
HAL Id: inria-00164003
https://inria.hal.science/inria-00164003v1

Submitted on 19 Jul 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Combining Online and Offline Knowledge in UCT
Sylvain Gelly, David Silver

To cite this version:
Sylvain Gelly, David Silver. Combining Online and Offline Knowledge in UCT. International Confer-
ence of Machine Learning, Jun 2007, Corvallis, United States. �inria-00164003�

https://inria.hal.science/inria-00164003v1
https://hal.archives-ouvertes.fr

Combining Online and Offline Knowledge in UCT

Sylvain Gelly sylvain.gelly@lri.fr

Univ. Paris Sud, LRI, CNRS, INRIA, France

David Silver silver@cs.ualberta.ca

University of Alberta, Edmonton, Alberta

Abstract

The UCT algorithm learns a value func-
tion online using sample-based search. The
TD(λ) algorithm can learn a value function
offline for the on-policy distribution. We con-
sider three approaches for combining offline
and online value functions in the UCT al-
gorithm. First, the offline value function is
used as a default policy during Monte-Carlo
simulation. Second, the UCT value function
is combined with a rapid online estimate of
action values. Third, the offline value func-
tion is used as prior knowledge in the UCT
search tree. We evaluate these algorithms
in 9 × 9 Go against GnuGo 3.7.10. The
first algorithm performs better than UCT
with a random simulation policy, but sur-
prisingly, worse than UCT with a weaker,
handcrafted simulation policy. The second
algorithm outperforms UCT altogether. The
third algorithm outperforms UCT with hand-
crafted prior knowledge. We combine these
algorithms in MoGo, the world’s strongest
9 × 9 Go program. Each technique signifi-
cantly improves MoGo’s playing strength.

1. Introduction

Value-based reinforcement learning algorithms have
achieved many notable successes. For example, vari-
ants of the TD(λ) algorithm have learned to achieve
a master level of play in the games of Chess (Baxter
et al., 1998), Checkers (Schaeffer et al., 2001) and Oth-
ello (Buro, 1999). In each case, the value function is
approximated by a linear combination of binary fea-
tures. The weights are adapted to find the relative

Appearing in Proceedings of the 24 th International Confer-
ence on Machine Learning, Corvallis, OR, 2007. Copyright
2007 by the author(s)/owner(s).

contribution of each feature to the expected value, and
the policy is improved with respect to the new value
function. Using this approach, the agent learns knowl-
edge that applies across the on-policy distribution of
states.

UCT is a sample-based search algorithm (Kocsis &
Szepesvari, 2006) that has achieved remarkable suc-
cess in the more challenging game of Go (Gelly et al.,
2006). At every time-step the UCT algorithm builds
a search tree, estimating the value function at each
state by Monte-Carlo simulation. After each simulated
episode, the values in the tree are updated online and
the simulation policy is improved with respect to the
new values. These values represent local knowledge
that is highly specialised to the current state.

In this paper, we seek to combine the advantages of
both approaches. We introduce two new algorithms
that combine the general knowledge accumulated by
an offline reinforcement learning algorithm, with the
local knowledge found online by sample-based search.
We also introduce a third algorithm that combines two
sources of knowledge found online by sample-based
search: one of which is unbiased, and the other biased
but fast to learn.

To test our algorithms, we use the domain of 9× 9 Go
(Figure 1). The program MoGo, based on the UCT al-
gorithm, has won the KGS Computer Go tournament
at 9 × 9, 13 × 13 and 19 × 19 Go, and is the high-
est rated program on the Computer Go Online Server
(Gelly et al., 2006; Wang & Gelly, 2007). The pro-
gram RLGO, based on a linear combination of binary
features and using the TD(0) algorithm, has learned
the strongest known value function for 9 × 9 Go that
doesn’t incorporate significant prior domain knowl-
edge (Silver et al., 2007). We investigate here whether
combining the online knowledge of MoGo with the of-
fline knowledge of RLGO can achieve better overall
performance.

Combining Online and Offline Knowledge in UCT

2. Value-Based Reinforcement Learning

Value-based reinforcement learning methods use a
value function as an intermediate step for computing
a policy. In episodic tasks the return Rt is the total
reward accumulated in that episode from time t un-
til it terminates at time T . The action value function
Qπ(s, a) is the expected return after action a ∈ A is
taken in state s ∈ S, using policy π to select all sub-
sequent actions,

Rt =

T
∑

k=t+1

rk

Qπ(s, a) = Eπ [Rt|st = s, at = a]

The value function can be estimated by a variety of
different algorithms, for example using the TD(λ) al-
gorithm (Sutton, 1988). The policy can then be im-
proved with respect to the new value function, for ex-
ample using an ǫ-greedy policy to balance exploitation
(selecting the maximum value action) with exploration
(selecting a random action). A cyclic process of eval-
uation and policy improvement, known as policy it-
eration, forms the basis of value-based reinforcement
learning algorithms (Sutton & Barto, 1998).

If a model of the environment is available or can be
learned, then value-based reinforcement learning algo-
rithms can be used to perform sample-based search.
Rather than learning from real experience, simulated
episodes can be sampled from the model. The value
function is then updated using the simulated experi-
ence. The Dyna architecture provides one example of
sample-based search (Sutton, 1990).

3. UCT

The UCT algorithm (Kocsis & Szepesvari, 2006) is
a value-based reinforcement learning algorithm that
focusses exclusively on the start state and the tree of
subsequent states.

The action value function QUCT (s, a) is approximated
by a partial tabular representation T ⊆ S × A, con-
taining a subset of all (state, action) pairs. This can be
thought of as a search tree of visited states, with the
start state at the root. A distinct value is estimated
for each state and action in the tree by Monte-Carlo
simulation.

The policy used by UCT is designed to balance ex-
ploration with exploitation, based on the multi-armed
bandit algorithm UCB (Auer et al., 2002).

If all actions from the current state s are represented

in the tree, ∀a ∈ A(s), (s, a) ∈ T , then UCT selects
the action that maximises an upper confidence bound
on the action value,

Q⊕
UCT (s, a) = QUCT (s, a) + c

√

log n(s)

n(s, a)

πUCT (s) = argmax
a

Q⊕
UCT (s, a)

where n(s, a) counts the number of times that action
a has been selected from state s, and n(s) counts the
total number of visits to a state, n(s) =

∑

a n(s, a).

If any action from the current state s is not represented
in the tree, ∃a ∈ A(s), (s, a) 6∈ T , then the uniform
random policy πrandom is used to select an action from
all unrepresented actions, Ã(s) = {a|(s, a) /∈ T }.

At the end of an episode s1, a1, s2, a2, ..., sT , each state
action pair in the search tree, (st, at) ∈ T , is updated
using the return from that episode,

n(st, at) ← n(st, at) + 1 (1)

QUCT (st, at) ← QUCT (st, at) (2)

+
1

n(st, at)
[Rt −QUCT (st, at)]

New states and actions from that episode, (st, at) 6∈
T , are then added to the tree, with initial value
Q(st, at) = Rt and n(st, at) = 1. In some cases, it
is more memory efficient to only add the first visited
state and action such that (st, at) /∈ T (Coulom, 2006;
Gelly et al., 2006). This procedure builds up a search
tree containing n nodes after n episodes of experience.

The UCT policy can be thought of in two stages. In
the beginning of each episode it selects actions accord-
ing to knowledge contained within the search tree. But
once it leaves the scope of its search tree it has no
knowledge and behaves randomly. Thus each state in
the tree estimates its value by Monte-Carlo simulation.
As more information propagates up the tree, the pol-
icy improves, and the Monte-Carlo estimates are based
on more accurate returns.

If a model is available, then UCT can be used as a
sample-based search algorithm. Episodes are sampled
from the model, starting from the actual state ŝ. A
new representation T (ŝ) is constructed at every ac-
tual time-step, using simulated experience. Typically,
thousands of episodes can be simulated at each step,
so that the value function contains a detailed search
tree for the current state ŝ.

Combining Online and Offline Knowledge in UCT

In a two-player game, the opponent can be modelled
using the agent’s own policy, and episodes simulated
by self-play. UCT is used to maximise the upper con-
fidence bound on the agent’s value and to minimise
the lower confidence bound on the opponent’s. Un-
der certain assumptions about non-stationarity, UCT
converges on the minimax value (Kocsis & Szepes-
vari, 2006). However, unlike other minimax search
algorithms such as alpha-beta search, UCT requires
no prior domain knowledge to evaluate states or or-
der moves. Furthermore, the UCT search tree is non-
uniform and favours the most promising lines. These
properties make UCT ideally suited to the game of
Go, which has a large state space and branching fac-
tor, and for which no strong evaluation functions are
known.

4. Linear Value Function

Approximation

UCT is a tabular method and does not generalise be-
tween states. Other value-based reinforcement learn-
ing methods offer a rich variety of function approxi-
mation methods for state abstraction in complex do-
mains (Schraudolph et al., 1994; Enzenberger, 2003;
Sutton, 1996). We consider here a simple approach
to function approximation that requires minimal prior
domain knowledge (Silver et al., 2007), and which
has proven successful in many other domains (Baxter
et al., 1998; Schaeffer et al., 2001; Buro, 1999).

We wish to estimate a simple reward function: r = 1
if the agent wins the game and r = 0 otherwise. The
value function is approximated by a linear combination
of binary features φ with weights θ,

QRLGO(s, a) = σ
(

φ(s, a)T θ
)

where the sigmoid squashing function σ maps the value
function to an estimated probability of winning the
game. After each time-step, weights are updated us-
ing the TD(0) algorithm (Sutton, 1988). Because the
value function is a probability, we modify the loss func-
tion so as to minimise the cross entropy between the
current value and the subsequent value,

δ = rt+1 + QRLGO(st+1, at+1)−QRLGO(st, at)

∆θi =
α

|φ(st, at)|
δφi

where δ is the TD-error and α is a step-size parameter.

In the game of Go, the notion of shape has strategic
importance. For this reason we use binary features

Figure 1. (Left) An example position from a game of 9× 9
Go. Black and White take turns to place down stones.
Stones can never move, but may be captured if completely
surrounded. The player to surround most territory wins
the game. (Right) Shapes are an important part of Go
strategy. The figure shows (clockwise from top-left) 1 × 1,
2 × 1, 2 × 2 and 3 × 3 local shape features which occur in
the example position.

φ(s, a) that recognise local patterns of stones (Silver
et al., 2007). Each local shape feature matches a spe-
cific configuration of stones and empty intersections
within a particular rectangle on the board (Figure 1).
Local shape features are created for all configurations,
at all positions on the board, from 1 × 1 up to 3 × 3.
Two sets of weights are used: in the first set, weights
are shared between all local shape features that are
rotationally or reflectionally symmetric. In the second
set, weights are also shared between all local shape
features that are translations of the same pattern.

During training, two versions of the same agent play
against each other, both using an ǫ-greedy policy.
Each game is started from the empty board and played
through to completion, so that the loss is minimised
for the on-policy distribution of states. Thus, the value
function approximation learns the relative contribu-
tion of each local shape feature to winning, across the
full distribution of positions encountered during self-
play.

5. UCT with a Default Policy

The UCT algorithm has no knowledge beyond the
scope of its search tree. If it encounters a state that
is not represented in the tree, it behaves randomly.
Gelly et al. (Gelly et al., 2006) combined UCT with
a default policy that is used to complete episodes once
UCT leaves the search tree. We denote the original
UCT algorithm by UCT (πrandom) and this extended
algorithm by UCT (π) for a default policy π.

The world’s strongest 9 × 9 Computer Go program
MoGo uses UCT with a hand-crafted default policy
πMoGo (Gelly et al., 2006). However, in many domains

Combining Online and Offline Knowledge in UCT

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

πǫ
πσ
πτ

ǫ, σ

2
, τ

2

w
in

n
in

g
ra

te
a
g
a
in

st
π

r
a

n
d

o
m

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

πǫ
πσ
πτ

ǫ, σ

2
, τ

2

w
in

n
in

g
ra

te
a
g
a
in

st
π

M
o

G
o

Figure 2. The relative strengths of each class of default policy, against the random policy πrandom (left) and against a
handcrafted policy πMoGo (right). The x axis represents the degree of randomness in each policy.

it is difficult to construct a good default policy. Even
when expert knowledge is available, it may be hard to
interpret and encode. Furthermore, the default policy
must be fast, so that many episodes can be simulated,
and a large search tree built. We would like a method
for learning a high performance default policy with
minimal domain knowledge.

A linear combination of binary features provides one
such method. Binary features are fast to evaluate
and can be updated incrementally. The representa-
tion learned by this approach is known to perform
well in many domains (Baxter et al., 1998; Schaeffer
et al., 2001). Minimal domain knowledge is necessary
to specify the features (Silver et al., 2007; Buro, 1999).

We learn a value function QRLGO for the domain of
9× 9 Go using a linear combination of binary features
(see Section 4). It is learned offline from games of
self-play. We use this value function to generate a
default policy for UCT. As Monte-Carlo simulation
works best with a stochastic default policy, we consider
three different approaches for generating a stochastic
policy from the value function QRLGO.

First, we consider an ǫ-greedy policy,

πǫ(s, a) =

{

1 − ǫ + ǫ
|A(s)| if a = argmaxa′QRLGO(s, a′)

ǫ
|A(s)| otherwise

Second, we consider a greedy policy over a noisy
value function, corrupted by Gaussian noise η(s, a) ∼
N(0, σ2),

πσ(s, a) =

{

1 if a = argmaxa′QRLGO(s, a′) + η(s, a′)

0 otherwise

Third, we select moves using a softmax distribution
with temperature parameter τ ,

πτ (s, a) =
eQRLGO(s,a)/τ

∑

a′ eQRLGO(s,a′)/τ

We compared the performance of each class of default
policy πrandom, πMoGo, πǫ, πσ, and πτ . Figure 2 as-
sesses the relative strength of each default policy (as
a Go player), in a round-robin tournament of 6000
games between each pair of policies. With little or
no randomisation, the policies based on QRLGO out-
perform both the random policy πrandom and MoGo’s
handcrafted policy πMoGo by a margin of over 90%.
As the level of randomisation increases, the policies
degenerate towards the random policy πrandom.

Next, we compare the accuracy of each default pol-
icy π for Monte-Carlo simulation, on a test suite of
200 hand-labelled positions. 1000 episodes of self-play
were played from each test position using each policy
π. We measured the MSE between the average return
(i.e. the Monte-Carlo estimate) and the hand-labelled
value (see Figure 3). In general, a good policy for
UCT (π) must be able to evaluate accurately in Monte-
Carlo simulation. In our experiments with MoGo, the
MSE appears to have a close relationship with playing
strength.

The MSE improves from uniform random simulations
when a stronger and appropriately randomised default
policy is used. If the default policy is too determinis-
tic, then Monte-Carlo simulation fails to provide any
benefits and the performance of π drops dramatically.
If the default policy is too random, then it becomes
equivalent to the random policy πrandom.

Combining Online and Offline Knowledge in UCT

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0 0.2 0.4 0.6 0.8 1

ǫ, σ

2
, τ

2

M
S
E

o
v
e
r

la
b
e
le

d
p
o
si

ti
o
n
s

πrandom
πMoGo

πǫ
πσ
πτ

Figure 3. The MSE of each policy π when Monte Carlo sim-
ulation is used to evaluate a test suite of 200 hand-labelled
positions. The x axis indicates the degree of randomness
in the policy.

Intuitively, one might expect that a stronger, appro-
priately randomised policy would outperform a weaker
policy during Monte-Carlo simulation. However, the
accuracy of πǫ, πσ and πτ never come close to the ac-
curacy of the handcrafted policy πMoGo, despite the
large improvement in playing strengths for these de-
fault policies. To verify that the default policies based
on QRLGO are indeed stronger in our particular suite of
test positions, we reran the round-robin tournament,
starting from each of these positions in turn, and found
that the relative strengths of the default policies re-
main similar. We also compared the performance of
the complete UCT algorithm, using the best default
policy based on QRLGO and the parameter minimis-
ing MSE (see Table 1). This experiment confirms that
the MSE results apply in actual play.

It is surprising that an objectively stronger default
policy does not lead to better performance in UCT.
Furthermore, because this result only requires Monte-
Carlo simulation, it has implications for other sample-
based search algorithms. It appears that the nature
of the simulation policy may be as or more impor-
tant than its objective performance. Each policy has
its own bias, leading it to a particular distribution of
episodes during Monte-Carlo simulation. If the distri-
bution is skewed towards an objectively unlikely out-
come, then the predictive accuracy of the search algo-
rithm may be impaired.

6. Rapid Action Value Estimation

The UCT algorithm must sample every action from a
state s ∈ T before it has a basis on which to compare

Algorithm Wins .v. GnuGo
UCT (πrandom) 8.88 ± 0.42 %
UCT (πσ) 9.38 ±1.9%
UCT (πMoGo) 48.62 ±1.1%

Table 1. Winning rate of the UCT algorithm against
GnuGo 3.7.10 (level 0), given 5000 simulations per move,
using different default policies. The numbers after the ±

correspond to the standard error from several thousand
complete games. πσ is used with σ = 0.15.

values. Furthermore, to produce a low-variance esti-
mate of the value, each action in state s must be sam-
pled multiple times. When the action space is large,
this can cause slow learning. To solve this problem, we
introduce a new algorithm UCTRAV E , which forms a
rapid action value estimate for action a in state s, and
combines this online knowledge into UCT.

Normally, Monte-Carlo methods estimate the value by
averaging the return of all episodes in which a is se-
lected immediately. Instead, we average the returns of
all episodes in which a is selected at any subsequent
time. In the domain of Computer Go, this idea is
known as the all-moves-as-first heuristic (Bruegmann,
1993). However, the same idea can be applied in any
domain where action sequences can be transposed.

Let QRAV E(s, a) be the rapid value estimate for action
a in state s. After each episode s1, a1, s2, a2, ..., sT , the
action values are updated for every state st1 ∈ T and
every subsequent action at2 such that at2 ∈ A(st1),
t1 ≤ t2 and ∀t < t2, at 6= at2 ,

m(st1 , at2) ← m(st1 , at2) + 1
QRAV E(st1 , at2) ← QRAV E(st1 , at2)

+1/m(st1 , at2)[Rt1 −QRAV E(st1 , at2)]

where m(s, a) counts the number of times that action
a has been selected at any time following state s.

The rapid action value estimate can quickly learn a
low-variance value for each action. However, it may
introduce some bias, as the value of an action usu-
ally depends on the exact state in which it is selected.
Hence we would like to use the rapid estimate initially,
but use the original UCT estimate in the limit. To
achieve this, we use a linear combination of the two
estimates, with a decaying weight β,

Combining Online and Offline Knowledge in UCT

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 1 10 100 1000 10000

k

UCT
UCTRAV E

W
in

n
in

g
ra

te
a
g
a
in

st
G

n
u
G

o
3
.7

.1
0

Figure 4. Winning rate of UCTRAV E(πMoGo) with 3000
simulations per move against GnuGo 3.7.10 (level 8), for
different settings of the equivalence parameter k. The bars
indicate the standard error. Each point of the plot is an
average over 2300 complete games.

Q⊕
RAV E(s, a) = QRAV E(s, a) + c

√

log m(s)

m(s, a)

β(s, a) =

√

k

3n(s) + k

Q⊕
UR(s, a) = β(s, a)Q⊕

RAV E(s, a)

+ (1− β(s, a))Q⊕
UCT (s, a)

πUR(s) = argmax
a

Q⊕
UR(s, a)

where m(s) =
∑

a m(s, a). The equivalence parameter
k controls the number of episodes of experience when
both estimates are given equal weight.

We tested the new algorithm UCTRAV E(πMoGo), us-
ing the default policy πMoGo, for different settings of
the equivalence parameter k. For each setting, we
played a 2300 game match against GnuGo 3.7.10 (level
8). The results are shown in Figure 4, and compared to
the UCT (πMoGo) algorithm with 3000 simulations per
move. The winning rate using UCTRAV E varies be-
tween 50% and 60%, compared to 24% without rapid
estimation. Maximum performance is achieved with
an equivalence parameter of 1000 or more. This in-
dicates that the rapid action value estimate is worth
about the same as several thousand episodes of UCT
simulation.

7. UCT with Prior Knowledge

The UCT algorithm estimates the value of each state
by Monte-Carlo simulation. However, in many cases
we have prior knowledge about the likely value of a

state. We introduce a simple method to utilise offline
knowledge, which increases the learning rate of UCT
without biasing its asymptotic value estimates.

We modify UCT to incorporate an existing value func-
tion Qprior(s, a). When a new state and action (s, a)
is added to the UCT representation T , we initialise its
value according to our prior knowledge,

n(s, a) ← nprior(s, a)

QUCT (s, a) ← Qprior(s, a)

The number nprior estimates the equivalent experience
contained in the prior value function. This indicates
the number of episodes that UCT would require to
achieve an estimate of similar accuracy. After initial-
isation, the value function is updated using the nor-
mal UCT update (see equations 1 and 2). We de-
note the new UCT algorithm using default policy π
by UCT (π,Qprior).

A similar modification can be made to the UCTRAV E

algorithm, by initialising the rapid estimates according
to prior knowledge,

m(s, a) ← mprior(s, a)

QRAV E(s, a) ← Qprior(s, a)

We compare several methods for generating prior
knowledge in 9 × 9 Go. First, we use an even-game
heuristic, Qeven(s, a) = 0.5, to indicate that most posi-
tions encountered on-policy are likely to be close. Sec-
ond, we use a grandfather heuristic, Qgrand(st, a) =
QUCT (st−2, a), to indicate that the value with player
P to play is usually similar to the value of the last state
with P to play. Third, we use a handcrafted heuristic
QMoGo(s, a). This heuristic was designed such that
greedy action selection would produce the best known
default policy πMoGo(s, a). Finally, we use the linear
combination of binary features, QRLGO(s, a), learned
offline by TD(λ) (see section 4).

For each source of prior knowledge, we assign an equiv-
alent experience mprior(s, a) = Meq, for various con-
stant values of Meq. We played 2300 games between
UCTRAV E(πMoGo, Qprior) and GnuGo 3.7.10 (level 8),
alternating colours between each game. The UCT al-
gorithms sampled 3000 episodes of experience at each
move (see Figure 5), rather than a fixed time per move.
In fact the algorithms have comparable execution time
(Table 4).

The value function learned offline, QRLGO, outper-
forms all the other heuristics and increases the winning
rate of the UCTRAV E algorithm from 60% to 69%.

Combining Online and Offline Knowledge in UCT

Algorithm Wins .v. GnuGo
UCT (πrandom) 1.84 ± 0.22 %
UCT (πMoGo) 23.88 ±0.85%
UCTRAV E(πMoGo) 60.47 ± 0.79 %
UCTRAV E(πMoGo, QRLGO) 69 ± 0.91 %

Table 2. Winning rate of the different UCT algorithms
against GnuGo 3.7.10 (level 8), given 3000 simulations per
move. The numbers after the ± correspond to the standard
error from several thousand complete games.

Maximum performance is achieved using an equivalent
experience of Meq = 50, which indicates that QRLGO

is worth about as much as 50 episodes of UCTRAV E

simulation. It seems likely that these results could be
further improved by varying the equivalent experience
according to the variance of the prior value estimate.

8. Conclusion

The UCT algorithm can be significantly improved by
three different techniques for combining online and of-
fline learning. First, a default policy can be used to
complete episodes beyond the UCT search tree. Sec-
ond, a rapid action value estimate can be used to boost
initial learning. Third, prior knowledge can be used to
initialise the value function within the UCT tree.

We applied these three ideas to the Computer Go
program MoGo, and benchmarked its performance
against GnuGo 3.7.10 (level 8), one of the strongest
9×9 programs that isn’t based on the UCT algorithm.
Each new technique increases the winning rate signifi-
cantly from the previous algorithms, from just 2% for
the basic UCT algorithm up to 69% using all three
techniques. Table 2 summarises these improvements,
given the best parameter settings for each algorithm,
and 3000 simulations per move. Table 4 indicates the
CPU requirements of each algorithm.

These results are based on executing just 3000 sim-
ulations per move. When the number of simulations
increases, the overall performance of MoGo improves
correspondingly. For example, using the combined al-
gorithm UCTRAV E(πMoGo, QMoGo), the winning rate
increases to 92% with more simulations per move. This
version of MoGo has achieved an Elo rating of 2320 on
the Computer Go Online Server, around 500 points
higher than any program not based on UCT, and over
200 points higher than other UCT-based programs1

(see Table 3).

1The Elo rating system is a statistical measure of play-
ing strength, where a difference of 200 points indicates an
expected winning rate of approximately 75% for the higher
rated player

Simulations Wins .v. GnuGo CGOS rating
3000 69% 1960
10000 82% 2110
70000 92% 2320∗

Table 3. Winning rate of UCTRAV E(πMoGo, QMoGo)
against GnuGo 3.7.10 (level 8) when the number of
simulations per move is increased. The asterisked version
used on CGOS modifies the simulations/move according
to the available time, from 300000 games in the opening
to 20000.

Algorithm Speed
UCT (πrandom) 6000 g/s
UCT (πMoGo) 4300 g/s
UCT (πǫ), UCT (πσ), UCT (πτ) 150 g/s
UCTRAV E(πMoGo) 4300 g/s
UCTRAV E(πMoGo, QMoGo) 4200 g/s
UCTRAV E(πMoGo, QRLGO) 3600 g/s

Table 4. Number of simulations per second for each al-
gorithm on a P4 3.4Ghz, at the start of the game.
UCT (πrandom) is faster but much weaker, even with the
same time per move. Apart from UCT (πRLGO), all the
other algorithms have a comparable execution speed

The domain knowledge required by this version of
MoGo is contained in the default policy πMoGo and in
the prior value function QMoGo. By learning a value
function offline using TD(λ), we have demonstrated
how this requirement for domain knowledge can be re-
moved altogether. The learned value function outper-
forms the heuristic value function when used as prior
knowledge within the tree. Surprisingly, despite its
objective superiority, the learned value function per-
forms worse than the handcrafted heuristic when used
as a default policy. Understanding why certain policies
perform better than others in Monte-Carlo simulations
may be a key component of any future advances.

We have focussed on the domain of 9×9 Go. It is likely
that larger domains, such as 13×13 and 19×19 Go, will
increase the importance of the three algorithms. With
larger branching factors it becomes increasingly impor-
tant to simulate accurately, accelerate initial learning,
and incorporate prior knowledge. When these ideas
are incorporated, the UCT algorithm may prove to be
successful in many other challenging domains.

References

Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002).
Finite-time analysis of the multi-armed bandit prob-
lem. Machine Learning, 47, 235–256.

Baxter, J., Tridgell, A., & Weaver, L. (1998). Exper-
iments in parameter learning using temporal differ-

Combining Online and Offline Knowledge in UCT

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0 50 100 150 200

W
in

ni
ng

 r
at

e
ag

ai
ns

t G
nu

G
o

3.
7.

10
 d

ef
au

lt
le

ve
l

QRLGO
QMoGo
Qgrand
Qeven

UCTRAV E

nprior

Figure 5. Winning rate of UCTRAV E(πMoGo) with 3000 simulations per move against GnuGo 3.7.10 (level 8), using
different prior knowledge as initialisation. The bars indicate the standard error. Each point of the plot is an average over
2300 complete games.

ences. International Computer Chess Association
Journal, 21, 84–99.

Bruegmann, B. (1993). Monte-Carlo Go.
http://www.cgl.ucsf.edu/go/Programs/Gobble.html.

Buro, M. (1999). From simple features to sophisticated
evaluation functions. 1st International Conference
on Computers and Games (pp. 126–145).

Coulom, R. (2006). Efficient selectivity and backup
operators in Monte-Carlo tree search. 5th Interna-
tional Conference on Computer and Games, 2006-
05-29. Turin, Italy.

Enzenberger, M. (2003). Evaluation in Go by a neural
network using soft segmentation. 10th Advances in
Computer Games Conference (pp. 97–108).

Gelly, S., Wang, Y., Munos, R., & Teytaud, O. (2006).
Modification of UCT with patterns in Monte-Carlo
Go (Technical Report 6062). INRIA.

Kocsis, L., & Szepesvari, C. (2006). Bandit based
Monte-Carlo planning. 15th European Conference
on Machine Learning (pp. 282–293).

Schaeffer, J., Hlynka, M., & Jussila, V. (2001). Tempo-
ral difference learning applied to a high-performance
game-playing program. 17th International Joint
Conference on Artificial Intelligence (pp. 529–534).

Schraudolph, N., Dayan, P., & Sejnowski, T. (1994).
Temporal difference learning of position evaluation
in the game of Go. Advances in Neural Information
Processing Systems 6 (pp. 817–824). San Francisco:
Morgan Kaufmann.

Silver, D., Sutton, R., & Müller, M. (2007). Reinforce-
ment learning of local shape in the game of Go. 20th
International Joint Conference on Artificial Intelli-
gence (pp. 1053–1058).

Sutton, R. (1988). Learning to predict by the method
of temporal differences. Machine Learning, 3, 9–44.

Sutton, R. (1990). Integrated architectures for learn-
ing, planning, and reacting based on approximating
dynamic programming. 7th International Confer-
ence on Machine Learning (pp. 216–224).

Sutton, R. (1996). Generalization in reinforcement
learning: Successful examples using sparse coarse
coding. Advances in Neural Information Processing
Systems 8 (pp. 1038–1044).

Sutton, R., & Barto, A. (1998). Reinforcement learn-
ing: An introduction. Cambridge, MA: MIT Press.

Wang, Y., & Gelly, S. (2007). Modifications of
UCT and sequence-like simulations for Monte-Carlo
Go. IEEE Symposium on Computational Intelli-
gence and Games, Honolulu, Hawaii (pp. 175–182).

