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ABSTRACT
Virtual memory has been successfully used in different do-
mains to extend the amount of memory available to appli-
cations. We have adapted this mechanism to sensor net-
works, where, traditionally, RAM is a severely constrained
resource. In this paper we show that the overhead of vir-
tual memory can be significantly reduced with compile-time
optimizations to make it usable in practice, even with the
resource limitations present in sensor networks.

Our approach, ViMem, creates an efficient memory lay-
out based on variable access traces obtained from simulation
tools. This layout is optimized to the memory access pat-
terns of the application and to the specific properties of the
sensor network hardware.

Our implementation is based on TinyOS. It includes a
pre-compiler for nesC code that translates virtual memory
accesses into calls of ViMem’s runtime component. ViMem
uses flash memory as secondary storage. In order to evaluate
our system we have modified nontrivial existing applications
to make use of virtual memory. We show that its runtime
overhead is small even for large data sizes.

Categories and Subject Descriptors
D.4.2 [Operating Systems]: Storage Management—Vir-
tual Memory ; D.3.4 [Programming Languages]: Proces-
sors—Preprocessors

General Terms
Design, Algorithms, Performance

Keywords
Virtual memory, wireless sensor networks, flash memory,
memory layout

1. INTRODUCTION
Traditionally, main memory has been a very scarce re-

source in sensor networks, and most sensor nodes are equipped
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with just a few kilobytes of RAM (for example, the Mica2
nodes from Crossbow only have 4 kB). However, several sen-
sor network applications already require more memory than
available on current sensor nodes. For instance, TinyDB
[22], which provides query processing capabilities with an
SQL-like language, requires the user to select at compile-
time which functionality should be included in the code im-
age. This decision can later only be changed by installing a
new code image on each sensor node. Likewise, the maxi-
mum size of an application in the Maté virtual machine [21]
is strictly limited by the amount of main memory available.

As applications for sensor networks increase in complexity,
RAM limitations will continue to cause difficulties for devel-
opers. For example, if applications perform more complex
analysis than just the simple aggregation of most applica-
tions today, even nodes with more memory will not be able
to satisfy future needs. As the experience from other do-
mains shows, even with comparatively large random access
memories there is always a shortage of main memory.

In traditional computing systems virtual memory has
been widely used to address this problem. With virtual
memory, parts of the contents of RAM are written to sec-
ondary storage when they are not needed. This mechanism
is easy to use since the system takes care of managing the
memory pages. However, current operating systems for sen-
sor networks [1, 7, 14, 17] do not support virtual memory.
Only recently t-kernel [12] has emerged as the first attempt
to demonstrate that virtual memory can be useful in sensor
networks as well.

Sensor nodes are equipped with flash memory as sec-
ondary storage, which is much larger than main memory
(between 512 kB and 1 MB). In most cases sensor network
applications use flash memory to log sensor readings for later
analysis. It is organized in pages of several hundred bytes
that have to be written en bloc. Accessing it is much more
expensive than accessing RAM: it takes several milliseconds
to read or write a flash page whereas variables in RAM can
be accessed in a few processor cycles. In addition, accesses
to flash memory are comparatively expensive regarding en-
ergy consumption. Nevertheless, as we show in this paper,
this type of memory is appropriate for the implementation
of virtual memory on sensor nodes.

The system model used by operating systems such as
TinyOS [17] is well suited to the use of virtual memory.
First, variables and addresses are known at compile-time
because all memory – except for the stack – is allocated
statically. Secondly, since there is only one application run-
ning, the locality of reference [6] is increased compared to
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multitasking systems and accesses are more predictable. Fi-
nally, since sensor nodes usually execute code directly from
program memory, which is separate from RAM, in sensor
networks virtual memory will only be used for data. There-
fore, the additional overhead introduced by virtual memory
does not arise with every single instruction but only with
data accesses.

In this paper we present ViMem, a system that provides
a virtual memory abstraction for TinyOS-based sensor net-
works and uses flash memory to extend the size of RAM
available to the application. Since energy is a limited re-
source in sensor networks, ViMem tries to minimize the
number of flash memory operations. It uses variable ac-
cess traces obtained from simulations to rearrange variables
in virtual memory at compile-time so that only a small num-
ber of accesses is necessary. As we show in the evaluation,
this algorithm helps to reduce the overhead of our virtual
memory solution.

Using simulation data, the algorithm determines which
variables are accessed frequently. It splits up complex data
structures such as arrays or structs to examine each element
individually. The algorithm then groups such parts of vari-
ables that are often accessed together. Likewise, it tries to
put variables that are accessed frequently on the same mem-
ory page so that it is likely to remain in RAM most of the
time.

The memory layout is determined offline by a pre-compiler
that modifies the code to redirect variable accesses to virtual
memory. ViMem manages the flash pages in memory so
that the developers do not have to deal with these low-level
details and access variables simply as if they were stored in
RAM. The only difference for the application developers is
that they have to tag all variables that they want to place
in virtual memory with a special attribute. This way they
maintain full control of which variables are stored in virtual
memory. For sensor networks this is important to allow the
developers to keep variables permanently in RAM if they
are used in time-critical functions.

Our solution has several benefits. First, it makes it pos-
sible to develop complex sensor network applications with-
out having to restrict the functionality due to memory con-
straints. Secondly, although the developers control which
variables are placed in virtual memory, accesses to those
variables are transparent. Finally, through an intelligent
placement of variables that takes into account the prop-
erties specific to sensor network applications, to hardware
platforms, and to the development process ViMem is able
to provide its functionality with minimal runtime overhead.
We argue that such optimizations are essential to make vir-
tual memory usable for the resource-constrained devices of
sensor networks.

The rest of this paper is organized as follows: Section 2
gives an overview of related work. Section 3 describes rel-
evant properties of sensor networks as well as ViMem’s de-
sign. Section 4 gives details on our memory layout algo-
rithm. In Section 5 we describe the implementation of both
the development tools and the runtime system. Section 6
presents and discusses evaluation results. Finally, Section 7
gives an outlook on future work and concludes this paper.

2. RELATED WORK
In this section we present work related to ViMem that

deals with virtual memory and data placement, uses flash

memory for other purposes in sensor networks, or provides
other solutions to the lack of memory on sensor nodes.

Virtual memory has a long history in operating systems
research [6] and is now a standard technique in modern op-
erating systems [26]. It allows the developer to use more
RAM than physically available in the system by swapping
out data to secondary storage. The system takes care of
selecting the memory pages stored in RAM and translating
addresses. Therefore, virtual memory is completely trans-
parent to developers. Recently, t-kernel [12] has applied
this widely-used mechanism to sensor networks. However,
this system does not modify the memory layout to mini-
mize accesses to secondary storage, which is an important
property of our approach. In addition, there the overhead
of a page fault can occur with every variable access (even in
time-critical functions) since the developer cannot select the
variables that are to be placed in virtual memory. Finally,
because it is based on load-time modifications of the code,
this further increases the overhead at runtime.

For traditional computing systems some compiler tech-
niques to optimize the memory layout for the properties of
the memory hierarchy have been proposed. Most of them ei-
ther use hardware support, simulation traces, or simply the
source code to determine the memory layout. In many cases
the main focus is on restructuring code, which is not needed
for our scenario where the code itself is separate from (vir-
tual) data memory. For example, Hatfield and Gerald [16]
reorder code sectors to have parts close to each other if they
are used together. Similarly, Hartley [15] duplicates code
blocks to have functions always near their caller. However,
these optimizations do not modify the arrangement of vari-
ables in memory.

Stamos [27] classifies different approaches to create a
memory layout including both code and data. In his classi-
fication our approach would be a graph-theoretic algorithm
that uses information from actual execution traces. How-
ever, he regards the detailed analysis done by our memory
layout algorithm as infeasible for his own scenario, the place-
ment of Smalltalk objects on virtual memory pages.

In addition, there are some techniques that target other
parts in the memory hierarchy. For example, compile-time
optimizations can be used to create an efficient memory
layout concerning CPU cache misses. Although similar in
spirit, the problem for CPU caches is different from the one
addressed by our approach. Instead of placing data used
together on the same memory page, Calder et al. [4] try
to reduce cache misses by placing such entries in memory
locations that are mapped on non-conflicting cache lines.

Muchnick [25] gives an overview of techniques of compile-
time optimizations for the memory hierarchy. In contrast to
our approach, these techniques often involve modifications
to the code such as loop transformations. Regarding the lay-
out of data in memory, Gupta [13] proves that the problem
of finding an optimal memory layout is NP-complete and
describes a heuristic that uses information from the source
code to arrange data in memory.

All of these optimization approaches are targeted to envi-
ronments different from sensor networks. Therefore, they
do not specifically address the properties of this domain
(e.g., access characteristics of flash memory, energy consid-
erations, etc.).

Sensor network applications and system components al-
ready use flash memory for different purposes. For in-



stance, it is used to store sensor values directly on the sen-
sor node [22, 31]. Storing the data in flash memory can be
more energy-efficient than sending it to a base station [8].
In addition, code update mechanisms [18, 19, 23] use flash
memory to store and process code updates before transfer-
ring them into program memory. Finally, ELF [5] is a file
system for flash memory that allows application developers
to store data without having to deal with the low-level prop-
erties of flash memory. As can be seen from this description,
there is a variety of uses for flash memory in sensor networks.

Instead of using virtual memory, one could also build a
sensor node which is already equipped with more RAM. For
example, unlike most sensor nodes the BTnodes [3] have
240 kB of additional RAM. However, there are currently
no nodes available that are equipped both with more RAM
and flash memory. If the advantages of flash memory such
as non-volatile storage of sensor readings and its even larger
size are needed, alternative solutions such as virtual memory
have to be used. Since one of the central assumptions of
sensor network research is that nodes are cheap, consume
little energy, and have a small form factor, equipping them
with more RAM in addition to flash memory or replacing
flash memory with other, more expensive types of memory is
not an option. In fact, in the future the class of inexpensive,
energy-efficient nodes will continue to be equipped with very
limited hardware resources [12]. In addition, as described
above, the experience from other domains shows that even
large amounts of RAM do not lessen the need for virtual
memory. Typically, more complex applications emerge if
more memory is available.

3. SYSTEM PROPERTIES AND DESIGN
This section first presents relevant characteristics of sensor

networks, then lists our design goals, and finally gives an
overview of the system design.

3.1 Sensor Network Characteristics
A number of characteristics of sensor networks have influ-

enced the design of our virtual memory system. First of all,
the hardware platforms used in typical sensor networks do
not include any support for virtual memory. Therefore, the
whole system – including address translation, the detection
of page faults, and the page replacement policy – has to be
implemented in software.

In addition, the behavior of flash memory vastly dif-
fers from other types of memory like magnetic disks and
RAM [9]. For example, there is a large difference in the ac-
cess speed for reading and writing. This difference also be-
comes apparent with the energy consumption of flash mem-
ory. Therefore, the number of write accesses has to be min-
imized. Table 1 shows the properties of the flash memory
chip used in the Mica family of sensor nodes. For this hard-
ware, writing a page to flash typically takes 4.5 times as long
as transferring one to RAM. Even more important, we have
measured that writing requires about 23 times the energy
of reading. Furthermore, there is a limit on how often each
flash page can be written. Thus some kind of wear level-
ing [9] has to be used in order to make sure that in the long
run each page is written a similar number of times.

Since sensor networks consist of a large number of devices
that are embedded in possibly inaccessible locations and of-
fer only limited user feedback capabilities, simulation has
become an important part of the sensor network develop-

Table 1: Properties of the Atmel AT45DB041B flash
memory chip [2]
Property Value
Page size 264 bytes
Number of pages 2048
Number of internal SRAM buffers for pages 2
Max. standby current 10 µA
Max. page read current 10 mA
Max. page write current 35 mA
Typical page read delay (measured) 3.6 ms
Typical page write delay (measured) 16.3 ms

ment process [29]. Therefore, simulation can be used as a
tool for optimizations. Such optimizations are important in
order to meet the application’s lifetime goals.

3.2 Design Goals
Our main objective is to provide a virtual memory abstrac-

tion on sensor nodes that minimizes energy consumption and
the number of accesses to flash memory. Taking into account
the properties of sensor networks described above we have
identified the following design goals for ViMem in order to
achieve this general objective:

• ViMem should not require hardware support for ad-
dress translation, etc.

• ViMem should minimize the number of write accesses
to flash memory for energy and efficiency reasons.

• It should be efficient for frequently used variables.

• The developer should be able to control which vari-
ables are placed in virtual memory.

• Accesses to variables in virtual memory should be
transparent to the developer.

• ViMem should allow for the reuse of existing applica-
tion and system components without requiring major
modifications.

3.3 Design Overview
ViMem consists of two main parts: a compiler extension

and a runtime component. The compiler extension redi-
rects variable accesses to ViMem’s runtime system and de-
termines the placement of variables on the memory pages.
The runtime component takes care of loading and storing
flash memory pages when they are needed.

3.3.1 Compiler Extension
Developers should be able to use variables in virtual mem-

ory just like those in RAM. However, since sensor net-
work hardware does not directly support virtual memory,
all access to data in virtual memory must be redirected to
ViMem’s runtime component. Our system accomplishes this
by using a pre-compiler that modifies all such variable ac-
cesses. This pre-compiler changes source code written in
nesC [11], the programming language used by TinyOS [17].
We have selected nesC and TinyOS because of their active
research community that has developed a large number of
application and system components. Many of them can po-
tentially benefit from ViMem. Although this approach is



no real virtual memory system, it offers similar benefits to
applications.

The developer maintains full control of which variables
are kept in RAM and which ones are stored in virtual mem-
ory. Only those tagged with a special attribute are put
into virtual memory. This way, variables that are used in
interrupt handlers and other performance-critical functions
can always be kept in RAM. In TinyOS’s execution model
these functions are called “asynchronous events”. All other
functions are executed in the task context which is less
performance-critical, as interrupt event handlers can sus-
pend such tasks [11,17].

The pre-compiler executes a memory layout algorithm to
place variables on pages in virtual memory. Our software
design allows for easy use of different memory layout algo-
rithms. The default algorithm, which is described in Sec-
tion 4, uses access traces obtained from simulation tools to
get information about the frequency of memory accesses.
Doing all the processing offline minimizes the effort at run-
time on the sensor nodes.

3.3.2 Runtime Component
ViMem’s runtime system is responsible for the manage-

ment of memory pages kept in RAM and for the provisioning
of data to the application. The challenge here is to deter-
mine which memory page has to be replaced when another
one is loaded from flash memory. Therefore, the algorithm
has to predict which pages are most likely used again in the
future. In addition, it has to consider the costs for replacing
a page. If a page has not been modified, replacing this page
is less expensive than selecting a page that has to be written
back to flash memory.

This algorithm was not the main focus of our research.
Therefore, for ViMem’s replacement policy we employ the
Enhanced Second-Chance Algorithm [26], which approxi-
mates a least-recently used (LRU) page replacement strat-
egy. This algorithm stores two bits for each page in RAM:
a recently used bit and a modified bit. It uses these bits to
group each page into one of the four classes described below.
Then it selects the first page in the lowest nonempty class
to be replaced.

The lowest class consists of pages that have neither been
modified nor recently used. These pages are the best ones
to replace. If a page has been modified but not recently
used, it is part of the second class. Likewise, the third class
comprises all pages that are clean but have been recently
used. Finally, a page that has been recently used and mod-
ified belongs to the last class. It will not only have to be
written back to flash memory but is also likely to be used
again soon.

The page replacement algorithm uses a circular list to
examine each page in memory. It starts looking for a page
in the lowest category. If it finds none, it looks for one of
the second class and then continues with the other ones.

In addition, the runtime system makes use of the SRAM
buffers, which are part of the flash memory chip used in
our implementation platform, the Mica2 nodes. Pages have
to be transferred to one of these buffers before they can be
written to the flash. In addition, as Fig. 1 shows, the buffers
are used as a second level of caching: expensive write ac-
cesses are not performed immediately but the page is just
stored in the buffer. If it is needed again, it does not have
to be written to flash memory and can be retrieved from the
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Figure 1: Memory hierarchy of ViMem

buffer. Likewise, if it is not modified again while in RAM,
it does not even have to be written back to the buffer again.
If, however, a page is read that is currently not stored in
one of the buffers, our system reads it directly from flash
memory to RAM. This is possible without introducing ad-
ditional overhead and leaves the SRAM buffers unchanged
so that the number of actual write accesses to the flash can
be further reduced. Since persistence is not required for a
virtual memory system, it does not matter if a page in the
buffer is lost when the batteries of the device are depleted,
for example.

Each flash memory page can only be written a fixed num-
ber of times. Therefore, our runtime system tries to dis-
tribute write accesses across several physical pages in order
to avoid wearing out pages that are written more often than
others. For this purpose, it reserves a larger pool of flash
memory pages than it actually needs (e.g., 1.5 times this
number). Since there is usually enough free space available
in flash memory and since we expect the space needed for
virtual memory to be comparatively small, this does not
severely reduce the flash memory usable by the application
and other system components. If a page is written back to
flash, ViMem cycles through a list of all reserved flash pages
and selects the first one currently not being used. Following
this approach, write accesses to frequently used pages will be
spread across a larger number of physical pages. The data
structures containing the information about available pages
can be kept in RAM, as they are relatively small. In addi-
tion, since old contents of virtual memory do not have to
be accessed after restarting a node, losing these data struc-
tures does not lead to problems. Of course, this aspect of
our system is only needed if the flash memory chip does not
take care of wear leveling itself.

4. MEMORY LAYOUT ALGORITHM
This section describes our memory layout heuristic that

determines the placement of variables in virtual memory. It
is the core part of our approach to reduce the number of flash
accesses and, thus, improve on efficiency. The heuristic has
two main goals: First, it aims to exploit locality of reference
in order to reduce the overall number of page replacements.
Second, it puts special effort in decreasing the number of
write accesses to flash memory.

ViMem’s pre-compiler runs this algorithm when building
the application. As we describe in the following subsections,



it uses simulation traces to determine an efficient memory
layout by grouping and reordering variables.

4.1 Use of Variable Access Traces
In general, finding an optimal memory layout is not pos-

sible since the exact order in which variables are accessed at
runtime depends on many factors. For example, in sensor
networks data gathering requests from users as well as sen-
sory input and packets received from other nodes may influ-
ence the application flow. Even if the exact order of accesses
were known at compile-time, finding an optimal memory lay-
out would be an NP-complete problem [13]. Therefore, our
memory layout algorithm can only provide a heuristic that
does not necessarily find the best solution for each execution
path.

Although the specific order of data accesses is not pre-
dictable, usually there are patterns that recur. For exam-
ple, some variables are often accessed following each other
and some of them are accessed more frequently than oth-
ers. Our heuristic uses simulation traces to determine such
patterns for variables stored in virtual memory. Even if the
same sequence of accesses is not repeated when running the
application later, we argue that these traces can provide
valuable hints for data placement. However, the simulation
scenario has to resemble the actual operation of the sensor
network. Since simulation is a technique often used when
developing sensor network applications and since simulation
scenarios have to be realistic to evaluate the functionality
and performance of the application anyway, this step does
not impose excessive additional burden on the application
developer. Furthermore, as these results can be obtained by
extending the simulator rather than modifying the applica-
tion, gathering information about variable accesses does not
alter the behavior of the application itself. Therefore, a sin-
gle simulation run can be used both to test the application
and to obtain a data access trace.

The ViMem pre-compiler can be configured to use for
variable placement either the access traces of all nodes of
the network, those of a group of nodes, or just the ones of
a single node. This allows the system to optimize the mem-
ory layout for nodes with different tasks, although they may
execute the same code image. For example, a node at the
edge of the network can have different variable access pat-
terns than a node at the center where more packets have to
be forwarded. We expect that the performance of ViMem is
best if a separate code image with an optimized memory lay-
out is installed for each such group of nodes. Otherwise, the
system remains fully functional, but at increased memory
access costs.

If no simulation data is available (e.g., when building a
new application), the ViMem pre-compiler uses the vari-
able references in the source code to estimate the number
of accesses. Obviously, this information can be inaccurate
because it is unclear how often a function is called or which
branch of an if-statement is selected at runtime, for example.

We have verified each design decision taken for our heuris-
tic using existing sensor network applications and always se-
lected the alternative that offered the best performance. As
Section 6 shows, the results of the heuristic are promising.

The pre-compiler splits up complex variables, such as
large arrays and structs, and examines each part individ-
ually. For example, the first elements of an array might be
accessed more frequently than the last ones. Therefore, in-
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Figure 2: Example for processing an access trace

stead of recording the access just for complex variables as a
whole, all data accesses are associated with individual data
elements. We define as such a data element an atomic part of
a complex variable with a simple data type like “int”. This
approach allows the memory layout to more closely resem-
ble the actual access patterns. The only exception to this
rule are small arrays: our algorithm always treats accesses
to one of their elements as accesses to the complete array.
In our experience with existing applications the elements of
such arrays have a tight coupling and, therefore, should be
regarded as a single entity.

4.2 Grouping of Data Elements
Having gathered information about accesses to data el-

ements, the memory layout algorithm groups those data
items often accessed together. When reading an access trace
the pre-compiler calculates the weights of a fully-connected
graph G = (V, E, f, g), where the nodes V are the data el-
ements and the edges E represent the relationship between
the data elements. In this graph both the nodes and edges
are weighted: The weight of a node, given by f : V → IR, in-
dicates how often the corresponding data element has been
accessed, and the weight of an edge, defined by g : E → IR,
gives information about the proximity of the data elements
it connects.

For each sensor node in the network, the pre-compiler
maintains an ordered list of data elements that have been
accessed recently. Each data element appears in this list
at most once with only its most recent access. The sum of
the sizes of all elements may not exceed a parameterizable
constant. These elements represent those that should be
preferably in RAM when the new element is accessed. If
one of them is not stored in RAM, a page fault can occur
and another page would have to be loaded to RAM. When
the ViMem pre-compiler adds a data access from the trace,
it increases both the access count in the data element’s node
and the proximity to all data elements in the list.

Proximity of two data elements deliberately does not take
into account the temporal distance between accesses to data
elements: To determine if they should be placed on the same
memory page, it does not matter whether or not there is
some delay between accesses – as long as no other variables
are accessed in between.

Fig. 2 shows an example how an access trace is processed.
The figure displays parts of an access trace for one node,
the graph G, and the list of recently accessed elements. For
simplicity, it assumes that the size of a memory page is just
8 bytes and that the same maximum size is used for the



elements in the list. The figure shows the simple variables
“a” (size: 1 byte), “b” (2 bytes), and “c” (4 bytes) as well
as struct “s” with its fields “x” (4 bytes) and “y” (2 bytes).
As described above, the algorithm splits up the parts of the
struct and examines each field individually. In the example
the last line of the access trace has been processed, which
leads to the changes highlighted with arrows. First, the ele-
ment is added to the list of recently accessed data elements
(I). Since the total size of the elements in this list is greater
than the page size, the algorithm removes the oldest element
(“s.y”, crossed-out in the figure, II). Then it increments the
weights of “a” (III) and of all its edges to elements in the
list (IV and V).

After reading the complete access trace, ViMem’s pre-
compiler tries to group the elements that are often used
together. To achieve this goal it merges nodes in the graph
G that have high proximity values. This step is inspired by
the procedure sorting algorithm [25] that performs similar
operations on the call graph to place the code of a procedure
always near their caller.

In this step the algorithm does not use the raw proxim-
ity value g(e) but normalizes them using the access counts
of the data elements (f(v1) and f(v2)) it connects: p =
g(e)/(f(v1) + f(v2)). This way, the algorithm can form
groups both of elements accessed frequently and of those
only used seldom. It repeatedly selects the edge emax from
the graph G with the highest normalized proximity value
pmax. The algorithm then merges the nodes connected by
emax and coalesces their edges. It sets the node weight of the
group to the average of its elements’ weights, which helps to
treat merged nodes and original ones as equal when comput-
ing p. The weight of coalesced edges is set to the maximum
of the original edge weights. This preserves close proximity
between elements even if they have become parts of merged
nodes. The elements forming one such new node are grouped
and always placed on a single memory page later.

The algorithm repeats this process until a given percent-
age of data elements is grouped. If, however, the size of the
group exceeds a given limit (e.g., one eighth of the size of
a memory page), no more elements are added to it. The
reason for this is that we want to avoid very large groups
which are less flexible when creating the memory layout.

4.3 Data Placement
After determining the groups of data elements used to-

gether, the memory layout algorithm places them on actual
memory pages. This part of the heuristic processes the ele-
ments in the order of their access frequencies, as proximity
has already been exploited when forming groups. This way
data elements that are accessed often are placed on the same
memory page, which can probably stay in RAM for most of
the time, while elements that are used only seldom do not
occupy space on pages in RAM.

The algorithm places the data using a first-fit strategy
with two sets of pages: one with elements that are modi-
fied often and one with those that are written only seldom.
When placing an element, it checks if the number of write
accesses is above a threshold. In this case the element is
placed on a page that contains other elements that are writ-
ten frequently whereas all elements that are mostly read are
placed on different pages. If a page has to be removed from
RAM, this approach makes it more likely that the page does
not have to be written back to flash memory. Similarly, if a
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modified page is removed from RAM, it is probably written
because of multiple changes. Therefore, this scheme takes
into account the differences between read and write accesses
mentioned above. In some cases this part of the heuristic
helped to reduce the number of write accesses by up to 70 %.

Fig. 3 takes up the example from Fig. 2 after the complete
access trace has been processed. For simplicity, the example
does not distinguish between read and write accesses. In the
situation shown just “s.y” and “a” are grouped. Then all
groups and single data elements are placed on flash pages
in the order of their access counts. The variable “b” is put
completely on the second page, as elements may not span
several pages. This way at most one flash memory opera-
tion is necessary when accessing a variable. As the example
shows, the elements on page 0 are accessed more frequently
than those on page 1. Therefore, this page will probably
be kept in RAM most of the time whereas page 1 can be
replaced more often with other pages.

5. IMPLEMENTATION
In this section we describe in more detail how ViMem has

been implemented and how it can be used. We give this
description for its two parts, the compiler extension and the
runtime component, in the following subsections.

Our current implementation of ViMem is based on TinyOS
and nesC. It has been optimized to the hardware properties
of the flash memory chip used in the Mica family of sen-
sor nodes. However, many of the concepts could also be
applied in other operating environments and on other hard-
ware platforms.

5.1 Compiler Extension

5.1.1 Overview of the Compilation Process
Fig. 4 gives an overview of the compilation process of

an application that uses ViMem. First, the nesC com-
piler checks the syntax of the source code and generates
an XML file with information about components, variables,
functions, etc. This file is then used by the ViMem pre-
compiler to determine which components contain accesses
to virtual memory and, therefore, need to be rewritten. The
XML file also includes information about the data types of
the variables that are to be placed in virtual memory. Ex-
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porting information about the program structure to an XML
file has been introduced in version 1.2 of the nesC com-
piler [10]. Using information from the nesC compiler avoids
duplicating existing functionality in our pre-compiler. Be-
sides the source code, another input for the pre-compiler is
a data access trace obtained from simulation. If this trace
is available, it improves the performance of ViMem at run-
time. However, it is not essential for building a running
application.

Using all these inputs, the ViMem pre-compiler modifies
the source files that access virtual memory and creates an
optimized memory layout as well as components that make
this layout available at runtime. These results, the ViMem
runtime components, and other unmodified source files are
the input for the actual compilation step, which is performed
by the nesC compiler. As usual, this step results in a code
image that can be installed on sensor nodes or simulated
using appropriate tools. These two alternatives are shown
in Fig. 4 below the dashed line because they are not part of
the compilation process itself but are invoked separately.

If the developer chooses to simulate the application, the
output of the simulator, in our case the Mica2 simulator
Avrora [29], can be used to generate an access trace. Avrora
provides fine-grained instrumentation capabilities which al-
low to get detailed information about the execution without
changing the timing of the program [30]. Using this instru-
mentation interface, we have created probes that record all
accesses to data elements in virtual memory. The result
given by these probes forms the access trace for the ViMem
pre-compiler. If the application is compiled again, a memory
layout optimized for the given access trace will be generated.

5.1.2 Implementation Details
The pre-compiler has been implemented in Java using

JavaCC as a parser generator. It modifies all components
that access variables in virtual memory, creates the mem-
ory layout, and generates components that map variables to
their actual position in virtual memory.

1 u in t 16 t varInVM @vm( ) ;
2 u in t 16 t ∗ po in t e r @vmptr ( ) ;
3 u in t 16 t varInRAM ;
4

5 u in t 16 t ∗ t e s tFunct ion (
6 u in t 16 t ∗ value @vmptr ( ) ) @vmptr ( ) {
7 ∗ value = 54 ;
8 return value ;
9 }

10

11 command r e s u l t t StdControl . i n i t ( ) {
12 varInRAM = 123 ;
13 varInVM = varInRAM ;
14 po in t e r = &varInVM ;
15 varInVM = ∗ t e s tFunct ion ( po in t e r ) ;
16 return SUCCESS;
17 }

Figure 5: nesC code that accesses variables stored
in virtual memory

As the code example in Fig. 5 shows, all variables that are
to be placed in virtual memory have to be tagged with the
attribute “@vm”. The ability to tag variables, parameters,
and functions with user-defined attributes is another feature
introduced in nesC 1.2. Only variables which are declared
globally within a component or marked as “static” can be
placed in virtual memory. Local variables of functions, in
contrast, are always allocated in RAM on the stack.

It is not possible to reference a variable in virtual memory
using a normal pointer variable, since its actual position in
RAM may change after it has been swapped out to flash
memory. In this case the runtime system could not asso-
ciate the pointer value with a variable in virtual memory.
Therefore, pointer variables as well as parameters and re-
turn values of functions that refer to a variable in virtual
memory have to be tagged with the attribute “@vmptr”.
All variables and parameters that are tagged with this at-
tribute are modified by the pre-compiler as well: They no
longer refer to a location in RAM but contain an ID that
denotes the corresponding element in virtual memory.

The only restriction for the developer is that casting vari-
ables to types of a different size is not allowed. The reason
for this is that data elements in virtual memory are not
necessarily contiguous. Without this restriction it would be
possible that several flash operations are necessary for such
an access.

Adding the attributes “@vm” and “@vmptr” is the only
change to the code that has to be performed by the appli-
cation developer when using ViMem. As the example in
Fig. 5 shows, accesses to such variables look exactly like
accesses to normal variables. In the example there is one
variable stored in RAM (“varInRAM”), one stored in vir-
tual memory (“varInVM”), and a pointer to a variable in
virtual memory. The sample code shows that ViMem uses
pure nesC code. If the pre-compiler is not run, nesC could
still compile the same code and store variables in RAM.

The ViMem pre-compiler takes this code and removes the
declaration of all variables placed in virtual memory. Instead
it assigns them an ID that refers to a position in virtual
memory. Therefore, it replaces all references to such vari-
ables as well as accesses via “@vmptr” variables with calls to
the ViMem runtime component that refer to the element’s
ID. Like most functions in nesC, calls to the components of



the ViMem runtime system are usually inlined. This reduces
the overhead associated with accesses to variables in virtual
memory. Furthermore, as described in Section 4, ViMem’s
pre-compiler places variables intelligently in virtual memory
in order to reduce accesses to flash memory.

For efficiency reasons, the pre-compiler uses two different
ways to translate an ID of a data element in virtual memory
to the right variable. If the ID is known at compile-time, the
pre-compiler inserts a direct call to the runtime system with
the right page and offset in that page. This is possible for
all variables except pointers and accesses to arrays when the
element index is stored in another variable. For these two
types of accesses the exact ID of the element is not known
at compile-time. Therefore, the runtime system has to look
up the page and offset of the data element whenever such a
variable is accessed. This information is stored in an array
in program memory where it can be read efficiently without
occupying space in RAM.

If possible, the pre-compiler uses the first type of access
because the performance of the second variant is slightly
worse (see Section 6.1).

5.2 Runtime Component
The runtime component is responsible for checking if a

page needed currently resides in RAM and to move pages
from and to flash memory. It has been optimized regarding
its fast path, i.e., the overhead for the most common case
(accesses to pages already in RAM) has been reduced. For
accesses to pages that have to be loaded first, optimization
is not as critical since a much longer delay is imposed by
the flash memory operations. Furthermore, we have tried
to keep the RAM consumption of the runtime system low.
However, where possible, we opted to reduce overhead on the
fast path by keeping data structures for efficient accesses in
RAM (see Section 6.3 for details on RAM overhead). As
with ViMem the strict RAM limitations are no longer a se-
vere problem, marginally increasing the RAM consumption
of the system does not limit the memory available to the
application.

The performance of ViMem depends on the number of
virtual memory pages that are kept concurrently in RAM.
This parameter is determined by the pre-compiler dynami-
cally based on the memory space available. In Section 6.3 we
show how this number influences the overall performance.

For accesses to flash memory, ViMem uses the stan-
dard TinyOS “PageEEPROM” component which has been
slightly modified and extended for our purposes. Neverthe-
less, our version of this component is fully compatible with
the old version, which also allows other parts of an appli-
cation to access the flash. The only drawback of such uses
by another component will be a somewhat degraded per-
formance, since the flash chip is blocked if that component
reads or writes pages. In addition, ViMem has to share the
flash buffers with that component, which may lead to an
increased number of actual writes to the flash chip.

Our modifications to the flash component are limited to
three changes: First, the flash component resets its state im-
mediately after executing a command instead of doing this in
a separate nesC task. This modification allows subsequent
accesses to flash memory from a single task. Secondly, we
have optimized read accesses by transferring pages directly
to the CPU without loading them into one of the flash chip’s
SRAM buffers. Since modified pages would have to be writ-

Table 2: Typical latencies for different kinds of vari-
able accesses
Type of access Delay
Variable in RAM 1.09 µs
VM variable in RAM 18.72 µs
VM var. from buffer without page write 3.66 ms
VM var. from flash without page write 3.72 ms
VM var. from flash with page write to buffer 7.58 ms
VM var. from flash with page write to flash 19.83 ms

ten to actual flash memory if another page was loaded into
its buffer, this change reduces the number of write accesses
to flash memory. Finally, we added a new command that
avoids unnecessary page transfers from RAM if the same
(unchanged) page is still stored in one of the buffers. This
modification reduces the number of page transfers to the
flash memory chip if modified pages have been copied from
a buffer to RAM again only for reading.

6. EVALUATION
In this section we present evaluation results for ViMem.

All experiments have been performed using Avrora [29],
which accurately simulates Mica2-based sensor networks. It
contains an energy model with detailed information about
the energy consumption of the hardware components [20].

6.1 Isolated Memory Access Performance
Table 2 compares the access speeds of a single variable

access depending on where the variable is currently stored.
Variables that are not included in ViMem’s virtual mem-

ory system are always stored in RAM. The access to such a
variable takes only 1.09 µs.

If a variable is stored in virtual memory, there is some
overhead for each access even if the page containing the vari-
able is already available in RAM. The reason for this is that
ViMem’s runtime system has to check first if the page is
currently stored in RAM. Since our hardware platform does
not directly support virtual memory, this has to be imple-
mented in software. Therefore, it takes up to 18.72 µs to
access such a variable. This number also includes the ad-
dress translation of the variable ID to the correct memory
page and the offset within this page. However, in many
cases this translation can be done offline by the compiler.
Then the latency for variable accesses is reduced by 22 % to
14.65 µs (not shown in the table).

If a page is not stored in RAM but has to be retrieved from
either the flash memory chip’s buffers or the flash memory
itself, the delay increases further. If the replaced page in
RAM has not been modified and thus does not have to be
written back to flash, it takes about 3.7 ms to read a new
page from the flash buffers or the flash memory itself. These
numbers also contain the processing overhead of ViMem’s
runtime system that has to find a page to replace in RAM.
However, the dominating factor is the transfer time of the
page from the flash memory chip to the CPU via the Serial
Peripheral Interface (SPI). This transfer time also prevails
if a page from RAM has to be copied to one of the flash
buffers. Therefore, in this case the latency approximately
doubles.

A somewhat larger delay can be observed if another page
has to be written from the flash buffer to flash memory in or-



der to get a free buffer for the new page coming from RAM.
The whole cycle of writing that page to flash memory, writ-
ing another one from RAM to the flash buffer, and reading
the new page takes more than 19 ms.

These numbers seem huge compared to a variable access
in RAM. However, it should be noted that ViMem’s main
goal is to reduce the number of flash accesses, especially page
writes. Therefore, in practice only a small number of vari-
able accesses leads to such long delays, and most variables
are accessed in RAM (see Section 6.2 and 6.3 for details).
In addition, since access to virtual memory is only allowed
in non-time-critical functions, even long delays do not affect
the operation of the application. Finally, in other domains,
where virtual memory has been successfully used for years,
similar delays can be observed. For example, the random
access speed of typical hard disks for PCs is about 10 ms.

6.2 Application Performance
In this subsection we focus on the performance of complex

applications using ViMem. We have modified two of the
most RAM-intensive applications available in the TinyOS
CVS repository [28]: TinyDB and Maté.

6.2.1 Experiment Setup
TinyDB [22] provides an SQL-like query interface to the

sensor network. With almost 30,000 lines of code it is one
of the most complex applications available for TinyOS and
as a part of the TASK system has been successfully used
in real-world deployments [31]. As described in Section 1,
TinyDB requires the user to select at compile-time which
functionality to include in the code image since the variables
of all its components would not fit in RAM.

Maté [21] is a virtual machine that executes applications,
which have been compiled to a special byte code format. Al-
though this byte code representation is more compact than
native code, RAM still is a limiting factor, since the user’s
application as well as its variables have to be stored there.

We have modified both applications to make use of ViMem.
In TinyDB we have only put variables of application and
routing components in virtual memory, as they are respon-
sible for large amounts of memory consumption. Pointers
to variables in virtual memory are still stored in RAM to
avoid two flash accesses for a single data item. In addi-
tion, we have not added variables to virtual memory that
are used in time-critical functions like “async events” or are
cast to another type. TinyDB heavily uses the last kind of
variables to implement a dynamic memory allocation mech-
anism. Although we have left this mechanism untouched,
with significant changes to the application it would be pos-
sible to replace large parts of it with virtual memory.

Concerning Maté we have focused on the variables stor-
ing the application code capsules in RAM and left all other
variables unchanged. First, these variables consume large
amounts of RAM. Secondly, this part of Maté is essential
to build more complex applications. Finally, Maté already
provides mechanisms to adapt the size of these variables to
the underlying hardware platform. If more memory for the
byte code becomes available by using ViMem, it is easy to
adjust Maté to take advantage of this.

Table 3 summarizes the number and size of variables that
are stored in virtual memory and shows the number of mem-
ory pages used. All of these modifications were done by sim-
ply adding the “@vm” and “@vmptr” attributes to variables

Table 3: Variables moved to virtual memory
Application Number Size Pages used
TinyDB 75 569 bytes 2.15
Maté 1 792 bytes 3.0

Table 4: Allocated space in RAM
Application Original ViMem
TinyDB 2,832 bytes 2,577 bytes
Maté 3,196 bytes 2,727 bytes

or pointers, respectively. With Maté all the code capsules
are stored in a single array. Therefore, just one variable has
been marked with the “@vm” attribute. We have compiled
both applications with their default settings.

Table 4 compares the size of allocated memory in RAM
for the original and the ViMem versions of the applications.
In addition to the size of the page currently kept in RAM
the ViMem versions also include the RAM overhead of their
runtime components as well as the flash memory access com-
ponents from TinyOS (approximately 50 bytes).

We have created several versions of TinyDB and Maté
that use virtual memory and differ only in their respective
memory layouts. The first version uses the same runtime
components as ViMem but places data elements in the or-
der in which they are processed by the compiler using a
first-fit strategy. This approach makes use of the observation
that variables declared together are often used together and,
therefore, exploits the natural locality of the code. The other
virtual memory versions use ViMem’s heuristic to create an
optimized memory layout. One of them just relies on infor-
mation about variable accesses from the source code whereas
the other ones base their layout on simulation traces. For
both applications one such trace has been created when no
query or no byte code application, respectively, was run-
ning. For TinyDB the second trace has been created when
one query to report the node ID was being executed. Simi-
larly, for Maté we have run the CntToLeds application from
the tutorial [24] for recording the second simulation trace.

All data access traces have been obtained from a deliber-
ately simple setup with just five nodes in a grid topology.
In contrast, the actual simulations of the applications have
been done in a network of 50 randomly placed nodes. These
changes in the simulation setup help to show that some dif-
ferences between the scenario in which the access traces have
been obtained and the actual operation environment do not
influence the effectiveness of our algorithm.

For these experiments we keep just one memory page
(264 bytes) in RAM. This is the worst case for a virtual
memory system: if a variable from another page is accessed,
this page has to be loaded from flash memory first. Hav-
ing just one page in RAM eliminates side-effects of the page
replacement algorithm. Therefore, the performance is just
influenced by the memory layout.

We have simulated TinyDB and Maté using different sce-
narios. Each of them has been simulated for 1,000 seconds.

6.2.2 Simulation of TinyDB
Fig. 6 shows simulation results for the four variants of

TinyDB described above in three different scenarios. The
first two scenarios correspond to the ones used to get the
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Figure 6: Simulation of TinyDB

data access traces. In the third scenario an additional query
is dispatched which reports the values of the light sensors.

In Fig. 6(a) we show the ratio of variable accesses lead-
ing to a page fault, i.e., a read access from secondary stor-
age (including reads from the flash chip’s buffers). In many
cases ViMem’s memory layout algorithm greatly reduces the
number of accesses to flash memory. Using only the data ref-
erences from the source code it is already able to decrease
the percentage of accesses leading to page faults by at least
35 %. Nevertheless, memory layouts that have been opti-
mized for a given scenario can reduce the percentage of page
faults even further. For the scenarios executing queries in
the best cases the page fault rate is just around 1 % (about
3,000 page reads). This excellent result is possible because
only a subset of the variables in virtual memory is frequently
used. In these experiments 90 % of all accesses refer to just
20 % of the bytes in virtual memory.

For the scenario when no query is running the page fault
rate is slightly greater (approximately 5 % or 1,400 page
reads) even if the memory layout has been optimized specif-
ically for this scenario. The reason for this is that here a
much smaller number of accesses is distributed over almost
the same number of distinct data elements.

As the versions optimized with traces of the respective
other situation show, the scenario used to obtain the access
traces should not differ too much from the actual execution
scenario. In fact, in such cases the version optimized us-
ing the source code can be even better than an application
optimized for the wrong scenario – especially, if the simula-
tion scenario was too simple for the execution environment.
However, if more information about the execution scenario is
available, using traces from simulation can reduce the num-
ber of page faults by about 60 % compared to just using the
source code for optimizations.

With ViMem less than 7 % – and in the best case just
0.6 % – of all variable accesses lead to a page transfer to the
flash buffer. In addition, at most 0.1 % of all variable ac-
cesses result in an actual write access to flash memory. The
reason for this is both the efficient memory layout and the
use of the flash chip’s buffers as a second level of caching.
In absolute numbers, in our simulations with ViMem each
node usually performs just 2 such operations. Our wear lev-
eling heuristic described in Section 3.3.2 ensures that write
accesses are evenly spread across all allocated flash memory

pages. The first-fit strategy, however, has to transfer a page
to the flash buffer in up to 14 % of all variable accesses. Each
node writes up to 1,696 pages to flash memory, although it
uses the same buffering techniques as ViMem. We attribute
this difference primarily to the distinction of pages that are
mostly read and those that are written often.

As the access latency directly depends on the number of
page faults and write accesses, similar results can be re-
ported for these measurements. As Fig. 6(b) shows, ViMem
reduces the latency for TinyDB up to 95 % compared to the
first-fit layout. However, even for the version optimized us-
ing the query trace, the average latency is still at least 75 µs
whereas an access of a normal variable in RAM is performed
in approximately 1 µs.

If more than one page is kept in RAM, most of these num-
bers will be further reduced, since a smaller number of flash
accesses will be necessary. For instance, if two memory pages
are kept in RAM, for the ViMem versions in many cases no
page faults at all occur and the average access latency can be
as small as 16 µs. Furthermore, in sensor networks process-
ing power is usually not as constrained as other resources; in
typical sensor network applications the CPU is idle most of
the time. Therefore, we think that the overhead introduced
by ViMem is acceptable for many applications.

We do not present detailed results for energy consumption
because they are dominated by other hardware components
and interactions between nodes. In addition, the timings of
the TinyDB versions vary so that, for example, the appli-
cations send a different number of packets or turn on their
LEDs for differing durations. Therefore, the values oscillate.
In Section 6.3 we show results for energy consumption in a
more controlled setting.

6.2.3 Simulation of Maté
Our simulation scenarios for Maté follow the same pat-

tern from TinyDB. First, we have simulated Maté without
any (byte code) application running and then with the Cnt-
ToLeds application, which correspond to the two scenarios
used to get the variable access traces for ViMem. Then we
have run the aggregation application from the Maté tutorial.
This is a more complex application that builds a collection
tree and calculates the average value of sensor readings in
this tree. Like the third scenario for TinyDB this one shows
the performance when the operation differs from the traces.
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Figure 7: Simulation of Maté

As Fig. 7 shows, for Maté many of the numbers are even
smaller than for TinyDB. The reason for this is that in our
scenarios only some of Maté’s storage spaces for code cap-
sules are used. Therefore, accesses typically refer to just
a small set of variables that can be kept in RAM most of
the time. This behavior, however, is typical for most appli-
cations that allocate their memory statically because they
have to reserve enough space to deal with the worst case.

When no application is executed, there is only a small
number of variable accesses (38 accesses per node, mostly
for initialization). Therefore, the high page fault rate for
the unoptimized version shown in Fig. 7(a) is somehow mis-
leading as it is just 10 page faults in absolute numbers. The
ViMem versions, however, do not show any page faults at all
for this scenario as well as for the execution of CntToLeds.
For this application even the unoptimized version achieves a
page fault rate of just 0.23 %. This is because CntToLeds is
very small and the code capsules used are (by coincidence)
placed on a single memory page.

For the aggregation application the numbers remain excel-
lent for all ViMem versions with approximately 6 page faults
(less than 0.1 %). This application is still small enough to
fit on a single memory page if the memory layout is chosen
appropriately. In fact, less than 6 % of the data elements
allocated in virtual memory are used in 90 % of all accesses.
This is because the total size of statically allocated memory
has to be able to accommodate an application consisting of
several large code segments. If some code capsules are only
filled partially, the memory space in between is not used.

The short access latencies shown in Fig. 7(b) also reflect
that a very small number of write accesses is necessary. If
there are page faults at all, each node of the ViMem versions
writes on average less than 4 pages to the flash buffers of
which up to 3 are copied to the actual flash memory chip.
The unoptimized version, however, has to transfer up to 699
pages to the flash buffers, which increases the latency.

6.3 Large Data Storage
In this subsection we evaluate ViMem with respect to two

parameters: the number of memory pages in RAM and the
total size of all data stored in virtual memory.

6.3.1 Experiment Setup
It is not possible to completely evaluate ViMem using

TinyDB and Maté because in their current implementations

these applications do not operate with several kilobytes more
RAM than available. It would be interesting to see, however,
how ViMem performs in this case. Moreover, it is also not
possible to evaluate ViMem with simple applications, which,
for instance, access memory sequentially or randomly. Re-
sults from such experiments would not be meaningful, either,
because these accesses would not exhibit the patterns found
in real applications.

Therefore, in order to evaluate the behavior of ViMem
with larger data sets we have written a code generator that
creates an application with an arbitrary number of data el-
ements whose distribution of memory accesses is based on
the accesses of a real application. A difference is, however,
that for the generated application each data element has a
size of 4 bytes (“uint32 t”). If the number of variables is
greater than in the original application, the code genera-
tor adds some random jitter to avoid that always the same
number of distinct variables is accessed. Therefore, when in-
creasing the total size of data in virtual memory the number
of variables actually accessed also grows.

For the experiments described in this subsection we have
used this code generator to create applications that perform
5,000 data accesses, which are repeated 10 times. The basis
for code generation was a data access trace from TinyDB
where no queries were executed.

We have simulated these applications for 1,000 s. After
completing the data accesses, the application switches the
processor into power down mode, where it consumes less en-
ergy. Other hardware devices such as the radio or the LEDs
have not been enabled. In addition, no side effects because
of other computations done by the application or interac-
tions with neighboring nodes occur. Therefore, using this
approach we can measure the pure overhead of the virtual
memory system.

We show the results of two sets of experiments. In the first
one we have created an application that allocates 3,168 bytes
(12 pages) in virtual memory. We have then varied the num-
ber of memory pages that are kept in RAM. We intend to
evaluate the overall performance of the system here which
includes the overhead introduced by the replacement algo-
rithm at runtime. In the second set of experiments we have
increased the total size of virtual memory up to 15,840 bytes
(60 memory pages) while keeping a constant number of
pages in RAM. This is almost four times the size of RAM
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Figure 8: Varying the number of pages in RAM

available on Mica2 sensor nodes. These experiments provide
some insight about how ViMem performs when varying the
data size.

We have simulated the generated applications with differ-
ent memory layouts. First, where possible, we have created
a version that stores all data in RAM without using virtual
memory. Obviously, such a variant could not be created
for the second set of experiments because the total data
size is larger than RAM there. Secondly, we have used a
first-fit strategy to place data elements on virtual memory
pages in the order in which they have been declared. The
third version uses ViMem’s memory layout algorithm with
information about variable accesses from the source code.
Since in our generated application there are no branches or
pointers, this variant has a perfect view of all data accesses,
which in real applications could only be obtained through
simulation. Finally, the last version uses the same trace but
omits every fourth access when processing it. The idea of
this variant is to see how ViMem performs if the operating
environment differs from the simulation setup and the exact
access trace is not known beforehand.

6.3.2 Number of Pages in RAM
Fig. 8(a) shows the amount of RAM statically allocated

by the application with and without virtual memory. If
ViMem keeps just one page in RAM, it saves almost 90 %
of RAM and allocates just 378 bytes (including all operat-
ing system components and the flash memory component).
For each additional page the memory consumption increases
by 266 bytes, which is just two bytes more than the size of
the memory page itself. Only in the very last measurement
ViMem allocates more RAM than the variant without vir-
tual memory (overhead: 4 %).

Fig. 8(b) shows the percentage of variable accesses that
lead to a page fault when the number of pages in RAM is
varied. The results for one page are greater than those pre-
sented in Section 6.2.2 because the total data size is larger
here. As expected, in these simulations the results using
source code optimizations are the best ones. Here the mem-
ory layout algorithm can accurately predict the data access
patterns.

Of the 3,168 bytes allocated in virtual memory 1,676 bytes
are actually accessed. Since this size is much larger than
just a few memory pages, conflicts between different pages
in RAM occur with any memory layout for 1 and 2 pages in
RAM. For these cases the optimized versions do not show
much advantage compared to the first-fit approach. In fact,

for the version using the incomplete access trace some more
write accesses are necessary which further increases energy
consumption (see Fig. 8(c)). If, however, with more pages
such conflicts no longer occur, ViMem is able to create effi-
cient memory layouts. For example, if at least 4 out of 12
memory pages are stored in RAM, the page fault rate for
the optimized versions is less than 5 %. From 6 or 7 pages
on, respectively, no more pages have to be read from flash.
Compared to the unoptimized version ViMem avoids up to
3,995 page faults for the 50,000 variable accesses simulated.

Fig. 8(c) presents results for energy consumption. The
values shown here just include the energy consumption of
the CPU and the flash memory chip. The figure also in-
cludes the values for the application that stores all its data
in RAM. Of course, this approach performs best with results
that cannot be reached by any virtual memory solution that
is implemented without additional hardware support. Nev-
ertheless, the results for ViMem are encouraging. When no
page faults occur, the energy overhead of the virtual memory
solutions compared to the RAM-only version is just 0.02 J
(5 % overhead). If accesses to flash memory are necessary,
roughly half of the total energy is consumed by the CPU
and half of it by the flash memory chip.

It should be noted that this application represents the
worst case for ViMem when comparing it to implementa-
tions without virtual memory: Energy is only spent to ac-
cess variables. No other devices such as the radio consume
energy and no additional computation is performed by the
CPU. For example, if the radio is listening during simula-
tion, energy consumption rises to 39.5 J for the application
storing all its data in RAM. Therefore, for real-world appli-
cations, the overhead of ViMem is less significant, even if
some accesses to flash memory are necessary.

Though not shown in the figure, the values for the access
latency closely correspond to energy consumption as both
of them depend on the number of read and write accesses to
the flash memory chip. In the best case its latency is just
4 % of the access latency of the first-fit strategy and only
15 µs worse than the version storing all its data in RAM.

In summary, Fig. 8 suggests that with ViMem large
amounts of RAM can be saved at justifiable overhead if
more than one third of the total number of pages is placed
in RAM.

6.3.3 Total Data Size
All the previously described applications could be imple-

mented without virtual memory because they allocate less
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Figure 9: Varying the size of the data in virtual memory

RAM than the 4 kB available on our implementation plat-
form. With the following experiments we want to find out
how ViMem performs if the size of the data is increased.
Using our code generator we have created applications that
allocate up to 15.5 kB of virtual memory. In all simulations
the contents of 12 memory pages are kept in RAM.

Fig. 9(a) shows the ratio of bytes allocated in RAM (in-
cluding all overhead and variables from other components
used) to the size of virtual memory. As before, the only
case where more memory is allocated in RAM than in vir-
tual memory is the artificial one with all pages in RAM.
In all other measurements virtual memory provides much
more memory than it allocates in RAM. Each additional
page in virtual memory has a RAM overhead of just 3.5
bytes (mostly for the data structures needed because of wear
leveling) and provides 264 bytes to the application.

Fig. 9(b) presents the percentage of variable accesses lead-
ing to page faults. The numbers for the first-fit version in-
crease to 35 % for a data size of 15,840 bytes (60 pages).
For the versions of the applications whose memory layout
has been created by ViMem’s algorithm, however, a much
smaller number of page faults has been measured. For the
best version the page fault rate stays smaller than 4.1 % in
all cases.

Despite the randomness introduced when increasing the
data size only a subset of all variables is accessed. This
subset can be kept in RAM all the time if the total data size
is less than 11 kB. Only after that the first page faults occur
with the best ViMem variant. Again, in real applications
such good results could only be obtained by using simulation
traces for optimizations. If the incomplete data trace is used
for optimization, the numbers increase faster but stay well
below the first-fit approach. For this version the maximum
page fault rate is 9 %.

Fig. 9(c) shows the energy consumed by the different ver-
sions of the application. With the best variant the results
for the largest data size increase only by 1.1 J compared
to the smallest size. For the other ViMem version energy
consumption increases moderately by 2.2 J whereas the first-
fit version with 60 memory pages consumes throughout the
simulation 3.7 J more than the 12 page application.

Again, energy consumption is closely related to the aver-
age access latency. For this metric the maximum value of
the first-fit approach is approximately 1.8 ms. Regarding
ViMem, the latency increases only to 0.80 ms for the ver-
sion optimized using the incomplete trace and 0.39 ms for
the other one.

In summary, if sufficient information about access pat-
terns is available, ViMem is able to significantly enlarge the
memory available at only slightly increasing costs.

7. CONCLUSIONS AND FUTURE WORK
In this paper we have described and evaluated ViMem,

our virtual memory system for TinyOS-based sensor nodes.
ViMem does not require special hardware support for vir-
tual memory and has been implemented for standard Mica2
nodes. We have identified the need for special memory opti-
mizations in the domain of sensor networks and proposed a
compiler-based heuristic to create an efficient memory lay-
out. ViMem determines the layout based on data access
traces obtained from simulation or the source code itself.

Since finding an optimal memory layout is an NP-complete
problem, no heuristic can find the best layout for all cases.
However, as we have shown in Section 6, our approach can
reduce the overhead of virtual memory significantly com-
pared to approaches that just exploit the natural locality of
variable declarations. Our simulations show that if the prop-
erties of the execution scenario are not known beforehand it
is often better to just use the source code for optimizations
instead of a simulation scenario that differs too much.

In spite of all optimization efforts, virtual memory intro-
duces some overhead. As we show in the evaluation section,
this overhead does not hinder the implementation of non-
trivial applications for sensor networks. Compared to other
energy consumers on the sensor node, the increase of energy
consumption of ViMem can be almost neglected. In addi-
tion, as sensor network applications are typically inactive
for long periods, no virtual memory accesses and, thus, no
overhead occur during these sleep times.

From a developer’s point of view, using ViMem is sim-
ple: Virtual memory variables just have to be tagged with
a special attribute and can then be used as if they were in
RAM. Therefore, the developer does not have to deal with
the low-level details of flash memory accesses. In fact, the
code expected by our pre-compiler is pure nesC code.

ViMem makes it possible to use virtual memory in the do-
main of sensor networks. Therefore, the memory limitations
of sensor nodes are not as strict as before. Even if in future
generations of sensor nodes more memory was available, the
convenience of an optimizing virtual memory system would
help to simplify the development of exciting applications,
which are more complex than the ones we know today.

Regarding future work we are going to concentrate on the
page replacement algorithm, which has not been the main



focus of our research so far. We expect that this way we will
be able to reduce ViMem’s runtime overhead further.

In addition, since our implementation is currently tar-
geted just on Mica2 nodes, we plan to port it to other
hardware platforms. Depending on the properties of these
devices there might be some interesting problems to solve.
Finally, we will make ViMem available to the public to get
feedback from a larger community of developers.
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