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Abstract— As technology advances and the number of intercon-
nections among modules rapidly increases, timing closure and de-
sign convergence are the most important concerns. Hence, it is
desirable to consider interconnect optimization as early as possi-
ble. In this paper, we first address simultaneous floorplanning and
buffer block planning (i.e., integrating buffer block planning into
floorplanning) for interconnect optimization. Experimental results
show that our method can significantly improve the interconnect
delay and reduce the number of buffers needed.

I. INTRODUCTION

As revealed by the 1999 international technology roadmap for semi-
conductors [10], technology will soon shrink into below 0.1 micron, and
the chip complexity will be over 200 million transistors. For such large
and complex designs, timing closure and design convergence are the
most important concerns. Further, for deep submicron designs, inter-
connect dominates circuit performance. The conventional design flow
deals with interconnect optimization at the routing or the post-routing
stage. When the amount of communication among modules rapidly in-
creases, however, it is almost impossible to remedy interconnect during
or after routing, since most silicon and routing resources are occupied.
Therefore, we should optimize interconnect as early as possible. Previ-
ous work for this issue can be classified into two directions: wire plan-
ning and buffer block planning for interconnect-driven floorplanning.

Wire planning for interconnect-driven floorplanning tries to mea-
sure the impact of wiring or to plan interconnect at the floorplanning
stage [3]. However, this method considers only wires; other useful tech-
niques, e.g., buffer insertion, were not included. On the other hand,
buffer block planning for interconnect-driven floorplanning manages
buffer blocks for a given floorplan [4, 8, 11]. For a given floorplan,
channels and dead spaces are used as buffer blocks, which accommo-
date buffers. Cong et al. first consider this issue in [4]. Sarkar et al.
also consider routability and address the concept of independent feasi-
ble regions (the feasible regions of buffers for a net do not affect each
other) in [8]. [4, 8] expand channels to accommodate more buffers if
necessary. However, if the given floorplan is not good enough, channel
expansion would result in much area overhead. Alpert et al. proposed
buffer site methodology in [2], allocating buffers into empty silicon area
inside macro blocks. However, current technology has not provided this
kind of information; so buffer are still inserted outside macro blocks.
Therefore, the existing buffer block planning is limited by the quality of
a given floorplan.

In this paper, we first study simultaneous floorplanning and buffer
block planning to conquer the weakness of the above. (In industry, this
idea was considered for Intel Itanium microprocessor design [6].) Our
method adopts the simulated annealing mechanism to refine a general
floorplan so that buffers can be inserted more effectively. In each itera-
tion, we construct a routing tree for each net, allocate buffers for all nets,
introduce corresponding buffer blocks into the intermediate floorplan,

�The work of Yao-Wen Chang was partially supported by the National Sci-
ence Council of Taiwan ROC under Grant No. NSC-89-2215-E-009-117.

and invoke Lagrangian relaxation to optimize area and satisfy timing
requirements. Further, in order to reduce the problem size, we present
supermodule partitioning which partitions modules into supermodules.
Experimental results show that our method of integrating buffer block
planning into floorplanning can significantly improve the interconnect
delay and reduce the number of buffers needed.

II. PROBLEM FORMULATION

We define the Simultaneous Floorplanning and Buffer Block Plan-
ning (FBP) problem as follows.

� Instance: An initial floorplan, multi-terminal nets and their tim-
ing requirements, buffer library, technology file

� Problem: Find a floorplan with buffer block planning such that
the area overhead is minimized subject to the timing requirement
constraints.

Table I lists the technology file and buffer library used in our ex-
periments that are based on 0.18 �m technology in the NTRS’97
roadmap [9]. These parameters were also used in [4, 8].

TABLE I
PARAMETERS OF ���� �M TECHNOLOGY [9].

Parameter Description (unit) Value
�� wire sheet resistance (���) 0.068
�� wire unit-length resistance 0.075

of 0.9 �� width (����)
�� wire sheet area capacitance (������) 0.06
�� wire fringing capacitance (�����) 0.064
	 wire width (��) 0.9
�� wire unit-length capacitance 0.118

of 0.9 �� width (�����)

� load capacitance (�� ) 23.4
�� driver resistance (�) 180
�� intrinsic buffer delay (
�) 36.4

� buffer input capacitance (�� ) 23.4
�� buffer output resistance (�) 180
�� buffer size (���) 400

III. PRELIMINARIES

A. Sequence Pair Representation

We adopt the sequence pair representation [7] for a general floorplan.
A sequence pair of a set of modules is a pair of sequences formed by
module names. We can retrieve the topology relations and construct
horizontal/vertical constraint graphs ����� as follows.

� H-constraint: If ���������� ���������, module � is on the right side
of module �; there exists an edge ��� �� in �� .



� V-constraint: If ���������� ���������, module � is below module �;
there exists an edge ��� �� in ��

In �� /�� , each node is weighted as the module width/height. Two
zero-weighted nodes � and 	 are also built. In addition, edges from � to
zero-indegree nodes and from zero-outdegree nodes to 	 are added. The
x-coordinate (y-coordinate) of the bottom-left corner of each module
can be computed by the longest path length from � to the module node
in �� (�� ).

B. Independent Feasible Region

The independent feasible region of a buffer is the region where the
buffer can be placed to meet the timing requirement of the net, while
the other buffers are placed within their respective independent feasible
regions [8].

Given a wire segment of length 
 with driver resistance ��, load
capacitance ��, wire resistance per unit length �
, wire capacitance per
unit length ��, buffer input resistance ��, and buffer input capacitance
��. Let ��
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In [8], the independent feasible region ��� of width � �
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C. Basic Buffer Block Planning

In this section, we propose the basic idea of our buffer block planning
for two-terminal nets. (Multi-terminal nets will be considered later.)
Based on the above formulae, the routing of a two-terminal net � should
be a monotonic route restricted in the bounding box of its terminals.
The independent feasible region of the ��
 buffer is a hexagon or a de-
generated hexagon bounded by the bounding box and two parallel lines
of slope �� or ��. The respective distance from the source terminal
to these parallel lines are 
�� �� �

� �� and 
�� �� �
� ��. A buffer block

is a rectilinear region consisting of buffers, provided by dead spaces
and/or channels. Each buffer is inserted into a buffer block with that
its independent feasible region overlaps. If there are many choices, we
first assign it to the one with the most overlapped area. After all buffers
for all nets are allocated, the area of each buffer block is determined as
the bounding area of inserted buffers. We will reshape the floorplan by
Lagrangian relaxation detailed in Section IV.

IV. LAGRANGIAN RELAXATION BASED BUFFER BLOCK

PLANNING

In this section, we detail buffer block planning for an intermediate
floorplan. We construct a routing tree for each net, record unsatisfied
nets, assign buffer blocks (extended from the basic idea introduced in
Section III), reshape the floorplan using the Lagrangian relaxation tech-
nique, update unsatisfied nets, partition the floorplan into supermodules,
and finally summarize our buffer block planning procedure.

A. Routing Tree Construction

For an intermediate floorplan, we first construct a routing tree for
each multi-terminal net. To construct a timing-aware routing tree for
each net, we adopt the Prim-Dijkstra method proposed by [1], mixing
Dijkstra’s shortest path algorithm with Prim’s minimum spanning tree
one [5]. The generated tree tradeoffs between radius and wire length.
The initial tree is then converted to a Steiner tree by removing over-
lapped edges. (Alternative tree construction approaches can also be
used instead.)

B. Buffer Block Planning

A multi-terminal routing tree can be seen as a combination of several
two-terminal routing segments. Hence, our buffer block planning for
multi-terminal nets is extended from the basic buffer block planning for
two-terminal nets presented in Section C.

Based on the longest path from the source to the sink terminals in the
routing tree and the formulae described in Section B, we can check
whether an optimally buffered routing tree can satisfy its timing re-
quirement, i.e., ��

��� � ��
�
� . We record these unsatisfied nets, and

do not plan buffers for them, since the timing of these nets cannot be
achieved. For the rest of nets, we obtain the number of buffers needed
for the longest path, the optimal distance from the source terminal to
each buffer, and the width of independent feasible region. We then de-
termine the independent feasible region of each buffer on each path ac-
cording to the above information.

To preserve the topology of the routing tree, the independent feasible
region of each buffer is further restricted to the bounding box of the two
nearest Steiner tree nodes. If the independent feasible region covers
some tree node, the tree node plays the role of the buffer. Similar to
the basic buffer block planning for two-terminal nets, we assign buffers
into a dead space that intersects their independent feasible regions with
the most area or into the nearest channel.

After allocating buffers for all nets, we introduce buffer blocks as soft
modules into constraint graphs. These buffer blocks may occupy dead
spaces or be inserted into channels. Their areas equal the bounding ar-
eas of inserted buffers. Previous work generates buffer blocks before
buffer assignment; however, we generate buffer blocks after buffer as-
signment, and thus the area of buffer blocks can properly be controlled,
especially for the buffer blocks in channels.

C. Lagrangian Relaxation

We adopt Lagrangian relaxation technique to reshape the floorplan.
After buffer allocation,�� /�� contains �modules nodes and � buffer
block nodes. The first � nodes indicate modules, and the other � nodes
indicate buffer blocks. Each module or buffer block has its bottom-
left corner x-coordinate ��, bottom-left corner y-coordinate ��, area ��,
width ��, height �����, maximum width ��, and minimum width ��.
In addition, inspired by [13] to facilitate area calculation, we add one
dummy node labeled � � � � � to �� and �� . As mentioned in
Section A, ������ (������) equals the width (height) of the packing.
There are � multi-terminal nets. ��

�
� denotes the timing requirement



of net �, and ��
	
� denotes the longest path delay in the routing tree of

net �. Hence, we may formulate the geometric program 

 (Primal
Problem) to minimize the total area subject to timing requirements as
follows.
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Because the objective function and the constraints are all posyno-
mial [12], we can apply Lagrangian relaxation to solve the problem


 by introducing one non-negative Lagrange multiplier for each con-
straint. Therefore, the Lagrangian relaxation subproblem �
� is given
by
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The objective function of �
� is the Lagrangian function ������ .
By Kuhn-Tucker conditions [12], we obtain the following theorems.

Theorem 1 The optimality conditions for the Lagrange multipliers are
given by �
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Theorem 2 Let ���� ���� ����� be a solution, then the optimal width
of module or buffer block � is given by
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The optimal distance between buffers of a net is constrained by
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�� � � � �, ��� %� and �%� &� are consecutive edges in the longest path
'� of net �.

The Lagrangian dual problem ��
 is to find a vector of Lagrange
multipliers such that the optimal solution of �
� is also the optimal
solution of 
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We only need to consider those multipliers satisfying the optimality
conditions. We iteratively adjust multipliers by the sub-gradient opti-
mization method as follows.
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���� �� and - ,� . is the step size sequence that
satisfies ��
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the sub-gradient optimization method, Lagrange multipliers change to a
new vector, thus the new vector needs to be projected back to the nearest
point by the 2-norm measure and to meet the optimality conditions.

D. Supermodule Partitioning

After Lagrangian relaxation, we partition the floorplan into super-
modules to reduce the problem size for simulated annealing. At a high
temperature, the size of a supermodule is small so that the simulated an-
nealing can freely refine the floorplan. When the temperature is cooling
down (the floorplan is settled down at a low temperature), the size of
a supermodule is adjusted to a larger value. A supermodule holds the
following two properties.

� A supermodule is a set of modules in the floorplan.

� The nets between any pair of modules in a supermodule meet tim-
ing requirements.

An extreme case is all modules in one supermodule, i.e., all nets
meet timing requirements. Note that buffer blocks in a supermodule
will be considered into buffer block planning in the next iteration, and
supermodules are considered as hard modules.

V. SIMULTANEOUS FLOORPLANNING AND BUFFER BLOCK

PLANNING

Our simultaneous floorplanning and buffer planning (FBP) algorithm
is based on simulated annealing and provides a mechanism to refine the
floorplan.

A. Solution Perturbation

A feasible non-slicing floorplan, without overlapping modules, can
be represented by a sequence pair. We adopt the following four opera-
tions to perturb a sequence pair to another.

� Op1: Exchange two modules in the first sequence.

� Op2: Exchange two modules in both sequences.

� Op3: Rotate a module.

� Op4: Relax a supermodule.

We perturb a solution with the guidance of the current solution.
Hence, with a probability adjusted by temperature and the solution qual-
ity, the related modules of the unsatisfied nets are chosen as candidates
for perturbation.

B. Cost Function

A floorplan � is evaluated by its cost combined by area and timing
as follows. �"�	��� � �
����� � /
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/ is a user specified parameter, 0 is the set of nets, ��
	
� is the delay

of net � after buffer block planning, ��
�
� is the timing requirement of

net �, and ���� denotes the positive part of �, i.e., ���� � 

���� ��.



The first part of cost is the area consumed by the floorplan, including
currently existing buffer blocks. The second part of the cost reflects
the timing penalty paid for unsatisfied nets. The simulated annealing
process gradually minimizes the cost.

C. Annealing Schedule

The annealing schedule controls the acceptance rate of uphill moves,
neighboring solutions with higher costs. The initial temperature is set
as to �����
��*�, where ���� is the average cost change of a random
sequence of moves, and * is the initial probability of accepting uphill
moves. In the beginning, the temperature is high; hence, * is initially
set very close to 1. After each iteration, the temperature is reduced by
a factor 1 - �. The annealing process ends up when the temperature
cools down below 2.

D. Overall Algorithm

The simulated annealing process begins from a random feasible
floorplan �. Buffer blocks are accordingly planned as described in Sec-
tion IV. FBP then perturbes the floorplan using the aforementioned four
operations. After each move, buffer blocks are planned according to the
new floorplan. The process terminates when the solution is frozen, the
temperature is too low, or the runtime is too long.

VI. EXPERIMENTAL RESULTS

We implemented the FBP algorithm in the C language on a 166 MHz
Sun UltraSPARC I workstation. The parameters used in the experiments
are based on ���� �� technology (see Table I). Note that this set of
parameters were also used in [4].

It should be noted that, as presented earlier, our approach can handle
multi-terminal nets directly. For comparative study, however, we used
the two-terminal nets obtained in [4] by splitting from multi-terminal
nets; the timing requirements are also generated by [4] from ����–
��������. The experiments of [8] are based on different parameters
and delay bounds (randomly generated within the same interval ����–
��������), so we listed the results of the RBP algorithm in [8] for
the reader’s reference. The experimental results are summarized in Ta-
ble II, including the number of nets meeting timing requirements (# nets
meet) and that of total nets in a circuit (Tot. # nets), the percentages
of nets meeting the timing constraints, the number of buffers inserted
(#buffers), and the percentages of extra areas over the given floorplans
for buffer insertion. For fair comparison with BBP in [4], FBP adopts
buffer block planning for two-terminal nets and converts the given slic-
ing floorplan into the corresponding sequence pair representation before
processing. For these benchmarks, the running times of FBP ranged
from 1 minute for apte to about �� minutes for playout. The results
show that our method can significantly improve the interconnect delay
and reduce the number of buffers needed. FBP achieves an average
success rate of ����� of nets meeting timing constraints, insert only
��� buffers on average, and consumes an average extra area of only
����� over the given floorplan, compared with the average success rate
of �����, ���� buffers, and extra area of ����� resulted from BBP.

REFERENCES

[1] C. J. Alpert, T. C. Hu, J. H. Huang, A. B. Kahng, and D. Karger, “Prim-
Dijkstra Tradeoffs for Improved Performance-Driven Routing Tree De-
sign,” IEEE Trans. on Computer-Aided Design, Volume 14, Issue 7, July
1995, pp. 890–896.

[2] C. J. Alpert, J. Hu, S. S. Sapatnekar, P. G. Villarrubia, “A Practical
Methodology for Early Buffer and Wire Resource Allocation,” Proc. of
38th Design Automation Conf., June 2001, pp. 189–194.

TABLE II
COMPARISON OF BBP, FBP AND RBP.

Circuit # nets meet % nets meet # buffers Extra
Algorithm / Tot. # nets timing area (%)

apte
BBP 102 / 172 59.3 185 0.69
FBP 112 / 172 65.1 23 1.10
RBP 122 / 172 70.9 176 1.44
xerox
BBP 260 / 455 57.1 399 1.38
FBP 389 / 455 85.5 184 0.00
RBP 368 / 455 80.8 354 1.24
hp

BBP 131 / 226 58.0 280 1.24
FBP 196 / 226 86.7 37 0.00
RBP 185 / 226 81.9 258 1.03

ami33
BBP 305 / 363 84.0 667 1.36
FBP 325 / 363 89.5 214 0.00
RBP 326 / 363 89.8 243 1.44

ami49
BBP 412 / 545 75.6 946 0.78
FBP 513 / 545 94.1 280 0.00
RBP 497 / 545 91.2 287 1.04

playout
BBP 1533 / 2150 71.3 4263 0.84
FBP 2055 / 2150 95.6 896 0.56
RBP 2053 / 2150 95.5 1090 1.32

Summary
BBP - 62.6 1123 1.05
FBP - 86.1 272 0.28
RBP - 85.0 401 1.25

[3] H.-M. Chen, H. Zhou, F.Y. Young, D.F. Wong, H.H. Yang and N. Sher-
wani, “Integrated Floorplanning and Interconnect Planning,” Proc. of
1999 Int’l Conf. on Computer Aided Design, Nov. 1999, pp. 354–357.

[4] J. Cong, T. Kong and D.Z. Pan, “Buffer Block Planning for Interconnect-
Driven Floorplanning,” Proc. of 1999 Int’l Conf. on Computer Aided De-
sign, Nov. 1999, pp. 358–363.

[5] T. H. Cormen, C. E. Leiserson and R. L. Rivest, Introduction to Algo-
rithms, The MIT Press, 1990.

[6] M. Mclnerney, K. Leeper, T. Hill, H. Chan, B. Basaran and L. McQuiddy
“Methodology for Repeater Insertion Management in the RTL, Layout,
Floorplan a Fullchip Timing Databases of the Itanium�� Microproces-
sor,” Proc. of 2000 Int’l Symp. on Physical Design, pp. 99–104, Apr.
2000.

[7] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, “Rectangle-
Packing-Based Module Placement,” Proc. of 1995 Int’l Conf. on Com-
puter Aided Design, Nov. 1995, pp. 472–479.

[8] P. Sarkar, V. Sundararaman and C.-K. Koh, “Routability-Driven Repeater
Block Planning for Interconnect-Centric Floorplanning,” Proc. of 2000
Int’l Symp. on Physical Design, Apr. 2000, pp. 186–191.

[9] Semiconductor Industry Association, National Technology Roadmap for
Semiconductors, 1997 edition.

[10] Semiconductor
Industry Association, International Technology Roadmap for Semicon-
ductors, 1999 edition.

[11] X. Tang and D.F. Wong, “Planning Buffer Locations by Network Flows,”
Proc. of 2000 Int’l Symp. on Physical Design, Apr. 2000, pp. 180–185.

[12] W. L. Winston, Operations Research: Applications and Algorithms, 3rd
ed., Thomson Publishing, 1994.

[13] F.Y. Young, C. C.N. Chu, W.S. Luk, and Y.C. Wong, “Floorplan Area
Minimization using Lagrangian Relaxation,” Proc. of 2000 Int’l Symp.
on Physical Design, Apr. 2000, pp. 174–179.


