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ABSTRACT 
Input validation is essential for any software that deals with input 
from its external environment. It forms a major part of such 
software that has intensive interaction with its environment. 
Through the integration of invariant and empirical properties for 
implementing input validation, this paper proposes a novel 
approach for the automation of the following tasks from 
processing the source code of a program: (1) verification of 
existence of input validation; (2) generation of test cases to test 
and demonstrate all the input validations; (3) classification of each 
validation into the various types defined along with its test case 
generated. All the empirical properties in the theory have been 
validated statistically based on open source systems. Our 
evaluation shows that the proposed approach can help in both 
testing of input validation features and verifying the adequacy of 
input control. 

Categories and Subject Descriptors 
D.2.4 [Software Engineering]: Software/Program Verification − 
validation; D.2.5 [Software Engineering]: Testing and 
Debugging − testing tools. 

General Terms 
Verification 

Keywords 
Input validation, software verification, software testing, empirical-
based property. 

1. INTRODUCTION 
Most software including Web applications processes inputs 
submitted from its external environment. In software, system 
constraints are usually required to be enforced through input 
validation − rejecting inputs that do not satisfy the required 
conditions. For example, to ensure that the outstanding balance of 
a customer does not exceed its credit limit, an order processing 
program must reject any delivery of new order placed by the 
customer that will lead to the exceeding of the limit. 

As stated in the design guidelines for secure Web applications in 
MSDN, Microsoft's essential online resource for developers [11], 
proper input validation is one of the strongest measures of defense 
against today’s application attacks. Input validation is a 
challenging issue and the primary burden of a solution falls on 
application developers. 

Input validation has always been playing an important role in the 
control and accuracy of external input to software. Coupled with 
the above-mentioned role on the prevention of application attacks, 
surely, it is a main concern in Computer Auditing. The auditing of 
software to verify that sufficient input validation feature is 
incorporated is an important task in Computer Auditing. 

We have discovered some invariant and empirical properties in 
the control flow between statements for submitting external inputs 
and statements for raising external effects. Through the use of 
these properties, this paper proposes a theory and consequently an 
approach for automated verification and test case generation of 
input validation from source code. 

The paper is organized as follows. Section 2 presents the theory 
for inferring input validation. Section 3 discusses the use of the 
theory to generate test cases for testing input validation. Section 4 
discusses the proposed approach. Section 5 reports our evaluation. 
Section 6 compares our work with related work. Section 7 
concludes the paper. 

2. A THEORY FOR INFERRING INPUT 
VALIDATION 

2.1 Assumption and Terminology 
A program that reads user inputs means to do some useful things 
with the inputs. Let P be the program that reads user inputs and 
raise some external effect, and G be the control flow graph (CFG) 
representing P. Each node in G represents a statement in P. 

Adapted from the concept of program analysis, we define the term 
influence as follows: A node n1 influences node n2, or n2 is 
influenced by n1, if n1 directly or indirectly affect the values of 
variables used at n2.   

A node in G at which an input is read in the program is called an 
input node in G. A node in G at which an external effect is raised 
is called an effect node in G. The effect node is defined very 
general here since the types of effect occurs in a software system 
varies much depending on the types of the system. When it is 
applied to a concrete type of system, the definition of effect node 
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can be further determined. For example, in a database application, 
any node that updates the database maintained for the application 
is an effect node. 

Assume D is the set of inputs user submitted to the program P 
before any external effect is raised in P. Let t be the set of input 
nodes in G that reads data from D (in short, input t). An effect 
node in G that is influenced by some nodes in t is referred as an 
effect node on t.  

Input t is said to be validated both the following cases are 
possible: 

1) Some effect nodes on t are executed: This is called an 
acceptance of input. 

2) No effect nodes on t are executed: This is called a 
rejection of input. 

A predicate node d in G is called a candidate prime validation 
node (c-prime validation node) for t if there is a path from a 
node in t to d that does not pass through any effect nodes on t and 
there is a branch of d that satisfies one of the following properties: 

1) It always leads to some effect nodes on t. 

2) It does not lead to any effect nodes on t unless after passing 
through another set of input nodes at which the same inputs 
are submitted. 

A branch that satisfies the first property is called an acceptance 
branch at d for t or more generally an acceptance branch for t. A 
branch that satisfies the second property is called a rejection 
branch at d for t or more generally a rejection branch for t.  

 

 
Figure 2. The CFG of the ATM cash withdrawal program 

Figure 1 shows a pseudocode for implementing a simplified ATM 
cash withdrawal program with its basic blocks numbered. Its CFG 
is shown in Figure 2. Node 1 is an input node in the program. 
Node 7 is the only effect node in the program. Node 2, 4 and 6 are 
c-prime validation nodes for node 1. The branch from node 2 to 
node 10 is a rejection branch at node 2 for node 1. The branch 
from node 4 to node 9 and the branch from node 6 to node 8 are 
also rejection branches for node 1. The branch from node 6 to 
node 7 is an acceptance branch for node 1.  

Let d be a c-prime validation node for input t in G. For each path 
from nodes in t to d that satisfies the following conditions, the 
sequence of all predicate nodes that influence d in the path 
according to the order in the path, is called a candidate 
validation chain (c-validation chain) at d for t: 

1) It does not pass through each of these predicate nodes more 
than one time. 

2) It does not pass through any effect node on t. 

Note that d itself is included as the last node in the sequence. 
Furthermore, each predicate node in the sequence is called a 
candidate validation node (c-validation node) for t. For 
example, for the CFG shown in Figure 2, as discussed earlier, 
node 2, 4 and 6 are c-prime validation nodes for the input node, 
node 1. (2) is the only c-validation chain at node 2 for node 1. (2, 
4) is the only c-validation chain at node 4 for node 1. (2, 4, 6) is 
the only c-validation chain at node 6 for node 1. 

2.2 Properties for Input Validation 
With the terms used in previous section, we generalize an 
invariant property that is sufficient for implementing input 
validation in a program. The proof of this property is trivial. 

Property 1 – Sufficient Property for Input Validation. If there 
is a feasible acceptance branch for input t and there is also a 
feasible rejection branch for input t, then t is validated. 

In invariant property 1, if the property stated is not satisfied due to 
the absence of feasible acceptance branch, input t is said to be 
redundant. 

For example, in the CFG of the ATM cash withdrawal program 
shown in Figure 2, as discussed earlier, there are altogether three 
rejection branches and one acceptance branch for the input node, 
node 1. Furthermore, it can be easily verified that all the branches 
are feasible. Therefore, from invariant property 1, input read at 
node 1 is validated. 

Next, based on the concept of validation chain, we present another 
invariant property that is sufficient for implementing a decision in 
a program to accept and/or reject input. The proof of this property 
is straightforward.  

Property 2 – Sufficient Property for Accepting and Rejecting 
Input. A c-validation chain at a c-prime validation node for input 
t implements a decision to accept and/or reject t. 

For example, for the CFG shown in Figure 2, (2) is a c-validation 
chain at node 2 for input node 1. (2, 4) is a c-validation chain at 
node 4 for input node 1. (2, 4, 6) is a c-validation chain at node 6 
for input node 1. Each validation chain implements a decision to 
accept and/or reject input submitted at input node 1. In particular, 
(2, 4, 6) implements the decision that if the check digit is correct 
and the card and PIN number are also both correct, then if the 
withdrawal amount is less than or equal to the withdrawal limit 

   Begin 
1     Read 5-digit card No., PIN and the amount of withdrawal M; 
       Compute the check digit C through the first 4 digit of the card No.; 
2     If C == the 5th digit of the card No. then 
3            Validate the card No. and PIN against bank’s database; 
4            If the validation is confirmed then 
5     Get the withdrawal limit and the available balance; 
6     If M <=withdrawal limit AND  
         M <=available balance then 
7         Update the database; Dispense cash; 
     else 
8         Display withdrawal error message;  
     endIf 
 else 
9     Display invalid card-no/PIN error message; 
 endIf 
        else 
10 Display invalid account error message;  
        endIf 
11    Eject card; return; 
   End  

Figure 1. A pseudocode for a simplified ATM cash 
withdrawal program 
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and available balance, then the cash withdrawal request is 
accepted and processed accordingly, else, the request is rejected. 

As theoretically invariant property 1 may not be necessary for 
implementing input validation, we cannot base on it to infer 
whether a program implements input validation. Fortunately, 
empirically, we have discovered that it is highly probable that the 
property is a necessary property for implementing input 
validation. Similarly, as theoretically we cannot base on invariant 
property 2 to find all decisions in a program to accept and/or 
reject input, we thus examine it empirically. We have discovered 
that it is a highly probable that this property is a necessary 
property for implementing a decision in a program to accept 
and/or reject input. Next, we shall state the two empirical 
properties.  

Property 1 – Necessary Property for Input Validation. If input 
t is validated, then it is highly probable that there is a feasible 
acceptance branch and also a feasible rejection branch for t.  

Property 2 – Necessary Property for Accepting and Rejecting 
Input. Any decision in a program to accept and/or reject input t is 
implemented by a c-validation chain at a c-prime validation node 
for t. 

By collecting samples from open source systems, we have 
validated the two properties statistically using hypothesis testing 
based on binomial test. For empirical property 1, the null 
hypothesis H0 states that empirical property 1 holds for less than 
99 percent of the cases, and the alternative hypothesis H1 states 
that empirical property 1 holds for equal or more than 99 percent 
of the cases. Based on 0.05 as the type I error probability, if z > 
1.645, we reject H0; otherwise, we accept H0. 

We randomly picked up 8 open source projects from different 
open source websites [4, 14, 15] and included all the server 
programs in each project for processing. In addition, we randomly 
examined 201 programs from 80 open source projects 
downloaded from Sourceforge.net website [15]. Table 1 lists the 
details of the sample drawn.  

Table 1. Samples for testing the empirical properties 
Empirical 
Property 1 

Empirical 
Property 2  Systems 

# cases # cases 
1 Roomba [15] 16 27 
2 Jewels [14] 10 10 
3 Smacs [15] 24 36 
4 bugtracker [15] 12 26 
5 JspShop [4] 29 93 
6 JavaLibrary [15] 22 38 
7 NMS [4] 12 21 
8 studentRecord [4] 24 43 

9 randomly selected from 
Sourceforge.net [15] 201 256 

 TOTAL 350 550 
 

As shown in Table 1, the size of the sample for testing empirical 
property 1 is 350. All the cases in the sample gave affirmative 

support to the property. The z-score (
/

( (1 ) / )

X n p

p p n

−

−
) calculated 

is 1.880 (note that we have p = 0.99 and X = n = 350); hence, we 
reject H0 and conclude that the testing gives evidence that 

empirical property 1 holds for equal or more than 99 percent of 
the cases at 5 percent level of significance.  � 

Clearly, we can use invariant property 1 and empirical property 1 
together to infer whether a program implements input validation. 
If the result is affirmative, from invariant property 1, the inference 
is always correct; otherwise, from empirical property 1, it is 
highly probable that the result is correct too. 

The hypothesis testing for empirical property 2 was conducted in 
a similar way as the one did for empirical property 1. There are 
many decisions in a program to accept and/or reject input, and we 
randomly collected some of the decisions from each program that 
is previously collected for the test of empirical property 1. As 
shown in Table 1, the size of the sample for testing empirical 
property 2 is 550. All the cases in the sample gave affirmative 
support to the property. The z-score calculated is 2.357; hence, we 
conclude that the testing gives evidence that empirical property 2 
hold for equal or more than 99 percent of the cases at 5 percent 
level of significance. � 

By using invariant property 2 and empirical property 2 together, 
we can find all decisions in a program to accept and/or reject 
input. From invariant property 2, all the decisions found are 
always correct. From empirical property 2, there is no other 
decision in the program to accept or reject input. 

3. TEST CASE GENERATION FOR INPUT 
VALIDATION 
As defined in [16], a simple predicate is a Boolean variable or a 
relational expression possible with one or more NOT (∼) 
operators. In general, a predicate node in a CFG consists of a 
number of simple predicates composed by Boolean operators. 

The objective of testing input validation feature is to exercise all 
the possible conditions for accepting and rejecting input. From 
invariant property 2 and empirical property 2 together, it is highly 
probable that all the decisions in a program to accept and/or reject 
input t are implemented by and are only implemented by the c-
validation chains at each c-prime validation node for t. Therefore, 
we can approach the test case generation for testing input 
validation according to one of the following two methods: 

1) Branch-Based Input Validation Testing: This aims to cover 
every possible combination of values of the simple 
predicates in each c-prime validation node for t that leads 
to an execution of an acceptance branch or a rejection 
branch at the c-prime validation node. 

2) Condition-Based Input Validation Testing: This aims to 
cover every possible combination of the following values 
for each c-validation chain (d0, d1, ….., dn = d) at each c-
prime validation node d for t, that leads to an execution of 
an acceptance or a rejection branch at d for t: 

a) For each j, 0 ≤ j ≤ n-1, a combination of values of the 
simple predicates in dj that leads to an execution of the 
branch from dj to dj+1. 

b) A combination of values of the simple predicates in d 
that leads to an execution of the acceptance or rejection 
branch respectively. 

For conveniences, we shall call each such combination a feasible 
validation condition for the validation chain that leads to an 
execution of the branch.  
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Clearly, the second method subsumes the first method. The choice 
depends on the time and resources available. Based on invariant 
and empirical property 2, it is highly probable that all the test 
cases generated provide a complete coverage for testing input 
validation. 

In the CFG shown in Figure 2, for testing input validation for 
input read at node 1, branch-based input validation testing aims to 
cover the following combinations of values of the simple 
predicates in each c-prime validation node for node 1, that lead to 
an execution of an acceptance or a rejection branch at the c-prime 
validation node: 

Node 2: “(C == the 5th digit of the card No.) = false” that leads to 
an execution of the rejection branch from node 2 to node 10. 

Node 4: “(the validation is confirmed) = false” that leads to an 
execution of the rejection branch from node 4 to node 9. 

Node 6: “(M <= withdrawal limit) = true” and “(M <= available 
balance) = true” that leads to an execution of the acceptance 
branch from node 6 to node 7; and the following three 
combinations that lead to an execution of the rejection branch 
from node 6 to node 8: “(M <= withdrawal limit) = true” and “(M 
<= available balance) = false”; “(M <= withdrawal limit) = false” 
and “(M <= available balance) = true”; “(M <= withdrawal limit) 
= false” and “(M <= available balance) = false”. 

Condition-based input validation testing aims to cover the 
following feasible validation conditions for each c-validation 
chain at each c-prime validation node for node 1, that leads to an 
execution of an acceptance and a rejection branch at the c-prime 
validation node: 

Chain (2) at node, 2: “(C == the 5th digit of the card number) = 
false” that leads to an execution of the rejection branch from node 
2 to node 10. 

Chain (2, 4) at node, 4: “(C == the 5th digit of the card number) = 
true” and “(the validation is confirmed) = false” that leads to an 
execution of the rejection branch from node 4 to node 9. 

Chain (2, 4, 6) at node 6: “(C == the 5th digit of the card number) 
= true” and “(the validation is confirmed) = true” and “(M <= 
withdrawal limit) = true” and “(M <= available balance) = true” 
that leads to an execution of the acceptance branch from node 6 to 
node 7. The following three feasible validation conditions lead to 
an execution of the rejection branch from node 6 to node 8: “(C 
== the 5th digit of the card number) = true” and “(the validation is 
confirmed) = true” and “(M <= withdrawal limit) = true” and “(M 
<= available balance) = false”; “(C == the 5th digit of the card 
number) = true” and “(the validation is confirmed) = true” and 
“(M <= withdrawal limit) = false” and “(M <= available balance) 
= true”; “(C == the 5th digit of the card number) = true” and “(the 
validation is confirmed) = true” and “(M <= withdrawal limit) = 
false” and “(M <= available balance) = false”. 

Interestingly, test cases for both methods can be generated by 
existing automated test case generation technique for branch 
coverage through transformations. Next, we shall present the 
automated test case generation for the two methods.  

Branch-based Test Case Generation for Input Validation. Let 
d be a c-prime validation node for input t. A test case to cover a 
combination of values of the simple predicates in d that leads to 
an execution of an acceptance or a rejection branch at d for t can 
be automatically generated as follows: 

1) Replace the branch condition of the acceptance or rejection 
branch respectively with the conjunction of the values of 
the simple predicates set in the combination. 

2) Use a test case generation technique for branch coverage to 
generate a test case to force through the acceptance or 
rejection branch respectively. 

Condition-based Test Case Generation for Input Validation. 
Let (d0, d1, ….., dn = d) be a c-validation chain at a c-prime 
validation node d for input t. A test case to cover a feasible 
validation condition for the validation chain that leads to an 
execution of an acceptance or rejection branch at d for t can be 
generated as follows: 

1) For each dj, 0 ≤ j ≤ n-1, insert nodes immediately before dj 
for the following: 

2) Assign a Boolean variable, pass(dj) to “true”, to indicate 
the branch from dj to dj+1 has been followed. 

3) Assign each simple predicate in dj according to its value set 
in the feasible validation condition. 

4) Replace the branch condition of the acceptance or rejection 
branch respectively with the conjunction of the following 
predicates: 

5) For each simple predicate s in d (note that dn = d), the 
predicate, (s = its value set in the feasible validation 
condition). 

6) For each dj, 0 ≤ j ≤ n-1, the predicate, (pass(dj) = true). 

7) Use a test case generation technique for branch coverage to 
generate a test case to force through the acceptance or 
rejection branch respectively. 

The condition-based test case generation is based on the fact that 
following the method, a test case that forces through an 
acceptance or a rejection branch at d for t will also force through 
each branch from dj to dj+1, 0 ≤ j ≤ n-1, with the values of the 
simple predicates in the predicate node set according to the 
feasible validation condition. This is due to the setting of simple 
predicate values in Step 1(b) and the insertion of predicates in 
Step 2(b) to ensure that these branches are also forced through in 
the branch condition. 

4. THE PROPOSED APPROACH 
Section 2 and 3 provide a basis to automatically verify whether 
input read in a program is validated. The theory also provides a 
basis to automatically generate test cases to test the input 
validation feature implemented in a system. It is also highly 
probable that the set of test cases generated forms a complete set 
of test cases for testing input validation. 

Moreover, we can classify the type of validation performed as 
follows. Let d be a c-prime validation node for input t in the CFG 
G of a program. Let (d0, d1, ….., dn = d) be a c-validation chain at 
d for t. The validation carried out by a simple predicate in a c-
validation node dj (0 ≤ j ≤ n) can be classified into the following 
types: 

1) Control Check: The predicate is not influenced by any 
input but by some system predefined variables. 

2) Domain Check: The predicate is only influenced by a 
single input variable. Domain check includes the validation 
of special strings for security purposes. 
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3) Intra-Input Check: The predicate is influenced by more 
than one input variables. 

4) Input-Database Check: The predicate is influenced by both 
input and the data retrieved from system database. 

The detailed steps for the proposed approach are described in the 
following. For each program in a system, first, the CFG G of the 
program is constructed and the set of input nodes t is identified 
through syntax analysis. The following steps are then performed: 

Step 1: Compute the set P of c-prime validation nodes for t. First, 
the set E of effect nodes in G that are influenced by some input 
nodes in t is computed through data flow analysis. Second, for 
each e ∈ E, identify all the predicate nodes on the paths from t to 
e and put them in a set D. For each node d ∈ D, verify whether it 
satisfies the required properties for a c-prime validation node for t 
according to the definition. In the verification, for properties with 
regard to a path, it is sufficient to check all the basis paths 
between the two associated nodes. If the result is affirmative, then 
d is a c-prime validation node for t; hence it is put in the set P of 
all the c-prime validation nodes for t. 

Step 2: Verify the possibility that input t is validated. Each branch 
at each c-prime validation node for t is checked for the following 
condition until the result is affirmative or the end: there is an 
acceptance branch and there is a rejection branch for t. If the 
result it is affirmative, from invariant property 1, it is possible that 
input t is validated and therefore proceeding to Step 3. Otherwise, 
from empirical property 1, input t is not validated and no further 
processing is needed. 

Step 3: Perform one of the following two options depending on 
user’s choice. 

1) Branch-Based Testing: For each c-prime validation node d 
for t in P, all the acceptance and rejection branches at d for 
t are computed. Then, for each of these acceptance and 
rejection branches, for each possible combination of values 
of the simple predicates in d that leads to an execution of 
the acceptance or rejection branch respectively, Branch-
Based Test Case Generation for Input Validation is applied 
to generate a test case to cover the combination for 
executing the branch. Next, the test case is annotated with 
the branch (with acceptance or rejection indicated) and 
predicate nodes passed through by executing the test case. 
And, for each predicate node annotated, each simple 
predicate in the predicate node is further annotated with its 
value set in the test case and its type of validation as 
discussed earlier. 

2) Condition-Based Testing: For each c-prime validation node 
d for t in P, all the acceptance and rejection branches and 
all the c-validation chains at d for t are computed according 
to the definition. Then, for each c-validation chain and 
each acceptance and rejection branch at d for t, for each 
feasible validation condition v for the c-validation chain to 
execute the acceptance or rejection branch respectively, 
Condition-Based Test Case Generation for Input 
Validation is applied to generate a test case to cover v for 
executing the acceptance or rejection branch respectively. 
Next, the test case is annotated with the c-validation chain 
and the branch (with acceptance or rejection indicated). 
And, for each c-validation node in the c-validation chain 
annotated, each simple predicate in the c-validation node is 

further annotated with its value set v and its type of 
validation as discussed earlier. 

Step 4: Verify whether input t is validated. Based on the test cases 
generated, if there is a test case to force through an acceptance 
branch at a c-prime validation node for t and there is also a test 
case to force through a rejection branch at a c-prime validation 
node for t, then from invariant property 1, it is concluded that 
input t is validated. Otherwise, input t is not validated. For the 
latter case, if no test case is generated to force through any 
acceptance branch at a c-prime validation node for t, then input t 
is redundant. 

The proposed approach can be applied to any program that 
processes input and raise effect. It can be used for the verification 
and testing of input validation implemented in a system. The 
information on existence of input validation that is computed by 
the proposed approach gives an overview of the input validation 
feature implemented. The test cases and the associated 
annotations generated from the proposed approach show all the 
details of the input validations carried out. Based on these, testing 
can be conducted to verify the exact correctness of input 
validation implemented. This can be carried out for a program or 
each program in a system. Thus, it can be used in any level of 
software testing. 

5. EVALUATION 

5.1 Proof-of-Concept Prototyping 
A prototype system has been developed to demonstrate the 
feasibility of the approach proposed. The prototype system 
implements the propose 

d approach for Web applications that are written in Java. We 
choose Web applications as the target system because of their 
popularity, importance and their increasing need of reliability.  

WebApps have two ways of validation on user inputs: client-side 
validation and server-side validation. The importance of server-
side validation in WebApps has been emphasized [11, 13] because 
of the vulnerability of client-side validation; thus we focuses on 
the analysis of server-side validation, to make sure that any user 
input used to raise an effect is validated at server-side regardless 
the validation carried out at client-side. A major type of effect 
raised in most of the WebApps is updating database; hence, the 
prototype system is configured to automatically detect the effect 
on database updating. 

The prototype system is implemented as follows. First, we 
developed a Program Analyzer to analyze the source code of each 
program and construct its CFG. The Program Analyzer is 
developed using the program analysis system, Java Architecture 
for Bytecode Analysis (JABA) [8], which analyzes Java programs 
at bytecode level. By parsing a class file of a Java program, JABA 
builds the CFG and collects the control and data flow information 
for the analyzed program. Next, we developed an Input Validation 
Analyzer and Test Case Generator (IV-ATCG) to process the 
CFG, control and data flow information of the analyzed program. 
The IV-ATCG is implemented in accordance to the four steps 
described in Section 4. The technique of test data generation for 
branch coverage proposed in [5] is used to generate test cases. 
This technique is effective in detecting infeasible paths, and can 
handle programs with pointers, arrays and function calls. 
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5.2 Case Studies 
5.2.1 Case Study on Verification of Input Validation 
To evaluate the use of the proposed approach for the verification 
and testing of input validation, we conducted case studies on the 
eight open source systems listed in Table 1 (which are also used 
for part of the hypotheses testing). We did a general check on the 
existence of input validation in those systems using the prototype 
system. In total, our prototype system finds 34 programs out of 
150 programs do not have input validation feature, which account 
for 22.67%. This statistic shows that input validation is often 
ignored or overlooked by developers; however, the lack of 
sufficient input validation can cause very serious problems 
(examples are discussed below). 

We then apply the proposed approach in full on two systems: 
Roomba and Smacs [15]. Roomba is a web-based room booking 
system for small to medium-sized hotels. The whole system is 
well designed and implemented. However, in the experiment, the 
prototype system discovers that 6 out of 16 programs in Roomba 
do not have input validation feature. An example is shown in 
Figure 3. The program reads input at line 2, 4, 5 and 6, construct 
the SQL statement at line 8 and 10, and update database at line 11. 

 
Figure 3. A program without input validation 

It is not surprising to see many similar cases as the one shown in 
Figure 3, in which the program reads user inputs and uses them 
directly in database insertion or modification without any 
checking on the input values. Basically, such defect can cause two 
possible problems. One is that an invalid input can result in Java 
SQL runtime exception if the value does not comply to its entry 
type defined in the database schema such as the type and length of 
the data (e.g., inserting a string into a database where an integer is 
required); the other one is that it is very easy to be attacked by 
SQL injection  which may cause security issues. 

Smacs [15] is a web-based facility for the management of casual 
staff working in an organization. Our prototype system discovered 
that 8 out of 24 programs in Smacs do not have input validation 
feature. An interesting example is shown in Figure 4. In this case, 
bean is an instance of the class TestingCard as in line 1. The 
program checks the input values at line 2 and 4 and set the 
corresponding field of bean if the value is not null. However, 
although a domain checking is performed on the input, the method 
bean.create() at the line 6 will always be executed regardless of 
the results of the checking. This program may confuse the users 

who provide the invalid input; it may also cause the insertion of 
invalid records into the database. 

 
Besides the verification of existence of the input validation, we 
also uses the proposed approach to generate test cases for 
programs in Roomba and Smacs, for illustrating and verifying the 
input validation feature implemented. Both the condition-based 
and branch-based methods are applied and tested. We found that 
the test cases generated by the branch-based method with 
annotations sufficiently show the validation features implemented 
in the systems. The condition-based method tends to generate 
more test cases for showing the different combinations of 
conditions. 

In summary, through the case study on open source systems, we 
find that the prototype system can effectively detect programs 
without input validation. The lack of input validation in many 
programs could cause serious problems such as program runtime 
exception, security control, violation of database integrity. We 
also observe that the test cases with annotation generated by 
branch-based method are sufficient to illustrate the input 
validation features implemented. 

5.2.2 Case Study on Testing Input Validation 
To experience the feasibility of using the proposed approach to 
aid input validation testing in software development, we 
conducted a case study on a student project EAuction. EAuction is 
a web-based auction system that developed by senior computer 
science students. It provides basic functionalities for hosting 
online auctions where registered users can both post and bid on 
items.  

For testing the input validation feature in integration testing of the 
system, we divided the students into two groups: the functional 
test case design techniques that include testing based on input 
structure were introduced to the first group; and the proposed 
testing was introduced to the second group. Interestingly, in 
addition to the testing of correctness on input validation, we 
observes that the test cases generated by the condition-based 
method in the proposed approach also helps to discover complex 
logic errors among the conditions. It was clear that the group that 
used the proposed approach tested the input validation more 
adequately than the other group. We also observed that the group 
that used the proposed approach generated test cases much 
systematically and faster than the other group. 

6. RELATED WORK 
Two techniques for testing of input validation have been proposed 
[6, 13]. Both of the techniques attempt to violate input 
specifications in the design of test cases. The technique proposed 

/*No input validation: Smacs/ insertTestingCard.jsp*/ 
1  <jsp:useBean class="casualstaffhr.TestingCard" id="bean" /> 
… 
2   if ( request.getParameter( "number" ) != null ){ 
3      bean.setNumber( request.getParameter( "number" ) ); 
      } 
… 
4   if ( request.getParameter( "description" ) != null ){ 
5      bean.setDescription( request.getParameter("description") ); 
      } 
6   bean.create(); 

Figure 4. A program without input validation 

* No input validation: Roomba/bookings/saveBooking.jsp */ 
 1  boolean newBooking = false; 
 2  if ((getParam("newBooking", request).equals("true"))) 
 3   newBooking = true; 
 4   String id = getParam(“id”, request); 
 5   String customerid = getParam("customerid", "0", request); 
 6   String roomid = getParam("roomid", "0", request); 
     … 
 7   if (newBooking) { 
 8          sql = "INSERT INTO ROOMBA Bookings(customerid,  

roomid, …) VALUES (" + customerid + ", " +roomid +… + ")";} 
 9   else { 
 10          sql = "UPDATE ROOMBABookings SET” + 

                     “customerid = " + customerid + ", " + "roomid = "  
                      + roomid + … +"WHERE (id = " + id + ")";} 

 11  DBConnector.executeUpdate(sql); 
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in [6] is for input validation analysis and testing of systems that 
take inputs that can be represented in grammars. The bypass 
testing proposed in [13] is specifically for testing Web 
applications. Though the proposed approach shares the objective 
of verifying and testing the input validation with these techniques, 
the ways that they address the problem differ vastly from the 
proposed approach. The proposed approach verifies input 
validation features and generates test cases for testing these 
features through analyzing the CFGs of programs that process 
inputs. As a result, it lands itself as an automated method. The two 
related techniques are solely based on the analysis of the structure 
and syntax of the inputs. They are not fully automated.  

Software testing is a well research area. Much work has been 
devoted to structural testing [5, 10, 17], specification based testing 
[2-3, 9], implementation-based testing [1, 7]. Recently, there has 
been some interest in using software architecture for code testing 
[12]. In terms of software testing, the proposed technique shares 
with the structural technique on the automated generation of test 
cases. It shares with the specification based testing and software 
architecture based testing on the use of some kind of model for 
code testing. In opposing to these approaches, the proposed 
approach recovers the model automatically from source code for 
implementing input validation. Based on the model discovered, it 
automatically generates test cases to test the validation. No 
specification of model is required. It is for testing a type of 
features – input validation. So, from the automated test case 
generation perspective, it can be viewed as a case of feature 
oriented automated test case generation method. Therefore, it can 
be viewed as a case on applying feature oriented Software 
Engineering [18] in automated test case generation.  

From the theoretical perspective, the proposed approach is 
developed through the integration of invariant and empirical 
properties together as a basis for the automated verification and 
test case generation for input validation. All the empirical 
properties have been validation statistically. The use of empirical 
properties that have been statistically validated is very common in 
medicine. Though they are some use of empirical properties 
informally, formal statistical validation on these properties is still 
not very common in software engineering. 

7. CONCLUSION 
We have proposed an approach for the automated verification and 
test case generation for input validation from program source 
codes. Any affirmative result on the verification of existence of 
input validation from the proposed approach is always correct. It 
is highly probable that other result from the verification is also 
correct. All test cases generated from the proposed approach and 
all types of input validation reported from the proposed approach 
are always correct too. It is also highly probable that these test 
cases and types of input validation have covered all the input 
validation implemented. The approach can be applied to any 
program that processes input submitted to raise effect. 

In addition to the use in automated software verification and 
testing, we believe that the proposed approach has a potential to 
be realized as a computer auditing tool to automatically verify the 
implementation of input validation in a system from its source 
code. The tool can also automatically generate test cases from 
source code to show how input validation is implemented. More 
exploration on feature-oriented automated software verification 
and test case generation is also a further research area. 
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