L)[code] removeField
17 Introduce Relation(L-R)[code’’] introduceField
18 Introduce Formula(L-R)[code’=mapsTo.code’’] identity
19 Introduce Relation(R-L)[code’] removeField
20 Introduce Relation(L-R)[code] introduceField
21 Introduce Formula(L-R)[code’’=~code] identity
22 Introduce Relation(R-L)[code’’] removeField

class Assoc ia t e {
pub set Rental r e n t a l s ;

}
class Customer {

. .
set Rental r enta l sC ;
unit addRental ( Rental r ) {

unpack se l f ;
s e l f . r enta l sC := s e l f . r enta l sC ∪ r ;
s e l f . r e n t a l s := s e l f . r enta l sC ∪ r ;

pack se l f ;
} . .

}
. .

With the coupling invariant (self is Customer) ⇒ self.rentalsC=self.rentals,
relation rentalsC can be removed (and analogously, rentalsD), with strategy remove-
Field. For refactoring B, movie in class Rental is made a single field; for adding movie
copies, the splitField strategy creates two fields, copy and copy of, besides a new class
(Copy). The class refinement contained in this strategy can automatically duplicate
writings using the old field, as exemplified in the next program fragment.

unpack obj ;
obj . movie := aMovie ;
obj . copy . copy o f := aMovie ;

pack obj ;

The movie field can then be removed. The refactored program presents an interesting
aspect: even though the concept of copy is introduced, the business logic associated with
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movie copies is not operational, demanding evolutionary changes. For instance, two
copies of the same movie are still linked to two different instances of Movie. Therefore,
although the resulting program has its behavior preserved, being also in conformance
with the resulting model, it does not reflect user intent. This aspect may be a limitation
of model-driven refactorings from object models. We visualize two potential solutions:
more concrete models with programming logic, as in MDA [66], or to consider behavioral
models, in addition to object models (a possible future work). The refactored program
can be seen next. With user feedback, additional improvements could be done, such as
pulling up name to Associate, or making rentals private.

class Assoc ia t e {
pub set Rental r e n t a l s ;

}
class Customer {

string name ;
string id ;
set Rental r enta l sC ;
unit addRental ( Rental r ) {

unpack se l f ;
s e l f . r enta l sC := s e l f . r enta l sC ∪ r ;
s e l f . r e n t a l s := s e l f . r enta l sC ∪ r ;

pack se l f ;
} . .

}
class Rental {

Copy copy ;
int daysRented ; . .

}
class Copy {

Movie copy o f ;
}

Adding the State Design Pattern includes strategies for introducing three new classes
and moving the code field. As we explicitly defined an one-to-one relation between a
PriceCode to Price (mapsTo field), the strategy can be freely applied. When applying
the strategies, it becomes visible how reversing a relation in Alloy, which is a rather
simple transformation, can clutter up the program with implementation details. The
following fragment shows how class Movie is affected by reversing code with code’ –
only the first field reversion.

class Movie {
string t i t l e ;
unit setCode ( PriceCode pc ) {

unpack se l f ;
pc . code ’ := s e l f ;

pack se l f
}
PriceCode getCode ( ){

result := elem({ pc : PriceCode | s e l f ∈ pc . code ’ } )
}

}

This outcome brings out an important conclusion: while changing the direction of
relations in object models are straightforward, this is not the case for class fields; it
could be in part anticipated, since this is a known complex connection point between
analysis and design activities in software processes.
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8.2 Java Types Specification

The distribution of the Alloy Analyzer 1 offers an example object model describing the
basic notions of typing in Java. It covers reference types (classes and interfaces), with
variables and instances of such types. Primitive types are not considered. The following
Alloy fragment describes the declaration of Java’s main types.

abstract sig Type {
subtypes: set Type

}
sig Class, Interface extends Type {}
one sig Object extends Class {}

With the abstract keyword, the subsignatures of Type are its partition. The one

keyword constrains the Object signature to contain exactly one instance. In addition,
the following fact declaration adds three invariants: (1) every type is subtype of Object,
in which the subtypes relation is applied indefinitely until the leaf instances, by a
reflexive-transitive closure operator ; (2) no type is a subtype of itself, by a successive
dereference of subtypes with the transitive closure operation (^); (3) every type is a
subtype of at most one class – multiple inheritance is not allowed in Java – by using
transpose (~) of subtypes. The keyword no, used as a quantifier, argues that there exists
no type complying with the formula, while in denotes set membership or containment.

fact TypeHierarchy {
Type in (Object.*subtypes)
no t: Type | t in (t.^subtypes)
all t: Type | lone ((t.~subtypes) & Class)

}

Next, we show part of a simple type-checker for expressions. The following signature
declarations express that every object relates to a type (its creation type) that is a class.
A variable may hold an instance, and has a declared type.

sig Instance {
type: Class

}
sig Variable {

holds: lone Instance,
type: Type

}

Finally, the TypeSoundness fact states that all instances held by a variable have
types being direct or indirect subtypes of the variable’s declared type.

fact TypeSoundness {
all v: Variable | (v.holds.type) in (v.type.*subtypes)

}

1http://alloy.mit.edu

http://alloy.mit.edu
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Next, we provide an implementation for the object model above. A partial im-
plementation for the Type class is showed next. We assume that this implementation
follows the required conformance relationship and the confinement requirements. The
method isSupertypeOf is a simplification, as the correct implementation must check
the whole hierarchy, not only the first level below.

class Type {
set Type subtypes ; . .
unit addSubtype (Type t ) {

s e l f . subtypes := s e l f . subtypes ∪ { t }
}
bool isSuperTypeOf (Type t ) {

i f ( t ∈ s e l f . subtypes )
then result := true
else result := f a l s e

}
. .
}

8.2.1 Model refactoring

The system was modeled based on the subtypes relation. We assume a refactoring
in which this model is redesigned in terms of supertype relations, namely extends and
implements. The required transformations affect the main model declarations, requiring
changes to a conforming program. We first apply Alloy laws; after all laws are applied,
the corresponding strategies are applied to source code in the same order. This refac-
toring is depicted by the UML diagrams in Figure 8.3, with highlight on the affected
part of diagram (b).

Figure 8.3: Refactoring for the Java Types Alloy model

In the model, we first establish a relationship between the original (subtypes) and
the intended (extends, implements) relations. In fact, if B is subtype of A, B imple-
ments or extends A; hence, all objects related by subtypes are given by the objects re-
lated by the inverse of implements and extends combined. In Alloy, subtypes=~extends

+ ~implements.



CHAPTER 8. CASE STUDIES 112

In order to introduce the new relations, we include an empty fact; this transformation
is formalized by Alloy Law 15 (L-R). Next, we introduce extends and implements to the
Type signature, applying Law 1 (L-R) twice; their definitions are added to the newly-
introduced Definitions fact. For instance, implements is defined as the transpose
of subtypes, but with range restricted to Interface instances (intersection with the
Type->Interface cartesian product).

abstract sig Type {
subtypes: set Type,
extends: set Class,
implements: set Interface

}
fact Definitions {

implements = (~subtypes & (Type->Interface))
extends = (~subtypes & (Type->Class))

}

Our aim is to derive the desired definition of subtypes, in order to replace its occur-
rences and eventually remove the relation from the model. Invariant subtypes=~extends

+ ~implements can be deduced from the Definitions fact and introduced to the model.
A deduced formula can be included to a fact by Law 14.

fact Definitions {
implements = (~subtypes & (Type->Interface))
extends = (~subtypes & (Type->Class))
subtypes = (~extends + ~implements)

}

From the third formula of the TypeHierarchy fact, we can deduce a formula stat-
ing that extends is a partial function (allt:Type | lone(t.extends)), by replacing
subtypes with its definition. With this new formula, we can change qualifier to lone,
with Law 18 (R-L).

abstract sig Type {
subtypes: set Type,
extends: lone Class,
implements: set Interface

}
fact Definitions {

implements = (~subtypes & (Type->Interface))
extends = (~subtypes & (Type->Class))
subtypes = (~extends + ~implements)

}

Next, references to subtypes are replaced by its definition. The first two invari-
ants in fact Definitions can now be reduced to tautologies, from the intersections
(implements=implements, for example). They reduce to true, being removed from the
model.
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fact Definitions {
subtypes = (~extends + ~implements)

}

We can finally remove subtypes and its definition using Law 1(R-L), as all references
to subtypes have been replaced. Next, the Definitions fact becomes empty, being also
removed. The resulting model is shown in the Alloy fragment below.

abstract sig Type {
extends: lone Class,
implements: set Interface

}
sig Class, Interface extends Type { }
one sig Object extends Class { }
fact TypeHierarchy {

Type in (Object.*(~extends + ~implements))
no t:Type | t in (t.^(~extends + ~implements))
all t:Type | sole ((t.~(~extends + ~implements)) & Class)

}
sig Instance {

type: Class
}
sig Variable {

holds: lone Instance,
type: Type

}
fact TypeSoundness {

all v: Variable | (v.holds.type) in (v.type.*(~extends + ~implements))
}

8.2.2 Program refactoring

Given the applied sequence of laws of modeling is known, we are able to apply the
correspondent strategies to the underlying source code. Table 8.2 shows the strategies
matching the applied Alloy laws. Some of the Alloy laws correspond to identity strate-
gies; these laws deal with either Alloy syntactic sugar or invariants; they do not affect
the program.

First, strategy introduceField introduces new fields to the Type class based on the
relations included in the model. For example, the extends field is introduced with a
class refinement, using a coupling invariant from the relation definition. In this case,
the invariant is formulated as follows:

self.extends = {s: Class | self ∈ s.subtypes}

This refinement is not automatic, due to the complexity of the coupling invariant. First,
extends is made public, for allowing changes to the field (Refactoring 4 for encapsulating
field could be used as well, adding getter and setter methods). As the coupling invariant
is applied to the program, the assignment self.subtypes:= self.subtypes ∪ {t} in
the addSubtype method must be extended with an assignment to extends, enforcing
the coupling invariant. An if statement is included, as showed next.
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Table 8.2: Strategies for the Java Types Case Study
Order Alloy law Strategy

1 Introduce Fact(L-R)[Definitions] identity
2 Introduce Relation(L-R)[extends] introduceField
3 Introduce Relation(L-R)[implements] introduceField
4 Introduce Formula(L-R)[subtypes = (~extends + ~implements)] identity
5 Introduce Formula(L-R)[all t:Type | lone(t.extends)] identity
6 Remove lone relation(R-L)[extends] fromSetToOptionalField
7 Introduce Formula(R-L)[extends=extends] identity
8 Introduce Formula(R-L)[implements=implements] identity
9 Introduce Relation(R-L)[subtypes] removeField

class Type {
set Type subtypes ;
pub set Class extends ;
. .
unit addSubtype (Type t ) {

unpack se l f ;
s e l f . subtypes := s e l f . subtypes ∪ { t } ;
i f ( s e l f i s Class ) then t . extends := { s e l f }

pack se l f ;
}
. .

}

The strategy is analogously reapplied to introduce the implements field. The result-
ing Type class is presented as follows:

class Type {
set Type subtypes ;
pub set Class extends ;
pub set I n t e r f a c e implements ;
. .
unit addSubtype (Type t ) {

unpack se l f ;
s e l f . subtypes := s e l f . subtypes ∪ { t } ;
i f ( s e l f i s Class ) then t . extends := { s e l f } ;
i f ( s e l f i s I n t e r f a c e ) then t . implements := { s e l f }

pack se l f ;
}
bool isSuperTypeOf (Type t ) {

i f ( t ∈ s e l f . subtypes ∨ s e l f ∈ t . extends ∨ s e l f ∈ t . implements )
then result := true
else result := f a l s e

}

. .
}

After a number of identity transformations, the extends field can be turned into a
single field. In this case, strategy fromSetToOptional can be automatically applied.

class Type {
set Type subtypes ;
pub Class extends ;
pub set I n t e r f a c e implements ;
. .
unit addSubtype (Type t ) {

unpack se l f ;
s e l f . subtypes := s e l f . subtypes ∪ { t } ;
i f ( s e l f i s Class ) then t . extends := elem({ s e l f } ) ;
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i f ( s e l f i s I n t e r f a c e ) then t . implements := { s e l f }
pack se l f ;

}
bool isSuperTypeOf (Type t ) {

i f ( t ∈ s e l f . subtypes ∨ s e l f ∈ { t . extends } ∨ s e l f ∈ { t . implements })
then result := true
else result := f a l s e

}
. .

}

Finally, after additional formula manipulation, subtypes is removed from Type, by
applying the appropriate strategy. In order to eliminate the reading accesses to the field,
definition subtypes=(~extends + ~implements) is used as a class invariant, which is
presented as manually translated below.

self.subtypes={s:Type | self ∈ s.extends} ∪ {s:Type | self ∈ s.implements}

The field can then be removed, along with its writing accesses, and reads are replaced
according to the class invariant. The resulting Type class is shown in the following
fragment. Regarding quality of the refactored program, improvements cannot be made
automatically simply from model assumptions, so user feedback can help establishing
that the newly-introduced fields are better encapsulated as private fields. Even though
confinement is maintained in the outcome, this can be restricted for future modifications.
Furthermore, several expressions could be simplified: within the if condition, the first
disjunction member can be eliminated, since it is redundant; also, self ∈ {t.extends}
can be simplified to self = t.extends, by a property of the unitary set.

class Type {
pub Class extends ;
pub set I n t e r f a c e implements ;
. .
unit addSubtype (Type t ) {

unpack se l f ;
i f ( s e l f i s Class ) then t . extends := elem({ s e l f } ) ;
i f ( s e l f i s I n t e r f a c e ) then t . implements := { s e l f }

pack se l f ;
}
bool isSuperTypeOf (Type t ) {

i f ( t ∈ { s : Type | s e l f ∈ s . extends } ∪ { s : Type | s e l f ∈ s . implements} ∨
s e l f ∈ { t . extends } ∨ s e l f ∈ { t . implements })

then result := true
else result := f a l s e

}
. .

}

8.3 Pull Up/Push Down Relation Refactorings

Section 3.3 describes how Alloy laws can be composed into model refactorings, that
may be directly applied by modelers. For that, we use a refactoring to push down a
relation to a subsignature, as long as there is an invariant constraining the relation to
the receiving subsignature (Refactoring 1). In contrast, previous versions of the law
catalog regarded this refactoring as a separate law, influenced by anterior definitions of
strategies [41]. For this law, two strategies were defined. Our goal is to compare the
resulting program in two versions of this refactoring: as an isolated strategy or as a
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sequence of strategies. We present both results, along with a discussion over the two
outcomes. For illustration, we use the previous file system example.

8.3.1 Law

As an example of law, we can push down a relation with an invariant stating that the
relation only relates elements of the subsignature (no (T-S).r), and no potential type
errors is encountered – as formalized in the following law (push down relation). Similarly,
we may pull up a relation from a signature to its parent by adding a formula stating
that this relation only maps elements of the subsignature, given no name conflicts are
found.

Law 〈push down relation〉

ps
sig T {

rs ,
r : set U

}

sig S extends T {

rs ′

}

fact F {

forms
no (T − S ).r

}

=Σ,v

ps
sig T {

rs
}

sig S extends T {

rs ′,
r : set U

}

fact F {

forms
}

provided
(→) E .r , where E ≤ T and E � S , does not appear in ps or forms ;
(←) T ’s hierarchy in ps does not declare any relation named r .

For this law, two strategies were defined, for refactoring a conforming program in
both directions. First, strategy pushDownField refactors a program containing the two
involved classes, yet intermediate classes can also be declared within the hierarchy.
Also, several statements may access the field in expressions – these expressions must
be modified before actually pushing down the field. The file system implementation
showed in Section 6.1 can be refactored by this strategy, resulting in the following
program fragment.

class FSObject{
Name name ;
set Dir getContents ( ) {

i f ( s e l f i s Dir )
then result :=(( Dir ) s e l f ) . contents
else result := ∅

}
unit setContents ( set FSObject c ) {

i f ( s e l f i s Dir ) then ( ( Dir ) s e l f ) . contents := c
}
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}

class Dir extends FSObject{ pub Dir set contents ; . . }
class F i l e extends FSObject{

constr { . . }

class Main{
unit main ( ){

F i l e f :=new Fi l e , currentFSObj :=null in . .
currentFSObj :=( FSObject ) s e l f . inout ;
i f ( currentFSObj i s Dir )

then currentFSObj . setContents ({ f })
else currentFSObj . setContents (∅)

}
}

In strategy pushDownField , r first becomes a public field. Several accesses to r are
rewritten in two ways: (1) when the left expression is a subtype of T (FSObject) but not
typed as S (Dir) – if statements and casts are distributed for reading (cmd[cc.r]) and
writing accesses, since the expression may either yield or not a S instance at runtime;
(2) the left expression may be subtype of FSObject, but not in the hierarchy branch
of Dir – (classes()-getBranch()) gives a list of classes in the program except for
classes in the branch from FSObject that includes Dir until leaf classes. In this case,
only File is selected. For this class, the invariant states that accesses to contents must
always be empty, thus they are rewritten as such. Figure 8.4 defines these two cases in
the FSObject hierarchy.

Figure 8.4: Cases of expression rewriting for moving a field from FSObject to Dir

After those statement replacements, the field is moved to S, from T throughout its
subclasses, until it gets declared in S.

Tactic pushDownField(r : Field ,T , S : Class)
(law changeVisibilityPrivatePublic(r ,→) | skip);
law replace(getHierarchyTopDown(T , super(S )), ”cmd [cc.r ]”,

”if (exp is S ) then cmd [((S )exp).r ] else cmd [∅]”);
law replace(getHierarchyTopDown(T , super(S )), ”cc.r := exp”,

”if (cc is S ) then ((S )le).r := exp”);
applies to le.r{isExactly(exp, classes()− getBranch(T , S ))} •

law replace(”cmd [le.r ]”, ”cmd [∅]”);
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law replace(”le.r := exp”, ”skip”);
law moveFieldToSuperclass(getHierarchyTopDown(T , S ), r ,←);

end

The opposite strategy (pullUpField) requires no changes to statements, as Law 37
presents no provisos for its L-R application. Shadowing is ignored, thus nothing is done
regarding name conflicts. For supporting this change, getHierarchyBottomUp(S,T)
yields a list of classes, in the example from Dir to FSObject.

Tactic pullUpField(r : Field , S ,T : Class)
(law changeVisibility : priTopub(r ,→) | skip);
µ cc : getHierarchyBottomUp(S ,T ) •

law moveFieldToSuperclass(r , cc, super(cc),→);
end

Assuming the outcome from pushDownField as input, the automatic application of
pullUpField results in the following declarations. Additional quality improvements may
be carried out as strategy extension, such as eliminating casts in FSObject.

class FSObject{
Name name ;
pub set FSObject content s ;

set Dir getContents ( ) {
i f ( s e l f i s Dir )

then result :=(( Dir ) s e l f ) . contents
else result := ∅

}
unit setContents ( set FSObject c ) {

i f ( s e l f i s Dir ) then ( ( Dir ) s e l f ) . contents := c
}

}

class Dir extends FSObject{ . . }
class F i l e extends FSObject{

constr { . . }
}
. .

8.3.2 Composite Refactoring

Chapter 3 presents Refactoring 1 defined as a composition of Alloy laws, which is the
current representation for pushing down a relation. From that definition, we discuss in
this section the application of strategies in the file system example for both directions
of the refactoring.

Push Down Relation

Table 8.3 details the order of law applications for Refactoring 1(L-R), along with the
corresponding strategies, as previously explained in Chapter 3 for the file system exam-
ple.

The resulting code for the example is showed in the next fragment. With class
refinement, fields contentsDir, contentsFile and contentsX were introduced, but
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Table 8.3: Strategies for Push Down Refactoring

Order Alloy law Strategy
1 Introduce Subsignature(L-R)[X] introduceSubclass
2 Introduce Relation(L-R)[contentsDir] introduceField
3 Introduce Relation(L-R)[contentsFile] introduceField
4 Introduce Relation(L-R)[contentsX] introduceField
5 Introduce Formula(L-R)[contents=contentsDir+contentsFile+contentsX] identity
6 Introduce Relation(R-L)[contents] removeField
7 Introduce Formula (L-R)[contentsFile={}] identity
8 Introduce Formula (L-R)[contentsX={}] identity
9 Introduce Relation(R-L)[contentsFile] removeField
10 Introduce Relation(R-L)[contentsX] removeField
11 Introduce Subsignature(R-L)[X] removeSubclass

only the first is maintained (we did not rename the field for highlighting differences
from the law version). From these removals, residual implementation details from the
auxiliary X class are seen in the source code, specially field type and method isX,
assuming the type test for X that had to be removed from getContents; also, the if
statements within getContents preserve details from the removed fields.

class FSObject{
Name name ;
string type ;
set Dir getContents ( ) {

i f ( s e l f i s Dir )
then result := ( ( Dir ) s e l f ) . contentsDi r
else i f ( s e l f i s F i l e )

then result := ∅
else i f ( s e l f . isX ( ) ) then ∅

}
unit setContents ( set FSObject c ) {

i f ( s e l f i s Dir ) then ( ( Dir ) s e l f ) . contents := c
}
bool isX ( ){

result := s e l f . type = "X"

}
. .

}
class Dir extends FSObject{

pub Dir set contentsDi r ; . .
}
class F i l e extends FSObject{

constr {
i f ( s e l f i s F i l e ) then sk ip

}
} . .

We conclude that for the refactoring case, the strategies are able to perform their
functionality – preserves behavior and conformance with the refactored model. Nev-
ertheless, the quality of the resulting code is better preserved by applying a single,
specialized strategy. For an isolated law, the strategy is tailored for the specific prob-
lem of pushing down a field with the defined invariant, which does not require class
refinements. The refinements in the second case clutter up the program, concerning the
auxiliary class and fields used in the refactoring; this result corroborates the issues with
quality factors described in Section 6.5.
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Pull Up Relation

Likewise, Table 8.4 shows law applications for Refactoring 1(R-L) and corresponding
strategies, which is simpler than pushing down relations.

Table 8.4: Strategies for Pull Up Refactoring
Order Alloy law Strategy

1 Introduce Relation(R-L)[contentsFSObj] introduceField
2 Introduce Formula(L-R)[no (FSObject-Dir).contents] identity
3 Introduce Formula(L-R)[no (FSObject-Dir).contentsFSObj] identity
4 Introduce Relation(R-L)[contents] removeField

The resulting source code for the file system is showed next, being very similar to
the one for the law version. In this case, refinements are applied only twice, with less
auxiliary elements.

class FSObject{
Name name ;
pub set FSObject contentsFSObj ;

set Dir getContents ( ) {
i f ( s e l f i s Dir )

then result := s e l f . contentsFSObj
else result := ∅

}
unit setContents ( set FSObject c ) {

i f ( s e l f i s Dir ) then se l f . contentsFSObj := c
}

}
class Dir extends FSObject{ . . }
class F i l e extends FSObject{

constr { . . }
}
. .

8.4 Chapter summary

The case studies presented in this chapter served as a practical evaluation for the devel-
oped strategies. Three examples were used for applications: a video store model from
Fowler’s book on refactoring [37], a major refactoring on the Java types specification and
a comparison between two different versions of push down relation refactoring. These
cases helped find errors and inconsistencies in strategy definitions, as well as provide a
more elaborate of the issues reported in Chapter 6.
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Conclusion

In this work, we provide an approach for semi-automatically refactoring programs based
on object model refactorings founded by semantics-preserving laws. A sequence of for-
mal behavior preserving program transformations is associated to each predefined model
refactoring. Applying a model refactoring triggers the corresponding sequence of pro-
gram refactorings, which (1) update code declarations as refactored in the model and
(2) adapt statements according to the modified declarations. This is accomplished with
invariants, which are assumed throughout all program’s executions, through a confor-
mance relationship. Although developers only apply refactorings to object models, both
artifacts get refactored, avoiding most of the required manual updates on source code.

9.1 Summary of Contributions

The formal solution devised in this thesis is the outcome of investigations on refac-
toring at different levels of abstraction, particularly object models, from analysis and
design activities, and source code resulting from implementation activities. Our solution
represents a feasible alternative for conformance maintenance between object-oriented
programs and object models, at least for refactoring tasks. Although we deal only
with refactoring, other evolution tasks could potentially apply the principles behind our
approach. Therefore, knowing, from Section 6.1, that code generation and reverse en-
gineering have showed inappropriate in evolutionary development, a different approach
to evolution could be tried.

The idea of primitive transformations composing useful refactorings is promising,
not only in formal contexts; our research group has been using this idea [45, 44, 73, 75].
We rely on this principle create strategies for each Alloy law. In this way, model refac-
toring can be semi-automatically replicated to the program (answering to the Research
Question #1 in Section 1.3). This may encourage maintenance of object models during
refactoring, since manual updates to maintain conformance and correctness are consid-
erably avoided, with the exception of changes in class representation (class refinement).

This approach can serve as basis for refactoring and evolution-related tool support.
In this case this tool could record every law used in an applied composition and search
for the corresponding strategies (some would be identity strategies), applying those, in
order, to the implementation. The resulting implementation will be in conformance
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with the original Alloy model; such a relation is preserved throughout the strategies.
This approach may also be useful to improve tool support for refactoring, since the

semantic properties from object models can aid refactoring automation. Refactoring
tools, such as Eclipse [30], help updating programs in refactorings that span several
modules. In a number of strategies from this work, the invariants expressed in the ob-
ject model offers an instrument for more efficient tools, using this semantic information
to extend its automatic refactoring capabilities. This is an important feature in strate-
gies such as removeGeneralization, in which an invariant stating that a superclass is
abstract (semantic information) allows this class to be removed, along with their field
and methods. This information could not be obtained solely from the source code.
Similar results can be acquired in strategies removeSubclass, fromSetToOptional and
removeField [74]; in the latter, the benefit is only seen for the three cases chosen to be
automatic (empty field, clone field and composition field).

According to our experience, the most important result from this investigation, was
to match the conformance relationship with the strategies (Research Question #2). Our
general methodology has been to try to devise a syntactic conformance relationship as
loose as possible, according to strategy definitions. We believe that the results show
a relatively abstract conformance relationship, whereas still amenable to interesting
model-driven refactorings. A more abstract conformance relationship would consider-
ably make strategies more complex, cluttering the program in order to maintain some
degree of automation.

Another important task for maturing the solution was the process of proof devel-
opment (Research Question #3). Although the first case studies helped to improve
strategy definitions, the detailed view over strategies demanded by proofs – specially
semantic conformance proofs – allowed us to detect problems in strategies and adjust
the required conformance relationship. For instance, the abstractConstraint from the
syntactic conformance was essential for the soundness of strategies involving introduc-
tion and removal of super and subclasses, not previously detected in the case studies
(Research Question #4).

9.2 Assumptions and Limitations

A few assumptions have been adopted in this thesis. First, strategies can only work if
conformance checking has been applied to guarantee that the program’s behavior main-
tains the invariants introduced by the object model. Although conformance checking
tool support is evolving in order to aid verification (including static [36, 60] and runtime
checking [27]), it is still incipient in practice. In addition, we take the closed-world
assumption that we have access to the full source code of a program – some strategies
must have access to the whole class table.

The semantics of the chosen programming language drives much of the study on pro-
gram transformations. For this thesis, we rely on a catalog of transformations that must
be behavior preserving. Results from work on the ROOL language [16] include a catalog
of primitive laws of programming; this language was used during most of the work for
this thesis. However, the language presents copy semantics for objects, whereas Java
and other widely-used languages present a reference semantics. These characteristics
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simplify the language for formal reasoning, however restraining its practical application.
Further, we detected an important issue: the semantic difference between model and
program semantics requires choices that make the conformance relationship significantly
complex.

In this context, we adopted a language with reference semantics, similar to main-
stream programming languages. Nevertheless, a different problem arises from this
choice: aliasing via pointers, in which shared mutable objects allows breaking encapsu-
lation, even for private fields, as described in Chapter 4. If a uncontrolled client updates
the state of a shared object, an invariant of a given class may be violated. Therefore,
the need for confinement is ubiquitous in practice; we adopted the discipline for con-
finement described by Banerjee and Naumann [8], which was chosen from a number of
other confinement proposals, due to its less restrictive and statically checkable approach.
Although confinement restricts the number of programs amenable to model-driven refac-
toring, it helps in re-engineering object-oriented software by exposing potential software
defects, or at least making subtle dependencies visible, possibly motivating widespread
utilization.

Although object models allow reasoning about program properties, other modeling
views are usually applied in software development. For instance, modeling dynamic
aspects of a system is commonly seen in object-oriented design; sequence diagrams,
from the UML [15], and Alloy models with traces [58] are exemplars. Our approach
focuses on object models, thus conformance with dynamic models is not guaranteed.

System implementations usually include database support, especially for informa-
tion systems. In this context, database structures (schemas) strongly follow the domain
information originated in object models; minor differences come from performance ad-
justments such as denormalization [78]. A clear limitation from our approach is that we
do not deal with database particularities for refactoring tables and relationships accord-
ing to the structures changed in source code and object models. Nevertheless, a similar
approach could be applied, given the conformance relationship between program and
database structures is well-established.

9.3 Research Conjectures

The investigation of model refactoring and its implications to source code can provide
considerable evidence over the challenges that effective MDA tool support will have to
face in order to support evolution. While code generation is effective by the use of mark-
ings on abstract models and patterns of tranformations [66], constructing artifacts from
others contributes to the problems previously seen in evolution. By now, MDA-based
tools [25, 80, 91] show similar limitations as those observed in round-trip engineering
tools, as manual updates are still required to complete model-driven evolution (custom
implementation details may depend on the obsolete structures).

Furthermore, program refactoring in practice may also obtain benefits with some
of our ideas. Developers usually follow a uniform sequence of activities when adding
functionality to software (at least in agile methodologies strongly based on refactoring,
like XP [12]):

• Refactor the code to remove bad dependencies that might make additions hard;
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• Write new tests to test whether the observable behavior is maintained;

• Add new functionality unless it involves need for additional refactoring;

• Repeat until done.

In this context, major refactorings, involving module declarations and relationships,
are usually avoided, due to dependencies that must be updated, including the tests
that may depend on the changed structures. These tasks require resources on which
development teams are usually not willing to spend effort. A possible application of our
approach would have developers specifying, or generating from source code (using static
and dynamic analysis techniques), models or annotations. Structural refactorings would
be applied on the model, and strategies could improve automation of the updates, based
on the invariants. In thesis, even tests could be automatically updated to reflect the
refactored structures, by using special strategies, for example.

One of the issues with our approach is related to refactoring quality after strat-
egy application, as pointed out in Section 6.5.2. Due to the independence of strategy
applications, information regarding the composed model refactoring as a whole is not
used for improving the resulting program, often missing the refactoring’s original goal
– we observed this effect clearly during the PushDownRelation case study, presented
in Section 8.3. An alternative for dealing with this problem is to refactor programs
exclusively based on the refactoring’s initial and final models, ignoring the intermedi-
ate law applications. For such approach, we see two possible alternatives: (1) a fixed
catalog of major refactorings (for instance, for design pattern [39] introduction), whose
corresponding strategies would be tailored for these refactorings; and (2) automatically
generate a strategy from the applied model refactoring. The first option seems to be
easier, but likely to end up with the same issue. The second option is visibly more
complex; from the modified model structures and invariants, a tool would discover and
apply the corresponding program transformations. We have not investigated this op-
tion; however, we believe that refactoring provisos could indicate some of the needed
program transformations.

Our solution is centered on model refactoring, and this refactoring on models re-
quires human intervention. Nevertheless, we may speculate on code-driven refactoring,
taking a similar approach but centered on program refactoring. In this case, the solution
aims at a different context, in which designers refactor primarily source code, although
requiring conformance maintenance with object models. Analogous to our solution, pro-
gram refactorings could be composed from laws of programming [26], and these laws are
linked to model strategies containing a sequence of model transformations. The aim is
to maintain semantics and conformance with the program. Some consequences can be
predicted: model strategies are certainly much simpler than program strategies, albeit
forming a considerably larger strategy table. Many of these corresponding strategies
would be identities, since many program refactorings do not change model entities. Fur-
ther, in order to offer an effective refactoring method, the programming language must
offer strong support for invariant definition and manipulation – in this case, annotation
languages such as JML [18] could be used.
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9.4 Related Work

Our work is directly linked to the body of research on conformance and co-evolution,
and indirectly to program and model refactoring. This section details some of these
approaches, relating to this thesis’ contributions.

9.4.1 Conformance

Our model-driven approach to refactoring strongly relies on conformance between soft-
ware artifacts at different levels of abstraction; hence, methods for establishing confor-
mance relationships are valuable for positioning our ideas in the community. A specific
approach to conformance is addressed by Guéhéneuc and Albin-Amiot in their work
on the relationship between object-oriented modeling and programming languages, in
particular regarding binary associations, aggregations and compositions in UML class
diagrams [53]. They describe algorithms that detect automatically these relationships
in code. As the semantics of such constructs is not well-defined, the authors provide
their own interpretation from textual descriptions. This approach introduces a more
flexible conformance relationship than traditional conformance, while still maintaining
the model abstract, which may be applicable to our solution as well. However, further
investigation is required for assessing potential benefits of this notion to model-driven
refactoring. We believe that their conformance relationship can be established by the
formal framework presented in Section 5.4.

A distinct conformance relationship is dealt with by Zhang et al. [101]. Flow analysis
is used for automatically establishing mapping of implementation structures to design
modules, starting from an initial partially-built mapping specification. Their solution
focuses on the syntactic relationship between those structures, not dealing with semantic
mapping and maintenance of semantic conformance.

Another popular technique used for establishing conformance relationships is the
use of meta-models as high-level descriptions of languages for software artifacts, mainly
modeling languages. Paige et al. [84] investigates conformance between different mod-
eling views – for instance, class and sequence diagrams – for a UML-similar modeling
language. The authors present two approaches for building meta-models and perform-
ing “multiview consistency checking”: using PVS specifications with theorem proving,
and programs in the Eiffel language with regular dynamic checking. In our formal
framework, specified also in PVS, we focused on basic conformance definitions, not a
verification method; still, their specifications and proof strategies can be combined with
our definitions for a more general conformance checking. Although the authors men-
tion the possibility of specifying source code with meta-models, they do not deal with
programs in their solution. We believe that meta-models are hardly useful to repre-
sent programming languages, as they are limited to syntax and well-formedness rules
specification and checking.

Additionally, automatic conformance checking is critical to develop tools to support
our approach. Conformance checking consists in automatically verifying whether an
implementation is in conformance with a given specification or model. Techniques for
conformance checking can be classified into at least two categories: static checking,
which only applies to the implementation’s source code, and dynamic analysis, which
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makes use of information available during the implementation’s execution, not limited
to artifacts available at compile time.

Regarding static analysis, a method has been devised by Jackson and Vaziri, which
check properties on code based on an Alloy specification [60] extracted from source code.
However, it does not scale well for large programs, as all procedure calls are inlined
for the analysis, which is not appropriate for loops and recursive calls. An alternative
approach [95] eliminates that problem by performing a conservative analysis of procedure
abstractions, which are automatically inferred from the procedure code. Specifications
representing procedure behavior are not required from the user for checking a given
property. This method can be employed for checking conformance between a program
and the associated model before refactoring, with likely faster analysis times, since the
structural properties are previously known from the object model. Another option for
conformance checking, this one with dynamic analysis, is the Embee tool [27], which
captures the runtime state of a Java program at certain user-specified points. If the
runtime states at those points conform with the object model, the program follows a
structural correspondence with Alloy at least for that execution. Embee can be very
useful in practice for testing our conformance relationship for a BN program, although
dynamic analysis only guarantees conformance for a finite number of executions.

9.4.2 Co-evolution

The concept of coupled transformation by Lammel’s overview [67] has a close corre-
spondence to the law-strategy pairs in this thesis. Coupled transformations occur when
“two or more artifacts of potentially different types are involved, while transformation
at one end necessitates reconciling transformations at other ends such global consistency
is reestablished” [67], which is the scenario for model-driven refactoring. We also agree
that any notion of coupled transformations requires a notion of consistency (conformance
in our solution). Model-driven refactorings can be seen as “symmetric reconciliation”,
where two distinct transformations – for model and program – are defined for a given
conformance relationship, adapting changes according to the specific level of abstraction
for which they are defined.

Also on the foundations of multi-artifact transformations is the work with the Har-
mony tool, based on the concept of bi-directional transformations [14]. The authors
introduce the concept of relational lenses, which are pairs of transformation functions,
namely get and putback , between source and target artifacts. The get function trans-
forms a source artifact into a target artifact. Updates can be performed on the target
artifacts, then an updated source artifact can be obtained with the putback function,
with information from the original source artifact and the updated target artifact. Es-
tablishing an analogy, in our approach get is similar to the required conformance re-
lationship, although the function is defined for generation, which is not our case. The
source artifact can be a program, and the target can be an object model. An update is
analogous to laws of modeling – their study considers general evolution, not only refac-
toring. Also, putback relates to strategies, in which the program is updated in terms of
the modified model.

More specifically, a relational lens is acceptable when updates to models that are
identity must take back to the same source artifact (program). Following this cate-
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gory, our approach fulfills the acceptability property, considering the identity strategy,
that does not change the program. Also according to the provided classification, our ap-
proach is a very well behaved case of transformation set, in which a given target (model)
is related to several source artifacts (programs). In this aspect, this related work corrob-
orates with relevant results from our investigation: when the lens is very well behaved
and acceptable, they observed that putback may yield more than one source, then some
extra information is needed to choose one of the possible results. This is exactly what
we observed in strategies that needed user feedback (Section 6.5) for improving quality
factors and complex class refinement refactorings, confirming this important conclusion
over the relationship between model and program evolution. Further investigation must
be carried out in order to understand how our approach may be implemented into the
Harmony tool.

Cazzola et al. [22] present an approach for refactoring programs, using Fowler’s
catalog [37], and reflecting the corresponding changes to design models, represented by
a set of class, sequence and activity diagrams. For that, developers must add meta-data
to the source code – Java annotations – indicating what structures have been modified
during the refactoring activity. A supporting tool can then extract this meta-data in
order to update the design model, using reflection. We believe that our approach could
be adapted to work similarly; developers could apply program refactorings based on laws
of programming (as described in detail in Cornelio’s thesis [26]) and reflect the changes
to Alloy models using model strategies. However, these strategies would be rather simple,
since the abstraction gap is larger in our context. The cited work considers co-evolution
in more concrete models, in which there is a direct correspondence between model and
program elements.

Another approach for co-evolving design and programs was devised for intensional
views [76], defining sets of related classes or methods as a more abstract view that
is consistent with changed code. In this case, intensional views are usually generated
from source code, being more concrete than the analysis information conveyed by object
models. In this approach, the given tool – IntensiVE – focuses on syntactic conformance
checking between the intensional views and programs; the artifacts are not evolved in
conjunction, rather models are generated and the tool helps in checking if specified
syntactic rules are consistent. Therefore, IntensiVE could be used for supporting one
part of our approach: whether a program is syntactically conforming to an object model,
according to the required conformance relationship.

Co-evolution between models and programs is dealt with by several related ap-
proaches. Greenhouse et al. [50] addresses several problems with concurrent programs:
expression of design intent for Java, analysis-based assurance of conformance of that
intent with source code and support for co-evolution of code and design intent. Since
object models specify structural design intent, this work closely related to ours, but fo-
cusing on concurrency-related properties. In addition, they define a number of manual
refactorings that are performed jointly with design intent and source code. We share the
same principle indicating that model information and supporting analysis foster more
ambitious refactoring and program transformations, either considering object models or
concurrency design intent. They use an annotation language (JML [18]) to represent ab-
stract information, which consists in a feasible form to apply our approach using a single
unified artifact. In fact, an annotation language based on Alloy has been proposed [65].
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In another work, Harrison et al. [55] show a method for maintaining consistency
between models (UML class diagrams) and Java programs, by advanced code genera-
tion from models at a higher level of abstraction, compared to simple graphical code
visualization. This approach is related to ours, as the relationship between model and
source code avoids round-tripping. Their conformance relationship is more flexible, as
we require a more strict structural similitude between the artifacts. Also, their work
focuses on the mapping from model constructs to source code, although no details are
offered on how these mappings will consistently evolve. In addition, OCL constraints
are not considered, which further restrains the applicability of the solution.

Also dealing with artifact co-evolution, Bottoni et al. [17] present an approach for
maintaining consistency between programs and associated UML diagrams during refac-
toring. The involved artifacts are represented as graphs, refactorings as graph transfor-
mations. Differently from us, they consider behavioral models (UML state and sequence
diagrams). However, even though dealing exclusively with structural aspects, object
models bring valuable information that allows for consistent changes to the whole pro-
gram. Furthermore, no evidence is provided on the semantics preservation of the given
transformations.

A closely related approach for model-code consistency during evolution is presented
by Lam and Rinard [85]. They propose a type system that extends an object-oriented
programming language with design information (using tokens). This information is used
for automatic model extraction from source code. If a development effort is code-driven,
structural and behavioral models in conformance with the given tokens are offered with
no cost after any evolution activity. Tokens represent abstractions from structures in
code, advancing traditional reverse engineering and yielding visual descriptions of pro-
grams. Our approach is distinct as developers maintain object models as separate de-
sign intent. Nevertheless, during refactoring tasks, our approach is model-driven, since
mostly models are manipulated. When using tokens, the design intent is tangled with
implementation code, which must be evolved consistently by developers. In addition,
structural constraints are hardly expressed when modeling with tokens, as offered by
object modeling languages such as Alloy and UML class diagrams.

Following a generation-based approach for co-evolution, Cabot and Teniente [19]
developed an approach for checking whether operations changing a conceptual model
conflict with the model’s structural invariants. The approach was viable from the use of
actions for specifying operations, from UML 2.0 [81]. In this context, although incon-
sistencies might be caught early, the operations are stated in a rather operational style,
compromising abstraction in such models. Furthermore, this approach suffers from the
same limitations of round-trip engineering, in which automatic evolution is limited.

Similarly, Van Gorp et al. propose the application of program refactorings to UML
class diagrams, given that the UML’s metamodel is extended to include source code
elements, such as method bodies [47]. Their aim is to refactor design independently of
programming languages. However, the approach considers code visualizations, as UML
diagrams faithfully represent the source code structure.

Another context for coupled transformations is software that must evolve according
to changes in its database schema. Hursch’s Ph.D. thesis [57] aims at a similar problem:
maintaining consistency after refactoring between database schemas and object-oriented
programs, based on a graph terminology (classes are vertexes, relations are edges).
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Analogously, they use primitive transformations on models (additions, removals and
changes), and algorithms for applying transformations in the related artifacts, similar
to strategies, but not only for source code; the whole set of artifacts is transformed by
these algorithms. We consider our approach more applicable, since Hursch bases his
work on rather constrained languages; for instance, the used modeling language only
allows abstract superclasses, and invariants cannot be used. Furthermore, database
schemas and programs are very close in terms of conformance relationship; our notion
of conformance is more open. In fact, hursch’s refactorings involve type-related updates,
not using any semantic information.

Cleve and Hainaut [24] presents an approach to automatically transform programs
based on specific transformations on database schemas. For that, the authors present a
number of simple semantics-preserving transformations for schemas, also defining analo-
gous program transformations to update source code. These transformations are specific
for data manipulation statements, such as SQL commands – they do not deal with gen-
eral program statements. Also, no discussion is added on whether the analogous program
transformations preserve semantics and conformance with the transformed schema, as
seen in this thesis.

Still related to persistence, a formal investigation has been carried out by Cunha et
al. [28] on data transformations made on two levels (two-level transformations). The
problem tackled involves the registration of changes in data format, which are transferred
to the data’s instances or another form of representation; the solution is exemplified by
correspondence between XML and database schemas (XML − DBflattening). The au-
thors focus on type safety in transformations, using functional programming techniques
in the Haskell language. Certainly two-level data transformations are related to law-
strategy pairs, even though aiming at different contexts. Their solution is specific to
a rather direct conformance relationship, which restricts application; still, there is no
formal definition for conformance, only for the relationship between transformations.

Finally, in order to represent strategies, we used the concept of refinement tactics.
These tactics result from the problem with refinement calculi and formal developments
in general, which are often long and repetitive. Identifying strategies (sequences of
law applications), documenting them as refinement tactics, and using them as single
transformation rules brings a profit in time and effort [63]. Also, a notation for describing
derivations can be used for modifying and analyzing formal derivations, which can even
be supported by tools [52].

9.4.3 Program Refactoring

Related work on the formalization and automation of program refactoring has been
carried out by several researchers. Opdyke proposes refactorings to which a number of
preconditions are attached, which, if satisfied by the target program, ensure the preser-
vation of behavior [82]. His work is similar to ours as it proposes a number of primitive
refactorings, including creation, deletion and change of program entities, being composed
into coarse-grained refactorings that should preserve behavior as well. This approach
originated a well-adopted tool for refactoring Smalltalk programs, after enhancements
by Roberts [88]. In contrast, semantics preservation is informally defined as a number of
properties – related to inheritance, scope, type compatibility and semantic equivalence
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– that are required to hold after applying the refactoring. Also, the authors are not
concerned with maintenance of consistency with models.

A closely related approach was developed by Tip et al. [97]. They realized that
some enabling conditions and modifications to source code, for automated refactorings
in Eclipse [30], depend on relationships between types of variables. This is evident
in refactorings that involve generalization. These type constraints enable the tool to
selectively perform transformations on source code, avoiding type errors that would
otherwise prohibit the overall application of the refactoring. This approach is similar to
ours in the sense that both use additional information (in our case, model constraints)
in order to achieve advanced refactorings. In fact, both approaches might be even
integrated. Due to the expressiveness of object models, they can be used as source of
advanced information for applying refactorings, as the set of laws for models is enhanced.

KABA [92], a system for refactoring Java class hierarchies, was developed following
a different approach. The system regards refactoring for a target set of client programs
accessing a class hierarchy, trying to automatically propose refactorings by investigating
(using static and dynamic analysis) the use of such classes by the clients. Semantics
preservation is defined concerning the client programs. A similar idea was used by us
to define our conformance relationship between object models and programs. However,
laws of programming are sound with respect to any well-formed set of class declarations
and a main methods.

Last, Bannwart and Müller recently conceived an approach for refactoring using pro-
gram annotations [9], in order to increase confidence on behavior preservation. In their
methodology, semantic preconditions are added to the program as runtime assertions.
Therefore, unit tests are more effective in verifying refactoring correctness, although not
ensured. In contrast with our approach, their solution is directly applicable in current
refactoring tools; however, annotations are not used for modeling like object models.
Also, they are not concerned in maintaining these annotations consistent with changing
programs in future modifications.

9.4.4 Model Refactoring

Some approaches have been developed for tackling model refactoring. For instance,
work has been done [94] on the definition of basic transformations for UML [15] models,
which should preserve semantics by measuring the impact of modifications on several
design views (including source code). The authors define basic operations for refactoring
models, which resemble some of our primitive laws of modeling. Although some of the
goals are coincident with our approach, the paper does not consider the Object Con-
straint Language (OCL, the annotation language for expressing constraints into UML
diagrams) [98], which may invalidate the soundness of the informally stated transfor-
mations. Moreover, the approach does not clarify the conditions in which source code
must be consistently updated, a major concern when working with models.

In order to provide a set of sound deductive transformations for UML class diagrams,
Evans [34] defines a formal semantics for a subset of constructs of such diagrams. This
approach’s goal is a reasoning system based on the manipulation of diagrams. Our laws
of modeling have a similar purpose, which formalizes constructs from the language, yet
allowing modelers to directly manipulate the modeling language (by applying laws). In
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fact, these deductions do not make up an interesting catalog of transformations to be
used in practice. Also, the transformations do not consider OCL constraints, which
usually require enabling conditions for sound transformations.

Another set of transformation rules [46] have been proposed for UML class diagrams.
They state when two class diagrams are equivalent. One distinction from our work is
that our equivalence notion is necessarily symmetric. Further, some of the rules compare
models with different names. Nevertheless, they do not define a general equivalence
notion stating when two class diagrams are equivalent. This notion is based on an
informal UML semantics. Although the transformations consider OCL constraints, the
conditions in which the semantics-preserving transformations are sound are not stated,
as done by our laws for Alloy.

9.5 Future Work

The work presented in this thesis raises a few interesting research questions to be fur-
ther explored. For instance, in order to motivate the adoption of this approach, we
can minimize the number of separate artifacts to be refactored, while still maintaining
abstraction-related benefits. In this context, annotation languages combine abstract
specifications and source code in a single artifact. As a disseminated example, the
Java Modeling Language (JML) [18] includes class invariants and method pre and post-
conditions, besides a number of static and dynamic analysis tools. With JML, pro-
grammers can develop specifications based on a simple extension of the side-effect free
expressions of Java, encouraging its widespread adoption. Our future research plans
include transferring model-driven refactorings to JML contexts, in addition to investi-
gating program refactorings and their effect over JML specifications.

Furthermore, the development of a CASE tool to support program refactoring based
on the strategies is also a direction for future research. It is necessary, for instance, to
investigate techniques that can be used to implement strategies, and integration with
a modeling (or JML) tool supporting application of laws. In the context of this tool,
we could add support for refactorings related to method changes in object-oriented
programs – dynamic models, and their effect over source code. Another concern for
tool support is the confluence and termination of strategies, which are not formally
guaranteed.

A natural topic for evolving this work is to define support for automatic class re-
finement for a more comprehensive subset of invariants, using systematic translation
of coupling invariants from modeled invariants, and proof techniques for establishing
simulation (as described in Section 6.5.1). In fact, there is evidence in previous texts
on refinement [99] that when coupling relations turn out to be functions, then the proof
obligations can be simplified, or even proved by calculation. Since the coupling relations
that appear in our work are functional, we believe that work can be carried out in this
direction.

Also, in this thesis we initially used a programming language with copy semantics,
which became a critical weakness of our solution. In order to deal with this issue, we
adopted a simple work-around: confinement rules were used for ensuring correctness of
class refinement, and other laws of programming that are not influenced by the reference
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semantics are freely applied (proofs were developed for increasing confidence). Still, our
solution would benefit from a general theory of refinement for reference semantics.

Our approach only provides support for semantics-preserving transformations, as
refactorings which currently have wide adoption in software development. Supporting
general evolution in model-driven development environments – in addition to confor-
mance between abstract and concrete artifacts – remains a challenge for future research.
The work will probably rely on laws for general evolution, and the abstract information
used in strategies for rewriting more concrete artifacts accordingly.

An additional future work is extracted from the outcome of strategy removeSubclass.
A foundational element of this thesis is a catalog of laws of programming, initially
proposed for the ROOL language [16]. The set of laws is shown to be complete in the
sense that it is sufficient to reduce an arbitrary program to a normal form substantially
close to an imperative program. The previous normal form defined for ROOL, however,
still maintains class hierarchies [16], which restrains proximity to a program that should
be imperative. In the removeSubclass strategy, the most complex step is related to
eliminating type tests for a class that is not guaranteed to have subclasses. In this
case, we came up with a solution, as detailed in the strategy rule eliminateTypeTests,
that replaces subtyping information from the extends clause by a type field in the
superclass; type tests x is X are replaced by a call to a newly-introduced method –
x.isX(). We believe that this solution may be used to improve the derivation of a
normal form for ROOL, and, consequently, extend the notion of relative completeness
of laws of programming.



Appendix A

Alloy Laws

The laws in this catalog are taken from Gheyi’s thesis on a refinement theory for Al-
loy [42].

A.1 Signatures

Law 2. 〈introduce subsignature〉

ps
sig U { rsU }

sig S extends U {rsS}
sig T extends U {rsT}
fact F {forms} =Σ,v

ps
sig U {rsU }

sig S extends U {rsS}
sig T extends U {rsT}
sig X extends U {}
fact F {

forms
X = U − S − T

}

provided
(↔) if X belongs to Σ, v contains the X = (U − S − T ) item;
(→) (1) ps does not declare any paragraph named X ; (2) there is no signature in
ps that extends U (3) for all names in Σ that are not on the right side model, v
must have exactly one valid item for it;
(←) X does not appear in ps , rsU , rsS , rsT and forms ; (2) there is no expression
exp, where exp ≤ U and exp ≤ S and exp ≤ T , in ps or forms or any valid item in
v ; (3) for all names in Σ that are not on the left side model, v must have exactly
one valid item for it.
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Law 7. 〈introduce signature〉

ps
=Σ,v

ps
sig S {}

provided
(↔) (1) S is not in Σ; (2) for all names in Σ that are not in the resulting model,
v must have exactly one valid item for it;
(→) ps does not declare any paragraph named S ;
(←) S does not appear in ps .

Law 8. 〈introduce generalization〉

ps
sig S {

rs
}

sig T {

rs ′

}

fact F {

forms
}

=Σ,v

ps
sig U {}

sig S extends U {

rs
}

sig T extends U {

rs ′

}

fact F {

forms
U = S + T

}

provided
(↔) (1) if U belongs to Σ, v contains the U→S + T item; (2) for all names in Σ
that are not in the resulting model, v must have exactly one valid item for it;
(→) ps does not declare any paragraph named U ;
(←) U does not appear in ps , rs , rs ′ or forms .
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Law 9. 〈remove abstract qualifier〉

ps
abstract sig S {

rsS
}

sig T extends S {

rsT
}

sig U extends S {

rsU
}

fact F {

forms
}

=Σ,v

ps
sig S {

rsS
}

sig T extends S {

rsT
}

sig U extends S {

rsU
}

fact F {

forms
S = T + U

}

provided
(→) there is no signature X in ps that extends S .

Law 10. 〈remove signature cardinality qualifier〉

ps
x sig S {

rs
}

fact F {

forms
}

=Σ,v

ps
sig S {

rs
}

fact F {

forms
x S

}

where
x ∈ {one, lone, some }.
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Law 11. 〈separate signature declarations〉

ps
sig S ,T {

rs
} =Σ,v

ps
sig S {

rs
}

sig T {

rs
}

A.2 Relations

Law 1. 〈introduce relation and its definition〉

ps
sig S {

rs
}

fact F {

forms
}

=Σ,v

ps
sig S {

rs ,
r : set T

}

fact F {

forms
r=exp

}

provided
(↔) if r belongs to Σ, r does not appear in exp and v contains the r → exp item;
(→) (1) the family of S does not declare any relation named r ; (2) T is either S
or declared in ps ; (3) r does not appear in exp, or exp is r ; (4) exp is a subtype
of r in ps and forms ; (5) for all names in Σ that are not on the right-hand side
model, v must have exactly one valid item for it;
(←) (1) r is not mentioned in any constraints within ps ; (2) for all names in Σ
that are not on the left-hand side model, v must have exactly one valid item for
it.
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Law 12. 〈separate relation declarations〉

ps
sig S {

rs ,
r , s : set T

}

=Σ,v

ps
sig S {

rs ,
r : set T ,
s : set T

}

A.3 Formulas

Law 13. 〈replace relation expression〉

ps
sig S {

rs ,
r : set exp

}

fact F {

forms
}

=Σ,v

ps
sig S {

rs ,
r : set T

}

fact F {

forms
all s :

S | s .r in exp ′

}

where
exp ′ replaces each reference to a relation x of S (whether declared or inherited)
not prefixed by @ by s .x . Every occurrence of this must be replaced by s .
provided
(↔) exp has the type T , which is a signature declared in ps or is S ;
(←) r does not appear in exp.

Law 14. 〈introduce formula〉

ps
fact F {

forms
}

=Σ,v

ps
fact F {

forms
f

}

provided
(↔) f can be deduced from the formulae in ps and forms .
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Law 15. 〈introduce empty fact〉

ps
=Σ,v

ps
fact F {}

provided
(→) ps does not declare any paragraph named F .

A.4 Relations

Law 16. 〈split relation〉

ps
sig S {

rs ,
r : set T

}

fact F {

forms
}

=Σ,v

ps
sig S {

rs ,
r : set T

}

sig U {

x : set S ,
y : set T

}

fact F {

forms
r = ˜x .y

}

provided
(↔) (1) U , x and y do not belong to Σ; (2) for all names in Σ that are not in the
resulting model, v must have exactly one valid item for it;
(→) ps does not declare any paragraph named U ;
(←) U , x and y do not appear in ps , rs or forms .
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Law 17. 〈remove one relation〉

ps
sig S {

rs ,
r : one T

}

fact F {

forms
}

=Σ,v

ps
sig S {

rs ,
r : set T

}

fact F {

forms
all s : S | one s .r

}

Law 18. 〈remove lone relation〉

ps
sig S {

rs ,
r : lone T

}

fact F {

forms
}

=Σ,v

ps
sig S {

rs ,
r : set T

}

fact F {

forms
all s : S | lone s .r

}



Appendix B

BN Laws and Refactorings

The laws of programming used in strategies are presented here, in addition to some
refactoring rules that are composed of primitive laws. This catalog is mainly taken from
Cornélio’s thesis [26], with syntax changes that adhere to the BN language. The param-
eters used in law applications within strategies are taken from the template declarations
(for instance, the class subject to the indicated transformation).

B.1 if statements

Law 6. 〈eliminate redundant if 〉
if ψ then cmd else cmd = cmd

Law 19. 〈if true guard〉
if (true) then c = c

Law 20. 〈assumption guard〉
if (e) then S1 else S2 = if (e) then {e}S1 else {¬e}S2

Law 21. 〈absorb assumption〉
{φ} if (ψi) then ci = if (φ ∧ ψi) then ci

140
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B.2 Variable blocks

Law 22. 〈var block-val〉

c = T v • v := x ; c[v/x ]

provided v is fresh—not free in c—; x is not on the left-hand side of assignments,
it is not a result value, x is not a method call target, and x 6= error.

Law 23. 〈var block-result〉

c = T v • c[v/x ]; x := v

provided v is fresh—not free in c—; x is not on the right-hand side of assignments
and it is not an argument nor a method call target, x is not used in field updates.

Law 24. 〈pcom elimination-result〉

(T result • c)(x ) = T l • c[l/result]; x := l

provided the variables of l are fresh: not free in c, x . Variables in l are not on the
right-hand side of assignments, they are not used as arguments nor are method
call targets, and they are not used in field updates.

Law 25. 〈if identical guarded commands〉
If (

∨
i : 1..n • ψi = true), then

if i(ψi) then c = c
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B.3 Classes, Fields and Methods

Law 3. 〈class elimination〉

CT cd1 = CT

provided

(↔) cd1 6= Main;

(→) name(cd1) is not used in CT .

(←) (1) cd1 is a distinct name; (2) Field, method and superclass types
in cd1 are declared in CT .

Law 4. 〈new superclass〉

class A extends C {
ads
mts

}
class B extends A { }
CT

=CT

class A extends C {
ads
mts ′

}
class B extends A { }
CT ′

where

CT ′ = CT [new A/new B ]

mts ′ = mts [new A/new B ]

provided

(→) (1) B is not used in type casts or tests in CT or ops for expressions
of type A; (2) x := new B only appears if type(x ) ≤ A.

(←) Variables of type T ≤ A are not involved in tests with type B .
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Law 5. 〈distribute type tests〉

Consider the following class declarations, where Ci , i = 1..n encompasses all
subclasses of B in CT .

class B extends A {
fds ;
mts
}
class Ci extends B {

fdsi ;
mtsi

}

Then, for any command cmd in CT :
cmd [exp is B ] = cmd [

∨
i(exp is Ci)]

provided

(↔) x := new B does not appear in CT , mts or mtsi

Law 26. 〈change superclass: from an empty class to immediate superclass〉

class B extends A{ }
class C extends B{

fdsC
mtsC

}

=CT

class B extends A{ }
class C extends A{

fdsC
mtsC

}

provided

(→) (1) C or any of its subclasses in CT is not used in type casts or
tests involving expressions of type B ;

(2) There are no assignments of the form le := exp, for any le
whose declared type is B or any of its superclasses and the
type of exp is C or any subclass of C ;

(3) Expressions of type C or of any subclass of C are not used
as arguments in calls with a corresponding formal value pa-
rameter whose type is B ;

(4) Expressions whose declared type is B are not returned values
in calls with a corresponding formal return type C or any
subclass of C .

(←) (1) Casts to class B are not applied to fields, variables or param-
eters of type A to which are assigned expressions of type C .
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Law 27. 〈change visibility: from private to public〉

class C extends D{
T a; fds
mts

}

=CT

class C extends D{
pub T a; fds
mts

}

provided

(←) B .a, for any B ≤ C , does not appear in CT , c.

Law 28. 〈field elimination〉

class B extends A{
T a; fds
mts

}

=CT

class B extends A{
fds
mts

}

provided

(→) B .a does not appear in mts ;

(←) a does not appear in fds and is not declared as an field by a
superclass or subclass of B in CT .

Law 29. 〈change field type〉

class C extends D{
pub T a; fds
mts

}

=CT

class C extends D{
pub T ′ a; fds
mts

}

provided

(↔) T ≤ T ′ and every non-assignable occurrence of a in expressions
of mts , CT and c is cast with T or any subtype of T declared in
CT .

(←) (1) every expression assigned to a, in mts , CT and c, is of type
T or any subtype of T ; (2) every use of a as return value is for a
corresponding formal parameter of type T or any subtype of T .
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Law 30. 〈change variable type〉
CT ,A B T x • c = T ′ x • c

provided

(↔) T ≤ T ′ and every non-assignable occurrence of x in expressions
of c is cast with T or any subtype of T ;

(←) (1) every expression assigned to x in c is of type T or any subtype
of T ; (2) every use of x as return value in c is for a corresponding
return type T or any subtype of T .

Law 31. 〈change parameter type〉

class C extends D{
fds
Z m(T x , Z̄ p̄){ b }
mts

}

=CT

class C extends D{
fds
Z m(T ′ x , Z̄ p̄){ b }
mts

}

provided

(↔) T ≤ T ′ and every non-assignable occurrence of x in expressions
of b are cast with T or any subtype of T ;

(←) (1) every argument associated with x in mts , cds , and c is of type
T or any subtype of it; (2) every expression assigned to x in b, is
of type T or any subtype of T ; (3) every use of x as return value
in b is for a corresponding return type T or any subtype of T .
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Law 32. 〈change return type〉

class C extends D{
fds
T m(T̄ x̄ ){ b }
mts

}

=CT

class C extends D{
fds
T ′ m(T̄ x̄ ){ b }
mts

}

provided

(↔) T ≤ T ′ and every non-assignable occurrence of x in expressions
of b are cast with T or any subtype of T ;

(→) every argument associated with formal parameter x in mts , cds ,
and c is of type T ′ or any supertype of it;

(←) (1) every expression assigned to x in b is of type T or any subtype
of T ; (2) every use of x as return value in b is for a corresponding
return type T or any subtype of T .

Law 33. 〈method call elimination〉
Consider that the following class declaration

class C extends D{
fds
T m(){pc}
mts

}

is included in CT and CT ,ABle : C . Then

CT ,ABle.m(e) = {le 6= null ∧ le 6= error}; pc[le/self ](e)

provided

(↔) (1) m is not redefined in CT and pc does not contain references to
super; (2) all fields which appear in the body pc of m are public.
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Law 34. 〈method elimination〉

class C extends D{
fds
T m { pc }
mts

}

=CT

class C extends D{
fds
mts

}

provided

(→) B .m does not appear in CT nor in mts , for any B such that
B ≤ C .

(←) m is not declared in mts nor in any superclass or subclass of C
in CT .

Law 35. 〈move redefined method to superclass〉

class B extends A {
ads
T m(T̄ x̄ ) {S}
mts

}
class C extends B {

ads ′

T m(T̄ x̄ ) {S ′}
mts ′

}

=cds,

class B extends A {
ads
T m(T̄ x̄ ) {

if ¬(self is C )
then S
else S ′

}
mts

}
class C extends B {

ads ′

mts ′

}

provided

(↔) (1) super and private fields do not appear in S ′; (2) super.m do not appear
in mts ′;

(→) S ′ does not contain uncast ocurrences of self ;

(←) m is not declared in mts ′.
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Law 36. 〈move original method to superclass〉

class B extends A{
fds
mts

}
class C extends B{

fds ′

T m(T̄ x̄ ){ pc }
mts ′

}

=CT

class B extends A{
fds
T m(T̄ x̄ ){ pc }
mts

}
class C extends B{

fds ′

mts ′

}

provided

(↔) (1) super and private fields do not appear in pc; (2) m is not
declared in any superclass of B in CT ;

(→) (1) m is not declared in mts , and can only be declared in a class
D , for any D ≤ B and D 6≤ C , if it has the same parameters as pc;
(2) pc does not contain uncast occurrences of self nor expressions
in the form ((C )self).a for any private field a in fds ′;

(←) (1) m is not declared in mts ′; (2) D .m, for any D ≤ B , does not
appear in CT , c, mts or mts ′.

Law 37. 〈move field to superclass〉

class B extends A{
fds
mts

}
class C extends B{

pub T a; fds ′

mts ′

}

=CT

class B extends A{
pub T a; fds
mts

}
class C extends B{

fds ′

mts ′

}

provided

(→) The field name a is not declared by the subclasses of B in CT ;

(←) D .a, for any D ≤ B and D 6≤ C , does not appear in CT , c, mts ,
or mts ′.
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Law 38. 〈eliminate super〉
Consider that CDS is a set of two class declarations as follows.

class B extends A{
fds
T m (T̄ x̄ ) { pc }
mts

}

class C extends B{
fds ′

mts ′

}

Then we have that

CT CDS , CB super.m = pc

provided

(→) super and the private fields in fds do not appear in pc.

B.4 Type casts and tests

Law 39. 〈eliminate cast of expressions〉
If CT ,ABle : B , e : B ′, C ≤ B ′ and B ′ ≤ B , then

CT ,ABle := (C )e = {e is C}le := e

Law 40. 〈introduce trivial cast in expressions〉
If CT ,A B e : C , then CT ,A B e = (C )e.

For simplicity, this is formalized as a law of expressions, not commands. Nevertheless,
it should be considered as an abbreviation for several laws of assignments, conditionals,
and method calls that deal with each possible pattern of expressions. For example, it
abbreviates the following laws, all with the same antecedent as Law 40.

CT ,A B le := e.x = le := ((C )e).x
CT ,A B e ′.m(e) = e ′.m((C )e)

This is equally valid for left-expressions, which are a particular form of expression.
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Law 41. 〈is test true〉
If N ≤CT M , then CT ,NB self is M = true

B.5 Refactorings

Refactoring 2. 〈distribute casts〉

Consider the following class declarations, where Ci , i = 1..n encompasses all
subclasses of B in CT .

class B extends A {
fds ;
mts
}
class Ci extends B {

fdsi ;
mtsi

}

Then, for any command cmd in CT :
cmd [(B)exp] = if i (exp is Ci) then cmd [(Ci)exp]

provided

(↔) x := new B does not appear in CT , mts or mtsi

Refactoring 3. 〈method elimination-abstract class〉

class C extends D{
fds
T m(T̄ x̄ ) { cmd }
mts

}

=CT

class C extends D{
fds
mts

}

provided

(↔) x := new C does not appear in CT , mts , mts ′ or cmd ;

(→) m is redefined in all subclasses of C in CT ;

(←) m is not declared in mts nor in any superclass or subclass of C
in CT .



APPENDIX B. BN LAWS AND REFACTORINGS 151

Refactoring 4. 〈self-encapsulate field〉

class A extends B{
T x ; fdsA
Z m (Z̄ x̄ ){

cmd [le := exp1[self .x ];
self .x := exp2]); c1

}
mtsA

}

=CT

class A extends B{
T x ; fdsA
Z m(Z̄ x̄ ){ c1′ }
T getX (){

result := self .x
}
unit setX (T arg){

self .x := arg
}
mtsA

}

where

c1′ = c1[T aux • aux := self .getX (); le := exp1[aux ];
self .setX (exp2)/le := exp1[self .x ], self .x := exp2]

mtsA′ = mtsA[T aux • aux := self .getX (); le := exp1[aux ];
self .setX (exp2)/le := exp1[self .x ], self .x := exp2]

provided

(→) getX , setX are not declared in any superclass or subclass of A
in CT ;

(←) le.getX and le.setX do not appear in mtsA′ or CT for any le
such that le ≤ A.
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Refactoring 5. 〈pull up/push down field〉

class A extends D{
fdsA
mtsA

}
class B extends A{

pub T x ; fdsB
mtsB

}
class C extends A{

pub T y ; fdsC
mtsC

}
cds1

=CT

class A extends D{
pub T z ; fdsA
mtsA

}
class B extends A{

fdsB
mtsB ′

}
class C extends A{

fdsC
mtsC ′

}
cds1′

where

mtsB ′ = mtsB [z/x ]

mtsC ′ = mtsC [z/y ]

cds1′ = cds1[M .z ,N .z/M .x ,N .y ], for any M ≤ B and N ≤ C

provided

(→) CT contains no subclasses of B and C in which there are refer-
ences to x and y ;

N .x , for any N ≤ B , does not appear in CT , and N .y , for any
N ≤ C , does not appear in CT ;

cds1 contains only subclasses of B and C in which there are
references to x and y ;

(←) The field name z is not declared in fdsA, fdsB , fdsC , nor in any
subclass or superclass of A in CT ;

N .z , for any N ≤ A, N � B and N � C , does not appear in
CT .

(→) x (y) is not declared in fdsA, fdsB(fdsC ), nor in any subclass or
superclass of B(C ) in CT and cds1′.



Appendix C

Proofs for Laws of Programming
with References

In this appendix we show the proofs developed for four laws of programming from the
ROOL catalog [26], but using the denotational semantics defined for BN [8], which
includes pointers. These proofs do not use any refinement theory for pointers; they only
increase confidence in laws that are intuitively correct in this context.

C.1 Class Elimination

Law 〈class elimination〉

CT cd1 = CT

provided

(↔) cd1 6= Main;

(→) cd1 is not used in CT .

(←) (1) cd1 is a distinct name; (2) Field, method and superclass types in cd1 are
declared in CT .

We now establish the theorem to be proved for the Law class elimination.

Theorem C.1. Let CT and CT ′ be two class tables, representing, respectively, the left-
hand and right-hand sides of Law classelimination, with Own = {}. Then, for any heap
h0 and store η0 in CT, and any command S in the main method:

∀µ :J CT K •
collect(J Γ ` S K µ(h0, η0)) = collect(J Γ ` S K µ(h ′0, η

′
0))

where

h ′0 = h0 ↓ ` ∈ locs cd1
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η′0 = η0 ↓ ` ∈ locs cd1

Proof C.1. .By induction. Here, we consider only the case of field assignment; all other
commands have similar proof.

Case e1.f := e2.
collect(J Γ ` e1.f := e2 K µ(h0, η0))

= [by semantics of field assignment]
let ` =J Γ ` e1 : (Γself) K (h0, η0) in

if ` = nil ⊥ else
let d =J Γ ` e2 : U K (h0, η0) in
([h | ` 7→ [h0` | f 7→ d ]], η0)

= [by law assumption, @` : locs cd1 • ` ∈ domh0 ∨ ` ∈ domη0, then h0 = h ′0 and η0 = η′0]
let ` =J Γ ` e1 : (Γself) K (h ′0, η

′
0) in

if ` = nil ⊥ else
let d =J Γ ` e2 : U K (h ′0, η

′
0) in

([h | ` 7→ [h ′0` | f 7→ d ]], η′0)

= [by semantics of field assignment]
collect(J Γ ` e1.f := e2 K µ(h ′0, η

′
0))

2

C.2 Assumption Guard

Law 〈assumption guard〉

if (e) then S1 else S2 = if (e) then {e}S1 else {¬e}S2

We now establish the theorem to be proved for the Law assumptionguard .

Theorem C.2. For any heap h0 and store η0, and well-typed commands S1, S2 and
boolean expression e:

∀µ :J CT K •
J Γ ` if (e) then S1 else S2 K µ(h0, η0) =
J Γ ` if (e) then {e}S1 else {¬e}S2 K µ(h0, η0)

Proof C.2. .Direct proof.

J Γ ` if (e) then S1 else S2 K µ(h0, η0)



APPENDIX C. PROOFS FOR LAWS OF PROGRAMMING WITH REFERENCES155

= [by semantics of if]
let b =J Γ ` e : bool K (h0, η0) in

if (b) then J Γ ` S1 K µ(h0, η0) else J Γ ` S2 K µ(h0, η0)

= [by characteristics of semantic if]
let b =J Γ ` e : bool K (h0, η0) in

if (b) then (if (b) then J Γ ` S1 K µ(h0, η0))
else (if (¬b) then J Γ ` S2 K µ(h0, η0))

= [we add an else that can never be executed]
let b =J Γ ` e : bool K (h0, η0) in

if (b) then (if (b) then J Γ ` S1 K µ(h0, η0) else ⊥)
else (if (¬b) then J Γ ` S2 K µ(h0, η0) else ⊥)

= [repeating definition of b]
let b =J Γ ` e : bool K (h0, η0) in

if (b) then (let b =J Γ ` e : bool K (h0, η0) in
if (b) then J Γ ` S1 K µ(h0, η0) else ⊥)

else (let b =J Γ ` e : bool K (h0, η0) in
if (¬b) then J Γ ` S2 K µ(h0, η0) else ⊥)

= [syntactic sugar]
let b =J Γ ` e : bool K (h0, η0) in

if (b) then J Γ ` {b}S1 K µ(h0, η0) else J Γ ` {¬b}S2 K µ(h0, η0)

= [by semantics of if]
J Γ ` if (e) then {e}S1 else {¬e}S2 K µ(h0, η0)

2
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C.3 Change Field Type

Law 〈change field type〉

class C extends D{
pub T a; fds
mts

}

=CT

class C extends D{
pub T ′ a; fds
mts

}

provided

(↔) T ≤ T ′ and every non-assignable occurrence of a in expressions
of mts , CT and c is cast with T or any subtype of T declared in
CT .

(←) (1) every expression assigned to a, in mts , CT and c, is of type
T or any subtype of T ; (2) every use of a as return value is for a
corresponding formal parameter of type T or any subtype of T .

Theorem C.3. As the main corollary of the abstraction theorem proved by Banerjee
and Naumann [8], if there is a simulation for CT and CT ′ in confined Own = {C}, then
CT , (Γ ` S ) is equivalent to CT ′, (Γ `′ S ), for any command S in the main method.
Therefore, we only need to prove the simulation for class C . So, for any heap h0, store
η0:

∀µ :J CT K, µ′ :J CT ′ K •
∃R • (∀ c : constructorsC • R(µCc)(µ′Cc)) ∧
∀m : methsC • R(h0, η0)(h ′0, η

′
0)⇒ R(µCm(h0, η0))(µ′Cm(h ′0, η

′
0)))

Proof C.3. . By the law, we conclude that heap will not change (since all expressions
assigned to field a are cast with type T or have type T ). Thus, we will prove that the
following coupling is a simulation:

R1(h, η)(h ′, η′) = h = h ′ ∧ η = η′

∃R • (∀ c : constructorsC • R(µCc)(µ′Cc)) ∧
∀m : methsC • R(h0, η0)(h ′0, η

′
0)⇒ R(µCm(h0, η0))(µ′Cm(h ′0, η

′
0)))

= [∃-elimination, using R1]
∀ c : constructorsC • R1(µCc)(µ′Cc)) ∧
∀m : methsC • R1(h0, η0)(h ′0, η

′
0)⇒ R1(µCm(h0, η0))(µ′Cm(h ′0, η

′
0))

= [using arbitrary constructor c and method m in class C ]
R1(µCc)(µ′Cc)) ∧
R1(h0, η0)(h ′0, η

′
0)⇒ R1(µCm(h0, η0))(µ′Cm(h ′0, η

′
0))
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= [from R1(h0, η0)(h ′0, η
′
0), h0 = h ′0 ∧ η0 = η′0 ]

R1(µCc)(µ′Cc)) ∧
R1(h0, η0)(h ′0, η

′
0)⇒ R1(µCm(h0, η0))(µ′Cm(h0, η0))

= [no method changes, thus µ = µ′]
R1(µCc)(µCc)) ∧
R1(h0, η0)(h ′0, η

′
0)⇒ R1(µCm(h0, η0))(µCm(h0, η0))

= [application of R1]
true

2

C.4 Move Redefined Method to Superclass

Law 〈move redefined method to superclass〉

class B extends A {
ads
T m(T̄ x̄ ) {S}
mts

}
class C extends B {

ads ′

T m(T̄ x̄ ) {S ′}
mts ′

}

=CT ,

class B extends A {
ads
T m(T̄ x̄ ) {

if ¬(self is C )
then S
else S ′

}
mts

}
class C extends B {

ads ′

mts ′

}

provided

(↔) (1) super and private fields do not appear in S ′; (2) super.m do not appear
in mts ′;

(→) S ′ does not contain uncast occurrences of self ;

(←) m is not declared in mts ′.

Theorem C.4. As the main corollary of the abstraction theorem proved by Banerjee and
Naumann [8], if there is a simulation for CT and CT ′ in confined Own = {B ,C}, then
CT , (Γ ` S ) is equivalent to CT ′, (Γ `′ S ), for any command S in the main method.
Therefore, we only need to prove the simulation for classes B and C . So, for any heap
h0, store η0:
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∀µ :J CT K, µ′ :J CT ′ K •
∃R • (∀ c : constructorsB ,C • R(µCc)(µ′Cc)) ∧
∀m : methsB ,C • R(h0, η0)(h ′0, η

′
0)⇒ R(µCm(h0, η0))(µ′Cm(h ′0, η

′
0)))

Proof C.4. . By the law, we conclude that heap will not change (as no object struc-
tures are affected). Thus, we will prove that the following coupling is a simulation:

R1(h, η)(h ′, η′) = h = h ′ ∧ η = η′

∃R • (∀ c : constructorsC • R(µB ,Cc)(µ′ B ,Cc)) ∧
∀m : methsB ,C • R(h0, η0)(h ′0, η

′
0)⇒ R(µB ,Cm(h0, η0))(µ′ B ,Cm(h ′0, η

′
0)))

= [∃-elimination, using R1]
∀ c : constructorsB ,C • R1(µCc)(µ′Cc)) ∧
∀m : methsB ,C • R1(h0, η0)(h ′0, η

′
0)⇒ R1(µB ,Cm(h0, η0))(µ′ B ,Cm(h ′0, η

′
0))

= [using arbitrary constructor c and method m in class C ]
R1(µCc)(µ′Cc)) ∧
R1(h0, η0)(h ′0, η

′
0)⇒ R1(µBm(h0, η0))(µ′Cm(h ′0, η

′
0))

= [from R1(h0, η0)(h ′0, η
′
0), h0 = h ′0 ∧ η0 = η′0 ]

R1(µCc)(µ′Cc)) ∧
R1(h0, η0)(h ′0, η

′
0)⇒ R1(µCm(h0, η0))(µ′Cm(h0, η0))

= [the method definitions in B and C are maintained, from the semantics of dynamic
binding and the if command, thus µ = µ′]

R1(µCc)(µCc)) ∧
R1(h0, η0)(h ′0, η

′
0)⇒ R1(µCm(h0, η0))(µCm(h0, η0))

= [application of R1]
true

2



Appendix D

Strategies

All strategies developed for this thesis are cataloged in this Appendix, using the An-
gel [71] notation, as explained in Chapter 6. Law and Rule names are italic, while Angel
statements and functions are bold. For clarification purposes, each strategy includes a
figure for providing an overview of the input and output programs for each strategy in
UML class diagrams.

D.1 introduceClass

Figure D.1: introduceClass

Tactic introduceClass(C : Class)
(law rename(C ,C ′) | skip);
law classElimination(C ,←);

end

D.2 removeClass

Tactic removeClass(C : Class)
(law classElimination(C ,→) | law rename(C ,C ′, program));

end

D.3 introduceSuperclass

Tactic introduceSuperclass(C : Class , < C1, . . . ,Cn >: classList)

159
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Figure D.2: removeClass

Figure D.3: introduceSuperclass

(law rename(C ,C ′) | skip);
law classElimination(setExtends(C ,firstCommonSuper({C1, . . . ,Cn})),←);
law changeSuperfromEmptyToImmediateSuperclass(immedSubs(cc),C ,←);

end

D.4 removeSuperclass

Tactic removeSuperclass(C : Class)
law changeVisibilityPrivatePublic(priFields(getHierarchyTopDown(C )),→);
law eliminateSuper(getHierarchyTopDown(C ),→);
law eliminateSuper(immedSubs(C),→);
applies to exp.x , exp.m(ē){isExactly(exp,C )} do

law introduceCastToExpression(C , exp,→);
Tactic changeDeclarationsType(C );
applies to ((C )e) do refactoring distributeCasts(→);
applies to (e is C ) do law distributeTypeTest(→);
law eliminateRedundantIf (immedSubs(C),←);
(law moveRedefinedMethodToSuperclass(meths(C ),←) | skip);
law methodEliminationAbstractClass(meths(C ),→);
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Figure D.4: removeSuperclass

(law moveFieldToSuperclass(fields(C ),→) | skip);
law changeSuperfromEmptyToImmediateSuperclass(immedSubs(C ),

super(C ),←);
law classElimination(C , ‘‘”,→);

end

D.5 introduceSubclass

Figure D.5: introduceSubclass

Tactic introduceSubclass(X ,U : Class)
(law rename(X ,X ′) | skip);
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law classElimination(setExtends(X ,U ),←);
law newSuperclass(U ,X ,→);

end

D.6 removeSubclass

Figure D.6: removeSubclass

Tactic removeSubclass(X : Class)

tactic moveUpFields(X );

tactic adjustHierarchyForPullingUpMethods(X );
tactic moveUpMethods(X );

tactic changeDeclarationsTypetoSuper(X );
applies to cmd [(X )e] do law eliminateCastExpressions(cmd [(X )e],→);
tactic eliminateTypeTests(X , ‘‘bool isX (){ result := self is X }”);
tactic eliminateNew(X );

law changeSuperfromEmptyToImmediateSuperclass(immedSubs(X ), super(X ),→
);

law classElimination(X ,→);
end
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D.7 introduceField

Figure D.7: introduceField

In this section we present the strategies for the considered three cases of relation
definitions: empty field, clone field and composition of fields.

Tactic introduceEmptyField(r : Field ,C : Class)
(law rename(r , r ′,C ) | skip);
law fieldElimination(r ,C ,←);
law addtoEnd(constructor(C ), ”self .r := ∅”);

end

Tactic introduceCloneField(r : Field , x : field ,C : Class)
(law rename(r , r ′,C ) | skip);
law fieldElimination(r ,C ,←);

class C

law replace(”self .x := exp”, ‘‘unpack self ; self .x := exp;
self .r := self .x ; pack self”);

}
end

Tactic introduceCompositionField(r , x , y : Field , S ,U : Class)
(law rename(r , r ′, S ) | skip);
(law changeVisibilityPrivatePublic(y ,U ,→) | skip);
law fieldElimination(r , S ,←);
refactoring selfEncapsulateField(y ,U ,←);

class S

applies to self .x .y := exp do
law replace(‘‘self .x .y := exp”,

‘‘unpack self ; self .x .setY (exp); self .r := {self .x .getY ()}; pack self”);

}
class S

applies to self .x := exp do
law replace(‘‘self .x := exp”,

‘‘unpack self ; self .x := exp; if (self .x = null) then self .r := ∅
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else self .r := {self .x .getY ()}; pack self ”);

}
end

D.8 removeField

Analogously with the previous section, we present the strategies for the considered three
cases of relation definitions: empty field, clone field and composition of fields.

Figure D.8: removeField

Tactic removeEmptyField(r : Field , S : Class)
(refactoring selfEncapsulateField(r , S ) | skip);
law replace(”self .r := exp”, ‘‘skip”);
law replace(”exp[self .r ]”, ‘‘exp[∅]”);
law fieldElimination(r , S ,→);

end

Tactic removeCloneField(S : Class , r , x : Field)
(refactoring selfEncapsulateField(r , S ) | skip);
law replace(”self .r := exp”, ‘‘self .x := exp; ”);
law replace(”exp[self .r ]”, ‘‘exp[self .x ]”);
law fieldElimination(r , S ,→);

end

Tactic removeCompositionField(r , x , y : Field , S ,U : Class)
(refactoring selfEncapsulateField(r , S ) | skip);
(law changeVisibilityPrivatePublic(y ,U ,→) | skip);
replace(‘‘self .r := exp”, ‘‘self .x .y := exp; ”);
replace(‘‘exp[self .r ]”, ‘‘exp[self .x .y ]”);
law fieldElimination(r , S ,→);

end

D.9 FromOptionalToSetField

Tactic fromOptionalToSetField(a : Field ,C : Class)
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Figure D.9: fromOptionalToSetField

law fieldElimination(a ′,C ,←);

class C

law replace(”self .a := exp”,
”if (exp = null) then self .a ′ := ∅ else self .a ′ := {exp}”) |

law replace(”cmd [exp[self .a]]”,
”if (self .a ′ = ∅) then cmd [exp[null/self .a]]

else cmd [exp[elem(self .a ′)/self .a]])” |
skip);

}
law rename(a ′, a,C );

end

D.10 fromSetToOptionalField

Figure D.10: fromSetToOptionalField

Tactic fromSetToOptionalField(a : Field ,C : Class)
law fieldElimination(a ′,C ,←);

class C

law replace(”self .a := exp”,
”if (exp = ∅) then self .a ′ := null else self .a ′ := elem(exp)”) |

law replace(”cmd [exp[self .a]]”,
”if (self .a ′ = null) then cmd [exp[∅/self .a]]

else cmd [exp[{self .a ′}/self .a]])” |
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skip);

}
law rename(a ′, a,C );

end

D.11 fromSingleToSetField

Tactic fromSingleToSetField(a : Field ,C : Class)
law fieldElimination(a ′,C ,←);

class C

law replace(”self .a := exp”, ‘‘self .a ′ := {exp}”) |
law replace(”cmd [exp[self .a]]”,

”cmd [exp[elem(self .a ′)/self .a]])” |
skip);

}
law rename(a ′, a,C );

D.12 fromSetToSingleField

Tactic fromSetToSingleField(a : Field ,C : Class)
law fieldElimination(a ′,C ,←);

class C

law replace(”self .a := exp”,
”self .a ′ := elem(exp)”) |

law replace(”cmd [exp[self .a]]”,
”cmd [exp[{self .a ′}/self .a]])” |

skip);

}
law rename(a ′, a,C );

end

D.13 splitField

Tactic splitField(a, x , y : Field , S ,U : Class)
(law rename(x , x ′, S ) | skip);
(law rename(U ,U ′) | skip);
law classElimination(addField(U , y),←);
law changeVisibilityPrivatePublic(S , a,←);
law changeVisibilityPrivatePublic(U , y ,→);
law fieldElimination(S , x ,←);
law addtoEnd(constructor(S ), ”self .x := new U ”);

class S

law replace(”self .a := exp”, ‘‘unpack self ; self .a := exp;
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Figure D.11: splitField

elem(self .x ).y := self .a; pack self”);

}
end

D.14 removeIndirectReference

Figure D.12: removeIndirectReference

Tactic removeIndirectReference(a, x , y : Field , S ,U : Class)

class S

law replace(”cmd [exp[self .x .y ]]”, ‘‘cmd [exp[self .a]]”) |
skip);

}
(law fieldElimination(x , S ,→) | skip);
(law classElimination(U , ‘‘”,→) | skip);

end
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D.15 Auxiliary Rules

Tactic moveUpFields(X : Class)
(law moveFieldToSuperClass(fields(X ),X , super(X ),→) |

refactoring pullUpPushDownField(fields(X ), super(X ),→);
end

Tactic adjustHierarchyForPullingUpMethods(C : Class)
law changeVisibilityPrivatePublic(getHierarchyTopDown(C ),

priFields(getHierarchyTopDown(C )),→);
law eliminateSuper(getHierarchyTopDown(C ),→);
applies to exp.x , exp.m(ē){isExactly(exp,C )} do

law introduceCastToExpression(C ,→);
end

Tactic moveUpMethods(X : Class)
law moveRedefinedMethodToSuperclass(redefinedMeths(X ), super(X ),→);
(law MethodElimination(immedSubs(super(X )),

nonRedefinedMeths(X ),←) | skip);
law moveOriginalMethodToSuperclass(meths(X ),→);

end

Tactic changeDeclarationsTypetoSuper(C : Class)
applies to C x do law changeFieldType(x , super(C ),→);
applies to C x := e in do law changeVariableType(x , super(C ),→);
applies to T meth(C x , pars) do law changeParameterType(x ,

super(C ),→);
applies to C meth(pars) do law changeReturnType(x , super(C ),→);

end

Tactic eliminateTypeTests(X : Class , isMethod : Method)
law methodElimination(isMethod , super(X ),←);
applies to cmd [x is X ] do

law varBlockValue(cmd [x is X ], test , true,→);
law varBlockResult(bool test := x is X , result,→);
law pcomEliminationResult(result := x is X ,←);
law ifIdenticalGuardedCommands(test := (result := x is X ),

‘‘x = null”, ‘‘test := false”, ‘‘test := (result := x is X )”,←);
law methodCallElimination(test := (result := x is X ),

‘‘test := x .isX ()”,←);
law varBlockValue(bool b,←);

law fieldElimination(‘‘string type”, super(X ),←);
applies to cmd [x is X ] do
(law methodElimination(subclasses(X ), constr,←) | skip);
law addtoEnd(constructor(cc), ‘‘self .type = ” + name(cc));

disjunction := createDisjunction();
law addToDisj(subclasses(X ), disjunction, ‘‘self is ” + name(cc));
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applies to isMethod do
law replace(‘‘self is X ",‘‘self .type ="+ name(X ) +‘‘ ∨ "

+ disjunction);
end

Tactic eliminateNew(X : Class)
applies to ‘‘x := new ” + name(X ) do

law replace(‘‘x := new ” + name(X ), ‘‘x := new ′”
+ name(X ) + ‘‘; x .newX ()”);

law moveOriginalMethodToSuperclass(X ,method(‘‘newX ”),→);
law newSuperclass(X , super(X ), rightarrow);

end



Appendix E

Strategy Proofs

In this appendix, the other developed proofs for the main lemmas of Theorem 7.1 are
described. These proofs follow the guidelines presented in Chapter 7.

E.1 introduceClass

In this strategy, a specific class is introduced, based on a correspondent signature added
to the model. Let OM ,OM ′ be any two object models and P ,P ′ two programs as
follows:

OM OM ′

ps
=⇒

ps
sig S {}

P P ′

CT
class S{

ads ; mts
}

=⇒

CT ′

class S ′{
ads ; mts

}
class S{ }

where:
CT ′ = CT [S ′/S ]

Syntactic conformance

Proof. The goal is to prove validity of the predicate, based on the premise predicates,
mainly syntConformance(OM ,P).

syntConformance(OM ′,P ′)
= [definition]
∀ s : sigs(OM ′) • sigMapping(s ,P ′) ∧
∀ r : rels(OM ′) • relationMapping(r ,P ′) ∧

170
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abstractConstraint(OM ′,P ′)
= [from definition of OM ,OM ′, sigs(OM ′) = sigs(OM ) ∪ {sigS} and rels(OM ′) =
rels(OM )]
∀ s : sigs(OM ) ∪ {sigS} • sigMapping(s ,P ′) ∧
∀ r : rels(OM ) • relMapping(r ,P ′) ∧
abstractConstraint(OM ′,P ′)

= [From the definition of OM ′,P ,P ′,∀ r : rels(OM ′)• relMapping(r ,P)⇔ relMapping(r ,P ′)]
∀ s : sigs(OM ) ∪ {sigS} • sigMapping(s ,P ′) ∧
∀ r : rels(OM ) • relMapping(r ,P) ∧
abstractConstraint(OM ′,P ′)

= [From the definition of OM ,OM ′,P ,P ′, abstractConstraint(OM ′,P ′) = abstractConstraint
(OM , P), which is valid from the premise]
∀ s : sigs(OM ) ∪ {sigS} • sigMapping(s ,P ′) ∧
∀ r : rels(OM ) • relMapping(r ,P)

= [From the definition of syntConformance, and premise,∀ r : rels(OM )•relMapping(r ,P)
is valid]
∀ s : sigs(OM ) ∪ {sigS} • sigMapping(s ,P ′)

= [set theory]
∀ s : sigs(OM ) • sigMapping(s ,P ′) ∧ sigMapping(s ,P ′)

= [from premise(OM , OM ′, P), ∀ s : sigs(S ) • s 6= S ⇒ sigMapping(s ,P ′) ⇔
sigMapping(s ,P), which is valid]

sigMapping(s ,P ′)
= [from the definition of P ′,sigMapping(s ,P ′) is valid]

true
2

Confinement

Proof. By case analysis on P ′ for the six static analysis rules of confinement. In this
case, S ∈ Own.

1. No method interface is changed, thus from premise(OM , OM ′, P) there are no
methods in Own with Rep return types;

2. No inherited methods are added, thus from premise(OM , OM ′, P) no inherited
methods have Rep parameters;

3. Same as above, thus from premise(OM , OM ′, P), Rep classes do not inherit
methods from non-Rep classes;

4. No public fields are affected, thus from premise(OM , OM ′, P) no e.f is seen,
e ≤ Own, unless e is self ;

5. No new is changed, thus from premise(OM , OM ′, P) Rep instance is created
outside Own classes;

6. No method call is affected, thus from premise(OM , OM ′, P), e.m calls within
Own or Rep do not have Rep parameters.
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2

Refinement

Proof. For proving refinement, show that all strategy’s steps are refinements or apply
laws of programming from the catalog presented in Appendix B.

1. If S is already declared, we rename it to S’, which is a straightforward equivalence;

2. Law 3 Class Elimination (R-L), whose provisos are valid:

(a) The name of class U is distinct from those of all classes declared in CT ;

(b) The superclass appearing in U is either Object or declared in CT ; U has no
superclass;

(c) The field and method names declared by U are not declared by its superclasses
in CT , except in the case of method redefinitions; U has no superclass.

2

Semantic conformance

First we prove a few auxiliary lemmas as they are used in the proof.

Lemma E.1. The semantics of OM ′ can be defined in terms of semantics(OM ) as
follows.

semantics(OM ′) = {i ⊕ (sig S ).name 7→ ∅ | i ∈ semantics(OM )}

Proof. We start from the definition of semantics(OM ′).
semantics(OM ′)
= [definition]
{i : Interpretation | satisfyImpInvs(OM ′, i) ∧ satisfyExpInvs(OM ′, i)}

= [when introducing r , no extends clause is affected, thus
satisfyImpInvs(OM , i) = satisfyImpInvs(OM ′, i)]
{i : Interpretation | satisfyImpInvs(OM , i) ∧ satisfyExpInvs(OM ′, i)}

= [from definition of satisfyExpInvs(OM ′, i)]
{i : Interpretation | satisfyImpInvs(OM , i) ∧ ∀ f : factInvs(OM ′)•

satisfyFormula(f , i)}
= [from definitions of OM ,OM ′,factInvs(OM ′) = factInvs(OM )]
{i : Interpretation | satisfyImpInvs(OM , i) ∧
∀ f : factInvs(OM ) • satisfyFormula(f , i)}

= [from definition of semantics(OM )]
{i : Interpretation | i ∈ semantics(OM )}

= [From Lemma 7.5, where v = ∅]
{i ⊕ (sig S ).name 7→ ∅ | i ∈ semantics(OM )}

2
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Lemma E.2. For P and P ′:
heaps(P ′, filter) = {h ⊕ (class S ).name 7→ ∅ | h ∈ heaps(P , filter)}

Proof. The changed commands do not add or remove heaps; field r is private, so it was
only accessed in mts .

2

Main proof. Lemma 7.4 is then proved, using the result of the auxiliary lemmas and
premise.

semanticConformance(OM ′,P ′)
= [definition]
∀ h : heaps(P ′, filter)•
∃ i : semantics(OM ′)•
∀ s : sigs(OM ′) • i .mapSig(s .name) = h.mapClass(s .name) ∧
∀ r : rels(OM ′) • i .mapRel(r .name) = h.mapField(r .name)

= [from definitions of OM,OM’,rels(OM ′) = rels(OM ),sigs(OM ′) = sigs(OM )∪{sig S}]
∀ h : heaps(P ′, filter)•
∃ i : semantics(OM ′)•
∀ s : sigs(OM ) ∪ {sig S} • i .mapSig(s .name) = h.mapClass(s .name) ∧
∀ r : rels(OM ) • i .mapRel(r .name) = h.mapField(r .name)

= [set theory]
∀ h : heaps(P ′, filter)•
∃ i : semantics(OM ′)•
∀ s : sigs(OM ) • i .mapSig(s .name) = h.mapClass(s .name) ∧
i .mapSig(S ) = h.mapClass(S ) ∧
∀ r : rels(OM ) • i .mapRel(r .name) = h.mapField(r .name)

= [Lemma E.1 replaces semantics(OM ′)]
∀ h : heaps(P ′, filter)•
∃ i : {i ⊕ (sig S ).name 7→ ∅ | i ∈ semantics(OM )}•
∀ s : sigs(OM ) • i .mapSig(s .name) = h.mapClass(s .name) ∧
i .mapSig(S ) = h.mapClass(S ) ∧
∀ r : rels(OM ) • i .mapRel(r .name) = h.mapField(r .name)

= [Lemma E.2 replaces heaps(P ′, filter)]
∀ h : {h ⊕ (class S ).name 7→ ∅ | h ∈ heaps(P , filter)}•
∃ i : i : {i ⊕ (sig S ).name 7→ ∅ | i ∈ semantics(OM )}•
∀ s : sigs(OM ) • i .mapSig(s .name) = h.mapClass(s .name) ∧
i .mapSig(S ) = h.mapClass(S ) ∧
∀ r : rels(OM ) • i .mapRel(r .name) = h.mapField(r .name)

= [From predicate calculus, choosing an arbitrary h1]
∃ i : {i ⊕ (sig S ).name 7→ ∅ | i ∈ semantics(OM )}•
∀ s : sigs(OM ) • i .mapSig(s .name) = h1.mapClass(s .name) ∧
i .mapSig(S ) = h1.mapClass(S ) ∧
∀ r : rels(OM ) • i .mapRel(r .name) = mapField(h1)(r .name)

= [For the existential quantification we choose the specific interpretation i1, which
repeats the mappings for signatures and relations of h1, and i1.mapSig((sig S ).name) =
∅]
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∀ s : sigs(OM )• i1.mapSig(s .name) = h1.mapClass(s .name) ∧
i1.mapSig(S ) = h1.mapClass(S ) ∧
∀ r : rels(OM )• i1.mapRel(r .name) = mapField(h1)(r .name)

= [from premise(OM , OM ′, P)]
i1.mapSig(S ) = h1.mapClass(S )

= [from definition of i1 and h1, i1.mapSig(S ) = h1.mapClass(S ) = ∅]
true

2

E.2 introduceSuperclass

In this strategy, a superclass is introduced for two other classes. Also, an invariant
stating that the newly-introduced class is abstract must be satisfied.

Let OM ,OM ′ be any two object models and P ,P ′ two programs as follows:

OM OM ′

ps
sig S { rsS }

sig T { rsT }

fact F { forms }
=⇒

ps
sig U {}

sig S extends U { rsS }

sig T extends U { rsT }

fact F {

forms
U = S + T

}

P P ′

CT
class U {...}
class SC{..}
class S1 extends SC{..}
class T 1 extends SC{..}
class S extends X {..}
class T extends Y {..}

=⇒

CT ′

class U ′{...}
class SC{..}
class U extends SC{ }
class S1 extends U {..}
class T 1 extends U {..}
class S extends X {..}
class T extends Y {..}

where:
CT ′ = CT [U ′/U ]
X ≤ S1 and Y ≤ T 1.

Syntactic conformance

Proof. The goal is to prove validity of the predicate, based on the premise predicates,
mainly syntConformance(OM ,P).
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syntConformance(OM ′,P ′)
= [definition]
∀ s : sigs(OM ′) • sigMapping(s ,P ′) ∧
∀ r : rels(OM ′) • relationMapping(r ,P ′) ∧
abstractConstraint(OM ′,P ′)

= [from definitions of OM ,OM ′,sigs(OM ′) = sigs(OM ) ∪ {sig U } and rels(OM ′) =
rels(OM )]
∀ s : sigs(OM ) ∪ {sig U } • sigMapping(s ,P ′) ∧
∀ r : rels(OM ) • relMapping(r ,P ′) ∧
abstractConstraint(OM ′,P ′)

= [From definitions of OM ′,P ,P ′, ∀ r : rels(OM ′)• relMapping(r ,P) = relMapping(r ,P ′)]
∀ s : sigs(OM ) ∪ {sig U } • sigMapping(s ,P ′) ∧
∀ r : rels(OM ) • relMapping(r ,P) ∧
abstractConstraint(OM ′,P ′)

= [From definitions of OM ′,P ′, abstractConstraint(OM ′,P ′) = abstractConstraint (OM ,
P), as every intermediate program class is still abstract (no command is added)]
∀ s : sigs(OM ) ∪ {sig U } • sigMapping(s ,P ′) ∧
∀ r : rels(OM ) • relMapping(r ,P)

= [From definition of syntConformance, and premise,∀ r : rels(OM ) • relMapping(r ,P)
is valid]
∀ s : sigs(OM ) ∪ {sig U } • sigMapping(s ,P ′)

= [set theory]
∀ s : sigs(OM ) • sigMapping(s ,P ′) ∧ sigMapping((sig U ),P ′)

= [from premise(OM ,OM ′, P),∀ s : sigs(S )• s 6= U ⇒ sigMapping(s ,P ′)⇔ sigMapping(s ,P),
which is valid]

sigMapping(sig U ,P ′)
= [definition of sigMapping ]
∃ cl : classes(P) • (sig U ).name = cl .name ∧

list2set((sig U ).extends) ⊆ list2set(cl .extends)
= [predicate calculus, choosing class U ]

(sig U ).name = (class U extends SC ).name ∧
list2set((sig U ).extends) ⊆ list2set((class U extends SC ).extends)

= [(sig U ).name = (class U extends SC ).name and list2set((sig U ).extends) =
{object}]

true 2

Confinement

Proof. By case analysis on P ′ for the six static analysis rules of confinement. In this
case, U ∈ Own.

1. No method interface is changed, thus from premise(OM , OM ′, P) there are no
methods in Own with Rep return types;

2. No inherited methods are added, thus from premise(OM , OM ′, P) no inherited
methods have Rep parameters;
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3. Same as above, thus from premise(OM , OM ′, P), Rep classes do not inherit
methods from non-Rep classes;

4. No public fields are affected, thus from premise(OM , OM ′, P) no e.f is seen,
e ≤ Own, unless e is self ;

5. No new is changed, thus from premise(OM , OM ′, P) Rep instance is created
outside Own classes;

6. No method call is affected, thus from premise(OM , OM ′, P), e.m calls within
Own or Rep do not have Rep parameters.

2

Refinement

Proof. For proving refinement, show that all strategy’s steps are refinements or apply
laws of programming from the catalog presented in Appendix B.

1. If U is already declared, we rename it to U’, which is a straightforward equivalence;

2. Law 3 Class Elimination (R-L) is applied, whose provisos are valid:

(a) The name of class U is distinct from those of all classes declared in CT ;

(b) The superclass appearing in U is either Object or declared in CT ; U’s super-
class is defined as the first common superclass;

(c) The field and method names declared by U are not declared by its superclasses
in CT , except in the case of method redefinitions; U is empty.

3. For each immediate subclass of cc, the first common superclass for the given class
list, Law 26 Change superclass: from empty to immediate (R-L), with no provisos.

2

Semantic conformance

First we prove a few auxiliary lemmas as they are used in the proof.

Lemma E.3. The semantics of OM ′ can be defined in terms of semantics(OM ) as
follows.

semantics(OM ′) = {i ⊕ (sig U ).name 7→ i .mapSig(sig S ) ∪ i .mapSig(sig T ) |
i ∈ semantics(OM )}

Proof. We start from the definition of semantics(OM ′).
semantics(OM ′)
= [definition]
{i : Interpretation | satisfyImpInvs(OM ′, i) ∧ satisfyExpInvs(OM ′, i)}
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= [from definition of satisfyImpInvs(OM ′, i)]
{i : Interpretation |
(∀ s : sigs(OM ′) • i .mapSig(s .name) ⊆ i .mapSig((super(s)).name))∧
satisfyExpInvs(OM ′, i)}

= [from definitions of OM ,OM ′,sigs(OM ′) = sigs(OM ) ∪ (sig U )]
{i : Interpretation |
(∀ s : sigs(OM ) ∪ (sig U ) • i .mapSig(s .name) ⊆ i .mapSig((super(s)).name))∧
satisfyExpInvs(OM ′, i)}

= [set theory]
{i : Interpretation |
(∀ s : sigs(OM ) • i .mapSig(s .name) ⊆ i .mapSig((super(s)).name)∧
i .mapSig((sig U ).name) ⊆ i .mapSig((super(sig U )).name))
∧ satisfyExpInvs(OM ′, i)}

= [from definition of satisfyImpInvs(OM )]
{i : Interpretation | satisfyImpInvs(OM , i) ∧ satisfyExpInvs(OM ′, i)}

= [from definition of satisfyExpInvs(OM ′, i)]
{i : Interpretation | satisfyImpInvs(OM , i) ∧ ∀ f : factInvs(OM ′)•

satisfyFormula(f , i)}
= [from definitions of OM ,OM ′,factInvs(OM ′) = factInvs(OM ) ∪ (U = S + T )]
{i : Interpretation | satisfyImpInvs(OM , i) ∧
∀ f : factInvs(OM ) ∪ {U = S + T} • satisfyFormula(f , i)}

= [set theory]
{i : Interpretation | satisfyImpInvs(OM , i) ∧
∀ f : factInvs(OM ) • satisfyFormula(f , i)∧
satisfyFormula({U − S + T}, i)}

= [from definition of semantics(OM )]
{i : Interpretation | i ∈ semantics(OM ) ∧ satisfyFormula({U = S + T}, i)}

= [From Lemma 7.5, where v = i .mapSig(S ) ∪ i .mapSig(T )]
{i ⊕ (sig U ).name 7→ i .mapSig(sig S ) ∪ i .mapSig(sig T ) | i ∈ semantics(OM )}

Lemma E.4. For OM ′ and P ′:
∀ h : heaps(P ′, filter)•

h.mapClass(U ) = h.mapClass(S ) ∪ h.mapClass(T )

Proof. From definition of P ′

∀ h : heaps(P ′, filter)•
h.mapClass(U ) =

⋃
U∈hierarchy(U ,S)∪hierarchy(U ,T ) h.mapClass(U )

= [From abstractConstraint(OM ′,P ′), the only concrete subclasses of U are S and T ]
∀ h : heaps(P ′, filter)•

h.mapClass(U ) = h.mapClass(S ) ∪ h.mapClass(T )

Main proof. Lemma 7.4 is then proved, using the result of the auxiliary lemmas and
premise.
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semanticConformance(OM ′,P ′)
= [definition]
∀ h : heaps(P ′, filter)•
∃ i : semantics(OM ′)•
∀ s : sigs(OM ′) • i .mapSig(s .name) = h.mapClass(s .name) ∧
∀ r : rels(OM ′) • i .mapRel(r .name) = h.mapField(r .name)

= [from definitions of OM ,OM ′,rels(OM ′) = rels(OM ),sigs(OM ′) = sigs(OM )∪{sig U }]
∀ h : heaps(P ′, filter)•
∃ i : semantics(OM ′)•
∀ s : sigs(OM ) ∪ {sig U } • i .mapSig(s .name) = h.mapClass(s .name) ∧
∀ r : rels(OM ) • i .mapRel(r .name) = h.mapField(r .name)

= [set theory]
∀ h : heaps(P ′, filter)•
∃ i : semantics(OM ′)•
∀ s : sigs(OM ) • i .mapSig(s .name) = h.mapClass(s .name) ∧
i .mapSig(U ) = h.mapClass(U ) ∧
∀ r : rels(OM ) • i .mapRel(r .name) = h.mapField(r .name)

= [Lemma E.3 replaces semantics(OM ′)]
∀ h : heaps(P ′, filter)•
∃ i : {i ⊕ (sig U ).name 7→ i .mapSig(S ) ∪ i .mapSig(T ) | i ∈ semantics(OM )}•
∀ s : sigs(OM ) • i .mapSig(s .name) = h.mapClass(s .name) ∧
i .mapSig(U ) = h.mapClass(U ) ∧
∀ r : rels(OM ) • i .mapRel(r .name) = h.mapField(r .name)

= [Lemma E.4]
∀ h : {h ⊕ (sig U ).name 7→ h.mapClass(S ) ∪ h.mapClass(T ) | h ∈ heaps(P , filter)}•
∃ i : {i ⊕ (sig U ).name 7→ i .mapSig(S ) ∪ i .mapSig(T ) | i ∈ semantics(OM )}•
∀ s : sigs(OM ) • i .mapSig(s .name) = h.mapClass(s .name) ∧
i .mapSig(U ) = h.mapClass(U ) ∧
∀ r : rels(OM ) • i .mapRel(r .name) = h.mapField(r .name)

= [From predicate calculus, choosing an arbitrary h1]
∃ i : {i ⊕ (sig U ).name 7→ i .mapSig(S ) ∪ i .mapSig(T ) | i ∈ semantics(OM )}•
∀ s : sigs(OM ) • i .mapSig(s .name) = h1.mapClass(s .name) ∧
i .mapSig(U ) = h1.mapClass(U ) ∧
∀ r : rels(OM ) • i .mapRel(r .name) = mapField(h1)(r .name)

= [From predicate calculus, we choose the specific interpretation i1, which repeats the
mappings for signatures and relations of h1 and the mapping for U is according to the
definition]
∀ s : sigs(OM )• i1.mapSig(s .name) = h1.mapClass(s .name) ∧
i1.mapSig(U ) = h1.mapClass(U ) ∧
∀ r : rels(OM )• i1.mapRel(r .name) = mapField(h1)(r .name)

= [from premise(OM , OM ′, P)]
i1.mapSig(U ) = h1.mapClass(U )

= [from definition of i1 and h1, i1.mapSig(U ) = h1.mapClass(U ) = h1.mapClass(S )∪
h1.mapClass(T )]

true
2
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E.3 removeSuperclass

In contrast to the previously proved strategy, a common superclass is removed from the
program, along with the invariant.

Let OM ,OM ′ be any two object models and P ,P ′ two programs as follows:

OM OM ′

ps
sig U {}

sig S extends U { rs }

sig T extends U { rs ′ }
fact F {

forms
U = S + T

}

=⇒

ps
sig S { rs }

sig T { rs ′ }
fact F { forms }

P P ′

CT
class SC{

adsSC ; mtsSC}
class U extends SC{

adsU ; mtsU }
class S1 extends U {
.. mtsS1}

class T 1 extends U {
.. mtsT 1}

class S extends X {
.. mtsS}

class T extends Y {
.. mtsT}

=⇒

CT ′

class SC{
adsSC , adsU ; mtsSC ′}

class S1 extends U {
.. mtsS1′,mtsU ′}

class T 1 extends U {
.. mtsT 1′,mtsU ′}

class S extends X {
.. mtsS ′}

class T extends Y {
.. mtsT ′}

where:
X ≤ S1 and Y ≤ T 1;
CT ′′,mts ′′ = CT ,mts [exp is U /(exp is S ∨ exp is T )];
CT ′,mts ′ = CT ′′,mts ′′[cmd [(U )exp]/if(exp is S )cmd [(S )exp] else cmd [(T )exp]].

Syntactic conformance

Proof. The goal is to prove validity of the predicate, based on the premise predicates,
mainly syntConformance(OM ,P).

syntConformance(OM ′,P ′)
= [definition]
∀ s : sigs(OM ′) • sigMapping(s ,P ′) ∧
∀ r : rels(OM ′) • relationMapping(r ,P ′) ∧
abstractConstraint(OM ′,P ′)



APPENDIX E. STRATEGY PROOFS 180

= [from definition of OM ,OM ′, sigs(OM ′) = sigs(OM ) − {sig U } and rels(OM ′) =
rels(OM )]
∀ s : sigs(OM )− {sig U } • sigMapping(s ,P ′) ∧
∀ r : rels(OM ) • relMapping(r ,P ′) ∧
abstractConstraint(OM ′,P ′)

= [From definitions of OM ′,P ,P ′,∀ r : rels(OM ′)• relMapping(r ,P)⇔ relMapping(r ,P ′)]
∀ s : sigs(OM )− {sig U } • sigMapping(s ,P ′) ∧
∀ r : rels(OM ) • relMapping(r ,P) ∧
abstractConstraint(OM ′,P ′)

= [From definitions of OM ′,P ′ and premise, abstractConstraint(OM ′,P ′) is valid, as no
new command is added for classes not in the model]
∀ s : sigs(OM )− {sig U } • sigMapping(s ,P ′) ∧
∀ r : rels(OM ) • relMapping(r ,P)

= [from definition of syntConformance, and premise,∀ r : relations(OM )•relMapping(r ,P)
is valid]
∀ s : sigs(OM )− {sig U } • sigMapping(s ,P ′) ∧

= [set theory]
∀ s : sigs(OM ) • (s 6= sig U )⇒ sigMapping(s ,P ′)

= [predicate calculus, choosing arbitrary s1]
(sig U 6= s1)⇒ sigMapping(s1,P ′)

= [Assuming (sig U 6= s1) as a premise]
sigMapping(s1,P ′)

= [As (sig U 6= s1), and from definitions P ,P ′ no other class is removed but U , from
premise(OM , OM ′, P) sigMapping(s1,P ′) is valid]

true
2

Confinement

Proof. By case analysis on P ′ for the six static analysis rules of confinement.

1. All methods that were pushed down to subclasses of U were inherited by those
subclasses before, thus from premise(OM , OM ′, P) there are no methods in Own
with Rep return types;

2. No inherited methods are added, thus from premise(OM , OM ′, P) no inherited
methods have Rep parameters;

3. If methods are inherited and previous subclasses of U are Rep, thus from premise(OM ,
OM ′, P), Rep classes do not inherit methods from non-Rep classes;

4. No public fields of Own classes are used outside their declaring module, thus from
premise(OM , OM ′, P) no e.f is seen, unless e is self ;

5. No new is changed, thus from premise(OM , OM ′, P) Rep instance is created
outside Own classes;
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6. No method call is affected, thus from premise(OM , OM ′, P), e.m calls within
Own or Rep do not have Rep parameters.

2

Refinement

Proof. For proving refinement, show that all strategy’s steps are refinements or apply
laws of programming from the catalog presented in Appendix B.

1. For each field in superclasses of U, Law 27 change visibility: from pri to pub (L-R),
with no precondition;

2. For each superclass, in a top-down list, replace every method call using super
with Law 38 eliminate super (L-R), whose provisos are valid:

(a) super and private fields does not appear in the inline code, as the iteration
is top-down.

3. Within each immediate subclass, replace every method call using super with
Law 38 eliminate super (L-R), whose provisos are valid:

(a) super and private fields does not appear in the inline code, as all superclasses
have been changes in the previous step.

4. Each expression whose type is U is cast with this type, using Law 40 introduce
trivial cast in expressions (L-R), with no provisos.

5. Declarations are changed; for instance, Law 29 change field type (L-R), whose
precondition is valid:

(a) U ≤ super(U ), and all U expressions are cast, from the previous step.

6. Refactoring 2 distribute cast is applied, precondition is fulfilled (class U has no
instances).

7. Law 5 distribute test is applied, precondition is fulfilled (class U has no instances).

8. Law 6 redundant if (R-L) is applied to all m command bodies.

9. Law 35 move redefined method to superclass (L-R) is applied to all methods, whose
body was transformed into an if statement; the provisos are valid:

(a) super and private fields do not appear into U’s methods, from previous steps;

(b) super.m() does not appear in the subclasses that will receive the method
declaration;

(c) If the subclass already declares m then the law fails, then nothing happens
(strategy skip).
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10. Refactoring 3 method elimination: abstract class is applied, with the following
provisos:

(a) U is an abstract class;

(b) Method calls to each method are made from other types than U, since U was
removed from all declarations.

11. For each field, Law 37 move field to superclass (L-R) is applied, with the following
provisos:

(a) If the field is declared in subclasses of super(U), then the application fails
(strategy skip).

12. For each immediate subclass of cc, the first common superclass for the given class
list, Law 26 change superclass: from an empty class to immediate superclass (R-
L), with no provisos.

13. Law 3 class elimination (R-L) is applied, whose provisos are valid:

(a) The name of class U is distinct from those of all classes declared in CT ;

(b) The superclass appearing in U is either Object or declared in CT ; U’s super-
class is defined as the first common superclass;

(c) The field and method names declared by U are not declared by its superclasses
in CT , except in the case of method redefinitions; U is empty.

2

Semantic conformance

First we prove a few auxiliary lemmas as they are used in the proof.

Lemma E.5. The semantics of OM ′ can be defined in terms of semantics(OM ) as
follows.

semantics(OM ′) = i : {i : interpretation
| i ∈ semantics(OM ) ∧ i −B (sig U ).name}

Proof. We start from the definition of semantics(OM ′).
semantics(OM ′)
= [definition]
{i : Interpretation | satisfyImpInvs(OM ′, i) ∧ satisfyExpInvs(OM ′, i)}

= [from definition of satisfyImpInvs(OM ′, i)]
{i : Interpretation |
(∀ s : sigs(OM ′) • i .mapSig(s .name) ⊆ i .mapSig((super(s)).name))∧
satisfyExpInvs(OM ′, i)}

= [from definitions of OM ,OM ′,sigs(OM ′) = sigs(OM )− (sig U )]



APPENDIX E. STRATEGY PROOFS 183

{i : Interpretation |
(∀ s : sigs(OM )− (sig U )•
i .mapSig(s .name) ⊆ i .mapSig((super(s)).name))∧
satisfyExpInvs(OM ′, i)}

= [set theory]
{i : Interpretation |
(∀ s : sigs(OM )•
s 6= (sig U ) ∧ i .mapSig(s .name) ⊆ i .mapSig((super(s)).name))
∧ satisfyExpInvs(OM ′, i)}

= [from definition of satisfyImpInvs(OM )]
{i : Interpretation | satisfyImpInvs(OM , i) ∧ satisfyExpInvs(OM ′, i)}

= [from definition of satisfyExpInvs(OM ′, i)]
{i : Interpretation | satisfyImpInvs(OM , i) ∧ ∀ f : factInvs(OM ′)•

satisfyFormula(f , i)}
= [from definitions of OM ,OM ′, factInvs(OM ′) = factInvs(OM )− (U = S + T )]
{i : Interpretation | satisfyImpInvs(OM , i) ∧
∀ f : factInvs(OM )− {r = x .y} • satisfyFormula(f , i)}

= [set theory]
{i : Interpretation | satisfyImpInvs(OM , i) ∧
∀ f : factInvs(OM ) • (f 6= {U = S + T})⇒ satisfyFormula(f , i)}

= [from Lemma 7.8, i is part of the semantics of OM ]
{i : Interpretation | i ∈ semantics(OM ) ∧ i −B (sig U ).name}

Lemma E.6. For P and P ′:
heaps(P ′, filter) = {h : Heap | h ∈ heaps(P , filter) ∧ h −B (sig U ).name}

Proof. The changed commands do not add or remove heaps; field r is private, so it was
only accessed in mts .

Main proof. Lemma 7.4 is then proved, using the result of the auxiliary lemmas and
premise.

semanticConformance(OM ′,P ′)
= [definition]
∀ h : heaps(P ′, filter)•
∃ i : semantics(OM ′)•
∀ s : sigs(OM ′) • i .mapSig(s .name) = h.mapClass(s .name) ∧
∀ r : rels(OM ′) • i .mapRel(r .name) = h.mapField(r .name)

= [from premise(OM , OM ′, P), rels(OM ′) = rels(OM ),sigs(OM ′) = sigs(OM ) −
{sig U }]
∀ h : heaps(P ′, filter)•
∃ i : semantics(OM ′)•
∀ s : sigs(OM )− {sig U } • i .mapSig(s .name) = h.mapClass(s .name) ∧
∀ r : rels(OM ) • i .mapRel(r .name) = h.mapField(r .name)

= [set theory]
∀ h : heaps(P ′, filter)•
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∃ i : semantics(OM ′)•
∀ s : sigs(OM ) • (sig U ) 6= s ⇒ i .mapSig(s .name) = h.mapClass(s .name) ∧
∀ r : rels(OM ) • i .mapRel(r .name) = h.mapField(r .name)

= [Lemma E.5 replaces semantics(OM ′)]
∀ h : heaps(P ′, filter)•
∃ i : {i : Interpretation | i ∈ semantics(OM ) ∧ i −B (sig U ).name}•
∀ s : sigs(OM ) • (sig U ) 6= s ⇒ i .mapSig(s .name) = h.mapClass(s .name) ∧
∀ r : rels(OM ) • i .mapRel(r .name) = h.mapField(r .name)

= [Lemma E.6 replaces heaps(P ′, filter)]
∀ h : {h : Heap | h ∈ heaps(P , filter) ∧ h −B (sig U ).name}•
∃ i : {i : Interpretation | i ∈ semantics(OM ) ∧ −B(sig U ).name}•
∀ s : sigs(OM ) • (sig U ) 6= s ⇒ i .mapSig(s .name) = h.mapClass(s .name) ∧
∀ r : rels(OM ) • i .mapRel(r .name) = h.mapField(r .name)

= [From predicate calculus, choosing an arbitrary h1]
∃ i : {i : Interpretation | i ∈ semantics(OM ) ∧ i −B (sig U ).name}•
∀ s : sigs(OM ) • (sig U ) 6= s ⇒ i .mapSig(s .name) = h1.mapClass(s .name) ∧
∀ r : rels(OM ) • i .mapRel(r .name) = mapField(h1)(r .name)

= [For existential quantification, we choose interpretation i1 which repeats the map-
pings for model names in h1, removing the mapping from U signature]
∀ s : sigs(OM ) • (sig U ) 6= s ⇒ i1.mapSig(s .name) = h1.mapClass(s .name) ∧
∀ r : rels(OM ) • i1.mapRel(r .name) = mapField(h1)(r .name)

= [from premise(OM , OM ′, P)]
∀ s : sigs(OM ) • (sig U ) 6= s ⇒ i1.mapSig(s .name) = h1.mapClass(s .name)

= [from definition of i1 and h1, every original model signature and class is mapped to
the same values, except U ]

true
2

E.4 introduceSubclass

In this strategy, a subclass is introduced, making the superclass abstract. Let OM ,OM ′

be any two object models and P ,P ′ two programs as follows:

OM OM ′

ps
sig U { rsU }

sig S extends U { rsS }

sig T extends U { rsT }

fact F { forms } =⇒

ps
sig U { rsU }

sig S extends U { rsS }

sig T extends U { rsT }

sig X extends U {}

fact F {

forms
X = U − S − T

}
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P P ′

CT
class X {..}
class U {
.. mtsU }

class S extends Y {
.. mtsS}

class T extends W {
.. mtsT}

=⇒

CT ′

class X ′{..}
class U {
.. mtsU ′}

class S extends Y {
.. mtsS ′}

class T extends W {
.. mtsT ′}

class X extends U { }

where:
Y ≤ U and W ≤ U ;
CT ′′,mts ′′ = CT ,mts [X ′/X ];
CT ′,mts ′ = CT ′′,mts ′′[newX /newU ];

Syntactic conformance

Proof. The goal is to prove validity of the predicate, based on the premise predicates,
mainly syntConformance(OM ,P).

syntConformance(OM ′,P ′)
= [definition]
∀ s : sigs(OM ′) • sigMapping(s ,P ′) ∧
∀ r : rels(OM ′) • relMapping(r ,P ′) ∧
abstractConstraint(OM ′,P ′)

= [from definitions of OM ,OM ′,sigs(OM ′) = sigs(OM ) ∪ {sig X extends U } and
rels(OM ′) = rels(OM )]
∀ s : sigs(OM ) ∪ {sig X extends U } • sigMapping(s ,P ′) ∧
∀ r : rels(OM ) • relMapping(r ,P ′) ∧
abstractConstraint(OM ′,P ′)

= [From definitions of OM ′,P ,P ′, ∀ r : rels(OM ′)• relMapping(r ,P) = relMapping(r ,P ′)]
∀ s : sigs(OM ) ∪ {sig X extends U } • sigMapping(s ,P ′) ∧
∀ r : rels(OM ) • relMapping(r ,P) ∧
abstractConstraint(OM ′,P ′)

= [From definitions of OM ′,P ′, abstractConstraint(OM ′,P ′) = abstractConstraint(OM ,P),
as every intermediate program class is still abstract, and X and U are in the model]
∀ s : sigs(OM ) ∪ {sig X extends U } • sigMapping(s ,P ′) ∧
∀ r : rels(OM ) • relMapping(r ,P)

= [From definition of syntConformance, and premise,∀ r : rels(OM ) • relMapping(r ,P)
is valid]
∀ s : sigs(OM ) ∪ {sig X extends U } • sigMapping(s ,P ′)

= [set theory]
∀ s : sigs(OM ) • sigMapping(s ,P ′) ∧ sigMapping((sig X ),P ′)

= [from premise(OM ,OM ′, P),∀ s : sigs(S )• s 6= X ⇒ sigMapping(s ,P ′)⇔ sigMapping
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(s , P), which is valid]
sigMapping((sig X ),P ′)

= [definition of sigMapping ]
∃ cl : classes(P) • (sig X extends U ).name = cl .name ∧

list2set((sig X extends U ).extends) ⊆ list2set(cl .extends)
= [predicate calculus, choosing class X ]

(sig X extends U ).name = (class X extends U ).name ∧
list2set((sig X extends U ).extends) ⊆ list2set((class X extends U ).extends)

= [(sig X extends U ).name = (class X extends U ).name]
list2set((sig X extends U ).extends) ⊆ list2set((class X extends U ).extends)

= [As first((sig X extends U ).extends) = U ∈ list2set((class X extends U ).extends)]
true

2

Confinement

Proof. By case analysis on P ′ for the six static analysis rules of confinement. In this
case, X 6∈ Rep.

1. No method interface is changed, thus from premise(OM , OM ′, P) there are no
methods in Own with Rep return types;

2. No inherited methods are added, thus from premise(OM , OM ′, P) no inherited
methods have Rep parameters;

3. Same as above, thus from premise(OM , OM ′, P), Rep classes do not inherit
methods from non-Rep classes;

4. No public fields of Own classes are used outside their declaring module, thus from
premise(OM , OM ′, P) no e.f is seen, unless e is self ;

5. No new is changed, thus from premise(OM , OM ′, P) Rep instance is created
outside Own classes;

6. No method call is affected, thus from premise(OM , OM ′, P), e.m calls within
Own or Rep do not have Rep parameters.

2

Refinement

Proof. For proving refinement, show that all strategy’s steps are refinements or apply
laws of programming from the catalog presented in Appendix B.

1. If X is already declared, we rename it to X’, which is a straightforward equivalence;

2. Law 3 Class Elimination (R-L) is applied, whose provisos are valid:

(a) The name of class X is distinct from those of all classes declared in CT ;
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(b) The superclass of X is U, which is correctly declared, from the syntactic con-
formance;

(c) The field and method names declared by X are not declared by its superclasses
in CT ; X is empty.

3. Law 4 new superclass (R-L) is applied, whose precondition is valid:

(a) Variables of type T ≤ U are not involved in tests with X, as this class has
just been included.

2

Semantic conformance

First we prove a few auxiliary lemmas as they are used in the proof.

Lemma E.7. The semantics of OM ′ can be defined in terms of semantics(OM ) as
follows.

semantics(OM ′) = {i ⊕ (sig X ).name 7→ i .mapSig(U )−(i .mapSig(S ) ∪ i .mapSig(T ))
| i ∈ semantics(OM )}

Proof. We start from the definition of semantics(OM ′).

semantics(OM ′)
= [definition]
{i : Interpretation | satisfyImpInvs(OM ′, i) ∧ satisfyExpInvs(OM ′, i)}

= [from definition of satisfyImpInvs(OM ′, i)]
{i : Interpretation |
(∀ s : sigs(OM ′) • i .mapSig(s .name) ⊆ i .mapSig((super(s)).name))∧
satisfyExpInvs(OM ′, i)}

= [from definitions of OM ,OM ′,sigs(OM ′) = sigs(OM ) ∪ (sig X )]
{i : Interpretation |
(∀ s : sigs(OM ) ∪ (sig X )•

i .mapSig(s .name) ⊆ i .mapSig((super(s)).name))∧
satisfyExpInvs(OM ′, i)}

= [set theory]
{i : Interpretation |
(∀ s : sigs(OM ) • i .mapSig(s .name) ⊆ i .mapSig((super(s)).name)∧
i .mapSig((sig X ).name) ⊆ i .mapSig(super(sig X )))
∧ satisfyExpInvs(OM ′, i)}

= [from definition of OM ′, list2set((sig X ).extends) ⊆ list2set((sig U ).extends)]
{i : Interpretation |
(∀ s : sigs(OM ) • i .mapSig(s .name) ⊆ i .mapSig((super(s)).name))
∧ satisfyExpInvs(OM ′, i)}

= [from definition of satisfyImpInvs(OM )]
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{i : Interpretation | satisfyImpInvs(OM , i) ∧ satisfyExpInvs(OM ′, i)}
= [from definition of satisfyExpInvs(OM ′, i)]
{i : Interpretation | satisfyImpInvs(OM , i) ∧ ∀ f : factInvs(OM ′)•

satisfyFormula(f , i)}
= [from definitions of OM ,OM ′,factInvs(OM ′) = factInvs(OM ) ∪ (X = U − S − T )]
{i : Interpretation | satisfyImpInvs(OM , i) ∧
∀ f : factInvs(OM ) ∪ {X = U − S − T} • satisfyFormula(f , i)}

= [set theory]
{i : Interpretation | satisfyImpInvs(OM , i) ∧
∀ f : factInvs(OM ) • satisfyFormula(f , i)∧
satisfyFormula({X = U − S − T}, i)}

= [from definition of semantics(OM )]
{i : Interpretation | i ∈ semantics(OM ) ∧ satisfyFormula({X = U − S − T}, i)}

= [From Lemma 7.5, where v = i .mapSig(U )− (i .mapSig(S ) ∪ i .mapSig(T )]
{i {i ⊕ (sig X ).name 7→ i .mapSig(U ) − (i .mapSig(S ) ∪ i .mapSig(T )) | i ∈

semantics(OM )}

Lemma E.8. :For OM ′ and P ′:
heaps(P ′, filter) =
{h⊕(class U ).name 7→ h.mapClass(U )⊕(class X ).name 7→ h.mapClass((class U ).name)

− (h.mapClass((class X ).name) ∪ h.mapClass((class T ).name)) | h ∈ heaps(P , filter)}

Proof. From definition of P ′

heaps(P ′, filter) =
{h ′ | ∀ s : sigs(OM ′) − U − X • h ′.mapClass(s) = h.mapClass(s) | h ∈

heaps(P , filter)}
= [From the modeling law and property of inheritance]
{h⊕(class U ).name 7→ h.mapClass((class S ).name) ∪ h.mapClass((class T ).name) ∪

h.mapClass(X )⊕(class X ).name 7→ h.mapClass(U )− (h.mapClass(X ) ∪ h.mapClass(T )) |
h ∈ heaps(P , filter)}
= [set theory: S ∪ T ∪ X = S ∪ T ∪ (U − S − T ) = U ]
{h ⊕ (class U ).name 7→ h.mapClass((class U ).name) ∪ ⊕(class X ).name 7→

h.mapClass(U ) − (h.mapClass(X ) ∪ h.mapClass(T )) | h ∈ heaps(P , filter)}

Main proof. Lemma 7.4 is then proved, using the result of the auxiliary lemmas and
premise.

semanticConformance(OM ′,P ′)
= [definition]
∀ h : heaps(P ′, filter)•
∃ i : semantics(OM ′)•
∀ s : sigs(OM ′) • i .mapSig(s .name) = h.mapClass(s .name) ∧
∀ r : rels(OM ′) • i .mapRel(r .name) = h.mapField(r .name)

= [from definitions of OM,OM’,rels(OM ′) = rels(OM ),
sigs(OM ′) = sigs(OM ) ∪ {sig X extends U }]
∀ h : heaps(P ′, filter)•
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∃ i : semantics(OM ′)•
∀ s : sigs(OM )∪{sig X extends U }• i .mapSig(s .name) = h.mapClass(s .name) ∧
∀ r : rels(OM ) • i .mapRel(r .name) = h.mapField(r .name)

= [set theory]
∀ h : heaps(P ′, filter)•
∃ i : semantics(OM ′)•
∀ s : sigs(OM ) • i .mapSig(s .name) = h.mapClass(s .name) ∧
i .mapSig(X ) = h.mapClass(X ) ∧
∀ r : rels(OM ) • i .mapRel(r .name) = h.mapField(r .name)

= [Lemma E.7 replaces semantics(OM ′)]
∀ h : heaps(P ′, filter)•
∃ i : {i ⊕ (sig U ).name 7→ i .mapSig(U )− (i .mapSig(X ) ∪ i .mapSig(T )) | i ∈

semantics(OM )}•
∀ s : sigs(OM ) • i .mapSig(s .name) = h.mapClass(s .name) ∧
i .mapSig(X ) = h.mapClass(X ) ∧
∀ r : rels(OM ) • i .mapRel(r .name) = h.mapField(r .name)

= [Lemma E.8 replaces heaps(P ′, filter)]
∀ h : {h ⊕ (class U ).name 7→ h.mapClass(U )⊕ (class X ).name 7→ h.mapClass(U )

− (h.mapClass(X ) ∪ h.mapClass(T )) | h ∈ heaps(P , filter)}•
∃ i : {i ⊕ (class X ).name 7→ i .mapSig(U ) − (i .mapSig(S ) ∪ i .mapSig(T )) |

i ∈ semantics(OM )}•
∀ s : sigs(OM ) • i .mapSig(s .name) = h.mapClass(s .name) ∧
i .mapSig(X ) = h.mapClass(X ) ∧
∀ r : rels(OM ) • i .mapRel(r .name) = h.mapField(r .name)

= [From predicate calculus, choosing an arbitrary h1 following the quantification prop-
erties]
∃ i : {i ⊕ (class X ).name 7→ i .mapSig(U )− (i .mapSig(S ) ∪ i .mapSig(T )) | i ∈

semantics(OM )}•
∀ s : sigs(OM ) • i .mapSig(s .name) = h1.mapClass(s .name) ∧
i .mapSig(X ) = h1.mapClass(X ) ∧
∀ r : rels(OM ) • i .mapRel(r .name) = mapField(h1)(r .name)

= [Existential quantification, choosing i1 following the quantification properties]
∀ s : sigs(OM ) • i1.mapSig(s .name) = h1.mapClass(s .name) ∧
i1.mapSig(X ) = h1.mapClass(X ) ∧
∀ r : rels(OM ) • i1.mapRel(r .name) = mapField(h1)(r .name)

= [From premise, no changes in relations, and all sets but X maintain the mappings]
i1.mapSig(X ) = h1.mapClass(X )

= [From quantification properties,i1.mapSig(X ) = h1.mapClass(X ) = h1.mapClass(U )
− (h1.mapClass(S ) ∪ h1.mapClass(T ))]

true
2
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E.5 removeSubclass

A subclass is removed, along with adjustments to its hierarchy, mainly its possible field
and methods.

Let OM ,OM ′ be any two object models and P ,P ′ two programs as follows:

OM OM ′

ps
sig U { rsU }

sig S extends U { rsS }

sig T extends U { rsT }

sig X extends U {}

fact F {

forms
X = U − S − T

}

=⇒

ps
sig U { rsU }

sig S extends U { rsS }

sig T extends U { rsT }

fact F { forms }

P P ′

CT
class U [extends]{..mtsU }
class S [extends]{..mtsS}
class T [extends]{..mtsT}
class Y [extends]{

adsY ;
mtsY }

class X extends Y {
adsX ;
mtsX ;
constr {c}

}
class W extends X {
..mtsW ′}
constr {b}

}

=⇒

CT ′

class U [extends]{..mtsU ′}
class S [extends]{..mtsS ′}
class T [extends]{..mtsT ′}
class Y [extends]{

adsY ; adsX ;
pub String type;
mtsY ′; mtsX ;
bool isX (){

result := (self .type =
”X ” ∨ self .type = ”W ”)
}
void newX (){

c; self .type := ”X ”
}

}
class W extends Y {
..mtsW ′;
constr {b; self .type :=

”W ” }
}

where:
S ,T ,Y ≤ U ;
CT ′′′′′,A′ = CT ,A[pub Type f /pri Type f ],A ∈ hierarchy(X , object);
mt ′ = mt [body(m)/super .m()],mt ∈ meths(hierarchy(X , object));
mtY ′ = mtY [if ¬(self is X ) then b else b ′],

mtY ∈ name(mtsX ∩mtsY ), b = body(Y .m), b ′ = body(X .m)
CT ′′′′ = CT ′′′′′[Y id/X id ];
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CT ′′′ = CT ′′′′[{exp.isX ()}cmd [exp]/cmd [(X )exp]];
CT ′′ = CT ′′′[exp.isX ()/exp is X ];
CT ′ = CT ′′[unpack x ; x := new Y ; x .newX (); pack x / x := new X ];

Syntactic conformance

Proof. The goal is to prove validity of the predicate, based on the premise predicates,
mainly syntConformance(OM ,P).

syntConformance(OM ′,P ′)
= [definition]
∀ s : sigs(OM ′) • sigMapping(s ,P ′) ∧
∀ r : rels(OM ′) • relationMapping(r ,P ′) ∧
abstractConstraint(OM ′,P ′)

= [from definition of OM ,OM ′, sigs(OM ′) = sigs(OM ) − {sig X } and rels(OM ′) =
rels(OM )]
∀ s : sigs(OM )− {sig X } • sigMapping(s ,P ′) ∧
∀ r : rels(OM ) • relMapping(r ,P ′) ∧
abstractConstraint(OM ′,P ′)

= [From definitions of OM ′,P ,P ′,∀ r : rels(OM ′)• relMapping(r ,P)⇔ relMapping(r ,P ′)]
∀ s : sigs(OM )− {sig X } • sigMapping(s ,P ′) ∧
∀ r : rels(OM ) • relMapping(r ,P) ∧
abstractConstraint(OM ′,P ′)

= [From definitions of OM ′,P ′ and premise, abstractConstraint(OM ′,P ′) is valid, as the
only new command added for classes is new Y , which has no subtype in the model]
∀ s : sigs(OM )− {sig X } • sigMapping(s ,P ′) ∧
∀ r : rels(OM ) • relMapping(r ,P)

= [from definition of syntConformance, and premise,∀ r : relations(OM )•relMapping(r ,P)
is valid]
∀ s : sigs(OM )− {sig X } • sigMapping(s ,P ′) ∧

= [set theory]
∀ s : sigs(OM ) • (sig X 6= s)⇒ sigMapping(s ,P ′)

= [predicate calculus, choosing arbitrary s1]
(sig X 6= s1)⇒ sigMapping(s1,P ′)

= [Assuming (sig X 6= s1) as a premise]
sigMapping(s1,P ′)

= [Definition of sigMapping ]
∃ cl : classes(P ′) • s1.name = cl .name ∧

list2set(s1.extends) ⊆ list2set(cl .extends)
= [From P ,P ′ no other class is removed but X , from premise(OM , OM ′, P) and
additional premise, there is a class with the same name and the its superclasses are
unchanged]

true
2
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Confinement

Proof. By case analysis on P ′ for the six static analysis rules of confinement. In this
case, S,U ∈ Own and U,T ∈ Rep.

1. Class Y is the only one to receive new methods. If Y ∈ Own, then from premise(OM ,
OM ′, P) methods previously in X could never have Rep return types;

2. No inherited methods are added, thus from premise(OM , OM ′, P) no inherited
methods have Rep parameters;

3. Same as above, thus from premise(OM , OM ′, P), Rep classes do not inherit
methods from non-Rep classes;

4. No public fields of Own classes are used outside their declaring module, thus from
premise(OM , OM ′, P) no e.f is seen, unless e is self ;

5. From premise, if x:=new X was outside Own classes, X 6∈ Rep. Assuming the
command is outside Own, it is impossible to have X 6∈ Rep and Y ∈ Rep, since all
subclasses of Rep classes are also included. Therefore, property is maintained;

6. From premise, e.m(..) within Own or Rep does not have Rep parameters; no
changes in parameters or Rep are made, so property is maintained.

2

Refinement

Proof. For proving refinement, show that all strategy’s steps are refinements or apply
laws of programming from the catalog presented in Appendix B.

1. For each field in superclasses of X, Law 27 change visibility: from pri to pub (L-R),
with no precondition;

2. For each superclass of X, in a top-down list, replace every method call using super
with Law 38 eliminate super (L-R), whose provisos are valid:

(a) super and private fields does not appear in the inline code, as the iteration
is top-down.

3. Each expression whose type is X is cast appropriately, using Law 40 introduce
trivial cast in expressions (L-R), with no provisos;

4. For each field in X, two options:

• Law 37 move field to superclass (L-R) is applied, with the following provisos:

(a) The field is not declared in subclasses of Y; otherwise, application fails.

• If it fails, Refactoring 5 pull up field (L-R) with the following provisos:
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(a) simplified precondition: The field name is not declared in Y or super-
classes, as shadowing is not allowed.

5. For each method redefinition in X, Law 35 move redefined method to superclass
(L-R), with the following provisos:

(a) super and private fields do not appear in X methods;

(b) All ocurrences of self are cast with X.

6. For each original method in X, apply following laws:

• Declare the method in all subclasses of Y, if it is not previously declared, with
Law 34 method elimination;

• Apply Law 36 move original method to superclass, with the following provisos:

(a) super and private fields do not appear in X methods;

(b) The method is declared in the subclasses of Y with the same parameters,
and all occurrences of self are cast with X.

7. Each declaration typed as X is changed to type Y, with the following laws: Law 29
change field type (L-R), Law 30 change variable type (L-R), Law 31 change param-
eter type (L-R) and Law 32 change return type (L-R). Their provisos are pretty
similar, for instance, change field type provisos are valid:

(a) X ≤ super(X ), and all C expressions are cast, from the previous step.

8. Each cast to X is eliminated with Law 39 eliminate cast of expressions (L-R), with
no provisos.

9. Rule eliminateTypeTests

• Method isX is introduced with Law 34 method elimination (R-L), with pre-
condition:

(a) isX is not declared in super(X) nor in any superclass or subclass of
super(X) in CT .

• In each type test, include a boolean local variable with Law 22 var block-value
(L-R), with provisos:

(a) the variable is fresh;

(b) x isX is not in the left-hand side of assignments or target of method call.

• In each type test, include a result local variable for receiving the test’s boolean
value, with 23 var block-res (L-R), with provisos:

(a) the variable is fresh;

(b) the boolean variable is not in the right-hand side of assignments, param-
eter or target of method call.

• In each type test, encapsulate the assignment from the test into a paramme-
terized command, with 24 pcom elimination-res (R-L), with provisos:
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(a) the new variable is fresh;

(b) the boolean variable is not in the left-hand side of assignments or target
of method call.

• In each type test, encapsulate the assignment from the test into a parame-
terized command, with 24 pcom elimination-res (R-L), with provisos:

(a) the new variable is fresh;

(b) the boolean variable is not in the left-hand side of assignments or target
of method call.

• In each type test parameterized, include an if statements with 25 if identical
guarded commands (R-L), with no precondition.

• in each type test parameterized command, replace the command by a method
call to isX with Law 33 method call elimination (R-L), with provisos:

(a) isX is not redefined and the command does not contain references to
super;

(b) no fields are used in isX.

• The type field is introduced, with Law 28 field elimination (R-L), with pro-
visos:

(a) type is not declared in Y or in its super or subclasses in CT .

• For each subclass of super(X), a constructor is added, if not previously
declared, with Law 34 method elimination;

• These subclasses have initialization added to their constructors self.type:=..,
with simulation. In this case, the coupling invariant is true:

– Constructors in these subclasses force changes to field type, establishing
the invariant;

– No changes in methods, which also maintains the invariant.

• isX in Y is changed by replacing the type test with a disjunction test on the
type field. Simulation is used, with coupling invariant self is X=

∨
(self.type

= "T", T ≤ X):

– The constructor in Y is not changes, establishing the invariant;

– Only method isX is changed, replacing self is X by the indicated dis-
junction, maintaining the invariant.

10. Rule eliminateNew

• After applying the new command syntactic sugar to all X instantiations, newX
is moved to the superclass with Law 36 move original method to superclass
(L-R), with valid provisos:

(a) super and private fields do not appear in the method;

(b) newX is not declared in any superclass of Y in CT;

(c) newX is not declared in Y;

(d) newX does not contain uncast occurrences of self .
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• Instantiations of X are replaced by newY with Law 4 new superclass (L-R),
with valid provisos:

(a) X is not used in type casts or type tests in CT for expressions of type Y;

(b) newX is assigned only to fields or variables of type Y or any supertype
of A.

11. For each immediate subclass of X, Law 26 change superclass: from an empty class
to immediate superclass (R-L), with no provisos, for changing their superclasses
from X to Y.

12. Law 3 class elimination (L-R) is applied, whose provisos are valid:

(a) X is not referred to in CT .

2

Semantic conformance

First we prove a few auxiliary lemmas as they are used in the proof.

Lemma E.9. The semantics of OM ′ can be defined in terms of semantics(OM ) as
follows.

semantics(OM ′) = i : {i : Interpretation | i ∈ semantics(OM ) ∧ i −B (sig X ).name}

Proof. We start from the definition of semantics(OM ′).
semantics(OM ′)
= [definition]
{i : Interpretation | satisfyImpInvs(OM ′, i) ∧ satisfyExpInvs(OM ′, i)}

= [from definition of satisfyImpInvs(OM ′, i)]
{i : Interpretation |
(∀ s : sigs(OM ′) • i .mapSig(s .name) ⊆ i .mapSig((super(s)).name))∧
satisfyExpInvs(OM ′, i)}

= [from definitions of OM ,OM ′,sigs(OM ′) = sigs(OM )− (sig X )]
{i : Interpretation |
(∀ s : sigs(OM )− (sig X )•
i .mapSig(s .name) ⊆ i .mapSig((super(s)).name))∧
satisfyExpInvs(OM ′, i)}

= [set theory]
{i : Interpretation |
(∀ s : sigs(OM )•
s 6= (sig X ) ∧ i .mapSig(s .name) ⊆ i .mapSig((super(s)).name))
∧ satisfyExpInvs(OM ′, i)}

= [without signature X, the implicit invariant is maintained for all other signatures]
{i : Interpretation |
(∀ s : sigs(OM )•
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i .mapSig(s .name) ⊆ i .mapSig((super(s)).name))
∧ satisfyExpInvs(OM ′, i)}

= [from definition of satisfyImpInvs(OM )]
{i : Interpretation | satisfyImpInvs(OM , i) ∧ satisfyExpInvs(OM ′, i)}

= [from definition of satisfyExpInvs(OM ′, i)]
{i : Interpretation | satisfyImpInvs(OM , i) ∧ ∀ f : factInvs(OM ′)•

satisfyFormula(f , i)}
= [from definitions of OM ,OM ′, factInvs(OM ′) = factInvs(OM )− (X = U − S − T )]
{i : Interpretation | satisfyImpInvs(OM , i) ∧
∀ f : factInvs(OM )− {r = x .y} • satisfyFormula(f , i)}

= [set theory]
{i : Interpretation | satisfyImpInvs(OM , i) ∧
∀ f : factInvs(OM ) • (f 6= {X = U − S − T})⇒ satisfyFormula(f , i)}

= [from Lemma 7.8, i is part of the semantics of OM ]
{i : Interpretation | i ∈ semantics(OM ) ∧ i −B (sig X ).name}

Lemma E.10. For P and P ′:
heaps(P ′, filter) = {h : Heap | h ∈ heaps(P , filter) ∧ h −B X .name}

Proof. The changed commands (tests and casts) do not add or remove heaps; all X
instances that are now Y instances are still mapped by U in the heap, and the other
classes in the hierarchy are abstract.

Main proof. Lemma 7.4 is then proved, using the result of the auxiliary lemmas and
premise.

= [definition]
∀ h : heaps(P ′, filter)•
∃ i : semantics(OM ′)•
∀ s : sigs(OM ′) • i .mapSig(s .name) = h.mapClass(s .name) ∧
∀ r : rels(OM ′) • i .mapRel(r .name) = h.mapField(r .name)

= [from premise(OM , OM ′, P), rels(OM ′) = rels(OM ),sigs(OM ′) = sigs(OM ) −
{sig X }]
∀ h : heaps(P ′, filter)•
∃ i : semantics(OM ′)•
∀ s : sigs(OM )− {sig X } • i .mapSig(s .name) = h.mapClass(s .name) ∧
∀ r : rels(OM ) • i .mapRel(r .name) = h.mapField(r .name)

= [set theory]
∀ h : heaps(P ′, filter)•
∃ i : semantics(OM ′)•
∀ s : sigs(OM ) • (sig X ) 6= s ⇒ i .mapSig(s .name) = h.mapClass(s .name) ∧
∀ r : rels(OM ) • i .mapRel(r .name) = h.mapField(r .name)

= [Lemma E.9 replaces semantics(OM ′)]
∀ h : heaps(P ′, filter)•
∃ i : {i : interpretation | i ∈ semantics(OM ) ∧ i −B X .name}•
∀ s : sigs(OM ) • (sig X ) 6= s ⇒ i .mapSig(s .name) = h.mapClass(s .name) ∧
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∀ r : rels(OM ) • i .mapRel(r .name) = h.mapField(r .name)
= [Lemma E.10 replaces heaps(P ′, filter)]
∀ h : {h : Heap | h ∈ heaps(P , filter) ∧ h −B X .name}•
∃ i : {i : Interpretation | i ∈ semantics(OM ) ∧ i −B X .name}•
∀ s : sigs(OM ) • (sig U ) 6= s ⇒ i .mapSig(s .name) = h.mapClass(s .name) ∧
∀ r : rels(OM ) • i .mapRel(r .name) = h.mapField(r .name)

= [From predicate calculus, choosing an arbitrary h1]
∃ i : {i : Interpretation | i ∈ semantics(OM ) ∧ i −B X .name}•
∀ s : sigs(OM ) • (sig X ) 6= s ⇒ i .mapSig(s .name) = h1.mapClass(s .name) ∧
∀ r : rels(OM ) • i .mapRel(r .name) = mapField(h1)(r .name)

= [For existential quantification, we choose interpretation i1 which repeats the map-
pings for model names in h1, removing the mapping from X signature]
∀ s : sigs(OM ) • (sig X ) 6= s ⇒ i1.mapSig(s .name) = h1.mapClass(s .name) ∧
∀ r : rels(OM ) • i .mapRel1)(r .name) = mapField(h1)(r .name)

= [from premise(OM , OM ′, P)]
∀ s : sigs(OM ) • (sig U ) 6= s ⇒ i1.mapSig(s .name) = h1.mapClass(s .name)

= [from premise(OM , OM ′, P), every original model signature and class is mapped to
the same values, except X ]

true
2

E.6 fromSetToOptionalField

In this strategy, a specific field is changed from a set representation to a single variable,
based on an invariant from the model. Let OM ,OM ′ be any two object models and
P ,P ′ two programs as follows:

OM OM ′

sig S [extends]{
rs
r : set T

}

fact F{

forms
all s : S | lone s .r

}

=⇒

ps
sig S [extends]{

rs
r : lone T

}

fact F{

forms
}

P P ′

CT
class S [extends]{

ads ; set T r ;
mts

}

=⇒

CT
class S [extends]{

ads ; T r ;
mts ′

}
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where:
mts ′′ = mts [if (exp = ∅) then self .r := null else self .r := elem(exp)
/self .r := exp]

mts ′ = mts ′′[if (self .r = null) then cmd [exp([∅/self .r ])]else cmd [exp[{self .r}/self .r ]]
/cmd [exp[self .r ]]]

Syntactic conformance

Proof. The goal is to prove validity of the predicate, based on the premise predicates,
mainly syntConformance(OM ,P).

syntConformance(OM ′,P ′)
= [definition]
∀ s : sigs(OM ′) • sigMapping(s ,P ′) ∧
∀ r : rels(OM ′) • relMapping(r ,P ′) ∧
abstractConstraint(OM ′,P ′)

= [from definitions of OM ,OM ′,sigs(OM ′) = sigs(OM ) and rels(OM ′) = rels(OM ) −
{r : set T} ∪ {r : lone T}]
∀ s : sigs(OM ) • sigMapping(s ,P ′) ∧
∀ r : rels(OM )− {r : set T} ∪ {r : lone T} • relMapping(r ,P ′) ∧
abstractConstraint(OM ′,P ′)

= [From definitions of OM ′,P ,P ′, ∀ r : sigs(OM )• sigMapping(s ,P) = sigMapping(s ,P ′)]
∀ s : sigs(OM ) • sigMapping(s ,P) ∧
∀ r : rels(OM )− {r : set T} ∪ {r : lone T} • relMapping(r ,P ′) ∧
abstractConstraint(OM ′,P ′)

= [From definitions of OM ′,P ′, abstractConstraint(OM ′,P ′) = abstractConstraint(OM ,P),
as hierarchies are not affected]
∀ s : sigs(OM ) • sigMapping(s ,P) ∧
∀ r : rels(OM )− {r : set T} ∪ {r : lone T} • relMapping(r ,P ′)

= [From definition of syntConformance, and premise,∀ s : sigs(OM ) • sigMapping(s ,P)
is valid]
∀ r : rels(OM )− {r : set T} ∪ {r : lone T} • relMapping(r ,P ′)

= [set theory]
∀ r : rels(OM ) • relMapping(r ,P ′) ∧ relMapping((r : lone T ),P ′)

= [from premise(OM ,OM ′, P),∀ r : rels(OM )⇒ relMapping(r ,P ′)⇔ relMapping(r ,P),
which is valid]

relMapping((r : lone T ),P ′)
= [definition of relMapping , already simplified]
∃ f : fields(P ′) • (r : lone T ).name = f .name ∧

(r : lone T ).leftType = f .leftType ∧ (r : lone T ).rightType = f .rightType ∧
(¬isScalar(r : lone T )⇒ ¬isScalar(f ))

= [Predicate calculus, choose newly-introduced field r in P’]
(r : lone T ).name = (T r).name ∧
(r : lone T ).leftType = (T r).leftType ∧ (r : lone T ).rightType = (T r).rightType ∧
(¬isScalar(r : lone T )⇒ ¬isScalar(T r))
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= [Name and types match]
(¬isScalar(r : lone T )⇒ ¬isScalar(T r))

= [From definitions of OM ′,P ′, either field and relation are scalar]
true

2

Confinement

Proof. By case analysis on P ′ for the six static analysis rules of confinement. In this
case, no changes for confinement are seen.

Refinement

Proof. For proving refinement, show that all strategy’s steps are refinements or apply
laws of programming from the catalog presented in Appendix B.

1. Field T r’ is introduced with Law 28 field elimination (R-L), with the following
provisos:

(a) r’ is not declared in S or in its super or subclasses in CT .

2. As representation independence is proved for confined programs with references [8],
refinement is given by simulation – the coupling invariant is (self .r =⇒ self .r ′ =
null) ∧ (¬(self .r = ∅)⇒ elem(self .r) = self .r ′).

• Constructors in S force changes to field r to be duplicated for r’, but for
a single value, so the invariant is established. Also, expressions using r are
always replaced by the respective scalar value, with an if statement;

• Same for methods, which maintains the invariant.

3. We rename r’ in class S to r, which is a straightforward equivalence;

2

Semantic conformance

Proof. Since semantics(OM ) = semantics(OM ′) and heaps(P , filter) = heaps(P ′, filter),
it is straightforward to prove that the semantic conformance is maintained.

E.7 splitField

An alternative path between two classes is created, adding a new classes and two fields,
along with an invariant defining how instanced are linked.

Let OM ,OM ′ be any two object models and P ,P ′ two programs as follows:
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OM OM ′

ps
sig S [extends]{

rs
r : set T

}

fact F{

forms
}

=⇒

ps
sig S [extends]{

rs
r : set T ,
x : set U

}

sig U {

y : set T
}

fact F{

forms
r = x .y

}

P P ′

CT
class S [extends]{

ads ; set T r ;
W x ;
constr {

b ′}
mts

}
class U [extends]{..} =⇒

CT ′

class S [extends]{
ads ; set T r ;
W x ′;
set U x ;
constr {

b ′;
self .x := {new U } }

mts ′

}
class U ′ [extends]{..}
class U {

set T y ;
unit setY (T e){

self .y := e}
T getY (){

result := self .y}
}

where:
CT ′,mts ′′ = CT ,mts [U ′/U ]
mts ′ = mts ′′[unpack self ; self .r := exp; elem(self .x ).setY (exp); pack self/self .r :=

exp]

Syntactic conformance

Proof. The goal is to prove validity of the predicate, based on the premise predicates,
mainly syntConformance(OM ,P).
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syntConformance(OM ′,P ′)
= [definition]
∀ s : sigs(OM ′) • sigMapping(s ,P ′) ∧
∀ r : rels(OM ′) • relMapping(r ,P ′) ∧
abstractConstraint(OM ′,P ′)

= [from definitions of OM ,OM ′,sigs(OM ′) = sigs(OM ) ∪ {sig U } and rels(OM ′) =
rels(OM ) ∪ {x : set U } ∪ {y : set T}]
∀ s : sigs(OM ) ∪ {sig U } • sigMapping(s ,P ′) ∧
∀ r : rels(OM ) ∪ {x : set U } ∪ {y : set T} • relMapping(r ,P ′) ∧
abstractConstraint(OM ′,P ′)

= [From definitions of OM ′,P ′, abstractConstraint(OM ′,P ′) = abstractConstraint(OM ,P),
as hierarchies are not affected]
∀ s : sigs(OM ) ∪ {sig U } • sigMapping(s ,P ′) ∧
∀ r : rels(OM ) ∪ {x : set U } ∪ {y : set T} • relMapping(r ,P ′)

= [set theory]
∀ s : sigs(OM ) • sigMapping(s ,P ′) ∧
sigMapping((sig U ),P ′) ∧
∀ r : rels(OM ) • relMapping(r ,P ′) ∧
relMapping((x : set U ),P ′) ∧
relMapping((y : set T ),P ′)

= [From definitions of OM ′,P ,P ′, ∀ r : sigs(OM )• sigMapping(s ,P) = sigMapping(s ,P ′),
same for relations]
∀ s : sigs(OM ) • sigMapping(s ,P) ∧
sigMapping((sig U ),P ′) ∧
∀ r : rels(OM ) • relMapping(r ,P) ∧
relMapping((x : set U ),P ′) ∧
relMapping((y : set T ),P ′)

= [From definition of syntConformance, and premise,∀ s : sigs(OM ) • sigMapping(s ,P)
is valid (same for rels(OM ))]

sigMapping(sig U },P ′) ∧
relMapping(x : set U ),P ′) ∧
relMapping(y : set T ),P ′)

= [definition of sigMapping ]
∃ cl : classes(P ′) • (sig U ).name = cl .name ∧

list2set((sig U ).extends) ⊆ list2set(cl .extends)
relMapping((x : set U ),P ′) ∧
relMapping((y : set T ),P ′)

= [from predicate calculus, choosing cl to be the newly-introduced U class]
(sig U ).name = (classU ).name ∧
list2set((sig U ).extends) ⊆ list2set((classU ).extends)
relMapping((x : set U ),P ′) ∧
relMapping((y : set T ),P ′)

= [from definition of P’, name and superclasses are the same]
relMapping((x : set U ),P ′) ∧
relMapping((y : set T ),P ′)

= [From definition of relMapping , already simplified]
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∃ f 1 : fields(P ′) • (r : set T ).name = f 1.name ∧
(x : set U ).leftType = f 1.leftType ∧ (x : set U ).rightType = f 1.rightType ∧
(isScalar(x : set U )⇒ isScalar(f 1)) ∧
∃ f 2 : fields(P ′) • (y : set T ).name = f 2.name ∧

(y : set T ).leftType = f 2.leftType ∧ (y : set T ).rightType = f 2.rightType ∧
(isScalar(y : set T )⇒ isScalar(f 2))

= [Predicate calculus, choose newly-introduced field x for f 1 and y for f 2 in P ′]
(r : set T ).name = (set Ux ).name ∧
(x : set U ).leftType = (set Ux ).leftType ∧ (x : set U ).rightType = (set Ux ).rightType ∧
(isScalar(x : set U )⇒ isScalar(set U x )) ∧
(y : set T ).name = (set Ty).name ∧
(y : set T ).leftType = (set Ty).leftType ∧ (y : set T ).rightType = (set Ty).rightType ∧
(isScalar(y : set T )⇒ isScalar(set T y))

= [Name and types match for both x,y]
(isScalar(x : set U )⇒ isScalar(set U x )) ∧
(isScalar(y : set T )⇒ isScalar(set T y))

= [From definitions of OM ′,P ′, both are declared as set]
true

2

Confinement

Proof. By case analysis on P ′ for the six static analysis rules of confinement. In this
case, S,U ∈ Own and U,T ∈ Rep.

1. No method interface is changed, thus from premise(OM , OM ′, P) there are no
methods in Own with Rep return types;

2. No inherited methods are added, thus from premise(OM , OM ′, P) no inherited
methods have Rep parameters;

3. Same as above, thus from premise(OM , OM ′, P), Rep classes do not inherit
methods from non-Rep classes;

4. No public fields of Own classes are used outside their declaring module, thus from
premise(OM , OM ′, P) no e.f is seen, unless e is self ;

5. No new is changed, thus from premise(OM , OM ′, P) Rep instance is created
outside Own classes;

6. The only method call added is within class S, calling setY(). The object called
is typed U∈ Own, so it does not break confinement.

2
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Refinement

Proof. For proving refinement, show that all strategy’s steps are refinements or apply
laws of programming from the catalog presented in Appendix B.

1. We rename x in class S to x’, which is a straightforward equivalence;

2. We rename class U to U’, which is a straightforward equivalence;

3. Law 3 class elimination (R-L) is applied, whose provisos are valid:

(a) The name of class U is distinct from those of all classes declared in CT .

(b) The superclass appearing in U is Object.

(c) The field and method names declared by U are not declared by its superclasses
in CT , since it is Object.

4. Field setT x is introduced with Law 28 field elimination (R-L), with the following
provisos:

(a) x is not declared in S or in its super or subclasses in CT .

5. As representation independence is proved for confined programs with references [8],
refinement is given by simulation – the coupling invariant is (self .r = ∅ ⇒
self .r ′ = null) ∧ (¬(self .r = ∅)⇒ elem(self .r) = self .r ′).

• Constructors in S force x to be non-null for every S object. Also, writings to
field r are duplicated for the indirection by calling self.x.setY();

• Methods maintain the invariant.

2

Semantic conformance

First we prove a few auxiliary lemmas as they are used in the proof.

Lemma E.11. The semantics of OM ′ can be defined in terms of semantics(OM ) as
follows.

semantics(OM ′) = {i ′ ⊕ i ′′ | i ′ ∈ semantics(OM ) ∧
i ′′ : Interpretation | i ′′.mapSig(U ) = P objValue ∧
i ′′.mapRel(x ) = P(i ′.mapSig(S )↔ i ′′.mapSig(U )) ∧
i ′′.mapRel(y) = P(i ′′.mapSig(U )↔ i ′.mapSig(T )) ∧
i ′′.mapRel(x ) o

9 i ′′.mapRel(y) = i ′.mapRel(r)}

Proof. We start from the definition of semantics(OM ′). In this proof, we use a small
auxiliary interpretation i ′′, which provides mappings for U,x and y.
semantics(OM ′)
= [definition]
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{i ′ : Interpretation | satisfyImpInvs(OM ′, i ′) ∧ satisfyExpInvs(OM ′, i ′)}
= [when introducing signature and relations, no extends clause is affected, thus
satisfyImpInvs(OM , i ′) = satisfyImpInvs(OM ′, i ′)]
{i ′ : Interpretation | satisfyImpInvs(OM , i ′) ∧ satisfyExpInvs(OM ′, i ′)}

= [from definition of satisfyExpInvs(OM ′, i ′)]
{i ′ : Interpretation | satisfyImpInvs(OM , i ′) ∧ ∀ f : factInvs(OM ′)•

satisfyFormula(f , i ′)}
= [from definitions of OM ,OM ′,factInvs(OM ′) = factInvs(OM ) ∪ (r = x .y)]
{i ′ : Interpretation | satisfyImpInvs(OM , i ′) ∧
∀ f : factInvs(OM ) ∪ {r = x .y} • satisfyFormula(f , i ′)}

= [set theory]
{i ′ : Interpretation | satisfyImpInvs(OM , i ′) ∧
∀ f : factInvs(OM ) • satisfyFormula(f , i ′)∧
satisfyFormula({r = x .y}, i ′)}

= [from definition of semantics(OM )]
{i ′ : Interpretation | i ′ ∈ semantics(OM ) ∧ satisfyFormula({r = x .y}, i ′)}

= [From Lemma 7.5, where v = P objValue]
{i ′ ⊕ i ′′ | i ′ ∈ semantics(OM ) ∧ satisfyFormula({r = x .y}, i ′ ⊕ i ′′)

i ′′.mapSig(U ) = P objValue}
= [From Lemma 7.5, where v = P(i ′.mapSig(S )↔ i ′′.mapSig(U ))]
{i ′ ⊕ i ′′ | i ′ ∈ semantics(OM ) ∧ satisfyFormula({r = x .y}, i ′ ⊕ i ′′)

i ′′.mapSig(U ) = P objValue
i ′′.mapRel(x ) = P(i ′.mapSig(S )↔ i ′′.mapSig(U ))}

= [From Lemma 7.5, where v = P(i ′′.mapSig(U )↔ i ′.mapSig(T ))]
{i ′ ⊕ i ′′ | i ′ ∈ semantics(OM ) ∧ satisfyFormula({r = x .y}, i ′ ⊕ i ′′)

i ′′.mapSig(U ) = P objValue
i ′′.mapRel(x ) = P(i ′.mapSig(S )↔ i ′′.mapSig(U ))
i ′′.mapRel(y) = P(i ′′.mapSig(U )↔ i ′.mapSig(T ))}

= [from satisfyFormula({r = x .y}, i ′⊕i ′′), i ′′.mapRel(x )o
9i ′′.mapRel(y) = i ′′.mapRel(r)]

{i ′ ⊕ i ′′ | i ′ ∈ semantics(OM )∧
i ′′ : Interpretation | i ′′.mapSig(U ) = P objValue ∧
i ′′.mapRel(x ) = P(i ′.mapSig(S )↔ i ′′.mapSig(U )) ∧
i ′′.mapRel(y) = P(i ′′.mapSig(U )↔ i ′.mapSig(T )) ∧
i ′′.mapRel(x ) o

9 i ′′.mapRel(y) = i ′.mapRel(r)}

Lemma E.12. For P and P ′:
heaps(P ′, filter) =
{h ⊕ h ′ | h ∈ heaps(P , filter) ∧

h ′ : Heap | h ′.mapClass(U ) = P(objValue) ∧
h ′.mapField(x ) = h.mapClass(S )�→ h ′.mapClass(U )) ∧
h ′.mapField(y) = P(h ′.mapClass(U )↔ h.mapClass(T )) ∧
@o : h ′.mapClass(U ) • o ∈ values(h) ∧
h ′.mapField(x ) o

9 h ′.mapField(y) = h.mapField(r)

Proof. The changed commands do not add or remove heaps. Also, every X ob-
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ject is mapped to a single new U object by field x, forming a bijection; the invariant
h ′.mapField(x ) o

9h ′.mapField(y) = h.mapField(r) is given by modifications on self.x.y.

Main proof. Lemma 7.4 is then proved, using the result of the auxiliary lemmas and
premise.

semanticConformance(OM ′,P ′)
= [definition]
∀ h : heaps(P ′, filter)•
∃ i : semantics(OM ′)•
∀ s : sigs(OM ′) • i .mapSig(s .name) = h.mapClass(s .name) ∧
∀ r : rels(OM ′) • i .mapRel(r .name) = h.mapField(r .name)

= [from definitions of OM ,OM ′,sigs(OM ′) = sigs(OM ) ∪ {sig U } and rels(OM ′) =
rels(OM ) ∪ {x : set U } ∪ {y : set T}]
∀ h : heaps(P ′, filter)•
∃ i : semantics(OM ′)•
∀ s : sigs(OM ) ∪ {sig U } • i .mapSig(s .name) = h.mapClass(s .name) ∧
∀ r : rels(OM )∪{x : set U }∪{y : set T}• i .mapRel(r .name) = h.mapField(r .name)

= [set theory]
∀ h : heaps(P ′, filter)•
∃ i : semantics(OM ′)•
∀ s : sigs(OM ) • i .mapSig(s .name) = h.mapClass(s .name) ∧
i .mapSig((sig U ).name) = h.mapClass((sig U ).name) ∧
∀ r : rels(OM ) • i .mapRel(r .name) = h.mapField(r .name) ∧
i .mapRel((x : set U ).name) = h.mapClass((x : set U ).name) ∧
i .mapRel((y : set T ).name) = h.mapClass((y : set T ).name)

= [Lemma E.11 replaces semantics(OM ′)]
∀ h : heaps(P ′, filter)•
∃ i : {i ′ ⊕ i ′′ | i ′ ∈ semantics(OM ) ∧

i ′′ : Interpretation | i ′′.mapSig(U ) = P objValue ∧
i ′′.mapRel(x ) = P(i ′.mapSig(S )↔ i ′′.mapSig(U )) ∧
i ′′.mapRel(y) = P(i ′′.mapSig(U )↔ i ′.mapSig(T )) ∧
i ′′.mapRel(x ) o

9 i ′′.mapRel(y) = i ′.mapRel(r)} •
∀ s : sigs(OM ) • i .mapSig(s .name) = h.mapClass(s .name) ∧
i .mapSig((sig U ).name) = h.mapClass((sig U ).name) ∧
∀ r : rels(OM ) • i .mapRel(r .name) = h.mapField(r .name) ∧
i .mapRel((x : set U ).name) = h.mapClass((x : set U ).name) ∧
i .mapRel((y : set T ).name) = h.mapClass((y : set T ).name)

= [Lemma E.12 replaces heaps(P ′, filter), followed by predicate calculus taking an arbi-
trary h1]
∃ i : {i ′ ⊕ i ′′ | i ∈ semantics(OM ) ∧

i ′′ : Interpretation | i ′′.mapSig(U ) = P objValue ∧
i ′′.mapRel(x ) = P(i ′.mapSig(S )↔ i ′′.mapSig(U )) ∧
i ′′.mapRel(y) = P(i ′′.mapSig(U )↔ i ′.mapSig(T )) ∧
i ′′.mapRel(x ) o

9 i ′′.mapRel(y) = i ′.mapRel(r)} •
∀ s : sigs(OM ) • i .mapSig(s .name) = h1.mapClass(s .name) ∧
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i .mapSig((sig U ).name) = h1.mapClass((sig U ).name) ∧
∀ r : rels(OM ) • i .mapRel(r .name) = mapField(h1)(r .name) ∧
i .mapRel((x : set U ).name) = h1.mapClass((x : set U ).name) ∧
i .mapRel((y : set T ).name) = h1.mapClass((y : set T ).name)

= [from predicate calculus, choosing i1 to be an interpretation for OM ′ with the same
mappings as h1, taking x as a bijection exactly as in the program, which is allowed from
its definition (P(i .mapSig(S )↔ i ′.mapSig(U )))]
∀ s : sigs(OM ) • i1.mapSig(s .name) = h1.mapClass(s .name) ∧
i1.mapSig((sig U ).name) = h1.mapClass((sig U ).name) ∧
∀ r : rels(OM ) • i1.mapRel(r .name) = mapField(h1)(r .name) ∧
i1.mapRel((x : set U ).name) = h1.mapClass((x : set U ).name) ∧
i1.mapRel((y : set T ).name) = h1.mapClass((y : set T ).name)

= [from premise(OM , OM ′, P), mappings are maintained for names in OM ]
i1.mapSig((sig U ).name) = h1.mapClass((sig U ).name) ∧
i1.mapRel((x : set U ).name) = h1.mapClass((x : set U ).name) ∧
i1.mapRel((y : set T ).name) = h1.mapClass((y : set T ).name)

= [from definitions of h1, i1, values for signature U and relation y are equivalent]
i1.mapRel((x : set U ).name) = h1.mapClass((x : set U ).name)

= [from definition of i1, which match the bijection from h1]
true

2
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