

Edinburgh Research Explorer

Provenance management in curated databases

Citation for published version:
Buneman, P, Chapman, A & Cheney, J 2006, Provenance management in curated databases. in SIGMOD
'06 Proceedings of the 2006 ACM SIGMOD international conference on Management of data. ACM, pp.
539-550. https://doi.org/10.1145/1142473.1142534

Digital Object Identifier (DOI):
10.1145/1142473.1142534

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
SIGMOD '06 Proceedings of the 2006 ACM SIGMOD international conference on Management of data

Publisher Rights Statement:
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 22. Sept. 2024

https://doi.org/10.1145/1142473.1142534
https://doi.org/10.1145/1142473.1142534
https://www.research.ed.ac.uk/en/publications/616f965e-908f-488f-9494-e5a95da15e82

Provenance Management in Curated Databases

Peter Buneman
University of Edinburgh

Edinburgh, UK

opb@inf.ed.ac.uk

Adriane P. Chapman
University of Michigan
Ann Arbor, MI 48109

apchapma@eecs.umich.edu

James Cheney
University of Edinburgh

Edinburgh, UK

jcheney@inf.ed.ac.uk

ABSTRACT
Curated databases in bioinformatics and other disciplines are the
result of a great deal of manual annotation, correction and transfer
of data from other sources. Provenance information concerning the
creation, attribution, or version history of such data is crucial for
assessing its integrity and scientific value. General purpose data-
base systems provide little support for tracking provenance, espe-
cially when data moves among databases. This paper investigates
general-purpose techniques for recording provenance for data that
is copied among databases. We describe an approach in which we
track the user’s actions while browsing source databases and copy-
ing data into a curated database, in order to record the user’s actions
in a convenient, queryable form. We present an implementation
of this technique and use it to evaluate the feasibility of database
support for provenance management. Our experiments show that
although the overhead of a naı̈ve approach is fairly high, it can be
decreased to an acceptable level using simple optimizations.

1. INTRODUCTION
Modern science is becoming increasingly dependent on data-

bases. This poses new challenges for database technology, many
of them to do with scale and distributed processing [13]. However
there are other issues concerned with the preservation of the “sci-
entific record” – how and from where information was obtained.
These issues are particularly important as database technology is
employed not just to provide access to source data, but also to
the derived knowledge of scientists who have interpreted the data.
Many scientists believe that provenance, or metadata describing
creation, recording, ownership, processing, or version history, is
essential for assessing the value of such data. However, provenance
management is not well understood; there are few guidelines con-
cerning what information should be retained and how it should be
managed. Current database technology provides little assistance
for managing provenance.

In this paper we study the problem of tracking provenance of
scientific data in curated databases, databases constructed by the
“sweat of the brow” of scientists who manually assimilate infor-
mation from several sources. First, it is important to understand the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2006, June 27–29, 2006, Chicago, Illinois, USA.
Copyright 2006 ACM 1-59593-256-9/06/0006 ...$5.00.

working practices and values of the scientists who maintain and use
such databases.

1.1 Curated Databases
There are several hundred public-domain databases in the field of

molecular biology [12]. Few contain raw experimental data; most
represent an investment of a substantial amount of effort by indi-
viduals who have organized, interpreted or re-interpreted, and an-
notated data from other sources. The Uniprot [23] consortium lists
upwards of seventy scientists, variously called curators or annota-
tors, whose job it is to add to or correct the reference databases
published by the consortium. At the other end of the scale there
are relatively small databases managed by a single individual, such
as the Nuclear Protein Database [9]. These databases are highly
valued and have, in some cases, replaced paper publication as the
medium of communication. Such databases are not confined to bi-
ology; they are also being developed in areas such as astronomy
and geology. Reference manuals, dictionaries and gazetteers that
have recently moved from paper publication to electronic dissemi-
nation are also examples of curated databases.

One of the characteristics of curated databases is that much of
their content has been derived or copied from other sources, of-
ten other curated databases. Most curators believe that additional
record keeping is needed to record where the data comes from –
its provenance. There has been some examination [2, 8, 16, 22,
24] of provenance issues in data warehouses; that is, views of some
underlying collection of data. But curated databases are not ware-
houses: they are manually constructed by highly skilled scientists;
they are not computed automatically from existing data sets; they
are not views.

1.1.1 Example
A molecular biologist is interested in how age and cholesterol

efflux affect cholesterol levels and coronary artery disease. She
keeps a simple database of proteins which may play a role in these
systems; this database could be anything from a flat text or XML
file to a full RDBMS. One day, while browsing abstracts of recent
publications, she discovers some interesting proteins on SwissProt,
and copies the records from a SwissProt web page into her data-
base (Figure 1(a)). She then (Figure 1(b)) fixes the new entries
so that the PTM (post-translational modification) found in Swis-
sProt is not confused with PTMs in her database found from other
sites. She also (Figure 1(c)) copies some publication details from
Online Mendelian Inheritance in Man (OMIM) and some other re-
lated data from NCBI. Finally (Figure 1(d)), she notices a mistake
in a PubMed publication number and corrects it. This manual cura-
tion process is repeated many times as the researcher conducts her
investigation.

One year later, when reviewing her information, she finds a dis-

(a)

MyDB

ABC1 O95477
CRP

SwissProt

(b)

MyDB

ABC1

SwissProt−PTM

(c)

MyDB
OMIM NCBI

600046

Publications
PTM

PTM

ABC1

(d)

Publications

ABC1

MyDB

12504680
P02741

PubMed

123 6512

NP_005493

Figure 1: A biological database curation example. Dashed lines represent provenance links.

crepancy between two PTMs and the conditions under which they
are found. Unfortunately, she cannot remember where the anoma-
lous data came from, so cannot trace it to the source to resolve the
conflict. Moreover, the databases from which the data was copied
have changed; searching for the same data no longer gives the same
results. The biologist may have no choice but to discard all of the
anomalous data or spend a few hours tracking down the correct val-
ues. This would be especially embarrassing if the researcher had
already published an article or version of her database based on the
now-suspect data.

In some respects, the researcher was better off in the days of
paper publication and record keeping, where there are well-defined
standards for citation and some confidence that the cited data will
not change. To recover these advantages for curated databases, it is
necessary to retain provenance information describing the source
and version history of the data. In Figure 1, this information is
represented by the dashed lines connecting source data to copied
data.

The current approach to managing provenance in curated data-
bases is for the database designer to augment the schema with fields
to contain provenance data [1, 18] and require curators to add and
maintain the provenance information themselves. Such manual
bookkeeping is time consuming, error-prone and often incomplete.
It should not be necessary. We believe it is imperative to find ways
of automating the process.

1.2 The problem
The term “provenance” has been used in a variety of senses in

database and scientific computation research. One form of prove-
nance is “workflow” or “coarse-grained” provenance: information
describing how derived data has been calculated from raw observa-
tions [3, 10, 14, 21]. Workflow provenance is important in scientific
computation, but is not a major concern in curated databases. In-
stead, we focus on “fine-grained” or “dataflow” provenance, which
describes how data has moved through a network of databases.

Specifically, we consider the problem of tracking and managing
provenance describing the user actions involved in constructing a
curated database. This includes recording both local modifications
to the database (inserting, deleting, and updating data) and global
operations such as copying data from external sources. Because
of the large number and variety of scientific databases, a realistic
solution to this problem is subject to several constraints. The data-

bases are all maintained independently, so it is (in the short term)
unrealistic to expect all of them to adopt a standard for storing and
exchanging provenance. A wide variety of data models is in use,
and databases have widely varying practices for identifying or lo-
cating data. While the databases are not actively uncooperative,
they may change silently and past versions may not be archived.
Curators employ a wide variety of application programs, comput-
ing platforms, etc., including proprietary software that cannot be
changed.

In light of these considerations, we believe it is reasonable to
restrict attention to a subproblem that is simple enough that some
progress can be made, yet which we believe provides benefits in
common situations faced by database curators.

1.3 Our approach
In this paper, we propose and evaluate a practical approach to

provenance tracking for data copied manually among databases. In
our approach, we assume that all of the the user’s actions in con-
structing the target database are captured as a sequence of insert,
delete, copy, and paste actions by a provenance-aware application
for browsing and editing databases. As the user copies, inserts, or
deletes data in her local database T , provenance links are stored in
an auxiliary provenance database P . These links relate data loca-
tions in T with locations in previous versions of T or in external
source databases S. They can be used after the fact to review the
process used to construct the data in T ; in addition, if T is also be-
ing archived, the provenance links can provide further detail about
how each version of T relates to the next. In order to ensure the
consistency of the target database and its provenance record, it is
essential that the target database and provenance record are writable
only via high-level interfaces that track provenance.

The architecture is summarized in Figure 2. The new compo-
nents are shaded, and the existing (and unchangeable) components
are unshaded. The shaded triangles indicate wrappers mapping
S1, . . . , Sn, T to an XML view; the database P stores provenance
information describing the updates performed by the editor. Al-
ternatively, provenance information could be stored as annotations
alongside data in T ; however, this would require changing the struc-
ture of T . The only requirement we make is that there is a way to
address each data element. We shall describe this in more detail
shortly.

It is important to note that we propose using XML only as an

S1

S2

S3

T

User

query

update

P
store

Provenance
aware
editor/
browser

CPDB

Figure 2: Provenance architecture

abstraction for exchanging and locating data in databases. Our ap-
proach does not require the underlying databases to store XML. In-
stead, source and target databases can be relational or XML DBMSs,
or consist of files stored in filesystems or Web sites; all are common
forms of scientific databases.

When provenance information is tracked manually or by a custom-
built system, the user or designer typically decides what prove-
nance information to record on a case-by-case basis. In contrast,
our system records everything. The obvious concern is that the
processing and storage costs for doing this could be unacceptably
high. The main contribution of this paper is to show how such fine-
grained provenance information can be tracked, stored, and queried
efficiently.

We have implemented our approach and experimented with a
number of ways of storing and querying provenance information,
including a naı̈ve approach and several more sophisticated tech-
niques. Our results demonstrate that the processing overhead of
the naı̈ve approach is fairly high; it can increase the time to pro-
cess each update by 28%, and the amount of provenance infor-
mation stored is proportional to the size of the changed data. In
addition, we also investigated the impact of two optimization tech-
niques: transactional and hierarchical provenance management.
Together, these optimizations typically reduce the added process-
ing cost of provenance tracking to less than 5–10% per operation
and reduce the storage cost by a factor of 5–7 relative to the naı̈ve
approach; moreover, the storage overhead is bounded by the lesser
of the number of update operations and the amount of data touched.
In addition, typical provenance queries can be executed more effi-
ciently on such provenance records. We believe that these results
make a compelling argument for the feasibility of our approach to
provenance management.

The structure of the rest of this paper is as follows. Section 2
presents the conceptual foundation of our approach to provenance
tracking. Section 3 presents the implementation of CPDB, an in-
stance of our approach that uses MySQL and the Timber XML
database [15]. In Section 4, we present and analyze the experi-
mental results. We discuss other work on provenance and related
areas such as logging, availability, schema evolution, and archiving
in Section 5; Sections 6 and 7 discuss future work and conclude.

2. MANUAL UPDATES AND PROVENANCE
In order to discuss provenance we need to be able to describe

where a piece of data comes from; that is, we need to have a means
for describing the location of any data element. We make two as-
sumptions about the data, which are already used in file synchro-

nization [11] and database archiving [4] and appear to hold for a
wide variety of scientific and other databases. The first is that the
database can be viewed as a tree; the second is that the edges of that
tree can be labeled in such a way that a given sequence of labels
occurs on at most one path from the root and therefore identifies at
most one data element. Traditional hierarchical file systems are a
well-known example of this kind of structure. Relational databases
also can be described hierarchically. For instance, the data values in
a relational database can be addressed using four-level paths where
DB/R/tid/F addresses the field value F in the tuple with iden-
tifier or key tid in table R of database DB. Scientific databases
already use paths such as SwissProt/Release{20}/Q01780 to
identify a specific entry, and this can be concatenated with a path
such as Citation{3}/Title to identify a data element. XML data
can be addressed by adding key information [4] or XPath/XPointer
expressions.

Formally, we let Σ be a set of labels, and consider paths p ∈ Σ∗

as addresses of data in trees. The trees t we consider are unordered
and store data values from some domain D only at the leaves. Such
trees are written as {a1 : v1, . . . , an : vn}, where vi is either a
subtree or data value. We write t.p for the subtree of t rooted at
location p.

We model the the user’s actions with a basic update language
whose atomic update operations are of the form

u ::= ins {a : v} into p | del a from p | copy q into p

The insert operation inserts an edge labeled a with value v into
the subtree at p; v can be either the empty tree or a data value. The
delete operation deletes an edge and its subtree. The copy operation
replaces the subtree at p with a copy of the subtree at location q. We
write sequences U of atomic updates as u1; . . . ; un. Using [[U]] for
the function on trees induced by the update sequence U , we can
give semantics to the operations is as follows.

[[ins {a : v} into p]](t) = t[p := (t.p] {a : v})]
[[del a from p]](t) = t[p := (t.p− a)]

[[copy q into p]](t) = t[p := t.q]
[[U ; U ′]](t) = [[U ′]]([[U]](t))

Here, t]t′ denotes the tree t with subtree t′ added; this fails if there
are any shared edge names at the top level of t and u; t−a denotes
the result of deleting the node labeled a, failing if no such node
exists; and t[p := t′] denotes the result of replacing the subtree of t
at p by u, failing if path p is not present in t. Insertions, copies, and
deletes can only be performed in a subtree of the target database T .

As an example, consider the update operations in Figure 3. These
operations copy some records from S1 and S2, then modify some
of the field values. The result of executing this update operation on
database T with source databases S1, S2 is shown in Figure 4. The
initial version of the target database is labeled T , while the version
after the transaction is labeled T ′.

2.1 Provenance tracking
Figure 4 depicts provenance links (dashed lines) that connect

copied data in the target database with source data. Of course,
these links are not visible in the actual result of the update. In
our approach, these links are stored “on the side” in an auxiliary
table Prov(T id, Op, Loc, Src), where T id is a sequence number
for the transaction that made the corresponding change; Op is one
of I (insert), C (copy), or D (delete); Loc is the location of the af-
fected data; and Src is the source location (for a copy). The Src
field is ignored for inserts and deletes. Note that {T id, Loc} forms
a key for Prov; that is, for each transaction, each location has ei-
ther been inserted, deleted, or copied from somewhere in the input.

(1) delete c5 from T;
(2) copy S1/a1/y into T/c1/y;
(3) insert {c2 : {}} into T;
(4) copy S1/a2 into T/c2;
(5) insert {y : {}} into T/c2;
(6) copy S2/b3/y into T/c2/y;
(7) copy S1/a3 into T/c3;
(8) insert {c4 : {}} into T;
(9) copy S2/b2 into T/c4;
(10) insert {y : 12} into T/c4;

Figure 3: An example copy-paste update operation.

b1 b2 b3a1 a2 a3

x y x x y x y x x y

1 2 3 7 5 1 2 4 7 6

c1 c2 c3

x x x y

1 3 7 6

y

2

c4

x

4

y

12

y

c5

x

9

y

7

S1 S2

T T’ 9

10

7

4

2 6

c1

x

1

y

3

1

11

6

Figure 4: An example of executing the update in Figure 3. The
upper two trees S1, S2 are XML views of source databases; the
bottom trees T , T ′ are XML views of part of the target database
at the beginning and end of the transaction. White nodes are
unchanged; black nodes represent inserted or deleted nodes;
other shadings indicate whether the node came from S1 or S2.
Dashed lines indicate provenance links. Boxed numbers indi-
cate the relevant copy-paste operation in Figure 3. Additional
provenance links can be inferred from context.

Thus, T id and Loc are natural candidates for indexing. Additional
information about each transaction, such as commit time and user
identity, can be stored in a separate table with key T id.

We now examine several ways of storing provenance informa-
tion.

2.1.1 Naı̈ve provenance
The most straightforward method is to store one provenance record

for each copied, inserted, or deleted node. In addition, each up-
date operation is treated as a separate transaction. This technique
may be wasteful in terms of space, because it introduces one prove-
nance record for every node inserted, deleted, or copied throughout
the update. However, it retains the maximum possible information
about the user’s actions. In fact, the exact update operation de-
scribing the user’s sequence of actions can be recovered from the
provenance table.

2.1.2 Transactional provenance
The second method is to assume the updated actions are grouped

into transactions larger than a single operation, and to store only

(a) Prov

T id Op Loc Src
121 D T/c5 ⊥

121 D T/c5/x ⊥

121 D T/c5/y ⊥

122 C T/c1/y S1/a1/y
123 I T/c2 ⊥

124 C T/c2 S1/a2

124 C T/c2/x S1/a2/x
125 I T/c2/y ⊥

126 C T/c2/y S2/b3/y
127 C T/c3 S1/a3

127 C T/c3/x S1/a3/x
127 C T/c3/y S1/a3/y
128 I T/c4 ⊥

129 C T/c4 S2/b2
129 C T/c4/x S2/b2/x
130 I T/c4/y ⊥

(b) Prov

T id Op Loc Src
121 D T/c5 ⊥

121 D T/c5/x ⊥

121 D T/c5/y ⊥

121 C T/c1/y S1/a1/y
121 C T/c2 S1/a2

121 C T/c2/x S1/a2/x
121 C T/c2/y S2/b3/y
121 C T/c3 S1/a3

121 C T/c3/x S1/a3/x
121 C T/c3/y S1/a3/y
121 C T/c4 S2/b2
121 C T/c4/x S2/b2/x
121 I T/c4/y ⊥

(c) HProv

T id Op Loc Src
121 D T/c5 ⊥

122 C T/c1/y S1/a1/y
123 I T/c2 ⊥

124 C T/c2 S1/a2

125 I T/c2/y ⊥

126 C T/c2/y S2/b3/y
127 C T/c3 S1/a3

128 I T/c4 ⊥

129 C T/c4 S2/b2
130 I T/c4/y ⊥

(d) HProv

T id Op Loc Src
121 D T/c5 ⊥

121 C T/c1/y S1/a1/y
121 C T/c2 S1/a2

121 C T/c2/y S2/b3/y
121 C T/c3 S1/a3

121 C T/c4 S2/b2
121 I T/c4/y ⊥

Figure 5: The provenance tables for the update operation of
Figure 3. (a) One transaction per line. (b) Entire update as one
transaction. (c) Hierarchical version of (a). (d) Hierarchical
version of (b).

provenance links describing the net changes resulting from a trans-
action. For example, if the user copies data from S1, then on further
reflection deletes it and uses data from S2 instead, and finally com-
mits, this has the same effect on provenance as if the user had only
copied the data from S2. Thus, details about intermediate states or
temporary data storage in between “official” database versions are
not retained. Transactional provenance may be less precise than
the naı̈ve approach, because information about intermediate states
of the database is discarded. However, the decision when to com-
mit is in the hands of the user; frequent commits can be used to
record important intermediate states.

The storage cost for the provenance of a transaction is propor-
tional to the number of nodes touched in the input and output of
the transaction. That is, the number of transactional provenance
records produced by an update transaction t is i + d + c, where i
is the number of inserted nodes in the output, d is the number of
nodes deleted from the input, and c is the number of copied nodes
in the output.

2.1.3 Hierarchical provenance
Whether or not transactional provenance is used, much of the

provenance information tends to be redundant (see Figure 5(a,b)),
since in many cases the annotation of a child node can be inferred
from its parent’s annotation. Accordingly, we consider a second
technique, called hierarchical provenance. The key observation is
that we do not need to store all of the provenance links explicitly,
because the provenance of a child of a copied node can often be
inferred from its parent’s provenance using a simple rule. Thus,

in hierarchical provenance we store only the provenance links that
cannot be so inferred. These non-inferable links correspond to
the provenance links shown in Figure 4. A copy-paste operation
copy p into q results in adding only a single record HProv(t, C, q, p).
Figure 5(c) shows the hierarchical provenance table HProv corre-
sponding to the naı̈ve version of Prov. In this case, the reduced
table is about 25% smaller than Prov, but much larger savings
are possible when entire records or subtrees are copied with little
change.

Unlike transactional provenance, hierarchical provenance does
not discard any information and does not require the user to group
operations into transactions. We can define the full provenance ta-
ble as a view of the hierarchical table as follows. If the provenance
is specified in HProv, then it is just copied into Prov. Otherwise,
the provenance of every target path p/a not mentioned in HProv is
q/a, provided p was copied from q. If p was inserted, then we as-
sume that p/a was also inserted; that is, children of inserted nodes
are assumed to also have been inserted, unless there is a record in
HProv indicating otherwise. Deletions are treated similarly. For-
mally, the full provenance table Prov can be defined in terms of
HProv as the following recursive query:

Infer(t, p) ← ¬(∃x, q.HProv(t, x, p, q))
Prov(t, op, p, q) ← HProv(t, op, p, q).
Prov(t, C, p/a, q/a) ← Prov(t, C, p, q), Infer(t, p).
Prov(t, I, p/a,⊥) ← Prov(t, I, p,⊥), Infer(t, p).
Prov(t, D, p/a,⊥) ← Prov(t, D, p,⊥), Infer(t, p).

We have to use an auxiliary table Infer to identify the nodes that
have no explicit provenance in HProv, to ensure that only the prove-
nance of the closest ancestor is used. In our implementation, Prov

is calculated from HProv as necessary for paths in T , so this check
is unnecessary. It is not difficult to show that an update sequence
U can be described by a hierarchical provenance table with |U |
entries.

2.1.4 Transactional-hierarchical provenance
Finally, we considered the combination of transactional and hier-

archical provenance techniques; it is not difficult to combine them.
Figure 5(d) shows the transactional-hierarchical provenance of the
transaction in Figure 3.

It is also easy to show that the storage of transactional-hierarchical
provenance is i + d + C, where i and d are defined as in the dis-
cussion of transactional provenance and C is the number of roots
of copied subtrees that appear in the output. This is bounded above
by both |U | and i+d+ c, so transactional-hierarchical provenance
may be more concise than either approach alone.

2.2 Provenance queries
How can we use the machinery developed in the previous sec-

tion to answer some practical questions about data? Consider some
simple questions:

Src What transaction first created the data at a location? This is
particularly useful in the case of raw data; e.g., who entered
your telephone number incorrectly?

Hist What is the sequence of all transactions that copied a node to
its current position?

Mod What transactions were responsible for the creation or modi-
fication of the subtree under a node?

Hist and Mod provide very different information. A subtree may
be copied many times without being modified.

We first define some convenient views of the raw Prov table
(which, of course, may also be a view derived from HProv). We
define the views Unch(t, p), Ins(t, p), Del(t, p), and Copy(t, p, q),
which intuitively mean “p was unchanged, inserted, deleted, or
copied from q during transaction t,” respectively.

Unch(t, p) ← ¬(∃x, q.Prov(t, x, p, q)).
Ins(t, p) ← Prov(t, I, p,⊥)
Del(t, p) ← Prov(t, D, p,⊥)
Copy(t, p, q) ← Prov(t, C, p, q)

We also consider a node p to “come from” q during transaction t
(table From(t, p, q)) provided it was either unchanged (and p = q)
or p was copied from q.

From(t, p, q) ← Copy(t, p, q)
From(t, p, p) ← Unch(t, p)

Next, we define a Trace(p, t, q, u), which says that the data at lo-
cation p at the end of transaction t “came from” the data at location
q at the end of transaction u.

Trace(p, t, p, t).
Trace(p, t, q, u) ← Trace(p, t, r, s), Trace(r, s, q, u).
Trace(p, t, q, t− 1) ← From(t, p, q).

Note that Trace is essentially the reflexive, transitive closure of
From. Now to define the queries mentioned at the beginning of the
section, suppose that tnow is the last transaction number in Prov,
and define

Src(p) = {u | ∃q.Trace(p, tnow, q, u), Ins(u, q)}
Hist(p) = {u | ∃q.Trace(p, tnow, q, u), Copy(u, q)}
Mod(p) = {u | ∃q.p ≤ q, Trace(q, tnow, r, u),¬Unch(u, r)}

That is, Src(p) returns the number of the transaction that inserted
the node now at p, while Hist(p) returns all transaction numbers
that were involved in copying the data now at p. Finally, Mod(p)
returns all transaction numbers that modified some data under p.
This set could then be combined with additional information about
transactions to identify all users that modified the subtree at p.
Here, p ≤ q means p is a prefix of q. Despite the fact that there
may be infinitely many paths q extending p, the answer Mod(p) is
still finite, since there are only finitely many transaction identifiers
in Prov. Moreover, Mod can be answered using only the data in
Prov or HProv; it is not necessary to inspect the target database.

There are many interesting queries that mention both provenance
and the raw data. Our system currently does not provide special
support for such queries, but they can be written by explicitly con-
structing paths using string operations. For example, to project the
A field out of relation R(Id, A, B) along with its current prove-
nance, we could use the query

Q(x, px) ← R(k, x, y), From(tnow,"R/"+k+"/A", px)

where k, x, px, and y are variables and + denotes string concatena-
tion. Such queries are tricky to write by hand, and we are interested
in providing advanced support for provenance queries; however,
this is future work.

The point of this discussion is to show that provenance mappings
relating a sequence of versions of a database can be used to answer
a wide variety of queries about the evolution of the data, even with-
out cooperation from source databases. However, if only the target
database tracks provenance, the information is necessarily partial.
For example, the Src query above cannot tell us anything about
data that was copied from elsewhere. Similarly, the Hist and Mod
queries stop following the chain of provenance of a piece of data
when it exits T . If some source databases do not track provenance

and publish it in a consistent form, many queries only have incom-
plete answers.

Of course, if source databases also store provenance, we can pro-
vide more complete answers by combining the provenance infor-
mation of all of the databases. In addition, there are queries which
only make sense if several databases track provenance, such as:

Own What is the history of “ownership” of a piece of data? That
is, what sequence of databases contained the previous copies
of a node?

It would be extremely useful to be able to provide answers to such
queries to scientists who wish to evaluate the quality of data found
in scientific databases.

3. IMPLEMENTATION
We have implemented a “copy-paste database” CPDB that tracks

the provenance of data copied from external sources to the target
database. In order to demonstrate the flexibility of our approach,
our system connects several different publicly downloadable data-
bases. We have chosen to use MiMI [18], a biological database of
curated datasets, as our target database (T in Figure 2). MiMI is a
protein interaction database that runs on Timber [15], a native XML
database. We used OrganelleDB [25], a database of protein local-
ization information built on MySQL, as an example of a source
database. Since the target database interacts with only one source
database at a time, we only experimented with one source database.
In addition, the provenance store was implemented as a MySQL ta-
ble.

3.1 Overview
CPDB permits the user to connect to the external databases, copy

source data into the target database, and modify the data to fit the
target database’s structure. The user’s actions are intercepted and
the resulting provenance information is recorded in a provenance
store. Currently, CPDB provides a minimal Web interface for test-
ing purposes, implemented using JavaScript and SOAP. The inter-
face provides tree views of the databases which the user can use
to select parts of the data along with buttons that allow the user to
insert, delete, copy, and paste selected data. Providing a more user-
friendly browsing/editing interface is important, but orthogonal to
the data management issues that are our primary concern.

In order to allow the user to select pertinent information from
the source and target databases, each database must be wrapped
in a way that allows CPDB to extract the appropriate information.
This wrapping is essentially the same as a “fully-keyed” XML view
of the underlying data. In addition, the target database must also
expose particular methods to allow for easy updating. Figure 6 de-
scribes the necessary functions that the source and target databases
must implement. Essentially, the source and target databases must
provide methods that map tree paths to the database’s native data;
in addition, the target database must be able to translate updates to
the tree to updates to its internal data.

This approach does not require that any of the source or target
databases represent data internally as XML. Any underlying data
model for which path addresses make sense can be used. Also, the
databases need not expose all of their data. Instead, it is up to the
databases’ administrators how much data to expose for copying or
updating. In many cases, the data in scientific databases consists
of a “catalog” relation that contains all the raw data, together with
supporting cross-reference tables. Typically, it is only this catalog
that would need to be made available by a source database. In
such cases, it may be possible to write wrappers that are completely

SourceDB
treeFromDB() Returns a tree, with unique identifiers,

populated from the data. The SourceDB
is responsible for determining how the
data fits in the tree, e.g. mapping a
relational database to tree format.

copyNode() Returns a list of nodes that a user has
copied. If the user copies a leaf node,
the list is size 1. Otherwise, each node
in the subtree of the selected node is
contained in the list. Each node contains
the identifying path and data value.

TargetDB
addNode Inserts a new, empty node with
(String nodename) name=nodename in the target db

according to the database’s mapping
from a tree to native format.

deleteNode() Deletes the specified node from the
target database.

pasteNode(Node X) Insert node X as a child of the
specified node according to the tree
to database schema mapping.

Figure 6: Wrappers for Source and Target Databases

independent of (and do not require changing) the source database.
However, this has to be done on a case by case basis.

3.2 Implementation of provenance tracking
Given wrapped source and target databases, CPDB maintains a

provenance store that allows us to track any changes made to the
target database incorporating data from the sources. To this end,
during a copy-paste transaction, we write the data values to the
target database, and write the provenance information to the prove-
nance store. A user may specify any of the storage operations dis-
cussed in the previous section. In this section, we discuss how
the implementations of provenance tracking and the Src, Hist, and
Mod provenance queries differ from the idealized forms presented
in Section 2.

3.2.1 Naı̈ve provenance
The implementation of the naı̈ve approach is a straightforward

process of recording target and source information for every trans-
action that affects the target database. Whenever an insert, delete,
or copy operation is performed, the corresponding tracking func-
tion trackInsert, trackDelete, trackPaste is called with the
transaction identifier and applicable source and target paths. These
operations simply add the corresponding records to the provenance
store. Note that for a paste operation, we add one record per node
in the copied subtree.

3.2.2 Transactional provenance
In transactional provenance, the user decides how to segment the

sequence of update operations into transactions. When the user de-
cides to end a transaction and commit its changes, CPDB stores
the provenance links connecting the current version with its pre-
decessor, and the current version becomes the next reference copy
of the database, to which future provenance links will refer. Only
provenance links of data actually present in the output of a trans-
action are stored; no links corresponding to temporary data deleted
or overwritten by the transaction are stored.

To support this behavior, the transactional provenance imple-
mentation maintains an active list, provlist, of provenance links
that will be added to the provenance store when the user commits.
When an atomic update is performed, the provenance store is un-

affected, but any resulting provenance links are added to the list.
Conversely, in the case of a copy or delete, any provenance links on
the list corresponding to overwritten or deleted data are removed.
At the time of the commit, the commit() function is called, which
writes the provenance of all items in the active list to the prove-
nance store.

3.2.3 Hierarchical Provenance
In the hierarchical provenance storage method, we store at most

one record per operation, and in particular, for a copy, we only store
the record connecting the root of the copied tree to the root of the
source.

3.2.4 Hierarchical Transactional Provenance
Combining the hierarchical and transactional provenance is straight-

forward; all we need to do is to maintain hierarchical provenance
instead of naı̈ve provenance records in provlist. One subtle issue
is that when several operations are performed in one transaction,
some of the resulting hierarchical provenance links could be re-
dundant; for example, this happens if we copy S/a to T/a and
then copy S/a/b to T/a/b. It is possible to check for and remove
such redundant links prior to committing provlist. However, such
redundancy is unusual, so this extra processing appears not to be
worthwhile in most cases.

3.3 Provenance Queries
We implemented the provenance queries Src, Mod, and Hist as

programs that issue several basic queries, due to lack of support for
the kind of recursion needed by the Trace query. For naı̈ve and
transactional provenance, we can directly query the provenance
store. For hierarchical provenance, the provenance store corre-
sponds to the HProv relation. Instead of building a view containing
the full provenance relation, we query the provenance store directly
and compute the appropriate provenance links on-the-fly. All ver-
sions of the queries are implemented as stored procedures written
in Java running in MySQL.

4. EVALUATION
User requirements for provenance vary widely and are constantly

evolving, so evaluating any approach to provenance is challeng-
ing. In addition, evaluating an approach to provenance tracking for
manual curation is challenging because it is difficult to collect real-
istic manual update sequences. In order to evaluate the feasibility
of our approach, we therefore chose to use random sequences of
copy-paste operations to simulate worst-case behavior. We consid-
ered update sequences of 3500 and 14,000 steps; observations of
real practices by database curators indicate that 14000 steps could
account for roughly 6 months of changes produced by 4 curators.

We believe that the most important factors affecting the feasibil-
ity of provenance management are the costs of tracking and storing
provenance, not querying provenance. Although the purpose of
provenance tracking is to make it possible to answer provenance
queries after the fact, such queries are rare compared to queries
on the raw data. Thus, our experiments focused primarily on the
storage and processing requirements of provenance tracking for the
different approaches. We also performed experiments measuring
the effect of the different approaches on provenance query process-
ing; full exploration of provenance query optimization and database
tuning is left for future work.

4.1 Experimental setup
The evaluation of CPDB was performed on a Dell workstation

with Pentium 4 CPU at 2GHz with 640MB RAM and 74.4GB disk

space running Windows XP. The target database was a 27.3MB
copy of MiMI stored in Timber, and the source database was 6MB
of data from OrganelleDB stored in MySQL. The provenance infor-
mation was stored separately in MySQL. We used Timber version
1.1 and MySQL version 4.1.12a-nt via TCP/IP. CPDB was imple-
mented as a Java application that communicates with MySQL via
JDBC and Timber using SOAP.

We performed five sets of experiments to measure the relative
performance of the naı̈ve (N), transactional (T), hierarchical (H),
and hierarchical-transactional (HT) provenance storage methods.
Table 1 summarizes the experiments we report, including a descrip-
tion of the fixed and varying parameters, and listing the figures
containing experimental results. We used six patterns of update
operations, summarized in Table 2. The first five are random se-
quences of adds, deletes, and copies in various proportions. The
copies were all of subtrees of size four (a parent with three chil-
dren) from OrganelleDB to MiMI. The real update consisted of a
regular pattern of copies, deletes, and inserts simulating the effect
of a bulk update on MiMI that could be performed via a standard
XQuery statement using XPath. It repeatedly copies a subtree into
the target, then inserts three elements under the subtree root and
deletes three existing subtree elements. We also used variations of
the mix dataset that exhibited different deletion patterns, shown in
Table 3.

In the first set of experiments we ran 3500-step updates on each
of the first five update patterns using each storage method. For the
transactional approaches, commits were performed after every five
updates. In each case, we measured the amount of time needed
for provenance manipulation, interaction with the target database,
and interaction with the provenance database. We also measured
the total size of the provenance store and target database (both in
number of rows and in real storage terms) at the end of the transac-
tion. Efficiency considerations precluded measuring the size of the
provenance store or target database after each operation.

In the second experiment, we ran 14,000-step versions of the real
and mix updates using all four provenance methods, with the same
experimental methodology as for the 3500-step updates. These ex-
periments were intended to determine how our techniques scale as
larger numbers of realistic user actions are performed, so we did
not run the less realistic add, delete, or copy update patterns of this
length.

Figure 7 shows the total provenance storage in rows needed for
each method and each run for the 3500-step updates. The real stor-
age sizes in bytes display the same trends (each row requires be-
tween 100 and 200 bytes), so we omit this data. Figure 8 shows
the total provenance storage in rows needed for each of the 14,000-
step runs. Numbers at the top of each bar show the physical sizes
of the tables. Figure 9 shows the average time for target database
interaction, and average time per add, delete, copy, or commit op-
eration for the 14,000-mix run. These results accurately reflect ob-
served provenance processing times in all the other experiments, so
we omit this data. In order to determine how expensive provenance
tracking is per add, delete, or copy operation, we also calculated the
average time for dataset manipulation by operation type; Figure 10
shows the overhead of provenance tracking for each operation as a
percentage of base dataset manipulation time.

In the third experiment, we measured the effects of deletes on
provenance storage. We performed five different versions of the
14,000-mix update with varying deletion patterns. These deletion
patterns may not be representative of common user behavior, but
demonstrate the storage performance of the various methods under
different conditions. Figure 11 shows the results of this experiment.
We plot two columns per provenance method, one (labeled “ac”)

Table 1: Summary of experiments
Upd. Length Trans. Length Update Pattern Prov. Method Measured Figures

1 3500 5 add, delete, copy, ac-mix, mix N, H, T, HT space 7
2 14000 5 mix, real N, H, T, HT space, time 8, 9, 10
3 14000 5 del-random, del-add, del-mix, del-copy, del-real N, H, T, HT space 11
4 3500 7, 100, 500, 1000 real HT time 12
5 14000 5 real N, H, T, HT query time 13

Table 2: Update patterns
add All random adds
delete All random deletes
copy All random copies
ac-mix Equal mix of random adds and copies
mix Equal mix of random adds, deletes, copies
real Copy one subtree, add 3 nodes, delete 3 nodes

Table 3: Deletion patterns

del-random Paths deleted at random
del-add All added paths deleted
del-copy Only copies deleted
del-mix 50–50 mix of adds and copies deleted
del-real 3 nodes from copied subtree deleted

showing the provenance table size when only the adds and copies
are performed, the other (labeled “acd”) showing the size when the
deletes are also performed.

The fourth experiment measured the effect of transaction length
on provenance processing time. It consisted of running the 3500-
real update for the hierarchical-transactional method with transac-
tion lengths 7, 100, 500, and 1000. We measured the processing
time required for each operation. Figure 12 summarizes the re-
sults of this experiment; it shows the average time needed for each
add, delete, copy, and commit for each run. Also, the “amortized”
data series shows the average time per operation with commit time
amortized over all operations.

Finally, the fifth experiment measured the cost of answering some
typical provenance queries. For each storage method, we measured
the average query processing time for getSrc, getMod, getHist
queries of random locations run at the end of a 14,000-real run.
Figure 13 shows the results. Error bars indicate the typical ranges
of response times. No indexing was performed on the provenance
relation, so these query times represent worst-case behavior.

4.2 Analysis
As can be seen in Figures 7 and 8, either a hierarchical or trans-

actional strategy can provide substantial space savings. Figure 7
shows how the storage methods perform for different types of ac-
tions. Perhaps unsurprisingly, inserts and deletes are handled es-
sentially the same by all methods. Only copy operations really
stress the system. The naı̈ve and transactional approaches store
four provenance records per copy (recall that all copies are of sub-
trees of size four), whereas the hierarchical techniques store only
one such record per copy. The hierarchical-transactional technique
provides the most efficient storage overall. The results in Figure 8
confirm these trends for longer sequences of updates.

Figure 9 shows the time spent on storing provenance informa-
tion for all the techniques. For comparison, the average dataset

Provenance Records (3500 updates)

Method

R
o

w
s

0

2000

4000

6000

8000

10000

12000

14000

N H T HT

add

copy

delete

ac

mix

Figure 7: Number of entries in the provenance store after a
variety of update patterns of length 3500.

Provenance Records (14000 updates)

0

5000

10000

15000

20000

25000

30000

N H T HT
Method

R
o

w
s

Mix

Real
10.5MB

3.5MB

2.5MB2.5MB
1.5MB

1.5MB

1.5MB

1.5MB

Figure 8: Number of entries in the provenance store after mix
and real update patterns of length 14,000. The number at the
top of each bar shows the physical size of the table.

0

50
100

150
200
250
300

350
400

450
500

N H T HT
Method

A
ve

ra
g

e
T
im

e
 (

m
s

)

Provenance Manipulation Time Dataset Update
Add Prov.
Delete Prov.
Paste Prov.
Commit Prov.

Figure 9: The average amount of time for target database pro-
cessing and for add, delete, copy, and commit operations on the
provenance store during a 14000-mix update.

Provenance Manipulation Overhead

Operation Type

O
ve

rh
ea

d
 (

%
)

0

5

10

15

20

25

30

35

Add Delete Copy

N

H

T

HT

Figure 10: The overhead of provenance tracking per operation,
as a percentage of the time to perform each basic operation.

Effects of Deletion

Method

R
o

w
s

0

5000

10000

15000

20000

25000

30000

N (ac)N (acd)H (ac)H (acd)T (ac)T (acd) HT
(ac)

HT
(acd)

del-random

del-add

del-mix

del-copy

del-real

Figure 11: The effect of deletion on the provenance store. The
notation (ac) indicates provenance table size when only add and
copy operations are performed while (acd) includes deletes.

Transaction Length vs. Processing Time

Transaction Length

T
im

e
(m

s
)

1

10

100

1000

10000

100000

size 7 size 100 size 500 size 1000

Add

Delete

Copy

Commit

Amortized

Figure 12: The effect of transaction size on provenance pro-
cessing time.

Provenance Query Time

getSrc getMod getHist
Query

T
im

e
 (

m
s)

1

10

100

1000
N

H

T

HT

Figure 13: The time needed to perform basic provenance
queries.

processing time and average commit times are shown as well. Note
that the time for copying in transactional provenance is not zero; it
is just close to zero because copies do not involve interaction with
the provenance store in transactional provenance. Figure 10 de-
picts the average overhead of provenance processing per individual
add, delete, or copy operation. For naı̈ve storage, the add, delete
and copy operations require less than 30% of the processing time
needed for interaction with the target database. Although hierarchi-
cal provenance is much faster for copies, it requires more time to
process inserts. (Deletes are unaffected because hierarchical prove-
nance treats deletes exactly as naı̈ve provenance does.) More time
is needed because we must first query the provenance database to
determine whether to add the provenance record. Transactional
provenance, on the other hand, is much more responsive. Inserts
and copies run essentially instantaneously, because no interaction
with the target database or provenance store is needed. Moreover,
commits require about 25% of the average time for database inter-
action, but only occur once every five steps. The savings seem to be
due to the reduced number of round-trips to the provenance data-
base. For hierarchical-transactional storage, more time is needed
for copies and inserts, but all the basic operations take at most 6%
of the total time. Commits take the same amount of time on average
as for hierarchical provenance.

The effects of deletion are shown in Figure 11. For naı̈ve and
hierarchical provenance, deletion simply adds provenance records.
For transactional provenance, some deletion patterns result in fewer
overall records being stored, because some data is inserted and
deleted in the same transaction. However, hierarchical-transactional
provenance displays the most stable behavior, and stores the fewest
records among the approaches for each update pattern.

The effect of transaction length on processing time is shown
in Figure 12. Processing time per basic operation does not vary
much with transaction size, while the amount of time needed to
process a commit grows approximately linearly with transaction
length. The average overall time per operation remains about the
same. These results reflect the expected behavior, and illustrate
that our approach works at interactive speeds (at most one or two
seconds) for transactions of up to 100 operations. Committing the
corresponding changes to the target database is likely to take as
long or longer. More sophisticated techniques that minimize net-
work round trips during commits could further reduce the overall
processing time.

Finally, Figure 13 displays the time needed to query the vari-
ous forms of provenance using the getSrc, getMod, and getHist
queries. In general, it is expected that getHist will outperform
getSrc, and both will do better than getMod based on the prove-

nance store access patterns and data manipulation inherent in each.
The getSrc and getHist queries run slightly (15%) faster for hier-
archical provenance, but interestingly, the getMod query is about
20% slower; there is no benefit over the naı̈ve version since each
query must process all the descendants of a node, including ones
not listed in the provenance store. The queries ran fastest for trans-
actional provenance; for all three queries, we observed a speedup
of roughly a factor of 2.5 relative to the naı̈ve approach. This
makes sense because transactional provenance stores only about
25–35% as many records as the naı̈ve approach. Of course, this is
because transactional provenance is less descriptive than the naı̈ve
approach; however, this seems like a reasonable tradeoff, especially
since the user can decide which versions of the database to com-
mit. Hierarchical-transactional provenance benefits from the re-
duced number of records inherent in the transactional method, so
both getSrc and getHist perform as well as for the transactional
approach, but getMod runs only slightly faster than for the naı̈ve
approach.

5. RELATED WORK
Biological and other scientific databases have dealt with prove-

nance tracking in ad hoc ways. The Saccaromyces Genome Data-
base [7] uses triggers to store records of updates to the database,
but this only provides the history of local changes. In most cases
the provenance of copied data is recorded manually. For example,
in the Nuclear Protein Database, links to the PubMed bibliographic
database or to other protein databases such as Entrez or UniProt are
entered manually by the curator alongside the relevant data.

As mentioned in the introduction, “workflow” or “coarse-grained”
provenance has been studied extensively in the context of scien-
tific computation [10, 14, 26]; Bose and Frew [3] and Simmhan et
al. [21] survey most existing research on such systems. These ap-
proaches record the process used to derive processed data products
from raw data. In scientific computation, especially Grid comput-
ing [27], provenance is an important issue for two reasons. First,
it is important to record the conditions under which source data
was recorded (that is, instrument settings and other conditions) in
order to ensure repeatability. Second, a Grid computation (work-
flow) may run computations on several different machines on the
Grid, each running different operating systems, different versions
of analysis software, etc., all of which may affect the results in sub-
tle ways. Provenance is important for tracking down the source
of anomalies, for ensuring experiments are repeatable, and for as-
sessing the quality of the results. Also, provenance can be used to
identify and avoid costly duplicate recomputations.

We have intentionally focused on provenance tracking for step-
by-step copy-paste updates because we feel that this is an important
problem that has received relatively little attention. Of course, it is
also important to be able to propagate provenance and other an-
notations through more traditional relational database queries (or
extensions to complex objects or XML), and to support provenance
tracking for bulk updates. A fair amount of work has already been
done on provenance and annotation for relational queries (includ-
ing [2, 6, 8, 16, 22, 24]); however, issues such as how to assign
provenance information to the results of joins and unions which
may “fuse” data from different sources remain ill-understood. One
popular approach (used in [2, 22]) to dealing with joins and unions
that appears to be consistent with our framework is to interpret data
that has been “fused” as “coming from” both source locations.

To deal with grouping and aggregation operations such as SQL’s
GROUP-BY and SUM, AVERAGE, etc., one obvious approach is to
say that the provenance of the result of an aggregation operation is
⊥, since the result is not copied from the input, but instead com-

puted. Another approach is to say that it “came from” all of the
locations involved in computing it; this is what is done in work
on “why-provenance” and lineage [6, 8, 22, 24]. A third, and we
believe the most general, approach is to define the provenance of
a computed value as an expression describing how the value was
computed. For example, if R contains tuples t1 and t2, then the
provenance of the result of SELECT COUNT(*) FROM R would
be an expression such as count(R/t1, R/t2). This is similar to the
approach taken in “workflow” provenance for scientific computa-
tion such as Chimera [10].

Our approach to provenance overlaps with several other well-
studied areas, including transaction logging, data availability, schema
evolution, archiving, file synchronization, and version control. In
the rest of this section we discuss the relationship between our work
and these areas.

Logging Many database and filesystems systems use transac-
tion logging or journaling in order to provide crash recovery. Such
logs store detailed information about update operations applied to
the database. This information is necessary to undo the effects of
any transactions that had not committed at the time of a crash.
Since provenance tracking is similar in some respects to logging,
one might argue that provenance tracking is redundant or unneces-
sary in a database system that already performs logging. However,
logging serves a much different purpose, and transaction logs do
not provide as much information as provenance; so, to achieve the
same effect, it would be necessary to add extra instrumentation that
stores additional information to the logging system. In our opinion,
this would be a mistake: such application-level code and data has
no place in a system-critical mechanism.

Data availability One natural question is whether it makes
sense to retain provenance information if the original data source
becomes unavailable. The answer is an emphatic yes: such prove-
nance information is impossible to reproduce, so potentially price-
less. Provenance information for “lost” data can even help us re-
cover the lost data from copies. For example, suppose two data-
bases T1 and T2 are constructed using data from S, that the con-
struction process is recorded by provenance stores P1, P2, and that
later S disappears. We can still be fairly certain about the contents
of S, since we can use the provenance records of T1 and T2 to
partially reconstruct S. Even if T1 and T2 disagree about the con-
tents of S (which could easily happen due to changes to S or due
to errors in T1, T2, P1 or P2), this information may be better than
nothing.

Schema evolution Another natural question is how our approach
relates to schema evolution. For example, suppose we construct T
from S1 and S2, storing provenance in P , and later the schema of
S1 (or symmetrically, T) changes. Does this invalidate the prove-
nance information in P , and if so, how should we bring it up to
date? There are at least two sensible reactions. First, we could take
the view that the provenance information should always reflect the
“real” relationship between the current versions of the databases
involved. This is the approach traditionally taken in data integra-
tion and schema evolution. Then changes to the schemas do make
the provenance information out-of-date. However, this tends to be
expensive to correct, and to require centralization or cooperation
among databases to control and coordinate changes to schemas.
Moreover, this imposes on each database curator the responsibility
to monitor changes to all relevant source databases, and to update
the provenance information whenever any of them changes.

Alternatively, we could take the view that the provenance infor-
mation records what happened as it happened, so that later changes
to schemas do not render the information meaningless; they only
make it harder to interpret the provenance information with respect

to the current version. Moreover, in this setting, the relationship
between the old and new versions of S1 can also be captured by
a provenance mapping; thus, if S1 is tracks and publishes its own
provenance, this information can be used to relate the provenance
stored by T to the current version of S1.

Version control, archiving, and synchronization Version con-
trol [17], archiving [5], and file synchronization [11] are closely
related to our approach to provenance, but they do not address the
same problem. Such techniques aim to preserve or reconcile the
states of the data as it evolves over time, but they tell us only how
the versions differ, not how the changes were actually performed.
Moreover, these systems typically do not track changes that span
multiple systems. Conversely, provenance identifies the source of
information in the current version, but gives us no guarantee that
the cited information has been preserved. The information may be
in a database that has been updated since the data was extracted,
and if the database has not been archived, there will be no con-
firming evidence for the information that has been extracted. We
believe that both provenance recording and archiving are necessary
in order to preserve completely the “scientific record.”

6. FUTURE WORK
There are several obvious extensions to this work. The first is

to provide a user interface that is acceptable to the curator; that is,
it should not be too different from what is currently being used.
The current practice in many situations is to use web browsers to
acquire and update information. Reimer and Douglas [20] have
investigated usability and architectural considerations in the de-
velopment of a prototype Web notebook called NetNotes. In Net-
Notes, users can copy data from Web sites and paste it into a per-
sonal workspace or notebook. When data is copied in this sys-
tem, it is copied as HTML structure rather than text, with reference
to the source page. O’Mullane et al. [19] and other researchers
in Grid and scientific computing have investigated similar “per-
sonal workspace” approaches for supporting scientific data anal-
ysis needs. We believe that our approach can be combined with
such systems to provide support for tracking the provenance of both
copied and computed data with little change to current practice.

We are currently looking at extensions to the basic language of
atomic updates to languages that allow “bulk” updates. For exam-
ple, it is common in curated databases to copy citation data from
standard sources, and it may be laborious to do this for thousands
of citations, each of which may need to be restructured according
to some standard recipe. The technical challenge here is to connect
the semantics of a bulk update language based on copy-paste oper-
ations with that of standard languages such as the query and update
languages of SQL. In this setting transactional provenance is most
natural because of the inherent parallelism in conventional update
and query languages. To use naı̈ve provenance would negate almost
any form of query optimization.

In the presence of bulk updates, the amount of provenance infor-
mation could become overwhelming, since the number of prove-
nance records corresponding to a query or bulk update may be pro-
portional to the size of the database, not the size of the transfor-
mation. An alternative is to store approximate provenance records.
For example, we have experimented with using XPath expressions
to over-approximate the full set of provenance links generated by
bulk updates. In this approach, a record such as

Prov(t, C, T/a/∗/b, S/a/∗/b)

indicates that transaction t may include some links from target
paths matching T/a/∗/b to source paths matching S/a/∗/b; this
single link may abbreviate a large number of more detailed links

containing explicit identifier information. The storage needed for
approximate provenance remains proportional to the size of the
query or update, so is negligible compared to the requirements
for the full provenance table. However, provenance queries can
no longer be answered with certainty. Instead, we can only say that
some data may (or cannot) have come from a given source location.
This may be an acceptable price to pay to be able to store simple
provenance information much more efficiently for bulk updates.

7. CONCLUSIONS
Provenance information is essential for assessing the integrity

and value of data, especially in scientific databases. Managing
provenance metadata alongside ordinary data adds to the high cost
of scientific databases that are “curated”, or constructed by hand by
expert users who either enter raw data or copy existing data from
other sources. Therefore, automatic techniques for collecting and
managing provenance in such situations would be very beneficial.
However, this is a challenging problem because it requires tracking
data as it is copied between databases or modified by curators.

In this paper, we have proposed a realistic approach to automatic
provenance tracking in curated databases. We have implemented
our approach and conducted an experimental evaluation of sev-
eral methods of storing and managing provenance. The most naı̈ve
approach we investigated has relatively high storage cost (storage
overhead is proportional to the amount of data touched by an up-
date), moderate processing cost (overhead of up to 30% of update
processing time), and even simple provenance queries are fairly
expensive to answer. However, the hierarchical-transactional tech-
nique reduced the storage overhead in our experiments by around
a factor of 5, while decreasing the processing overhead per update
operation to at most 6% and providing improved performance on
provenance queries.

These experimental results affirm that provenance can be tracked
and managed efficiently using our approach. We believe that this is
a promising first step towards providing powerful, general-purpose
tools that will make life easier for scientific data curators and in-
crease the reliability and transparency of the scientific record.

Acknowledgments
We wish to thank Wendy Bickmore, H. V. Jagadish, Val Tannen and
Stijn Vansummeren for discussions on this work. This work was
supported by NSF through a graduate fellowship, by NIH project 1-
U54-DA021519-01A1, by EPSRC project R37476 and by funding
from the Royal Society.

8. REFERENCES
[1] G. Bader, D. Betel, and C. W. Hogue. BIND: the

biomolecule interaction network database. Nucleic Acids
Research, 31(1):248–250, 2003.

[2] D. Bhagwat, L. Chiticariu, W. C. Tan, and G. Vijayvargiya.
An annotation management system for relational databases.
In Proc. of the Intl. Conf. on Very Large Data Bases (VLDB),
pages 900–911. Morgan Kaufmann, 2004.

[3] R. Bose and J. Frew. Lineage retrieval for scientific data
processing: a survey. ACM Comput. Surv., 37(1):1–28, 2005.

[4] P. Buneman, S. Davidson, W. Fan, C. Hara, and W.-C. Tan.
Keys for XML. Computer Networks, 39(5), August 2002.

[5] P. Buneman, S. Khanna, K. Tajima, and W. C. Tan. Archiving
scientific data. ACM Trans. Database Syst., 29:2–42, 2004.

[6] P. Buneman, S. Khanna, and W.-C. Tan. Why and Where: A
characterization of data provenance. In ICDT, pages
316–330, 2001.

[7] J. Cherry, C. Adler, C. Ball, S. Chervitz, S. Dwight,
E. Hester, Y. Jia, G. Juvik, T. Roe, M. Schroeder, S. Weng,
and D. Botstein. SGD: Saccharomyces genome database.
Nucleic Acids Res., 26(1):73–79, 1998.

[8] Y. Cui and J. Widom. Lineage tracing for general data
warehouse transformations. VLDB J., 12(1):41–58, 2003.

[9] G. Dellaire, R. Farrall, and W. A. Bickmore. The nuclear
protein database (NPD): sub-nuclear localisation and
functional annotation of the nuclear proteome. Nucleic Acids
Research, 31(1):328–330, 2003.

[10] I. Foster, J. Vockler, M. Eilde, and Y. Zhao. Chimera: A
virtual data system for representing, querying, and
automating data derivation. In International Conference on
Scientific and Statistical Database Management, pages 1–10,
July 2002.

[11] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and
A. Schmitt. Combinators for bi-directional tree
transformations: A linguistic approach to the view update
problem. In ACM SIGPLAN–SIGACT Symposium on
Principles of Programming Languages (POPL), Long Beach,
California, 2005.

[12] M. Y. Galperin. The molecular biology database collection:
2006 update. Nucl. Acids Res., 34:D3–D5, Jan 2006.
doi:10.1093/nar/gkj162.

[13] J. Gray, D. T. Liu, M. A. Nieto-Santisteban, A. S. Szalay,
G. Heber, and D. DeWitt. Scientific data management in the
coming decade. Technical Report MSR-TR-2005-10,
Microsoft Research, January 2005.

[14] P. Groth, S. Miles, W. Fang, S. C. Wong, K.-P. Zauner, and
L. Moreau. Recording and using provenance in a protein
compressibility experiment. In Proceedings of the 14th IEEE
International Symposium on High Performance Distributed
Computing (HPDC’05), 2005.

[15] H. V. Jagadish, S. Al-Khalifa, A. Chapman, L. V.
Lakshmanan, A. Nierman, S. Paparizos, J. M. Patel,
D. Srivastava, N. Wiwatwattana, Y. Wu, and C. Yu. Timber:
A native XML database. The VLDB Journal, 11(4):274–291,
2002.

[16] T. Lee, S. Bressan, and S. E. Madnick. Source attribution for
querying against semi-structured documents. In Workshop on
Web Information and Data Management, pages 33–39, 1998.

[17] A. Marian, S. Abiteboul, G. Cobena, and L. Mignet.
Change-centric management of versions in an XML
warehouse. In P. M. G. Apers, P. Atzeni, S. Ceri,
S. Paraboschi, K. Ramamohanarao, and R. T. Snodgrass,
editors, VLDB, pages 581–590. Morgan Kaufmann, 2001.

[18] Mimi. http://mimi.ctaalliance.org.
[19] W. O’Mullane, J. Gray, N. Li, T. Budavari, M. A.

Nieto-Santisteban, and A. Szalay. Batch query system with
interactive local storage for SDSS and the VO. In
F. Ochsenbein, M. Allen, and D. Egret, editors, Astronomical
Data Analysis Software and Systems XIII, volume 314 of
ASP Conference Series, 2004.

[20] Y. Reimer and S. A. Douglas. Implementation challenges
associated with developing a web-based e-notebook. Journal
of Digital Information (JoDI), 4(3), 2003.

[21] Y. Simmhan, B. Plale, and D. Gannon. A survey of data
provenance in e-science. SIGMOD Record, 34(3):31–36,
2005.

[22] W. Tan. Containment of relational queries with annotation
propagation. In Proceedings of the International Workshop
on Database and Programming Languages (DBPL), 2003.

[23] UniProt. http://www.ebi.ac.uk/uniprot/.
[24] J. Widom. Trio: A system for integrated management of

data, accuracy, and lineage. In CIDR, pages 262–276, 2005.
[25] N. Wiwatwattana and A. Kumar. Organelle DB: a

cross-species database of protein localization and function.
Nucleic Acids Research, 33:D598–604, 2005.

[26] A. Woodruff and M. Stonebraker. Supporting fine-grained
data lineage in a database visualization environment. In
International Conference of Data Engineering, 1997.

[27] J. Zhao, C. A. Goble, R. Stevens, and S. Bechhofer.
Semantically linking and browsing provenance logs for
e-science. In ICSNW, pages 158–176, 2004.

