
Automated Verification and Test Case Generation
for Input Validation

Hui Liu

School of Electrical and Electronic Engineering
Nanyang Technological University

Singapore 639798
liuh0007@ntu.edu.sg

Hee Beng Kuan Tan
School of Electrical and Electronic Engineering

Nanyang Technological University
Singapore 639798

ibktan@ntu.edu.sg

ABSTRACT
Input validation is essential for any software that deals with input
from its external environment. It forms a major part of such
software that has intensive interaction with its environment.
Through the integration of invariant and empirical properties for
implementing input validation, this paper proposes a novel
approach for the automation of the following tasks from
processing the source code of a program: (1) verification of
existence of input validation; (2) generation of test cases to test
and demonstrate all the input validations; (3) classification of each
validation into the various types defined along with its test case
generated. All the empirical properties in the theory have been
validated statistically based on open source systems. Our
evaluation shows that the proposed approach can help in both
testing of input validation features and verifying the adequacy of
input control.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification −
validation; D.2.5 [Software Engineering]: Testing and
Debugging − testing tools.

General Terms
Verification

Keywords
Input validation, software verification, software testing, empirical-
based property.

1. INTRODUCTION
Most software including Web applications processes inputs
submitted from its external environment. In software, system
constraints are usually required to be enforced through input
validation − rejecting inputs that do not satisfy the required
conditions. For example, to ensure that the outstanding balance of
a customer does not exceed its credit limit, an order processing
program must reject any delivery of new order placed by the
customer that will lead to the exceeding of the limit.

As stated in the design guidelines for secure Web applications in
MSDN, Microsoft's essential online resource for developers [11],
proper input validation is one of the strongest measures of defense
against today’s application attacks. Input validation is a
challenging issue and the primary burden of a solution falls on
application developers.

Input validation has always been playing an important role in the
control and accuracy of external input to software. Coupled with
the above-mentioned role on the prevention of application attacks,
surely, it is a main concern in Computer Auditing. The auditing of
software to verify that sufficient input validation feature is
incorporated is an important task in Computer Auditing.

We have discovered some invariant and empirical properties in
the control flow between statements for submitting external inputs
and statements for raising external effects. Through the use of
these properties, this paper proposes a theory and consequently an
approach for automated verification and test case generation of
input validation from source code.

The paper is organized as follows. Section 2 presents the theory
for inferring input validation. Section 3 discusses the use of the
theory to generate test cases for testing input validation. Section 4
discusses the proposed approach. Section 5 reports our evaluation.
Section 6 compares our work with related work. Section 7
concludes the paper.

2. A THEORY FOR INFERRING INPUT
VALIDATION

2.1 Assumption and Terminology
A program that reads user inputs means to do some useful things
with the inputs. Let P be the program that reads user inputs and
raise some external effect, and G be the control flow graph (CFG)
representing P. Each node in G represents a statement in P.

Adapted from the concept of program analysis, we define the term
influence as follows: A node n1 influences node n2, or n2 is
influenced by n1, if n1 directly or indirectly affect the values of
variables used at n2.

A node in G at which an input is read in the program is called an
input node in G. A node in G at which an external effect is raised
is called an effect node in G. The effect node is defined very
general here since the types of effect occurs in a software system
varies much depending on the types of the system. When it is
applied to a concrete type of system, the definition of effect node

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
AST’06, May 23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005...$5.00.

29

can be further determined. For example, in a database application,
any node that updates the database maintained for the application
is an effect node.

Assume D is the set of inputs user submitted to the program P
before any external effect is raised in P. Let t be the set of input
nodes in G that reads data from D (in short, input t). An effect
node in G that is influenced by some nodes in t is referred as an
effect node on t.

Input t is said to be validated both the following cases are
possible:

1) Some effect nodes on t are executed: This is called an
acceptance of input.

2) No effect nodes on t are executed: This is called a
rejection of input.

A predicate node d in G is called a candidate prime validation
node (c-prime validation node) for t if there is a path from a
node in t to d that does not pass through any effect nodes on t and
there is a branch of d that satisfies one of the following properties:

1) It always leads to some effect nodes on t.

2) It does not lead to any effect nodes on t unless after passing
through another set of input nodes at which the same inputs
are submitted.

A branch that satisfies the first property is called an acceptance
branch at d for t or more generally an acceptance branch for t. A
branch that satisfies the second property is called a rejection
branch at d for t or more generally a rejection branch for t.

Figure 2. The CFG of the ATM cash withdrawal program

Figure 1 shows a pseudocode for implementing a simplified ATM
cash withdrawal program with its basic blocks numbered. Its CFG
is shown in Figure 2. Node 1 is an input node in the program.
Node 7 is the only effect node in the program. Node 2, 4 and 6 are
c-prime validation nodes for node 1. The branch from node 2 to
node 10 is a rejection branch at node 2 for node 1. The branch
from node 4 to node 9 and the branch from node 6 to node 8 are
also rejection branches for node 1. The branch from node 6 to
node 7 is an acceptance branch for node 1.

Let d be a c-prime validation node for input t in G. For each path
from nodes in t to d that satisfies the following conditions, the
sequence of all predicate nodes that influence d in the path
according to the order in the path, is called a candidate
validation chain (c-validation chain) at d for t:

1) It does not pass through each of these predicate nodes more
than one time.

2) It does not pass through any effect node on t.

Note that d itself is included as the last node in the sequence.
Furthermore, each predicate node in the sequence is called a
candidate validation node (c-validation node) for t. For
example, for the CFG shown in Figure 2, as discussed earlier,
node 2, 4 and 6 are c-prime validation nodes for the input node,
node 1. (2) is the only c-validation chain at node 2 for node 1. (2,
4) is the only c-validation chain at node 4 for node 1. (2, 4, 6) is
the only c-validation chain at node 6 for node 1.

2.2 Properties for Input Validation
With the terms used in previous section, we generalize an
invariant property that is sufficient for implementing input
validation in a program. The proof of this property is trivial.

Property 1 – Sufficient Property for Input Validation. If there
is a feasible acceptance branch for input t and there is also a
feasible rejection branch for input t, then t is validated.

In invariant property 1, if the property stated is not satisfied due to
the absence of feasible acceptance branch, input t is said to be
redundant.

For example, in the CFG of the ATM cash withdrawal program
shown in Figure 2, as discussed earlier, there are altogether three
rejection branches and one acceptance branch for the input node,
node 1. Furthermore, it can be easily verified that all the branches
are feasible. Therefore, from invariant property 1, input read at
node 1 is validated.

Next, based on the concept of validation chain, we present another
invariant property that is sufficient for implementing a decision in
a program to accept and/or reject input. The proof of this property
is straightforward.

Property 2 – Sufficient Property for Accepting and Rejecting
Input. A c-validation chain at a c-prime validation node for input
t implements a decision to accept and/or reject t.

For example, for the CFG shown in Figure 2, (2) is a c-validation
chain at node 2 for input node 1. (2, 4) is a c-validation chain at
node 4 for input node 1. (2, 4, 6) is a c-validation chain at node 6
for input node 1. Each validation chain implements a decision to
accept and/or reject input submitted at input node 1. In particular,
(2, 4, 6) implements the decision that if the check digit is correct
and the card and PIN number are also both correct, then if the
withdrawal amount is less than or equal to the withdrawal limit

 Begin
1 Read 5-digit card No., PIN and the amount of withdrawal M;
 Compute the check digit C through the first 4 digit of the card No.;
2 If C == the 5th digit of the card No. then
3 Validate the card No. and PIN against bank’s database;
4 If the validation is confirmed then
5 Get the withdrawal limit and the available balance;
6 If M <=withdrawal limit AND
 M <=available balance then
7 Update the database; Dispense cash;
 else
8 Display withdrawal error message;
 endIf
 else
9 Display invalid card-no/PIN error message;
 endIf
 else
10 Display invalid account error message;
 endIf
11 Eject card; return;
 End

Figure 1. A pseudocode for a simplified ATM cash
withdrawal program

30

and available balance, then the cash withdrawal request is
accepted and processed accordingly, else, the request is rejected.

As theoretically invariant property 1 may not be necessary for
implementing input validation, we cannot base on it to infer
whether a program implements input validation. Fortunately,
empirically, we have discovered that it is highly probable that the
property is a necessary property for implementing input
validation. Similarly, as theoretically we cannot base on invariant
property 2 to find all decisions in a program to accept and/or
reject input, we thus examine it empirically. We have discovered
that it is a highly probable that this property is a necessary
property for implementing a decision in a program to accept
and/or reject input. Next, we shall state the two empirical
properties.

Property 1 – Necessary Property for Input Validation. If input
t is validated, then it is highly probable that there is a feasible
acceptance branch and also a feasible rejection branch for t.

Property 2 – Necessary Property for Accepting and Rejecting
Input. Any decision in a program to accept and/or reject input t is
implemented by a c-validation chain at a c-prime validation node
for t.

By collecting samples from open source systems, we have
validated the two properties statistically using hypothesis testing
based on binomial test. For empirical property 1, the null
hypothesis H0 states that empirical property 1 holds for less than
99 percent of the cases, and the alternative hypothesis H1 states
that empirical property 1 holds for equal or more than 99 percent
of the cases. Based on 0.05 as the type I error probability, if z >
1.645, we reject H0; otherwise, we accept H0.

We randomly picked up 8 open source projects from different
open source websites [4, 14, 15] and included all the server
programs in each project for processing. In addition, we randomly
examined 201 programs from 80 open source projects
downloaded from Sourceforge.net website [15]. Table 1 lists the
details of the sample drawn.

Table 1. Samples for testing the empirical properties
Empirical
Property 1

Empirical
Property 2 Systems

cases # cases
1 Roomba [15] 16 27
2 Jewels [14] 10 10
3 Smacs [15] 24 36
4 bugtracker [15] 12 26
5 JspShop [4] 29 93
6 JavaLibrary [15] 22 38
7 NMS [4] 12 21
8 studentRecord [4] 24 43

9 randomly selected from
Sourceforge.net [15] 201 256

 TOTAL 350 550

As shown in Table 1, the size of the sample for testing empirical
property 1 is 350. All the cases in the sample gave affirmative

support to the property. The z-score (
/

((1) /)

X n p

p p n

−

−
) calculated

is 1.880 (note that we have p = 0.99 and X = n = 350); hence, we
reject H0 and conclude that the testing gives evidence that

empirical property 1 holds for equal or more than 99 percent of
the cases at 5 percent level of significance. �

Clearly, we can use invariant property 1 and empirical property 1
together to infer whether a program implements input validation.
If the result is affirmative, from invariant property 1, the inference
is always correct; otherwise, from empirical property 1, it is
highly probable that the result is correct too.

The hypothesis testing for empirical property 2 was conducted in
a similar way as the one did for empirical property 1. There are
many decisions in a program to accept and/or reject input, and we
randomly collected some of the decisions from each program that
is previously collected for the test of empirical property 1. As
shown in Table 1, the size of the sample for testing empirical
property 2 is 550. All the cases in the sample gave affirmative
support to the property. The z-score calculated is 2.357; hence, we
conclude that the testing gives evidence that empirical property 2
hold for equal or more than 99 percent of the cases at 5 percent
level of significance. �

By using invariant property 2 and empirical property 2 together,
we can find all decisions in a program to accept and/or reject
input. From invariant property 2, all the decisions found are
always correct. From empirical property 2, there is no other
decision in the program to accept or reject input.

3. TEST CASE GENERATION FOR INPUT
VALIDATION
As defined in [16], a simple predicate is a Boolean variable or a
relational expression possible with one or more NOT (∼)
operators. In general, a predicate node in a CFG consists of a
number of simple predicates composed by Boolean operators.

The objective of testing input validation feature is to exercise all
the possible conditions for accepting and rejecting input. From
invariant property 2 and empirical property 2 together, it is highly
probable that all the decisions in a program to accept and/or reject
input t are implemented by and are only implemented by the c-
validation chains at each c-prime validation node for t. Therefore,
we can approach the test case generation for testing input
validation according to one of the following two methods:

1) Branch-Based Input Validation Testing: This aims to cover
every possible combination of values of the simple
predicates in each c-prime validation node for t that leads
to an execution of an acceptance branch or a rejection
branch at the c-prime validation node.

2) Condition-Based Input Validation Testing: This aims to
cover every possible combination of the following values
for each c-validation chain (d0, d1, ….., dn = d) at each c-
prime validation node d for t, that leads to an execution of
an acceptance or a rejection branch at d for t:

a) For each j, 0 ≤ j ≤ n-1, a combination of values of the
simple predicates in dj that leads to an execution of the
branch from dj to dj+1.

b) A combination of values of the simple predicates in d
that leads to an execution of the acceptance or rejection
branch respectively.

For conveniences, we shall call each such combination a feasible
validation condition for the validation chain that leads to an
execution of the branch.

31

Clearly, the second method subsumes the first method. The choice
depends on the time and resources available. Based on invariant
and empirical property 2, it is highly probable that all the test
cases generated provide a complete coverage for testing input
validation.

In the CFG shown in Figure 2, for testing input validation for
input read at node 1, branch-based input validation testing aims to
cover the following combinations of values of the simple
predicates in each c-prime validation node for node 1, that lead to
an execution of an acceptance or a rejection branch at the c-prime
validation node:

Node 2: “(C == the 5th digit of the card No.) = false” that leads to
an execution of the rejection branch from node 2 to node 10.

Node 4: “(the validation is confirmed) = false” that leads to an
execution of the rejection branch from node 4 to node 9.

Node 6: “(M <= withdrawal limit) = true” and “(M <= available
balance) = true” that leads to an execution of the acceptance
branch from node 6 to node 7; and the following three
combinations that lead to an execution of the rejection branch
from node 6 to node 8: “(M <= withdrawal limit) = true” and “(M
<= available balance) = false”; “(M <= withdrawal limit) = false”
and “(M <= available balance) = true”; “(M <= withdrawal limit)
= false” and “(M <= available balance) = false”.

Condition-based input validation testing aims to cover the
following feasible validation conditions for each c-validation
chain at each c-prime validation node for node 1, that leads to an
execution of an acceptance and a rejection branch at the c-prime
validation node:

Chain (2) at node, 2: “(C == the 5th digit of the card number) =
false” that leads to an execution of the rejection branch from node
2 to node 10.

Chain (2, 4) at node, 4: “(C == the 5th digit of the card number) =
true” and “(the validation is confirmed) = false” that leads to an
execution of the rejection branch from node 4 to node 9.

Chain (2, 4, 6) at node 6: “(C == the 5th digit of the card number)
= true” and “(the validation is confirmed) = true” and “(M <=
withdrawal limit) = true” and “(M <= available balance) = true”
that leads to an execution of the acceptance branch from node 6 to
node 7. The following three feasible validation conditions lead to
an execution of the rejection branch from node 6 to node 8: “(C
== the 5th digit of the card number) = true” and “(the validation is
confirmed) = true” and “(M <= withdrawal limit) = true” and “(M
<= available balance) = false”; “(C == the 5th digit of the card
number) = true” and “(the validation is confirmed) = true” and
“(M <= withdrawal limit) = false” and “(M <= available balance)
= true”; “(C == the 5th digit of the card number) = true” and “(the
validation is confirmed) = true” and “(M <= withdrawal limit) =
false” and “(M <= available balance) = false”.

Interestingly, test cases for both methods can be generated by
existing automated test case generation technique for branch
coverage through transformations. Next, we shall present the
automated test case generation for the two methods.

Branch-based Test Case Generation for Input Validation. Let
d be a c-prime validation node for input t. A test case to cover a
combination of values of the simple predicates in d that leads to
an execution of an acceptance or a rejection branch at d for t can
be automatically generated as follows:

1) Replace the branch condition of the acceptance or rejection
branch respectively with the conjunction of the values of
the simple predicates set in the combination.

2) Use a test case generation technique for branch coverage to
generate a test case to force through the acceptance or
rejection branch respectively.

Condition-based Test Case Generation for Input Validation.
Let (d0, d1, ….., dn = d) be a c-validation chain at a c-prime
validation node d for input t. A test case to cover a feasible
validation condition for the validation chain that leads to an
execution of an acceptance or rejection branch at d for t can be
generated as follows:

1) For each dj, 0 ≤ j ≤ n-1, insert nodes immediately before dj
for the following:

2) Assign a Boolean variable, pass(dj) to “true”, to indicate
the branch from dj to dj+1 has been followed.

3) Assign each simple predicate in dj according to its value set
in the feasible validation condition.

4) Replace the branch condition of the acceptance or rejection
branch respectively with the conjunction of the following
predicates:

5) For each simple predicate s in d (note that dn = d), the
predicate, (s = its value set in the feasible validation
condition).

6) For each dj, 0 ≤ j ≤ n-1, the predicate, (pass(dj) = true).

7) Use a test case generation technique for branch coverage to
generate a test case to force through the acceptance or
rejection branch respectively.

The condition-based test case generation is based on the fact that
following the method, a test case that forces through an
acceptance or a rejection branch at d for t will also force through
each branch from dj to dj+1, 0 ≤ j ≤ n-1, with the values of the
simple predicates in the predicate node set according to the
feasible validation condition. This is due to the setting of simple
predicate values in Step 1(b) and the insertion of predicates in
Step 2(b) to ensure that these branches are also forced through in
the branch condition.

4. THE PROPOSED APPROACH
Section 2 and 3 provide a basis to automatically verify whether
input read in a program is validated. The theory also provides a
basis to automatically generate test cases to test the input
validation feature implemented in a system. It is also highly
probable that the set of test cases generated forms a complete set
of test cases for testing input validation.

Moreover, we can classify the type of validation performed as
follows. Let d be a c-prime validation node for input t in the CFG
G of a program. Let (d0, d1, ….., dn = d) be a c-validation chain at
d for t. The validation carried out by a simple predicate in a c-
validation node dj (0 ≤ j ≤ n) can be classified into the following
types:

1) Control Check: The predicate is not influenced by any
input but by some system predefined variables.

2) Domain Check: The predicate is only influenced by a
single input variable. Domain check includes the validation
of special strings for security purposes.

32

3) Intra-Input Check: The predicate is influenced by more
than one input variables.

4) Input-Database Check: The predicate is influenced by both
input and the data retrieved from system database.

The detailed steps for the proposed approach are described in the
following. For each program in a system, first, the CFG G of the
program is constructed and the set of input nodes t is identified
through syntax analysis. The following steps are then performed:

Step 1: Compute the set P of c-prime validation nodes for t. First,
the set E of effect nodes in G that are influenced by some input
nodes in t is computed through data flow analysis. Second, for
each e ∈ E, identify all the predicate nodes on the paths from t to
e and put them in a set D. For each node d ∈ D, verify whether it
satisfies the required properties for a c-prime validation node for t
according to the definition. In the verification, for properties with
regard to a path, it is sufficient to check all the basis paths
between the two associated nodes. If the result is affirmative, then
d is a c-prime validation node for t; hence it is put in the set P of
all the c-prime validation nodes for t.

Step 2: Verify the possibility that input t is validated. Each branch
at each c-prime validation node for t is checked for the following
condition until the result is affirmative or the end: there is an
acceptance branch and there is a rejection branch for t. If the
result it is affirmative, from invariant property 1, it is possible that
input t is validated and therefore proceeding to Step 3. Otherwise,
from empirical property 1, input t is not validated and no further
processing is needed.

Step 3: Perform one of the following two options depending on
user’s choice.

1) Branch-Based Testing: For each c-prime validation node d
for t in P, all the acceptance and rejection branches at d for
t are computed. Then, for each of these acceptance and
rejection branches, for each possible combination of values
of the simple predicates in d that leads to an execution of
the acceptance or rejection branch respectively, Branch-
Based Test Case Generation for Input Validation is applied
to generate a test case to cover the combination for
executing the branch. Next, the test case is annotated with
the branch (with acceptance or rejection indicated) and
predicate nodes passed through by executing the test case.
And, for each predicate node annotated, each simple
predicate in the predicate node is further annotated with its
value set in the test case and its type of validation as
discussed earlier.

2) Condition-Based Testing: For each c-prime validation node
d for t in P, all the acceptance and rejection branches and
all the c-validation chains at d for t are computed according
to the definition. Then, for each c-validation chain and
each acceptance and rejection branch at d for t, for each
feasible validation condition v for the c-validation chain to
execute the acceptance or rejection branch respectively,
Condition-Based Test Case Generation for Input
Validation is applied to generate a test case to cover v for
executing the acceptance or rejection branch respectively.
Next, the test case is annotated with the c-validation chain
and the branch (with acceptance or rejection indicated).
And, for each c-validation node in the c-validation chain
annotated, each simple predicate in the c-validation node is

further annotated with its value set v and its type of
validation as discussed earlier.

Step 4: Verify whether input t is validated. Based on the test cases
generated, if there is a test case to force through an acceptance
branch at a c-prime validation node for t and there is also a test
case to force through a rejection branch at a c-prime validation
node for t, then from invariant property 1, it is concluded that
input t is validated. Otherwise, input t is not validated. For the
latter case, if no test case is generated to force through any
acceptance branch at a c-prime validation node for t, then input t
is redundant.

The proposed approach can be applied to any program that
processes input and raise effect. It can be used for the verification
and testing of input validation implemented in a system. The
information on existence of input validation that is computed by
the proposed approach gives an overview of the input validation
feature implemented. The test cases and the associated
annotations generated from the proposed approach show all the
details of the input validations carried out. Based on these, testing
can be conducted to verify the exact correctness of input
validation implemented. This can be carried out for a program or
each program in a system. Thus, it can be used in any level of
software testing.

5. EVALUATION

5.1 Proof-of-Concept Prototyping
A prototype system has been developed to demonstrate the
feasibility of the approach proposed. The prototype system
implements the propose

d approach for Web applications that are written in Java. We
choose Web applications as the target system because of their
popularity, importance and their increasing need of reliability.

WebApps have two ways of validation on user inputs: client-side
validation and server-side validation. The importance of server-
side validation in WebApps has been emphasized [11, 13] because
of the vulnerability of client-side validation; thus we focuses on
the analysis of server-side validation, to make sure that any user
input used to raise an effect is validated at server-side regardless
the validation carried out at client-side. A major type of effect
raised in most of the WebApps is updating database; hence, the
prototype system is configured to automatically detect the effect
on database updating.

The prototype system is implemented as follows. First, we
developed a Program Analyzer to analyze the source code of each
program and construct its CFG. The Program Analyzer is
developed using the program analysis system, Java Architecture
for Bytecode Analysis (JABA) [8], which analyzes Java programs
at bytecode level. By parsing a class file of a Java program, JABA
builds the CFG and collects the control and data flow information
for the analyzed program. Next, we developed an Input Validation
Analyzer and Test Case Generator (IV-ATCG) to process the
CFG, control and data flow information of the analyzed program.
The IV-ATCG is implemented in accordance to the four steps
described in Section 4. The technique of test data generation for
branch coverage proposed in [5] is used to generate test cases.
This technique is effective in detecting infeasible paths, and can
handle programs with pointers, arrays and function calls.

33

5.2 Case Studies
5.2.1 Case Study on Verification of Input Validation
To evaluate the use of the proposed approach for the verification
and testing of input validation, we conducted case studies on the
eight open source systems listed in Table 1 (which are also used
for part of the hypotheses testing). We did a general check on the
existence of input validation in those systems using the prototype
system. In total, our prototype system finds 34 programs out of
150 programs do not have input validation feature, which account
for 22.67%. This statistic shows that input validation is often
ignored or overlooked by developers; however, the lack of
sufficient input validation can cause very serious problems
(examples are discussed below).

We then apply the proposed approach in full on two systems:
Roomba and Smacs [15]. Roomba is a web-based room booking
system for small to medium-sized hotels. The whole system is
well designed and implemented. However, in the experiment, the
prototype system discovers that 6 out of 16 programs in Roomba
do not have input validation feature. An example is shown in
Figure 3. The program reads input at line 2, 4, 5 and 6, construct
the SQL statement at line 8 and 10, and update database at line 11.

Figure 3. A program without input validation

It is not surprising to see many similar cases as the one shown in
Figure 3, in which the program reads user inputs and uses them
directly in database insertion or modification without any
checking on the input values. Basically, such defect can cause two
possible problems. One is that an invalid input can result in Java
SQL runtime exception if the value does not comply to its entry
type defined in the database schema such as the type and length of
the data (e.g., inserting a string into a database where an integer is
required); the other one is that it is very easy to be attacked by
SQL injection which may cause security issues.

Smacs [15] is a web-based facility for the management of casual
staff working in an organization. Our prototype system discovered
that 8 out of 24 programs in Smacs do not have input validation
feature. An interesting example is shown in Figure 4. In this case,
bean is an instance of the class TestingCard as in line 1. The
program checks the input values at line 2 and 4 and set the
corresponding field of bean if the value is not null. However,
although a domain checking is performed on the input, the method
bean.create() at the line 6 will always be executed regardless of
the results of the checking. This program may confuse the users

who provide the invalid input; it may also cause the insertion of
invalid records into the database.

Besides the verification of existence of the input validation, we
also uses the proposed approach to generate test cases for
programs in Roomba and Smacs, for illustrating and verifying the
input validation feature implemented. Both the condition-based
and branch-based methods are applied and tested. We found that
the test cases generated by the branch-based method with
annotations sufficiently show the validation features implemented
in the systems. The condition-based method tends to generate
more test cases for showing the different combinations of
conditions.

In summary, through the case study on open source systems, we
find that the prototype system can effectively detect programs
without input validation. The lack of input validation in many
programs could cause serious problems such as program runtime
exception, security control, violation of database integrity. We
also observe that the test cases with annotation generated by
branch-based method are sufficient to illustrate the input
validation features implemented.

5.2.2 Case Study on Testing Input Validation
To experience the feasibility of using the proposed approach to
aid input validation testing in software development, we
conducted a case study on a student project EAuction. EAuction is
a web-based auction system that developed by senior computer
science students. It provides basic functionalities for hosting
online auctions where registered users can both post and bid on
items.

For testing the input validation feature in integration testing of the
system, we divided the students into two groups: the functional
test case design techniques that include testing based on input
structure were introduced to the first group; and the proposed
testing was introduced to the second group. Interestingly, in
addition to the testing of correctness on input validation, we
observes that the test cases generated by the condition-based
method in the proposed approach also helps to discover complex
logic errors among the conditions. It was clear that the group that
used the proposed approach tested the input validation more
adequately than the other group. We also observed that the group
that used the proposed approach generated test cases much
systematically and faster than the other group.

6. RELATED WORK
Two techniques for testing of input validation have been proposed
[6, 13]. Both of the techniques attempt to violate input
specifications in the design of test cases. The technique proposed

/*No input validation: Smacs/ insertTestingCard.jsp*/
1 <jsp:useBean class="casualstaffhr.TestingCard" id="bean" />
…
2 if (request.getParameter("number") != null){
3 bean.setNumber(request.getParameter("number"));
 }
…
4 if (request.getParameter("description") != null){
5 bean.setDescription(request.getParameter("description"));
 }
6 bean.create();

Figure 4. A program without input validation

* No input validation: Roomba/bookings/saveBooking.jsp */
 1 boolean newBooking = false;
 2 if ((getParam("newBooking", request).equals("true")))
 3 newBooking = true;
 4 String id = getParam(“id”, request);
 5 String customerid = getParam("customerid", "0", request);
 6 String roomid = getParam("roomid", "0", request);
 …
 7 if (newBooking) {
 8 sql = "INSERT INTO ROOMBA Bookings(customerid,

roomid, …) VALUES (" + customerid + ", " +roomid +… + ")";}
 9 else {
 10 sql = "UPDATE ROOMBABookings SET” +

 “customerid = " + customerid + ", " + "roomid = "
 + roomid + … +"WHERE (id = " + id + ")";}

 11 DBConnector.executeUpdate(sql);

34

in [6] is for input validation analysis and testing of systems that
take inputs that can be represented in grammars. The bypass
testing proposed in [13] is specifically for testing Web
applications. Though the proposed approach shares the objective
of verifying and testing the input validation with these techniques,
the ways that they address the problem differ vastly from the
proposed approach. The proposed approach verifies input
validation features and generates test cases for testing these
features through analyzing the CFGs of programs that process
inputs. As a result, it lands itself as an automated method. The two
related techniques are solely based on the analysis of the structure
and syntax of the inputs. They are not fully automated.

Software testing is a well research area. Much work has been
devoted to structural testing [5, 10, 17], specification based testing
[2-3, 9], implementation-based testing [1, 7]. Recently, there has
been some interest in using software architecture for code testing
[12]. In terms of software testing, the proposed technique shares
with the structural technique on the automated generation of test
cases. It shares with the specification based testing and software
architecture based testing on the use of some kind of model for
code testing. In opposing to these approaches, the proposed
approach recovers the model automatically from source code for
implementing input validation. Based on the model discovered, it
automatically generates test cases to test the validation. No
specification of model is required. It is for testing a type of
features – input validation. So, from the automated test case
generation perspective, it can be viewed as a case of feature
oriented automated test case generation method. Therefore, it can
be viewed as a case on applying feature oriented Software
Engineering [18] in automated test case generation.

From the theoretical perspective, the proposed approach is
developed through the integration of invariant and empirical
properties together as a basis for the automated verification and
test case generation for input validation. All the empirical
properties have been validation statistically. The use of empirical
properties that have been statistically validated is very common in
medicine. Though they are some use of empirical properties
informally, formal statistical validation on these properties is still
not very common in software engineering.

7. CONCLUSION
We have proposed an approach for the automated verification and
test case generation for input validation from program source
codes. Any affirmative result on the verification of existence of
input validation from the proposed approach is always correct. It
is highly probable that other result from the verification is also
correct. All test cases generated from the proposed approach and
all types of input validation reported from the proposed approach
are always correct too. It is also highly probable that these test
cases and types of input validation have covered all the input
validation implemented. The approach can be applied to any
program that processes input submitted to raise effect.

In addition to the use in automated software verification and
testing, we believe that the proposed approach has a potential to
be realized as a computer auditing tool to automatically verify the
implementation of input validation in a system from its source
code. The tool can also automatically generate test cases from
source code to show how input validation is implemented. More
exploration on feature-oriented automated software verification
and test case generation is also a further research area.

8. ACKNOWLEDGMENTS
We would like to thank Mary Jean Harrold from Georgia Institute
of Technology, for sharing the JABA program analysis tool.

9. REFERENCES
[1] Bechini, A. and Tai, K.-C., Design of a toolset for dynamic

analysis of concurrent Java programs. in Proceedings 6th
International Workshop on Program Comprehension.
IWPC'98, 24-26 June 1998, (Ischia, Italy, 1998), IEEE
Comput. Soc, 190-197.

[2] Cardell-Oliver, R. and Glover, T., A practical and complete
algorithm for testing real-time systems. in Formal
Techniques in Real-Time and Fault-Tolerant Systems. 5th
International Symposium, FTRTFT'98, 14-18 Sept. 1998,
(Lyngby, Denmark, 1998), Springer-Verlag, 251-261.

[3] Carver, R.H. and Tai, K.-C. Use of sequencing constraints
for specification-based testing of concurrent programs. IEEE
Transactions on Software Engineering, 24 (6). 471-490.

[4] China Webmaster: http://code.cnzz.cn
[5] Gupta, N., Mathur, A.P. and Soffa, M.L., Generating test

data for branch coverage. in Proceedings of ASE 2000 15th
IEEE International Automated Software Engineering
Conference, 11-15 Sept. 2000, (Grenoble, France, 2000),
IEEE Comput. Soc, 219-227.

[6] Hayes, J.H. and Offutt, A.J. Increased software reliability
through input validation analysis and testing. Proceedings of
the 10th International Symposium on Software Reliability
Engineering, ISSRE'99. 199-209.

[7] Hoffman, D. and Strooper, P., Tools and techniques for Java
API testing. in Proceedings 2000 Australian Software
Engineering Conference, 28-29 April 2000, (Canberra, ACT,
Australia, 2000), IEEE Comput. Soc, 235-245.

[8] JABA, http://www.cc.gatech.edu/aristotle/Tools/jaba.html
[9] Mandrioli, D., Morasca, S. and Morzenti, A. Generating test

cases for real-time systems from logic specifications. ACM
Transactions on Computer Systems, 12 (4). 365-398.

[10] Mansour, N. and Salame, M. Data generation for path
testing. Software Quality Journal, 12 (2). 121-136.

[11] MSDN, Design Guidelines for Secure Web Application:
http://msdn.microsoft.com/library/default.asp?url=/library/en
-us/dnnetsec/html/THCMCh04.asp

[12] Muccini, H., Inverardi, P. and Bertolino, A. Using software
architecture for code testing. IEEE Transactions on Software
Engineering, 30 (3). 160-171.

[13] Offutt, J., Wu, Y., Du, X. and Huang, H., Bypass testing of
Web applications. in 15th International Symposium on
Software Reliability Engineering, 2-5 Nov. 2004, (Saint-
Malo, Bretagne, France, 2004), IEEE Comput. Soc, 187-197.

[14] Planet Source Code: http://www.pscode.com
[15] Sourceforge: http://sourceforge.net
[16] Tai, K.-C. Theory of fault-based predicate testing for

computer programs. IEEE Transactions on Software
Engineering, 22 (8). 552-562.

[17] Taylor, R.N., Levine, D.L. and Kelly, C.D. Structural testing
of concurrent programs. IEEE Transactions on Software
Engineering, 18 (3). 206-215.

[18] Turner, C.R., Fuggetta, A., Lavazza, L. and Wolf, A.L. A
conceptual basis for feature engineering. Journal of Systems
and Software, 49 (1). 3-1

35

