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ABSTRACT

This paper tackles the problem of providing correct information
about program variable values in a software-pipelined loop through
a non-transparent debugging approach. Since modern processors
provide instruction level parallelism, software pipelining techniques
have been developed to achieve better performances, especially in
the context of embedded systems. Indeed, the effectiveness of soft-
ware pipelining on such systems has been demonstrated both theo-
retically and experimentally. As it overlaps iterations and reorders
statements, it also makes standard debugging information irrele-
vant. Hence debugging a loop which has been software-pipelined
becomes very difficult. In this paper, we propose a solution rely-
ing on selected information to be generated by the compiler and an
algorithm for the debugger not to mislead the user.
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2. INTRODUCTION

Over the last thirty years, program optimizers’ technologies im-
proved significantly faster than debuggers’ technologies. This dis-
parity is reflected in the literature; many books and articles treat op-
timizations but very few address the debugging of optimized code.
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Nevertheless, in the context of embedded systems, debugging the
optimized code is a necessity. The programmer may need to debug
his program in real-life conditions, i.e. onto the embedded sys-
tems which may not accept the unoptimized program due to con-
straints. Optimizations are often required because of the real time
and memory constraints imposed, especially on embedded systems.
Moreover, the overhaul will be done on an optimized program so
the programmer has to test and debug the latter on the device it is
targeted to.

A wide range of processors, e.g. superscalars or VLIW (Very
Long Instruction Word) use parallelism mechanisms which can be
hardware and software. One of these optimizing methods is called
software-pipelining. It is performed by the compiler and allows the
use of parallelism inherent in an application.

Software pipelining is a type of instruction scheduling where the
goal is to construct an equivalent loop of minimum length by over-
lapping computations from different iterations of the original loop.
Hence, it makes standard debug information obsolete. Debugging
a loop which has been software-pipelined would not make sense
without a correct mapping between the source code and the assem-
bly code. Instructions generated from various source statements
are duplicated, combined, moved, deleted and interleaved with in-
structions from other source statements. It becomes very difficult
to decide where in the target program any given source statement
begins or ends. Thus, breakpoints set in the source code may not
find their equivalent in the optimized program and vice versa. De-
bugging the optimized code becomes very complicated.

We propose an approach in which the compiler generates more
information than it does under the current standard. We have de-
signed an algorithm for the debugger to accurately use this informa-
tion and answer the following question: When retrieving the value
of avariable at a given address, which iteration count produced the
value? The idea is not to hide anything from the user, but rather to
guide the user through the debugging process. When a variable’s
assignment has been delayed, not only do we provide the variable’s
current value, but we also provide the delay of assignment. Hence
the user knows exactly the behavior of the software-pipelined pro-
gram. The experimentation context is a retargetable compiler for
embedded processors which aims at providing state-of-the-art op-
timizations: MMDSP+ C Compiler. It is built around the CoSy
compiler development suite [2] with an in-house back-end [5].

The paper is organized as follows: Section 3 describes software-
pipelining loops and provides useful definitions and an example to
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Figure 1: MMDSP+ C Compiler Architecture

illustrate it. Section 4 reviews existing problems due to optimiz-
ing programs. Section 5 presents the contributions of our work.
Section 6 details debug information to be collected by the com-
piler. Section 7 describes the algorithm to be implemented by the
debugger to solve the issue. We give the tool framework and ex-
perimentation in section 8. Section 9 reviews related works since
1982. Finally section 10 concludes and discusses future works.

3. SOFTWARE PIPELINING

3.1 Overview

Software pipelining is a type of instruction scheduling where the
goal is to construct an equivalent loop of minimum length by over-
lapping computations from different iterations of the original loop.
It can be used on many architectures, especially those which allow
instruction-level parallelism (ILP), but it is particularly efficient on
VLIW processors. One VLIW instruction encodes multiple oper-
ations; specifically, one instruction encodes at least one operation
for each execution unit of the device. For example, if a VLIW
device has five execution units, then a VLIW instruction for that
device would have five operation fields, each field specifying what
operation should be done on that corresponding execution unit.

The software-pipelining algorithm we rely on is the one imple-
mented by the MMDSP+ C Compiler [5]. It is a modulo software-
pipelining algorithm inspired by B.Rau [15]. An engine imple-
ments an optimization; it selects loops to be software-pipelined.
The selection is based on the following criteria:

DEFINITION 3.1. A loop is eligible if it respects the three fol-
lowing properties:

e it does not nest any loop,
e its index runs by 1s,
e it does not contain any 1 f-statements.

The last restriction states that the loop body should not contain
i f-statements other than exit tests. Generally, this is a major re-
striction; developers need to use i £-statement within a loop body.
In the context of embedded systems, applications are specific: the
MMDSP processor is dedicated to the encoding and decoding of
sound and video formats e.g. amr, mp3. This kind of algorithm
makes intensive use of loops which process huge arrays without
any 1 f-statements. Note that in a more general case, if-conversion,
which can be performed on many predicated VLIWs, greatly low-
ers the impact of this limitation.
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The more instructions can be executed simultaneously, the faster
the program will run. The fastest possible execution would be to
execute all the instructions of the program in parallel. This is im-
possible because of the following constraints:

e Data dependency: If instruction A calculates a result that is
used as an operand of instruction B, then B cannot execute
before A is finished.

e Functional unit: If there are x multipliers (adders, etc) on the
chip, then at most = multiplication (addition, etc) instructions
can execute at once.

e Instruction unit: The instruction-issue unit can issue at most
y instructions at a time.

e Registers: At most z registers can be in use at the same time.

The three last constraints are often lumped together as resource
constraints. This is why the software-pipelining optimization is
performed at the assembly-level in the compiler. The first con-
straint, data dependency, is the only one which affects our work. A
dependency between two instructions exists if interchanging their
order changes the results. A Data Dependency Graph — DDG —
is used to describe dependencies between instructions: nodes are
operations and the set of edges is the set of dependencies. Anti
and output dependencies also are respected during scheduling of
the loop body.

Overlapping instructions implies in many cases the generation
of a prologue and an epilogue to the loop body. Because instruc-
tions are overlapped through iterations of the original loop, some
instances of instructions may have to be computed beforehand, in
the prologue. The same way, the last instances of some instructions
may not be computed in the loop body, thus they are moved later,
in the epilogue.

3.2 A Practical Example

Freely inspired from A.Appel [4], a source loop is given in fig-
ure 2. Originally, it contained array accesses which overcompli-
cated the reading of the example and do not affect the output.. We
removed them because they did not change anything to the modulo
software pipelining algorithm while they loaded down the notation.

Itis a for-loop for which the number of iteration /N is unknown
at compilation time.

This example is quite complete because it uses all four kinds of
data dependency through iterations which can affect the scheduling
of instructions. We sum them up in table 1, where indexes represent



Iterations
Addr 1 2  3(N-2) 4(N-1) 5(N) | source line numbers
0x01 | acfj (2,4,7,10)
0x02 bd £ (3,5,7,10)
0x03 | egh a (6,8,9,2)
Prologue 0x04 bc iy (3,4,7,10)
0x05 dg a (5,8,2)
0x06 eh b £3 (6,9,3,7,10)
0x07 cg a 4,8,2)
for i=3 to N-2 { (@))]
0x09 d b (5,3)
Loop Body 0x0Aa eh g iy (6,9,8,7,10)
0x0B c a 4,2)
} (11)
0x0D d b (5.3)
0x0E eh g (6,9,8)
Epilogue 0x0F c 4)
0x10 a 5)
0x11 eh (6,9)
Figure 3: Software-pipelined loop schedule
| for (i = 1; i < N; i++) { 4. SYMBOLIC DEBUGGING OF
2 2z j o+ kf> OPTIMIZED CODE
z c _ Z : 3 Debugging optimized code poses two problems [8, 26], the data
5 d=f+c value problem and the code location problem.
6 e =Db+ d
. £ = 42 4.1 Data Value Problems
8 g - 2 The first problem is known as the set of data value problems.
1(91 5 _ 13 They are the difficulties involved in finding and returning the value

11 }

Figure 2: A for-loop to be software-pipelined

iteration numbers. Some variables such as £ or j do not have any
dependencies on any other variable assigned to in the loop. The
second case of dependencies is given with variables e, g and h
which depend on instances from the same iterations as theirs. Vari-
ables a and c depend on instances from the previous iteration only.
The last case of dependencies is given with variables b and d, they
both depend on instances from different iterations. These last two
cases enclose the case where an instance depends on the it" and j
previous iterations. Our example assumes instruction words of five

Variable Depends on
ai Jic1 bio1
b; a; fi-1
ci €i—1  Ji-1
d; fic1 <
e; b d;
£ 42
gi b;

h; d;
Ji 43

Table 1: Variable Dependencies

operations. In order not to confuse the reader, we omited load and
store instructions because they do not change the principles of our
proposal. The result of the software-pipelining is given in figure 3.
Again, in order to facilitate the reading, we consider that each in-
struction is exactly the size of one addressable unit. The targeting
to a specific processor remains trivial.
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of a variable in response to a user’s query.

In order to save registers, some optimizations, thank to the data
flow graph, will make several variables unaccessible at some point
in the program. The residency problem occurs when a variable’s
value is not accessible. In figure 4, let f and g be two functions
which have no side effects. Also assume x is defined within f.
The user may request x’s value whenever the program is running
in £. Now assume x is not used after the 4" line. In order to
save resources (registers, memory), the compiler may get rid of x
after the 4" line, i.e. x is not stored anywhere, it is lost. During
a classical debugging session, the user can request x’s value at the
end of £, but in this case of optimization, the debugger cannot give
the value back to the user.

1 int £() {

2 int x;

3 //

4 b = g(x);

5 // x 1s not used
6 return b;

7

}

Figure 4: Residency Problem Illustration

Another subproblem, called the data location problem, occurs
when a variable is not located in the expected register or at the ex-
pected address. In figure 5, scalarization makes local a global vari-
able by using a temporary variable, here tmp. Then, in the loop,
a exists somewhere up-to-date, but the debugger will not know its
value is located in tmp

The last subproblem is called the currency problem, see figure 6.
The variable tmp is not used in the loop, instead, it is used once
at line 7, for the same assignment. The compiler may decide to
optimize it by using a code sinking or a code hoisting optimization,



int £() {
int x;
int 1i;

//

a = a + x;
for (i1=0; i<10;
a=a+ i;

++1) {
9 }

1 //

12 return 0;

13 }

(a) Before Scalarization

1 int £() {

2 int x;

3 int 1i;

4 /..

5 tmp = a;

6 tmp = tmp + X;

7 for (i1i=0; i<10;
8 tmp = tmp + 1i;
9

++1) {

}
10 a =
1 //

12 return 0;

tmp;

(b) After Scalarization

Figure 5: Data Location Problem Illustration

i.e. moving the assignment line 7 before or after the loop. During
the debugging session, the user requests tmp’s value while running
in the loop, but since it has been moved, the value will not be the
one expected by the user. The currency problem arises when a
variable’s value might not be the same at the same point in the
source program.

1 int £() {

2 int 1i;

3 int tmp;

4 //

5 for (1=0; 1i<10; ++1i) {
6 //

7 tmp = CONST_X;

8 }

9 //

10 return 0;

11 }

Figure 6: Currency Problem Illustration

4.2 Code Location Problem

The second problem is the code location problem. 1t arises in
mapping between locations in the source code and locations in the
optimized program.

For instance, dead code elimination generates a one-to-zero re-
lation between the source code and the optimized program, com-
mon subexpression elimination generates one-to-many relations,
and hardware loops creation generates many-to-one relations.

S. APPROACH AND CONTRIBUTION

We focus hereafter on the problem of debugging software-pipelined

loops. Our solution answers this simple question: Given an address
and a variable, what is the value of this variable? The code loca-
tion problem and the data value problem both arise after software-
pipelining a loop. For example, figure 7(a) is a very simple while-
loop which computes the sum from 0 to MAX-1 (variable x) and
the sum of these sums (variable y). Assume the target processor
has 2-issues instructions. The first idea is to parallelize variable
initializations at line 1 and 2. At compile time, the loop is rewritten
as in figure 7(b). In order to parallelize instruction executions, lines
5 and 7 of the source loop have been copied before the loop entry,
and line 6 of the source loop has been copied after the loop body.
Moreover, lines 5 and 6 are executed in parallel. So, x is computed
once before entering the loop, and then is computed one iteration
step forward y’s value computation.
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1 i=0

2 x =0

3 y =0

4 while ( i < MAX )

5 X =X + 1

6 Yy =X+ Yy

7 i=1i+1

(a) Source Code

0x334 i=0 x =0
0x338 v =0 X =x + 1
0x33C i=1+1
0x340 while ( 1 < MAX )
0x344 y =X + Y X =X + 1
0x348 i=1+1
0X34cC Y =X +Y

(b) Rewritten Code

Figure 7: Example of Misled Debugging

Suppose the user is debugging this program using a standard
tool such as gdb [17]. Suppose also the program stops at address
0x348 in the rewritten code. The debugger gives the hand back
to the user stating that it stopped at line 7 in the source code. The
user asks for y and i’s current values. It seems fair for the user to
think that y’s value corresponds to the current iteration number 1.
This is incorrect. A trace is given in figure 8, v equals 4 whereas
v should be 10. When at address 0x344 in the rewritten code x
and y are computed, y’s value is one iteration step backward the
current iteration i, i.e. y is computed for the (i-1)*" time. This
misleads the user about the execution of the program. We would
like the debugger to give the current value of the variable and the
iteration it corresponds to.

In this paper, we propose a solution for the user not to be misled
in such a situation. Our proposal relies on selected information to
be generated by the compiler and an algorithm for the debugger not
to mislead the user.

Instance and offset are two words we need to define in order to
remain clear in the rest of this paper.

DEFINITION 5.1. An execution of instruction S is called an in-
stance of S.

We refer to an instance by specifying its occurence number. The
instance number of an operation refers to the source iteration num-



(gdb) break 7
Breakpoint 1 at 0x33C and 0x348: file loop.c,
(gdb) run

Starting program

Reading symbols for shared libraries done
Breakpoint 1 at loop.c:7

7 i=1+ 1;

(gdb) continue 3

Will ignore next 2 crossings of breakpoint 1.
Continuing.

Breakpoint 1 at loop.c:7

7 i =1+ 1;
(gdb) print x

x =6

(gdb)
vy =4

print y

Figure 8: Example of requesting variables’ values when software-
pipelined

ber it would have been computed at if the loop were not software-
pipelined. This is accurate because each source instruction is con-
sidered unique, thus it appears once and only once per source iter-
ation.

DEFINITION 5.2. The difference between an instance number
of an instruction and the iteration number where it is executed is
called the offset of the corresponding operation.

Our approach is called non-transparent as originally defined by
T. Zellweger [25]. She gave original definitions for transparent be-
havior, and correct, or non-transparent behavior: a debugger is said
to have a transparent behaviour when its responses to user requests
concerning the execution of an optimized program are the same as
responses would be for an unoptimized version of the program. On
the opposite, a debugger is non-transparent, or correct, when it can
display, in source program terms, the relevant changes caused by
optimization at execution point.

We aim at providing the correct behavior of a program, not the
expected behavior. Indeed, we truly believe that a developer of ap-
plications targeted to embedded systems must know the real behav-
ior of the program; being aware of the targeted architecture allows
the creation of more efficient applications.

If a variable is assigned earlier or later than expected during the
execution, we do not try to compute the expected value, but we pro-
vide the iteration number for the user to fully understand what iter-
ation in the source code corresponds to the value he requested. The
main idea is to statically compute an offset between the current iter-
ation of a loop and the current instance of an instruction belonging
to this loop body. This can be done if the offset of computation of
an instruction is not dynamically modified during execution. More-
over, it implies that software-pipelined loops respect the following
property:

PROPERTY 5.3. The order of instances of an instruction re-
mains the same in the source code and in the software-pipelined
code.

Our work relies on this ordering property. The modulo software-
pipelining algorithm implemented by MMDSP+ C Compiler fol-
lows this assumption. Indeed, very informally, the algorithm can
be seen as the scheduling of the source loop entirely unrolled w.r.t.
true, anti and output dependencies.

One of our assumptions is that debugging information is kept rel-
evant by other optimizations. This may not seem realistic at first.

line 7.
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Compiling is applying a sequence of optimizations to a program. It
can be seen as a composition of functions. Our work tends to focus
on one of these functions, this does not mean that any work does not
have to be done on other functions i.e. optimizations. A weakness
is that property 5.3 can be invalidated by other optimizations (Com-
mon Subexpression Elimination Across Iterations —CSEAI— for
instance). That is the reason why we try this approach alone first
and then as part of a more important work on information propa-
gation through compilation partly based on Adl-Tabatabai [3] and
Tice [20].

Even though much work has been done in the field of software

pipelining, to our knowledge this is the first attempt to debug software-

pipelined loops in a non-transparent manner.

6. DEBUG INFORMATION

As written by Gough, Ledermann and Elms [11], computer pro-
grams often need to be examined to determine the cause of appar-
ent errors, or to gain a better understanding of their structure. This
examination is called debugging, since its usual objective is the
location and removal of program errors (bugs). Compilers such as
gcc [16] provide debug information for debuggers via standard de-
bugging information formats e.g. DWARF 2 [1]. Debugging infor-
mation standards are not usually designed explicitly for debugging
optimized code. Compilers do not use every feature which would
ameliorate the state of debugging of optimized code in industrial
tools (see C.Tice [20]). Without considering any specific debug-
ging information standard, we present in this section information
our algorithm needs in order to solve the issue we address.

When a compiler optimizes a piece of code, it knows much more
than what it provides as debugging information. A trivial example
is the dead code elimination case. When the compiler decides to
delete an instruction from the program, it does not record it into
debugging information, thus the debugger cannot inform the user
when he tries to set a breakpoint at this deleted instruction. When
the compiler software-pipelines a loop, it computes the DDG, and
so knows where each variable is (or will be) located, computes how
many iterations are to be overlapped, as well as other information
related to the mapping between the source loop and the software-
pipelined loop. During software-pipelining optimization, all such
information is mandatory to rewrite the loop into three parts, the
prologue, the loop body, and the epilogue. Once the information is
known, it becomes straightforward to store it instead of discarding
it at the end of the optimization. We instrument the compiler to
store some of this information.

For each part of the software-pipelined loop (e.g. figure 3), we
instrument the compiler to store four values which informally cor-
respond to boundaries of the loop. We store the lowest and the
highest iteration numbers for which instructions are executed in
that part and we call them first and last iteration number. Be-
cause iterations are overlapped, the highest instance number of in-
struction of the prologue will very often be higher than the first
instance number of instructions of the 1loop body. This will hap-
pen between the 1oop body and the epilogue as well.

Since each part is made of one block of continuous addresses,
we store the first and the last addresses which we call starting and
ending addresses. An example of such information is given ta-
ble 2. The prologue’s first assignment belongs to the first itera-
tion while its last assignment, in terms of instance number, belongs
to the fourth iteration. We also store its boundaries, i.e. addresses,
here from 0x01 to 0x7. The epilogue’s range of iteration de-
pends on the loop total number of iterations and is here from N-1
to N while its range of address goes from 0x0D to 0x11 Then,
we store an integer per instruction: its offset to the current iteration



| firstIter lastIter startAddr endAddr
prologue 1 4 0x01 0x07
loopbody 3 N 0x09 0x0B
epilogue (N—-1) N 0x0D 0x11
Table 2: General Loop Information

Source LineNumber | 2 3 4 5 6 7 8 9 10
Variable AssignedTo |a b ¢ d e £ g h J

Offset {2 1 1 0 0 2 1 0 2

Table 3: Instruction Information

number in the loop body. In our example, see table 3, the loop body
iterates from 3 to N — 2. Because at the 3"% iteration, we compute
the 5'" instance of operation assigning to a at line 2, its offset is 2.

There exists several reasons why a program stops during a de-
bugging session e.g. user breakpoint, program aborting, signal trap.
Even if they have different mechanisms, they eventually all stop the
program at an address. In the remainder of this paper, we shall call
this particular address, the breaking address. At that point the user
can request variables’ values: this will be our algorithm’s starting
point.

7. ALGORITHM

Besides the traditional debug information and the extra informa-
tion defined previously, debuggers need mechanisms to find their
way into this information. In this section, we first clarify our nota-
tion system and then describe our algorithm.

7.1 Assumptions and Notations

The algorithm presented here aims at determining precisely for a
given variable which source iteration its current value corresponds
to. We define structured types, t_part and t_address, which
contain information collected during compilation.

The t_part type contains information relative to the three parts
of the software-pipelined loop: the prologue, the loop body, and the
epilogue. Variables prologue, loopbody and epilogue are
used along the algorithm. Access to their information is given with
an arrow e.g. prologue->firstIter, see table 4.

The t_address type contains information corresponding to
addresses of the object code. Each address denotes an instruc-
tion, thus each address assigns to a set of variables, we note this
set addr->setVar. Each operation maps to a source instruc-
tion. Because a variable can be assigned only once per instruc-
tion at a user-visible level, we use a very simple notation for the
access to the line number 1num corresponding to a variable v of
addr->setVar: we write addr->v->1num and we use the
same logic to write addr->v->offset.

Type Name Variable
t_address -> setVar
t_address->t_variable -> 1lnum
t_address -> offset
t_part -> firstIter
-> lastIter
-> startAddr
-> endIter

Table 4: Structures Used

We call i the iteration variable, its value in the prologue or
in the epilogue does not have to be defined. In our example fig-
ure 3, i’s range is the interval [3..N — 2]. The variable of type
t_variable for which the user requests the value is called rv.
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The breaking address of type t_address is noted ba. For in-
stance, if the requested variable is assigned to at the breaking ad-
dress, we use the following notation: rv € ba->setVar. Table 4

Variable Name Type Comment
ba t_address breaking address.
i integer The iteration number.
rv t_variable requested variable.
prologue t_part prologue
loopbody t_part loop body
epilogue t_part epilogue

Table 5: Input Variables

sums up the data structures and notations used in our algorithm. Ta-
ble 5 sums up the input variables for the algorithm. Table 6 shows
the result format of the algorithm. We also use a temporary address
named tmpAddr of type t_address.

Variable Name type Description
result->addr t_address Address which last assigned to rv
result->inst integer Instance number of rv

Table 6: Output Variable

One 1 f-statement has been omitted at the beginning of every
one of our three sub-algorithms: rv is supposed to be assigned
to at least once in the source loop, thus at least once in the loop
body of the software-pipelined loop. This assumption allows us
to write exit conditions of while-loops on the presence of rv in
setVar without fearing infinite loops. And because every loop
of the algorithm does not have any nested loop and exits on this
condition, we can assure our algorithm works linearly i.e. O(n)
w.r.t. n the number of instruction in the source loop body.

7.2 Pseudo-code

In this section, we give the algorithm in pseudo-code. It helps
the debugger to answer the original question: At a given address
and for a given variable, what is the value of this variable? The
breaking address ba can be in the prologue, in the loop body or in
the epilogue. We present 3 sub-algorithms, one for each case. The
entire algorithm in figure 9 could be written more effectively, but
we chose to divide it into three parts in order to make it clear to the
reader.

ask_value (t_address ba, t_variable rv) {

1
2 if (ba € prologue) then

3 // see figure 10

4 else if (ba € loopbody) then
5 // see figure 11

6 else if (ba € epilogue) then
7 // see figure 12

8 else

9

// ba is not set in the loop.

Figure 9: General Algorithm

7.2.1 Prologue

When ba is in the prologue, we first look backward for the last
address assigned rv. We then look for the number of times it has
been assigned to by this operation. Checking the line number and
not only the variable allows a variable to be assigned more than
once in the loop body.



tmpAddr = ba - 1
while (tmpAddr > prologue->startAddr)
A (rv ¢ tmpAddr->setVar) do
tmpAddr = tmpAddr-1 // search backward for rv
result->addr = tmpAddr

I tmpAddr = ba - 1 1
2 while (tmpAddr > prologue->startAddr) 2
3 A (rv ¢ tmpAddr->setVar) do 3
4 // search backward for rv 4
5 tmpAddr = tmpAddr-1 5
¢ if (rv ¢ tmpAddr->setVar) then 6
7 result->addr = null 7 assAddr = result->addr
8 return // rv has not been assigned yet 8

9 9

else result->inst = epilogue->lastIter
10 result->addr = tmpAddr 10 tmpAddr = epilogue->endAddr
11 11 while (tmpAddr # assAddr) do
12 assAddr = result->addr 12 if (rv € tmpAddr->setVar)
13 13 A (tmpAddr->rv->1lnum == assAddr->rv->1lnum) then
14 result->inst = prologue->firstlIter 14 result->inst——
15 tmpAddr = prologue->startAddr 15 tmpAddr = tmpAddr - 1
16 while (tmpAddr # assAddr) do ) o
17 if (rv € tmpAddr->setVar) Figure 12: ba is in epilogue
18 A (tmpAddr->rv->1lnum == assAddr->rv->1lnum) then
19 result->inst++
»  tmpAddr = tmpAddr + 1 8. EXPERIMENTATION CONTEXT

Figure 10: ba is in prologue
g P g 8.1 Tool Framework

. . Our experimentation is done with a tool framework [14] includ-
if (i < loopbody->startIter) then ing a compiler, MMDSP+ C Compiler, a debugger, MMDSP+ GDB,

1

2 tmpAddr = ba - 1 . ..

3 while (tmpAddr > prologue->startAddr) and a set of specific apphc'atlons. .

. A (rv ¢ tmpAddr->setvar) do MMDSP+ C Compiler is a compiler for an embedfieq processor
5 // search backward for rv called MMDSP [5]. It performs state-of-the-art optimizations. It
6 tmpAddr = tmpAddr - 1 has been designed with a modular framework allowing the devel-
7 . opment and integration of new optimizers both high and low lev-
8 if (rv ¢ tmpAddr->setvVar) then els [5]. Its architecture is represented in figure 1. It is built around
9 result->addr = null

the CoSy compiler development suite [2]. The in-house back-end,

:? éétzznhas Dot been assigned yet named eliXir, is an STMicroelectronics proprietary back-end de-
1 else signed to replace CoSy back-end optimizers (e.g. the scheduler
13 result->addr = tmpAddr and register allocator) with a more modular infrastructure allowing
14 else more aggressive low-level optimizations (e.g. software-pipelining,
15 tmpAddr = ba - 1 peephole, post addressing mode). The structure of EliXir is repre-
16 while (tmpAddr > loopbody->startAddr) sented in ﬁgure 13

17 A (rv ¢ tmpAddr->setVar) do :

18 tmpAddr = tmpAddr-1

19 if (rv € tmpAddr->setVar) do .

20 tmpAddr = loopbody->endAddr [ Code Generation j

21 while (tmpAddr>loopbody->startAddr)

2 A (rv ¢ tmpAddr->setVar) do

register

23 tmpAddr = tmpAddr - 1 microenegine
24 result->addr = tmpAddr

allocation

25 N S
26 assAddr = result->addr microenegine local
7 . ~ scheduler
28 if assAddr > ba then < E
29 result->inst = i + assAddr->rv->offset — IR <
0 else microenegine s = hardware
h E— —
31 result->inst = i - 1 + assAddr->rv->offset 2 = loops

3 =

s 8

< 7]

Figure 11: ba is in loopbody target specific software
microengine pipelining
7.2.2 LOOP BOdy target specific global
microengine scheduler

If ba is in the loop body, we have to look for the address assigned
rv in a slightly different manner. Indeed, if the break occurred dur-
ing the first iteration of the loop body, then it might be an address
of the prologue.

Once we know where rv has been assigned, thanks to the offset, [ Assembly Code J

we can tell in which iteration it occurred.

Figure 13: EliXir Structure

7.2.3  Epilogue )
MMDSP+ GDB is based on the GNU Source-Level Debugger

The epilogue .is very similar to the prologue, except that we count gdb [17]. It uses GDB/MI protocol to communicate with Eclipse'.
the number of times rv has been assigned from the end, not from
the beginning. "http://www.eclipse.org/

29



It has been adapted to handle gracefully the 24 bits memory of the
MMDSP. It also handles circular pointers and the dynamic 16/24
bits arithmetic mode of the processor.

The set of applications contains several audio codecs such as the
Enhanced Full Rate (EFR) codec of the GSM wireless communi-
cation standard, g723.1, mp3 and AMR codecs. 80% of the code is
made of loops; mmdspcc performs software-pipelining on 30% to
50% of these loops, depending on the codec.

8.2 Experiment

To validate our approach, we divided our experiment into two
steps. In the first step, we implemented and validated the approach
presented in this paper with every other optimization turned off.
In the second step, we instrumented selected engines of compiler
so they kept up-to-date debugging information before and after the
software-pipelining engine.

1°¢ Step- The first step is fully described in the present paper.
Our instrumentation stores values previously computed by the orig-
inal algorithm, hence it is less than 100 lines of code. We have
extended the debugger with approximatively 900 lines of code: re-
quested variables’ values are now given with a context of execution,
see figure 14. This example is written in a gdb-like syntax.

(gdb) break 7
Breakpoint 1 at 0x33C and 0x348: file loop.c,
(gdb) run

Starting program
Reading symbols for shared libraries done
Breakpoint 1 at loop.c:7

7 i =1+ 1;

WARNING: software-pipelined loop:
2 iterations overlapped
(gdb) continue 2

Will ignore next 2 crossings of breakpoint 1.
Continuing.

Breakpoint 1 at loop.c:7

7 i =1+ 1;

WARNING: software-pipelined loop:
2 iterations overlapped

(gdb) print x

X =6

WARNING: software-pipelined loop:
accurate for iteration (i == 3)

(gdb) print y

y =4

WARNING: software-pipelined loop:
accurate for iteration (i == 2)

Figure 14: For an example corresponding to the debugging of pro-
gram in figure 7(a). This example follows the same steps of exe-
cution as example in figure 7.A breakpoint is set at line 7 and the
program runs until reaching it.

274 Step- The second step is not described in this paper, we shall
only give a brief description. Our algorithm supposes debugging
information to be accurate before running the software-pipelining
engine. In order to respect this assumption, we have instrumented
MMDSP+ C Compiler so other engines maintain information up-
to-date during compilation. We have followed a non-transparent
approach. Labeling instructions through optimizations allows the
debugger to map target instructions with source statements even
though the source code has been highly optimized.

We restricted our field of investigation to four engines: dead
code elimination, common subexpression elimination (CSE), hard-
ware loop creation and miscellaneous code motions such as code

line 7.

30

sinking and code hoisting. Since we had to write a library to ma-
nipulate information in the previous step, the instrumentation cor-
responds to approximatively 1400 lines of codes and less than 100
lines of code for each engine. The set of selected optimizations
is relevant because it covers every kind of modification optimiza-
tions can perform to the code: elimination (dead code elimination),
duplication, rewriting (CSE, hardware loop creation), reordering
(misc. code motions). It also includes modifications made to
the instructions instances order and not only to instructions (see
C.Jaramillo [13]).

So far, our implementation did not show any dysfunctions. No-
tice that there is not any relevant metric to demonstrate the validity
of our approach because a non-transparent debugger relies on the
user. The size of debugging information added to the binary file is
not a significant information and the time needed by the debugger
to load it is negligible.

9. PREVIOUS WORK

To the best of our knowledge, debugging software-pipelined loops
has never been addressed non-intrusively or without specific hard-
ware mechanisms.

John Hennessy [12] was the first to define notions of non-current
variables and endangered variables. If an optimized program aborts
or a debugger stops the program, the resulting value of the variable
may not equal the value of the variable in the original source pro-
gram at the corresponding point, and is called non-current. A vari-
able is called endangered when its currency depends on the path
taken. Hennessy’s ideas have served as the foundation for much of
the research done in this area. Wall, Srivastava, and Templin [21]
and Copperman and McDowell [7] later revised Hennessy’s orig-
inal algorithms to correct for changes in compiler technology that
invalidated some of Hennessy’s original assumptions.

Polle T. Zellweger [26, 25] focused on two optimizations: cross-
jumping, an optimization which consists in replacing a portion of
code by a function call, and inlining, an optimization which con-
sists in replacing a function call by a copy of the function itself. The
solution she proposed did not address the debugging of software
pipelined loops or instruction scheduling, but she gave original def-
initions for transparent behavior, and correct, or non-transparent
behavior. Indeed, a debugger is said to have a transparent behavior
when its responses to user requests concerning the execution of an
optimized program are the same as responses would be for an unop-
timized version of the program. A debugger is non-transparent, or
correct, when it can display, in source program terms, the relevant
changes caused by optimization at execution point

Coutant, Meloy and Ruscetta proposed what they called A Prac-
tical Approach To Source-Level Debugging of Globally Optimized
Code [8]. Their tool, DOC, is a prototype of the existing C com-
piler and source-level debugger for HP900 Series 800 which deals
almost exclusively with the data value problem caused by optimiza-
tions. Their solution partially solves the data value problem trying
to remain consistent with the user’s perception of the source, i.e.
they try to recover variables values.

Brooks, Hansen and Simmons’ work [6] aims at providing a vi-
sual feedback during the debugging of optimized code. They de-
signed the Convex debugger, CXdb. It follows a non-transparent
approach: it highlights various expressions within the source state-
ments as the corresponding instructions are executed. No expla-
nation is provided to the user, thus, unless the latter knows which
optimizations might have been performed, it can become very def-
ficult to determine what happened, and hence understand the con-
text. While they solved the location problem, they only partially
addressed data value problems. A resident variable is implicitly



suspect - it is up to the user to determine how the runtime value of
a variable relates to the source value. Even though this approach is
easily maintainable due to its simple labeling scheme, it provides
only a cursory solution for data value problems.

Roland Wismiiller [22] proposed an algorithm for solving the
currency problem. Based on data flow analysis, his solution deter-
mines whether a variable’s value is current or not, but no solution
is provided to recover any value. His algorithm is based on a com-
parison of two data flow graphs. They both are unrolled in order to
make the difference between two instances of the same instruction.
The same unrolling technique has been used by Dhamdhere and
Sankaranarayanan [9]. Wismiiller is also the first to use a mapping
which uses semantically equivalent instructions, what C.Tice will
later call key instructions [18].

J.Gough, J.Ledermann and K.Elms [11] described an alternative
model in which any needed information is extracted by coopting
a modified version of the compiler during the debugging session.
They do not explicitly solve the code location problem nor do they
solve data value problems. Three years later, K.Elms [10] released
a more detailed implementation.

Ali-Reza Adl-Tabatabai [3] addressed the code location problem
and data problems for a given set of scalar optimizations. His code
location problem solution relies on a dual labeling method and ex-
pects breakpoints and exceptions to happen in the expected order
if instructions are not scheduled. In order to track modification
brought to statements, the compiler maintains two mappings: the
object-to-source mapping and the source-to-object mapping. As
stated in his conclusions [3, page 171], he does not address the de-
bugging of software-pipelined loops.

Le-Chen Wu and Wen-Mei W.Hwu [23, 24] address the code
location problem from the user’s point of view. They proposed an
implementation scheme for setting breakpoints. They implemented
their technique by modifying an existing compiler and running tests
with it. They concluded that their scheme was unable to handle
loop transformations which reordered instructions from different
iterations of the original loop in the same iteration of the new loop
(software pipelining, for instance).

D.M.Dhamdhere and K.V.Sankaranarayanan [9] presented a par-
tial solution to the data value problem. Their proposal is based on
a neat reduction of the data flow graph into a list of nodes ordered
according to the time when their last occurrence was executed. The
data flow graph is unrolled and then reduced to a list. To do so, they
used the Zellweger’s time-stamp idea [26] and proved the equiva-
lence of the two graphs under hypothesis of restriction. They con-
cluded that their proposal is a practical basis for providing partially
transparent debugging.

Caroline Tice’s approach to the problem is based on the idea
that programmers may want to know what happened to their code
during optimizations [20]. She developed a tool, OPTVIEW [19],
which displays parts of optimizations to the user. Her tool displays
a modified version of the source code, with comments added when-
ever possible. Her main contribution is the key instruction concept
which allows the debugger to set source-level breakpoints. In order
for this mechanism to be accurate, for each source statement she
defines which instruction embodies most closely that statement’s
semantics. For example, the key instruction for an assignment
statement is the one that stores the assignment value either to the
variable’s location in memory, or to a register (if the write to mem-
ory has been eliminated). The key instruction for a function call
is the jump to the code for that function. She also addresses the
eviction recovery of wandering data by modifying Coutant, Meloy
and Ruscetta paper’s scheme of variable range table. She proposed
setting hidden breakpoints to recover data, but only in subroutines
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where the user already had set breakpoints in order to minimize the
slow down of execution. In her conclusions [20], she considers the
limitations of her work especially as it applies to loop transforma-
tions. She provides a summary of user feedback, but her tool is not
available for experimentation.

C.Jaramillo [13] proposed a fully transparent solution to sym-
bolic debugging of optimized code. Her main goal is to hide every
single transformation from the user by making heavy use of hidden
breakpoints and tables such as reportable variables table, overwrit-
ten variables table, range table, and many others. As a result, it
seems to drastically slow down the program execution during the
debugging session. We believe it is a major showstopper to indus-
trial usage of these technics.

10. CONCLUSION AND FURTHER WORK

This paper addresses the non-transparent debugging of software-
pipelined loops. We proposed an algorithm for the debugger to
reveal non-transparently the program’s behavior using information
stored by the compiler while software-pipelining a program. This
approach only depends on the scheduling algorithm and not on the
processor. We also presented our experimentation context based on
an embedded system processor: the MMDSP which implements a
modulo-software-pipelining algorithm. To the best of our knowl-
edge, this problem has never been addressed before. Our develop-
ment framework prototype needs the developer to already know a
bit about compilation optimizations. This may be seen as a disad-
vantage while it actually is our intention not to hide details to the
programmer. The embedded developers who will be our tool’s first
class users usually have sufficient knowledge of their systems to
understand the additional information we provide.

As further work, we will extend our method to other sofware-
pipelining algorithms, so that compilers which implement them
could be extended as well. The cornerstone of this work will be
showing that the algorithm respects property 5.3.

Another further work would be trying to adapt our algorithm to
a transparent debugging of software-pipelined loops. This would
be the exact opposite approach to the one adopted here. Using in-
visible breakpoints, slicing techniques, and pools to store values
are promising ideas, and many papers on the subject of transparent
debugging are built on them.
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