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Andreas Lachenmann*, Pedro José Marrón†, Daniel Minder†, Kurt Rothermel*
* Universität Stuttgart, Universitätsstr. 38, 70569 Stuttgart, Germany
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Abstract
In this paper we present Levels, a programming abstrac-

tion for energy-aware sensor network applications. Unlike
most previous work it does not try to maximize network
lifetime but rather helps to meet user-defined lifetime goals
while maximizing application quality. Levels is targeted
to applications where there is no redundancy and no node
should fail early.

With our programming abstraction the application devel-
oper defines so-called energy levels. These energy levels
form a stack and can be deactivated from top to bottom if
the lifetime goal cannot be met otherwise. Each code block
within an energy level contains information about its energy
consumption, which can be obtained from simulation tools
without much effort. The runtime system then uses the data
about the energy consumption of the different levels to com-
pute an optimal level assignment for the time remaining. As
we show in the evaluation, applications using Levels can ac-
curately meet given lifetime goals and offer good application
quality. In addition, the runtime overhead of our system is al-
most negligible.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs

and Features; D.4.8 [Operating Systems]: Performance
General Terms

Design, Performance, Measurement
Keywords

Wireless sensor network, energy, lifetime goal, program-
ming abstraction
1 Introduction

Traditionally, sensor network research has tried to maxi-
mize network lifetime, e.g., by exploiting redundancy. Al-
though this is useful in many cases, for some applications
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the required lifetime is known in advance and there are no
redundant nodes in their topologies. Therefore, instead of
maximizing overall lifetime, it is more important that every
single node stays alive for a user-defined lifetime and that
during this time the application provides the best quality pos-
sible subject to the energy constraints present.

For example, in long-term structural health monitoring of
bridges [13] the batteries of nodes can only be replaced ev-
ery few years during regular inspections [18]. As the interval
of these inspections is known beforehand, it corresponds to
the lifetime goal of the network. Because of high energy
costs for sensing and complex data analysis, measuring and
analyzing sensor data is an energy-intensive task. In addi-
tion, due to the typically sparse network topology, a single
node failure can partition the network and thus render large
parts of it useless. Therefore, for this application it is more
important to preserve network connectivity than to do com-
plex analysis on every single node. For instance, if the bat-
tery capacity becomes scarce, nodes could use a less accurate
but also less energy-intensive data analysis algorithm or – in
the extreme case – switch to a reduced functionality mode,
where they stop sampling and forward only analysis results
of other nodes to the base station. In these cases, of course,
such a node will no longer be able to offer its full function-
ality. Nevertheless, we argue that it is still more useful this
way than if it stops working completely.

Even if network connectivity could be preserved with
only a subset of the nodes, some applications require a high
spatial resolution of sensors. If some nodes fail before the
anticipated end of the experiment, this reduces the useful-
ness of the remaining data. For example, an application to
monitor the microclimate of redwood trees [24] transmits all
data to a gateway node and stores it locally in flash memory
to increase data yield. However, instead of executing both
of these energy-expensive operations, the lifetime of a node
could be extended if just one of them was executed. Then the
node would still deliver some data even if some of it might
be lost due to transmission errors, for example.

Similarly, for wildlife monitoring systems like ZebraNet
[15] the user defines the duration of the experiment. In this
application nodes gather GPS traces and forward their data in
order to have other nodes (physically) transport it to the sink.
If a node fails, no more data will be gathered for one of the
animals. Here there are several possibilities to save energy
by reducing the functionality. First, a node could no longer
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forward the data from other nodes and, therefore, decrease
energy-intensive radio communication. Second, it could stop
storing other nodes’ data and avoid flash memory accesses.
Finally, it could reduce energy consumption by decreasing
the rate it queries its own position from the GPS receiver.

In these applications it is possible to identify parts which
are more energy-intensive than others and which are not ac-
tually needed to provide some basic functionality. There-
fore, in this paper we present Levels, a novel abstraction for
energy-aware programming of sensor networks that allows
the developer to explicitly single out optional functionality.

With our approach developers can specify several energy
levels in an application which differ in their energy consump-
tion and the functionality they offer. The code within each
such level is associated with the energy it consumes. At run-
time Levels monitors the remaining battery capacity and the
energy consumed in each level. It then selects an energy
level that allows the application to achieve its target lifetime,
if necessary with restricted functionality. This way the life-
time of individual nodes can be significantly extended and,
for example, network connectivity can be preserved. Com-
pared to manual implementations of such functionality this
programming abstraction and its corresponding runtime sys-
tem save much development effort. For example, the ap-
plication developer no longer has to write code to estimate
the energy remaining in the battery, the energy consumed by
parts of the application, or the time full functionality can be
provided.

Our approach is based on measuring the energy con-
sumption of individual energy levels using an energy profiler
with accurate simulation models [14, 23]. At runtime each
node tries to maximize the utility of the energy levels while
achieving its lifetime goal. As we show in the evaluation,
the abstraction of energy levels is useful in real-world ap-
plications and Levels is able to help meeting lifetime goals
while providing good application quality.

Our solution has several benefits. First, the developer
does not have to deal with the low-level issues of energy
consumption, which simplifies the development of energy-
aware applications. Second, our solution helps to ensure that
a given lifetime is reached and that good application qual-
ity is offered. Third, the overhead for the developer is just
small and we provide a powerful programming abstraction
that allows for modular application development. Finally,
the runtime overhead of our system is negligible.

The rest of this paper is organized as follows. Section 2
gives an overview of related work. Section 3 presents de-
sign considerations and our energy level abstraction. In Sec-
tion 4 we then describe our method to measure energy con-
sumption of code blocks and in Section 5 how Levels ad-
justs energy levels at runtime. Section 6 shows evaluation
results and Section 7 discusses special application require-
ments. Finally, Section 8 gives an outlook on future work
and concludes this paper.

2 Related Work
In this section we give a brief overview of work related to

Levels. Particularly, we describe systems that take into ac-
count energy considerations for adaptation, extend network

lifetime by deactivating redundant nodes, map energy con-
sumption to code blocks, and model battery behavior.

In the realm of mobile computing, Odyssey [7] moni-
tors available energy and adapts the fidelity of applications
to meet a user-defined lifetime goal. For example, a video
player switches to a differently compressed source file or re-
duces its window size if energy becomes scarce. Odyssey
does not provide a programming abstraction like our energy
levels and does not leverage simulation data. Therefore, it
cannot take advantage of predicting energy consumption af-
ter adaptation. Furthermore, it has been designed for less
resource-constrained devices and relies on highly accurate
measurement equipment, which we cannot assume on inex-
pensive sensor nodes.

Similarly, ECOSystem [27] tries to achieve a target life-
time by limiting the discharge rate of the battery. It in-
troduces the Currentcy Model to deal with the demands of
competing tasks in a multitasking system. Rather than iden-
tifying optional functionality in applications, it modifies the
scheduler to execute only those tasks that have not spent their
energy budget for the current round yet. Unlike our approach
it does not exploit information from simulation and, there-
fore, has to do detailed energy accounting at runtime.

In the field of sensor networks we have been working
on TinyCubus [17], a framework that adapts applications to
the properties of the environment and to application require-
ments. TinyCubus takes into account other parameters like
reliability that we do not consider with Levels. In contrast
to Levels, TinyCubus does not provide any mechanisms to
reach given lifetime goals yet. However, we plan to integrate
Levels into TinyCubus to provide this functionality.

TinyDB [16], a query processor for sensor networks, al-
lows to adapt the interval between the measurements of a
query in order to meet user-defined lifetime goals. Similar
to our rationale, its authors argue that in environmental mon-
itoring scientists are more concerned about meeting a life-
time goal than about the sampling rate. Since TinyDB’s pro-
gramming interface is based on high-level SQL-like queries,
changing the sampling rate is the only way to influence net-
work lifetime.

There is already a large body of work dealing with the
coverage problem in wireless sensor networks. This work
switches redundant nodes into sleep mode to maximize the
time that a given area is monitored by the network [2, 11].
Closely related are topology control mechanisms like AS-
CENT [3] that switch off redundant nodes but strive to
preserve network connectivity. Similarly, duty-cycling ap-
proaches [9] periodically turn off nodes to extend network
lifetime. Unlike Levels all of these approaches are targeted
to dense networks where redundant nodes can be temporarily
deactivated. In addition, they do not have any given lifetime
goals but try to maximize the time for which they provide
coverage or connectivity, respectively.

Many network protocols already include mechanisms to
reduce energy consumption. For example, at the link layer
several protocols try to reduce the energy spent for idle lis-
tening. Therefore, they often switch the radio chip into its
sleep state [19, 25]. These optimizations are orthogonal to
our approach. Energy levels could still be used on other lay-



ers, as long as, of course, the same protocol stack is used for
both energy profiling and the application itself.

Sensor network simulators like Avrora [14, 23] and
PowerTOSSIM [22] enable the prediction of the energy con-
sumption of a sensor node. The values obtained from these
tools are often used for evaluation purposes and to give the
developer hints about energy consumption, although usu-
ally not at runtime. Avrora allows to break down energy
consumption to individual functions. However, this part of
Avrora can only associate the energy consumption of the
CPU with some code rather than including the other hard-
ware components on a node. In addition, unlike our ap-
proach, it does not take into account the energy consumed
by functions that are called by the code under measurement
or, in the case of TinyOS [10], by asynchronously executed
tasks.

There are several more advanced battery models than
ours described in the literature [21]. They take into ac-
count effects resulting from temperature changes and time-
varying loads, for example. However, because the voltage
sensor on typical sensor nodes cannot provide the precision
of lab equipment, we have to deal with inaccuracies anyway.
Furthermore, the computational overhead of many accurate
battery models is too large for resource-constrained sensor
nodes, and it takes even for more powerful computers hours
to simulate a load profile.

3 System Design
In this section we present relevant properties of sensor

networks that influenced our design decisions, state our de-
sign goals, and give an overview of our system and of the
energy levels abstraction.
3.1 Sensor Network Properties

Several properties of wireless sensor networks aid our ap-
proach of measuring energy consumption and switching be-
tween energy levels at runtime.

First of all, there is usually just a single application run-
ning on each sensor node. Therefore, the expected lifetime
of a node depends only on one application that can be con-
trolled more easily than a multitasking system.

Second, sensor networks typically exhibit some periodic
behavior. For example, sensor readings are sampled periodi-
cally at user-defined time intervals. If the sensor network ap-
plication reacts to external events, these events often repeat
for sufficiently large periods. Thus it is possible to estimate
future energy usage based on past consumption.

Third, because sensor nodes have only limited output ca-
pabilities and are often deployed in inaccessible locations,
simulation has become an integral part of the development
process [23]. In addition, simulators are often equipped with
detailed energy models [14, 22]. Therefore, we can use sim-
ulation to get information about the energy consumption of
a piece of software.

Fourth, most sensor nodes available today are equipped
with voltage sensors. Since the voltage provided by a battery
depends on its remaining capacity, we can use the voltage
data to estimate the residual energy.

Finally, as the nodes are strictly energy-constrained, in
the domain of sensor networks software developers are more

concerned about energy consumption and node lifetime than
developers in other areas. Therefore, we expect that most
developers are willing to invest some effort for specifying
energy levels and measuring energy consumption.

3.2 Design Goals
Our central design goal is to provide a programming ab-

straction and runtime support that helps to meet the user’s
lifetime goals by deactivating parts of an application if nec-
essary. To achieve this main objective we have identified the
following subgoals:

• The programming abstraction should allow for the defi-
nition of optional functionality and it should be general
enough to support a wide range of applications.

• Levels should be easy to use and the development over-
head should be limited.

• For a given lifetime goal Levels should provide good ap-
plication quality, i.e., nodes should not live much longer
than required.

• The system should have a low runtime overhead to
avoid that the overhead absorbs its benefits.

• The runtime system should be able to deal with inaccu-
rate energy estimations which are inevitable with inex-
pensive sensor nodes.

3.3 System Overview
Based on these design goals we have created the program-

ming abstraction of “energy levels” that allows to specify
optional code blocks. At runtime the system then decides
which energy levels are active, i.e., which code blocks should
be executed. This abstraction is described in more detail in
Section 3.4.

Basically, our system is similar to well-known model pre-
dictive control (MPC) schemes [1]: First, we build a model
that helps to predict energy consumption by profiling the en-
ergy consumed by optional code (see Section 4). This model
allows to compute the energy used by each level at runtime.
Second, it is complemented by a battery model that maps
voltage readings to the remaining energy usable by the sen-
sor node (see Section 5.1). Third, using the information from
energy profiling Levels keeps track of how much energy is
consumed by each energy level at runtime (see Section 5.2).
This part of Levels considers both energy that is consumed
just once when executing a code block (e.g., to store some
data in flash memory) and changes in the rate of continu-
ously consumed energy (e.g., by enabling a sensor). Finally,
together with the battery model this data allows to compute
the expected node lifetime in each energy level. This in-
formation is then used to optimize the energy level for the
remaining lifetime considering the given energy constraints
(see Section 5.3). Like other MPC algorithms, our system
considers just the result for the current time interval and later
recomputes the remaining level assignments to better reflect
the new situation.

3.4 Energy Levels
An energy level includes all statements that can be deac-

tivated together to reduce energy consumption. Therefore,
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Figure 1. Combining energy levels

code in an energy level is optional for providing some ba-
sic functionality of an application. If the level is deacti-
vated, however, the functionality of the application may be
degraded. To put a code block into an energy level the devel-
oper has to place it into a conditional statement that checks
if the level is currently active. The lowest energy level l0 is
always active and is declared implicitly; it includes all code
that has not been added to any other level.

Several energy levels form a stack where levels can be
deactivated starting from the top one. If level li is active, all
levels below it, i.e., l0, . . . , li−1 are active, too. Therefore, the
code in li can rely on the functionality of lower levels. Levels
above li, however, might be deactivated.

Each energy level li is associated with a utility value ui:
The application developer can define this utility in a way that
reflects the improvement in functionality.

Having a stack of energy levels does not mean that the
functionality of an application has to increase monotonically
with higher levels. By using appropriate conditions it is pos-
sible to, for example, transmit sensor readings in a low en-
ergy level to the base station whereas they are just stored
locally (without being forwarded) in a higher level.

Levels assumes that higher levels lead to an increase in
energy consumption. We expect this to be true for almost
any application. Otherwise, energy levels should be merged
because they are ill-defined. Such a situation could be easily
detected during the development phase.

If an energy level is being activated or deactivated, the
runtime system calls a special function in the component
providing the level. The component can use this function
to adjust to the new level. For example, if all the sensor sam-
pling code is extracted into an energy level, the component
could turn the sensor hardware on or off in these functions.

The abstraction of energy levels nicely fits modular de-
velopment in component-oriented languages like nesC [8].
If an application consists of several software components
which define their own energy levels, it might be undesirable
that each of them can be deactivated separately. For exam-
ple, code in one component might depend on functionality
of another one’s (higher) levels. Therefore, a component can
combine levels of several components and thus ensure that
they are only active at the same time. For example, in Fig. 1
the energy levels of Components 3 and 4 are combined using
this mechanism. Likewise, the overall levels of the complete
application can be created by combining the energy levels
of its components. In addition, it is possible to insert levels
from one component between those of another one. For in-
stance, in Fig. 1 level 1 of Component 2 is mapped between

1 module LevelTes tM {
2 prov ides e n e r g y l e v e l SendLevel <1>;
3 prov ides e n e r g y l e v e l ComputeLevel <2>;
4 . . .
5 }
6 implementat ion {
7 . . .
8 event TOS MsgPtr ReceiveMsg . r e c e i v e ( TOS MsgPtr msg ){
9 i f ( ComputeLevel . a c t i v e ) {

10 pos t computeTask ( ) ;
11 }
12 re turn msg ;
13 }
14 event r e s u l t t Timer . f i r e d ( ) {
15 i f ( SendL eve l . a c t i v e ) {
16 c a l l SendMsg . s end (TOS BCAST ADDR , 29 , &message ) ;
17 }
18 re turn SUCCESS ;
19 }
20 command vo id SendL eve l . a c t i v a t e ( ) {
21 c a l l R a d i o C o n t r o l . s t a r t ( ) ;
22 }
23 command vo id SendL eve l . d e a c t i v a t e ( ) {
24 c a l l R a d i o C o n t r o l . s t o p ( ) ;
25 }
26 . . .

Figure 2. Code example for energy levels

the levels of Component 1 in the application. However, it
is not possible to change the order of the levels of a single
component; doing so could break assumptions in the code.

Using this simple mechanism, which closely corresponds
to nesC’s wiring of interfaces, the overall energy levels of the
application in the figure (l0, . . . , l3) are formed. This applica-
tion can deactivate functionality for data analysis, storage,
and sensing if necessary. Forwarding functionality, however,
is placed on the lowest level l0, which is always active.

By connecting all required levels to level l0 the developer
has full control of which energy levels have to be active for
the current application. All other levels, however, can be de-
activated if necessary. Therefore, Levels allows for the reuse
of components with several energy levels, even if all of them
are required for one specific application.
3.4.1 Syntax

We integrated Levels into nesC [8], the programming lan-
guage used by TinyOS [10]. We selected nesC because of
the large number of sensor network applications that has al-
ready been developed with this programming language. In
addition, building upon this general-purpose language helps
to achieve general applicability of our abstraction.

Fig. 2 shows a small code example of a component that
provides two energy levels. The numbers in the declaration
of energy levels determine their local order. However, these
numbers do not have to be absolute or globally unique; other
levels can still be inserted when wiring the component.

In this example each energy level consists of a single op-
tional code block. If “ComputeLevel”, the highest level,
is active, the component performs some computation after
receiving messages (line 10) and periodically sends some
packets itself (line 16). If just “SendLevel” is active, the
component will continue sending messages but cease to do
the computation. It would also have been possible to add
else-branches here that run a less expensive computation task
in lower levels, for example. In the implicitly declared de-



1 module P r o f i l i n g M {
2 provides i n t e r f a c e ReceiveMsg ;
3 provides i n t e r f a c e Timer ;
4 . . .
5 }
6 implementat ion {
7 . . .
8 vo id measu reRece ive ( )
9 @energy ( ” ReceiveMsg ” , ” r e c e i v e ” ) {

10 TOS Msg msg ;
11 msg . addr = TOS LOCAL ADDRESS ;
12 . . .
13 s i g n a l ReceiveMsg . r e c e i v e (&msg ) ;
14 }
15 vo id measureTimer ( ) @energy ( ” Timer ” , ” f i r e d ” ) {
16 s i g n a l Timer . f i r e d ( ) ;
17 }
18 . . .

Figure 3. Test driver used for energy profiling

fault level l0, neither “computeTask” nor “send” will be in-
voked. Note that the code inside these two functions is re-
garded as a part of the energy level from which it is called.

Whenever a level is being activated or deactivated, one of
the corresponding functions will be called. In the example
the radio chip is turned on just as long as it is needed (lines
21 and 24).

As this example shows, Levels requires only very small
changes to existing nesC modules. Furthermore, wiring en-
ergy levels (not shown in the figure) is completely analogous
to wiring interfaces in nesC. Therefore, we think that using
energy levels should be easy for application developers.

4 Energy Profiling
In order to correctly estimate the lifetime of the appli-

cation, Levels has to know how much energy is consumed
by each optional code block defined in energy levels. Get-
ting this information on the sensor node itself is not possible
since the energy consumed in individual blocks of code is
too small to be accurately estimated using the node’s built-in
voltage sensor. Therefore, we make use of the fine-grained
energy models available in simulators.

It should be noted that because of hardware differences
the energy consumption of different nodes varies slightly
[14]. Currently, profiling can achieve only optimal results if
the energy model of the simulator is calibrated to each node.
Therefore, from our perspective an important design require-
ment for future sensor nodes is that they should be created
from parts which show only little variations in energy con-
sumption.

Compared to real measurements with instrumented sen-
sor nodes and lab equipment, simulation has the advantage
that the additional effort for the application developer is very
small. Furthermore, our approach allows to reuse code from
unit testing to profile energy consumption.

4.1 Measurement Approach
Unit testing using either tools like JUnit [12] or custom

test drivers has already proved to be a valuable technique
in different domains including sensor networks. For exam-
ple, the TinyOS distribution includes several small test ap-
plications for many operating system components. In ad-
dition, with nCUnit we have developed a JUnit-like testing
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tool for nesC-based applications. Since nCUnit executes its
test suites in a simulator, its approach corresponds to our en-
ergy profiling technique. Therefore, the developer can reuse
the test code from nCUnit for energy profiling. The only
change needed is to tag all relevant functions in the test driver
with an “@energy” attribute that tells our build system which
functions should be used to measure energy consumption.

Fig. 3 shows example code that can be used to measure
the energy consumption of the optional code blocks in Fig. 2.
This module has to be wired to the component whose energy
consumption should be measured instead of the components
normally used to, for example, receive radio messages. Cre-
ating these simple functions and wiring the component cor-
rectly is the only additional effort needed from the developer.
As already mentioned, similar or even the same functions can
be used for unit testing.

A pre-compiler generates calls for all measurement func-
tions tagged with the “@energy” attribute. The parameters of
this attribute specify the name of the function that should be
profiled. For each measurement function the energy profiler
is executed several times, where – in order to avoid side-
effects – each simulation calls only a single measurement
function once. The profiler starts two separate simulation
runs for all energy levels and each of their optional code
blocks: one with a short duration t1 and one with a longer
duration t2.

These energy measurements allow the system to com-
pute two kinds of energy consumption for each of these code
blocks: energy that is consumed once (i.e., when the code is
executed) and energy that is consumed continuously (i.e., by
changing the state of a hardware device). For example, send-
ing a message requires only energy once whereas turning on
sensors leads to a change in continuous energy consumption.
In addition, the measurements allow to remove the overhead
introduced for setting up the test case.

Fig. 4 shows how this computation is done for the case
when the function under measurement defines just a single
optional code block. The function is called at the well-known
point of time t0. To get the energy consumption of level lk+1
four measurements are necessary: the energy consumptions
of the function under measurement in levels lk and lk+1 at



both t1 and t2 (see the arrows in the figure). Then the differ-
ence between the two levels is computed by subtracting their
values. From the resulting points the slope of the energy
difference, which corresponds to the change in continuous
energy consumption, and the one-time energy overhead at t0
can be computed.

This computation assumes that continuous energy con-
sumption is linear. We expect this to be true on average
for sufficiently long simulation durations. For example, if
a timer is activated to periodically execute some code or if
the sensor board is turned on, the average energy consumed
will increase linearly with time.

Such a computation is done for each optional code block
of all energy levels. If there are several such blocks in the
function under measurement, in each run an additional block
(from the beginning of a function to its end) is activated. Us-
ing the same principle as outlined above now for each code
block, the difference in the energy consumed can be com-
puted. Activating code blocks incrementally allows to mea-
sure their individual energy consumption while still ensuring
that they can rely on the code in preceding blocks to be ac-
tive, too. At runtime, of course, in the actual application all
blocks of an energy level are active at the same time.

After executing all simulations, the energy profiler an-
alyzes its log files and performs the computation outlined
above. It then stores the energy consumption of each code
block in a central file. This file is later read when compiling
the actual application to insert energy values into the code.

Our profiling approach has several advantages. First,
reusing unit testing code ensures that the code is executed
in a controlled setting where, for example, messages from
other nodes, unexpected sensor readings, or interactions with
other components do not alter the application flow. Sec-
ond, these measurements do not only include the energy
spent by the CPU to run the code under test but also the en-
ergy consumption of other hardware like the radio or flash
memory chips. Finally, unlike existing energy profilers [14],
which map energy consumption to code blocks, or systems
monitoring the energy state of hardware components at run-
time [5] our approach allows to include the energy consump-
tion of asynchronously executed code (e.g., TinyOS tasks,
timers, split-phase events) in the measurement. This is im-
portant to get the total energy consumption originating from
the code block: Since this code is executed from a certain
energy level, its energy consumption has to be attributed to
that level.
4.2 Special Cases

There are two special cases to consider: the energy con-
sumed by the lowest level l0 and energy consumption that
depends on some state of the hardware or software.

First, we do not measure the energy consumed by the de-
fault energy level l0 and rather compute this value at runtime
by subtracting the energy of all other levels from the overall
energy consumed. This decision helps to keep the runtime
overhead of Levels small since this level would be present
in every single function. Furthermore, because there are no
optional code blocks in level l0, profiling could be done only
at a coarse granularity and, therefore, would be probably in-
accurate.

Second, for some code the energy consumption can dif-
fer depending on the state of the hardware and the appli-
cation. For example, if – within an optional code block –
the application tries to turn on a hardware device that is al-
ready enabled, executing this code will not change energy
consumption. To address this issue the application devel-
oper can provide a condition in the “@energy” attribute that
will later be checked at runtime. Therefore, each measure-
ment function can refer to a different state of the component.
For example, the condition could check an already existing
state machine or read out the status of a hardware device.
The system stores separate information about energy con-
sumption for each condition. Depending on which condition
applies, Levels attributes the correct energy consumption to
the code block at runtime. However, the developer should
choose these conditions in a way that allows to evaluate them
efficiently. Otherwise, the overhead for checking the condi-
tion at runtime could outweigh the benefits.

If a level is not active at runtime, evaluating such condi-
tions can be difficult since the deactivated code might have
some effects on them. For example, if a function adds sen-
sor readings to a buffer before storing all of them together
to flash memory, only one of several calls will result in an
energy-expensive write access to the flash chip. To deal with
this problem our energy profiler calculates the probability
that a code block is called with one of the conditions defined
and computes the average continuous energy consumption of
each level. For this purpose we have to run the complete ap-
plication in a realistic scenario rather than execute unit test
code. This can be done while testing the whole application.
In these measurements we rely on the previously profiled
energy consumption of code blocks; we just count how of-
ten they are called for each of the conditions given by the
application developer. Since the information obtained from
simulating the complete application is less accurate than the
atomic energy measurements of code blocks, we use it only
when necessary, i.e., for code blocks of deactivated energy
levels.

5 Runtime System
In this section we describe Levels’ runtime system. The

runtime system has three tasks: estimating the remaining en-
ergy from voltage readings, attributing energy consumption
to energy level, and adjusting the active levels at runtime.

5.1 Battery Model
To estimate the remaining lifetime it is necessary to know

at runtime how much energy is left in the battery. For this
purpose we have built a simple battery model that maps volt-
age values to the remaining usable battery capacity.

Creating such a model has not been the main focus of our
research. In fact, if the sensor nodes were equipped with
battery monitoring chips that accumulate the current drawn
from the battery, better accuracy could be obtained than with
this model. However, since the small, low-power devices
that we target have only voltage sensors, battery voltage has
to be mapped to the remaining energy. To do this mapping
we created a battery model for the specific type of alkaline-
manganese dioxide batteries [6] that we use in our experi-
ments.
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Figure 5. Battery discharge characteristics from three
experiments

We opted for a simple but efficient model: for each dis-
tinct voltage reading we store the average remaining energy
of this value in program memory. The overhead of this ap-
proach is minimal since it does not require any computation
at runtime. Nevertheless, Levels is flexible enough to be
combined with more advanced (but possibly more complex)
battery models.

Because typical sensor network platforms like Mica2
nodes are not equipped with a voltage boost converter [20],
the current draw I depends linearly on the battery voltage U .
Thus the resistance R remains constant. From E = U · I · t
and R = U

I the effect on energy (and power) is quadratic:

E = U2

R · t. However, when creating our battery model we
assumed a constant voltage Uconst = 3V for the computa-
tions. Therefore, instead of mapping the actual energy E to
the voltage readings, our battery model and all energy values
in the rest of this paper refer to values for E · U2

const
U2 = U2

const
R · t.

This simplifies computations at runtime greatly because the
energy consumption of a code block can be assumed to be in-
dependent of the current supply voltage of the sensor node.
Nevertheless, using the same approach in the creation of the
model and at runtime leads to consistent results that allow
for accurate computations.

To create the battery model we built an application for
Mica2 nodes that periodically measures the voltage and
transmits this data via radio until the batteries are drained.
Using the energy model of the Avrora simulator [14] we later
computed the total energy consumed by this measurement
application throughout the node’s lifetime. The result of this
computation is not necessarily the total energy available in
the battery but rather the energy that is actually usable by the
sensor node. For our purposes this number is more relevant
because this is also the energy available at runtime. Ignor-
ing for simplicity effects like the influence of temperature on
the batteries, this data allows to relate voltage measurements
with the usable energy left.

We performed several experiments with this application
and created the model used at runtime by computing the av-
erage voltage reading for each energy value. Fig. 5 shows
the discharge behavior of three batteries. Although there are

some differences, the curves are almost equal when the bat-
teries are almost empty. Particularly there a good energy es-
timation is important to accurately meet a lifetime goal.

Since the relationship between voltage and the remaining
energy is not linear, the differences in energy values between
two consecutive voltage readings can vary significantly (see
Fig. 5). This directly affects the accuracy of the mapping.
For example, in our battery models the differences vary be-
tween 7 J and 412 J for a battery with about 32,000 J usable
capacity. Similar differences can exist between the models
of several batteries, especially close to their total capacity.
Therefore, we make this expected error available at runtime.
This makes it possible to defer computations until signifi-
cantly more energy than this error estimate has been con-
sumed. Hence the influence of the inaccuracies is reduced.

5.2 Attributing Energy Consumption to En-
ergy Levels

The runtime system is responsible for attributing energy
consumption to energy levels. First, it is called whenever an
optional code block is about to be executed. It then checks
if the energy level is active and adds the energy consumption
of this code block to the total energy consumed by the corre-
sponding level. Second, periodically (every few seconds) it
adds up the energy that has been consumed continuously in
the current interval. Finally, periodically (every few hours) it
uses this information and computes the optimal level assign-
ment for the time remaining.

If an optional code block of an energy level is about to
be executed, the system checks if the level is active. Only
if it is active, the code will be executed. Furthermore, the
runtime system uses the data obtained with energy profiling
(see Section 4) and adds the energy consumption of the cur-
rent block to the overall energy consumed by the level. If a
code block of level li is reached by executing code belonging
to level l j with j > i, the system correctly attributes the en-
ergy consumed by this code to level l j. In addition, it updates
continuous energy consumption if it is changed by the code.

The same information is also updated for blocks belong-
ing to the next higher energy level in the stack, which is actu-
ally not executed. This way the system can predict the energy
consumption after increasing the current level. However, we
do not monitor the energy consumption of even higher levels
because it is unclear which of their code will be additionally
reached if the levels in between are activated. For exam-
ple, if currently only level li is active, the system cannot tell
whether or not the application will reach more code blocks
of level li+2 from the code in level li+1. Therefore, energy
consumption of li+2 would not be accurately predicted.

Keeping only information up to the next higher level also
restricts the levels that can be selected when adjusting the
current level. Therefore, in each adjustment the system can
increase the current level by at most one. This problem does
not occur with lower levels because their energy consump-
tion can always be accurately predicted. Thus several levels
can be skipped when switching to a lower level.

As already mentioned, for each energy level Levels keeps
information about its continuously consumed energy, e.g.,
for a hardware component that has been enabled in an en-
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ergy level. The runtime system periodically adds the energy
continuously consumed in the last few seconds to the one-
time energy consumption of the code. This approach pro-
vides finer granularity and, therefore, better accuracy than
doing this only when computing the energy level assignment.
In addition, it minimizes overhead because it requires less
state and computational resources compared to calculating
this data whenever continuous energy consumption changes.

Fig. 6 summarizes how the runtime system computes the
energy consumed by an optional code block. When the code
block is executed, both one-time and continuous energy con-
sumption are updated. The system then periodically adds
continuous energy consumption to the energy consumed by
the level. After some time this energy consumption is reset
when computing a new level assignment.
5.3 Adjustment of Active Energy Levels

Levels uses the information about the energy consump-
tion of energy levels to periodically adjust the currently ac-
tive level. In each adjustment it tries to maximize the utility
of the energy levels for the time remaining while meeting
the lifetime goals. Formally this corresponds to the follow-
ing optimization problem. Given the current lifetime t, the
total required lifetime Treq, the remaining energy Erem, and
the energy levels l0, . . . , ln−1, which have the utility values
u0, . . . ,un−1 and consume P0, . . . ,Pn−1 energy units per time
interval, find the durations t0, . . . ,tn−1 that maximize the util-
ity of the energy levels for the remaining lifetime Treq − t:

maximize
n−1

∑
i=0

ui · ti

subject to
n−1

∑
i=0

ti = Treq − t

n−1

∑
i=0

Pi · ti ≤ Erem

t0, . . . ,tn−1 ≥ 0

The first equation formalizes the maximization of the util-
ity over time. The constraints then specify that the still

needed lifetime has to be met and that enough energy has
to be available. Using a linear equation for the energy con-
straint is only possible because our battery model returns the
energy for a (hypothetic) constant voltage instead of actual
energy values (see Section 5.1). Finally, the last equation
excludes solutions with negative time durations.

The optimization problem can be solved using well-
known algorithms from linear programming [4]. In our im-
plementation we use the Simplex algorithm, which is the
standard method to solve such problems. Since our imple-
mentation uses efficient fixed point arithmetic, the computa-
tional overhead of this algorithm is small. Furthermore, we
limited the overhead by defining a maximum number of it-
erations after which the algorithm aborts even if it has not
found the optimal solution yet. In practice, however, this
limit is reached only seldom. As we show in the evaluation,
the computational overhead can almost be neglected even on
resource-constrained sensor nodes (see Section 6.3).

The system tries to compute a new level assignment pe-
riodically with a low frequency (e.g., every two hours). Re-
peating this computation is necessary since energy load may
vary over time and because of possible inaccuracies in pre-
vious adjustments. However, due to the discharge charac-
teristics of batteries (see Section 5.1) the inaccuracies of the
measurement might exceed the actual energy consumed, es-
pecially for low-power applications. In this case it is not pos-
sible to compute meaningful results. Therefore, we use the
expected accuracy from the battery model at runtime: only if
the energy consumed by code in energy levels is sufficiently
greater, the algorithm tries to compute a solution. Otherwise,
it waits until the next measurement. Although this reduces
the agility of the system, it helps to obtain correct results. In
addition, to further reduce the fluctuations because of inac-
curate measurements, we use a moving average to smooth
the energy values used for computation.

Furthermore, to deal with inaccurately estimated remain-
ing energy and with possibly varying load within an energy
level, Levels adds a safety factor to the lifetime still required
in order to make sure that the node can meet its lifetime goal.
This design decision leads to the side effect that the aver-
age level achieved is slightly below the optimum because the
lifetime goal is usually exceeded. We opted for this conser-
vative policy to ensure that no node runs out of energy early.
Furthermore, as the safety factor depends on the remaining
lifetime required, this issue is addressed by periodically re-
computing the level assignment. The node will – in later
computation rounds – switch back to higher levels if suffi-
cient energy is still available.

To minimize state, our system does not change levels be-
tween these computations, even though the Simplex algo-
rithm returns a complete level assignment for the remain-
ing time; we just switch to the highest level of the result for
optimal application quality. However, depending on the en-
ergy consumption of the application and the current accuracy
of the battery model, several tries might be needed until the
level assignment can be recomputed. Therefore, a level is se-
lected only if the algorithm expects to be executed again be-
fore the computed time duration. Otherwise, Levels already
switches to the next lower level of the solution.



Table 1. Average lifetimes of sample applications for con-
stant energy levels (in days)

Application Level l0 Level l1 Level l2
FFT 961 375 not used
Flash 961 296 not used
SendLPL 34.6 22.5 16.7
SendLPLRandom 34.6 27.1 22.2
SendRadioOff 948 692 not used
Voltage 7.69 6.65 5.93

6 Evaluation
This section evaluates the benefits and overhead of Lev-

els. For this purpose we use both simple applications, which
correspond to components found in more complex ones, and
real-world applications.

Unless otherwise mentioned, we use the Avrora simula-
tor [23], which accurately emulates Mica2 sensor nodes. The
battery voltage that the simulator makes available to the sen-
sor nodes’ voltage sensors has been recorded from individ-
ual batteries with the voltage sensor of a real sensor node.
In contrast, Levels running on the sensor node uses a battery
model based on the average of several such voltage traces
(see Section 5.1). Therefore, this simulation setup corre-
sponds to the situation of real sensor nodes.
6.1 Quality of Level Assignments

In this subsection we evaluate the quality of level assign-
ments. To do this we use several metrics: First, we contrast
the actual to the required lifetime. Second, we compare the
average utility achieved in simulation with the optimal value
possible. Finally, we validate our simulation results with ex-
periments using physical sensor nodes.
6.1.1 Simulation of Small Applications

The small applications that we use for this evaluation
represent parts which can also be found in larger ones.
FFT periodically computes a Fast Fourier Transform, Flash
stores data into flash memory, and SendRadioOff turns the
radio chip only on for sending (short) messages but does
not listen for any messages itself. Unlike SendRadioOff,
SendLPL uses low-power listening [19] and thus sends mes-
sages with longer preambles. In addition, it includes an-
other energy level where a second periodic message is sent.
SendLPLRandom is similar to that. However, instead of
periodically running this code it waits for a random time
and then sends a random-length burst of messages. Finally,
Voltage periodically sends messages with its current voltage
reading and, on the highest energy level, toggles its LEDs
every thirty seconds. We used this application also for ex-
periments with real nodes. Because of the time constraints of
our experiments we intended to create a particularly energy-
intensive application here.

Except for SendLPLRandom all of these applications ex-
ecute some tasks periodically. This code has been encapsu-
lated in an energy level which can be deactivated if neces-
sary. In this case, however, the applications will no longer
perform their actual tasks. SendLPLRandom, in contrast,
represents an event-based application. To simulate events,
it waits for a random time (up to one hour) before running its
optional code.

In most applications the utility values have been set to 0
for Level l0, 1 for Level l1, and 2 for Level l2. For SendLPL
and SendLPLRandom, however, the utility of level l1 and l2
has been increased slightly to 2 and 3, respectively. Because
of the greater gap to l0 and the small difference to l2 these
two applications preferably switch to l1 if they cannot stay in
l2 all the time.

Table 1 shows the simulated lifetime of the applications
when a constant energy level has been set. We validated
some of the shorter lifetimes with real sensor nodes. The
results of these experiments differed by at most 2.2 % from
the simulated values. We attribute these differences mostly
to variations in the capacity of the batteries used and slight
deviations in the energy model of the simulator.

The table shows that our evaluation includes very low-
power applications with a maximum lifetime of several years
like FFT, Flash, and SendRadioOff as well as applications
like SendLPL, SendLPLRandom and Voltage which have a
high energy consumption. In addition, the lifetime of the
nodes varies significantly for different energy levels. De-
pending on the application, the lifetime can be extended by
between 30 % and 225 % if only the lowest level is active.

Levels will not be able to meet a lifetime goal if the life-
time requested cannot be possibly achieved when the appli-
cation does not already start in the lowest level. For example,
for one of our simulated batteries, SendLPL has a maximum
lifetime of 50,318 minutes in level l0. If a lifetime of 50,000
minutes is requested for this application and if the initial en-
ergy level is l2, Levels switches to level l0 as soon as possible.
Nevertheless, it can only achieve a total lifetime of 49,348
minutes and, therefore, fails to meet the requested lifetime
goal. However, cases like that are somewhat artificial since
using Levels does not make much sense if the lifetime goal
can hardly be met in the lowest level. Therefore, in this eval-
uation we focus on more realistic lifetime goals where better
application quality is actually possible.

We have set such goals for all sample applications and se-
lected the lifetimes such that the first run could be completed
in the maximum level with most simulated batteries. Fig. 7
compares the average lifetime when simulating different bat-
teries (including 95 % confidence intervals) with the lifetime
requested. In each of these simulations Levels was able to
meet the lifetime goal. In addition, the size of the confidence
intervals is in almost all cases smaller than 4 % of the to-
tal lifetime. This is less than the confidence intervals of the
simulated battery capacity, whose size is about 6.4 %, since
Levels adjusts to the actual battery discharge curve.

Furthermore, the nodes did not live much longer than re-
quested. Therefore, the applications were able to provide al-
most optimal quality subject to the constraints present. The
largest differences relative to the lifetime achieved can be
observed most often for the simulations with the smallest
lifetimes because they have been chosen in a way that the
applications can stay in their highest levels for the complete
lifetime. Therefore, the node cannot possibly consume all
the energy available. For example, in the first simulation run,
SendLPL lives about 20 % longer than requested although
Levels stays in Level l2 for almost the complete simulation.

Besides that, the relative differences between the required
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and the actual lifetime are the largest ones for SendRadioOff
(5.9 % on average). Due to the inaccuracies in the estimation
of the battery’s remaining energy, Levels defers the compu-
tation if only a very small amount of energy has been con-
sumed in optional energy levels. Therefore, Levels can only
execute a small number of level computations and cannot
switch long enough back to a higher level when the energy
reserved as a safety overhead becomes available near the end
of the required lifetime. Since this application consumes in
level l1 just 0.14 mW more than in level l0, it can take more
than 45 days until a new level assignment is computed, which
reduces the agility of level adjustments. This delay could
only be reduced significantly with more accurate hardware
to measure battery capacity.

SendRadioOff is an extreme example for the amount of
energy consumed where meaningful computations are al-
most impossible. As other long-lived applications show, a
small increase in power consumption is enough to obtain
considerably better results. For example, FFT, for which the
actual lifetime is much closer to the required one, consumes
in level l1 just 0.60 mW more than in level l0.

This problem of SendRadioOff is also shown in Fig. 8.
This figure compares for a single battery the average utility
value achieved within the requested lifetime to the optimal
average. This optimum has been computed offline by solving
the same linear programming problem as Levels. However, it
has been calculated only once using exact information about
the battery capacity and the energy consumption of the dif-
ferent levels.
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The figure shows that SendLPL achieves the optimal util-
ity value almost perfectly despite the inaccuracies present on
the sensor nodes. For SendRadioOff the difference is greater
(about 0.24 utility units) because of the small number of level
computations described above.

6.1.2 Experiments with Mica2 Nodes
We validated the simulation results of the Voltage appli-

cation in experiments with real hardware using Mica2 sensor
nodes. To prevent side-effects from slight variations in en-
ergy consumption we calibrated the energy model used for
profiling with a multimeter to the specific sensor nodes used
and created a separate battery model for each node.

Fig. 9 shows the actual lifetime achieved by the motes
when varying the required lifetime. We define as the life-
time the time a neighboring node was able to receive pe-
riodically transmitted packets, which were sent irrespective
of the current energy level. In most experiments the nodes
met their lifetime goal. However, in the last experiments we
ran – some of those with a lifetime of 10,000 minutes (6.94
days) – most nodes failed early although in previous exper-
iments they accurately achieved this lifetime. For this time
value these failures reduce the average lifetime and increase
the size of the confidence interval. We had purchased the bat-
teries used in these (failed) experiments several months after
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the ones used to build the battery model. A detailed analy-
sis of the recorded voltage readings showed that the nodes
expected to have significantly more energy left than actually
available. We attribute this to differences in the properties
of the batteries. In fact, after updating our battery model a
lifetime of 10,0000 minutes could be achieved again. This
shows that a good representation of the battery characteris-
tics is needed for Levels to accurately meet lifetime goals.

The lifetime achieved by the sensor nodes in all other ex-
periments was between 1.1 % and 6.5 % longer than the life-
time requested. Considering variations in battery capacity
and the relatively small number of possibilities to adjust the
level for this short-lived application these numbers are excel-
lent. Although the variations due to external influences are
larger here, the results correspond to our simulations. There-
fore, they validate that the models used in the simulator cap-
ture the relevant factors of real deployments.

In the perfect case, the sensor nodes start in their high-
est energy level and only switch to lower levels later if the
lifetime goal can no longer be met. Thus they minimize the
number of level changes and avoid frequent changes in ap-
plication quality. Due to inaccuracies on the sensor nodes,
this best case cannot be achieved at runtime.

This is shown in Fig. 10 that visualizes the energy lev-
els assigned in one of our experiments with a Mica2 sensor
node. As expected, the node starts with the highest level
(level l2) and after two days switches to the lowest level
(level l0). Then, however, near its target lifetime it switches
back to higher levels. This behavior is due to the safety fac-
tor in our computations: The node detects that its estimation
has been too conservative and tries to consume the energy
available to provide the best application quality possible.

Although this behavior differs from the ideal case, the
number of level changes is still very small; in this exper-
iment just three such changes occurred within several days.
Depending on the energy consumption of the application and
the requested lifetime more changes can be necessary. Nev-
ertheless, 70 % of all the simulations presented in the previ-
ous subsection required 10 or less actual level adjustments.
6.2 Real-World Applications

In this subsection we show how Levels can be applied to
real-world applications. For this purpose we selected mon-

itoring of volcanoes [26]. In this application there is usu-
ally no redundancy in the network topology and the required
duration of the experiment is known in advance. Replacing
batteries is extremely difficult due to the inaccessible deploy-
ment location. Moreover, large parts of each node’s energy
is used to power the sensor interface board. Therefore, if a
node stops sampling data itself but continues forwarding data
from other nodes, its lifetime can be extended significantly
and network connectivity can be preserved much longer.

As a concrete example of this class of applications we
chose the system used at Reventador [26] (“Volcano”). This
system is a complex application that has been tested in real-
world deployments. It stores sensor readings to flash mem-
ory and the base station can then request stored data. In ad-
dition, Volcano includes an in-network detection of volcanic
eruptions.

Again we use the Avrora simulator for the evaluation.
However, since this simulator did not include the custom sen-
sor interface board used by this application, we had to add its
energy consumption to the simulator’s energy model. From
the information available we assumed for the sensor board
a current draw of 40 mA. Furthermore, Volcano has been
originally created for Tmote Sky nodes while the prototype
implementation of Levels assumes the Mica family of sensor
nodes. Therefore, we ported the application to this hardware
family. However, in order to keep changes to the application
small we simulated for this evaluation a fictitious Mica2-like
node that is – like the Tmote Sky nodes – equipped with
more RAM.

The behavior of Volcano depends on the eruptions de-
tected by the sensor nodes. We simulated these eruptions
at random intervals such that on average one event occurred
every 30 minutes. However, like in the real deployment not
all of these eruptions were actually reported by the nodes if
they, for instance, stopped sampling to transfer some data.

In the deployment of the application [26] some batteries
with higher capacities than those in our battery model were
used. Therefore, our simulated lifetimes are significantly
shorter than those reported there; this reduction in lifetime is
not due to Levels and can also be observed when simulating
the original application with the parameters of our batteries.

In its original version Volcano does not include code to
achieve a user-defined lifetime goal. Therefore, we specified
some optional functionality using our energy level abstrac-
tion. Since sensing is the largest single energy consumer,
we put this code into a separate energy level. If it is deac-
tivated, the nodes turn off the energy-expensive sensor in-
terface boards and stop analyzing, storing, and transmitting
their data. However, they still fully participate in routing and
thus forward data from other nodes.

We defined energy levels in two nesC modules that were
then mapped to a single level in the application. Only mi-
nor changes to the existing code were necessary: about 20
lines of code had to be added or modified. Some larger effort
was, however, needed to write the profiling functions, since
no suitable unit test drivers were available. The size of this
module is less than 200 lines of code. In addition, we were
able to copy almost the complete nesC wiring from the actual
application and reuse it for energy profiling.
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Figure 11. Average lifetime for Volcano (including 95 %
confidence intervals)

Fig. 11 shows the average lifetime achieved by this appli-
cation. In total we simulated 150 sensor nodes and none of
them failed before its lifetime goal. However, since in this
complex application the behavior of the nodes depends on
network packets received and random events detected, accu-
rately predicting future energy consumption from past data
becomes more difficult than with the simple applications of
Section 6.1.1. Therefore, the variations can be greater for
this application. This is shown with the confidence intervals
in Fig. 11, whose sizes are between 3.6 % and 6.0 % of the
lifetimes requested. In addition, Levels is not able to com-
pletely consume the energy kept as a safety buffer and the
nodes live on average 12.4 % longer than required. How-
ever, considering the lesser predictability of this application
these results are still encouraging.

Just like for Volcano, Levels could also be applied to other
existing applications. To get a better understanding of the ef-
fort needed for this change we analyzed the structural health
monitoring application used at the Golden Gate Bridge [13].
For this application the sensor board is also one of the main
energy consumers. Therefore, by applying energy levels just
like in Volcano the lifetime of this application could be sig-
nificantly extended. Similar effort as for Volcano would be
needed for this modification, i.e., changing about 20 code
lines in the application and writing measurement functions
of less than 200 lines.

6.3 Runtime Overhead
Since with Levels each node determines its energy level

independent from other ones, it does not have to send any
radio messages. This helps to make Levels usable with low-
power applications. Therefore, the only increase in energy
consumption can be attributed to computational overhead.
There are three sources for this overhead. First, whenever
a code block belonging to an energy level is about to be exe-
cuted, the system has to check if the level is active and has to
add the block’s energy consumption to its internal variables.
Second, it accumulates continuous energy consumption to
overall energy consumption every few seconds. Finally, ev-
ery few hours Levels tries to adjust the current energy level
with the Simplex algorithm.

Table 2. Runtime overhead
Optional code block 91 µs
Check-only for optional code block 11 µs
Adding continuous energy (2 levels) 30 µs
Adding continuous energy (5 levels) 107 µs
Adding continuous energy (10 levels) 235 µs
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To evaluate the first kind of overhead, i.e., the overhead
associated with each optional code block, we instrumented a
simple application that makes use of the energy level abstrac-
tion. By simulating this application we were able to measure
the CPU overhead in a controlled setting.

Table 2 shows the result of this experiment. The overhead
associated with every code block is comparatively small: it
is just 91 µs. However, sometimes the energy consumed
by this overhead might still outweigh the energy consumed
within the code block. In these cases the runtime system just
checks if the code should be executed without adding its en-
ergy value. This takes only 11 µs. Therefore, even in this
case when Levels is of less use, its runtime overhead still
does not dominate the energy consumption of the code that
it controls.

In another experiment we measured the overhead when
accumulating continuous energy consumption. Here the
results depend on the number of energy levels defined in
the application. Although individual software components
might all define their own energy levels, we expect that ap-
plication developers will combine them when creating the
overall application. Therefore, most applications will prob-
ably have less than five energy levels. As the numbers in
Table 2 show, even for applications with twice this number
the overhead is just a few hundred microseconds.

Finally, computing a new level assignment incurs the
largest overhead. However, since this computation is only
executed every few hours, the overhead is less critical.
Fig. 12 shows the CPU overhead for two cases. In the first
one, the energy consumed is too small compared to the cur-
rent accuracy given by the battery model. Therefore, the ac-
tual computation is not performed. The other one, in con-
trast, shows the overhead when the computation is done for
the maximum number of iterations. With more energy lev-
els the overhead increases because for each level additional



Table 3. Effect of runtime overhead on node lifetime
Application Lifetime with Levels Reduction
Voltage level l0 7.687 days 0.0 %
Voltage level l1 6.648 days 0.0 %
Voltage level l2 5.932 days 0.0 %
FFT level l0 944.4 days 1.8 %
FFT level l1 372.7 days 0.7 %

variables have to be considered both when no result can be
computed and for solving the linear programming problem.
Although an overhead of some milliseconds might seem sig-
nificant, this computation is only executed every few hours
or even days (depending on the energy consumption). There-
fore, it should be acceptable for most applications.

To find out the actual effects of the computational over-
head on node lifetime we simulated some of the test applica-
tions described in Section 6.1 with and without our runtime
system doing its computations. As the results in Table 3
show, for short-lived applications with a lifetime of only a
few days, the energy overhead of the computation does not
result in a detectable decrease in node lifetime. Even for
extremely low-power applications with a lifetime of several
months or even years, the CPU overhead of our runtime sys-
tem leads to reduction in lifetime of less than 2 %.

7 Discussion
This section discusses special application requirements

on the network-wide behavior and on keeping energy levels
constant for some time.

The level assignment described so far assigns energy lev-
els independently on each node. Therefore, if the load on the
nodes is roughly equal, all nodes in the network will change
energy levels almost synchronously. Over time the overall
quality of the network will be either excellent or poor, but
nothing in between. Depending on the application this be-
havior might not be anticipated by the user.

One way to address this problem is to define the lowest
energy level such that it is still useful to the application (e.g.,
nodes still sample data with lower-power sensors). Alterna-
tively, the user can define the target lifetime in a way that it
is actually achievable by sufficient nodes with their full func-
tionality (e.g., at least by the leaves of the routing tree).

If such a definition of energy levels or lifetime require-
ments is not possible, distributing energy level assignments
better over time often requires application-specific knowl-
edge. For example, in some applications neighboring nodes
should be fully active at the same time because they cooper-
ate whereas in other applications nodes in high energy levels
should be distributed uniformly throughout the network. In
addition, for particularly energy-restricted applications even
the slightest overhead for coordination might be prohibitive.
Therefore, this problem can be addressed best by the appli-
cation. Nevertheless, Levels provides two supporting mech-
anisms: The application can give hints which level to select
and Levels can introduce some randomness.

With the first mechanism the application performs its own
coordination among nodes. It does not, however, directly
assign an energy level because otherwise the lifetime goal
could possibly not be met. Instead, it tells Levels which en-

ergy level from the result of the optimization problem to se-
lect first: the lowest or the highest one. Over its lifetime each
node will still use all energy levels from the results. There-
fore, this approach cannot guarantee that really all nodes se-
lected by the application operate in one specific level. How-
ever, it ensures that the lifetime goal can actually be met.

The second mechanism is similar but – instead of using
information from the application – with this approach each
node selects randomly whether to use the lowest or the high-
est level from the level assignment first. Although this mech-
anism might not provide optimal results, it is well-suited for
low-power applications since it does not require any coordi-
nation among nodes.

Besides distributing level assignments in the network
some applications might require that the system cannot
change the currently active level while the node is, for exam-
ple, sensing or analyzing data. Levels provides an interface
for such applications that temporarily prevents level changes.
To avoid that nodes stay too long in the wrong level, how-
ever, such periods should be relatively short. If a new level
assignment is necessary during this time, it is applied imme-
diately after the application allows level changes again.

8 Conclusions and Future Work
In this paper we have described and evaluated Levels

which – unlike most approaches that try to maximize net-
work lifetime – helps to meet user-defined lifetime goals
for each individual node of a sensor network. It requires
only small modifications to existing code and its energy
levels provide a flexible and easy-to-use programming ab-
straction. With only minimal extensions to nesC Levels al-
lows to mark code that is not needed to provide some ba-
sic functionality like network connectivity or sampling with
less energy-intensive sensors. In addition, measuring the en-
ergy consumption of parts of an application is easy with our
simulation-based approach for energy profiling. Finally, our
runtime system shields the application developer completely
from low-level issues related to lifetime estimation.

If an accurate battery model and information about the
energy consumption of the sensor nodes are available, Lev-
els helps to ensure that each node meets its lifetime goal and
provides an application quality that is close to the optimum.
Levels assumes that future energy consumption can be pre-
dicted from information about the past. Although we expect
this assumption to be true for the long periods between level
adjustments, Levels might not be able, however, to meet the
lifetime goal in all cases if the node’s load differs signifi-
cantly over time.

We have shown in the evaluation that it is possible to ben-
efit from Levels in complex applications without changing
the code significantly. Moreover, the energy-overhead of the
runtime system is so small that it can be almost neglected for
both short-lived and long-lived applications.

In conclusion, we expect that Levels will help to make the
creation of energy-aware sensor network applications much
easier. For applications that cannot benefit from redundant
nodes like those in our motivating scenarios it will allow
to preserve some minimal functionality for the lifetime de-
fined by the user. Although this might somewhat decrease



the quality of the data obtained from the network, we argue
that – especially in a sparse network topology – a node is
more useful when providing reduced functionality than if it
stops working completely.

Regarding future work, we want to provide some
application-independent coordination mechanisms for dense
networks. In this case some local coordination among re-
dundant nodes could ensure without much overhead that the
average energy level of all nodes remains constant over time.
In addition, we would like to extend our model to include a
prediction of battery recharging when using energy harvest-
ing. Furthermore, currently Levels tries to compute level as-
signments at a fixed rate. Adjusting the time interval between
those computations to the energy consumption could possi-
bly further improve application quality. Finally, we want to
integrate information obtained from energy profiling into a
sensor network IDE in order to make the developer aware of
energy-expensive code.
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work issues in the Sustainable Bridges project. In European
Projects Session of EWSN 2005, 2005.

[19] J. Polastre, J. Hill, and D. Culler. Versatile low power media
access for wireless sensor networks. In Proc. of the Int’l Conf.
on Embedded Networked Sensor Systems, pp. 95–107, 2004.

[20] J. Polastre, R. Szewczyk, and D. Culler. Telos: Enabling ultra-
low power wireless research. In Proc. of the Int’l Conf. on
Information Processing in Sensor Networks – SPOTS, 2005.

[21] R. Rao, S. Vrudhula, and D. N. Rakhmatov. Battery modeling
for energy-aware system design. Computer, 36(12):77–87,
2003.

[22] V. Shnayder, M. Hempstead, B.-r. Chen, G. Werner-Allen, and
M. Welsh. Simulating the power consumption of large-scale
sensor network applications. In Proc. of the 2nd Int’l Conf. on
Embedded Networked Sensor Systems, pp. 188–200, 2004.

[23] B. Titzer, D. Lee, and J. Palsberg. Avrora: Scalable sensor
network simulation with precise timing. In Proc. of the Fourth
Int’l Conf. on Information Processing in Sensor Networks, pp.
477–482, 2005.

[24] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu,
S. Burgess, T. Dawson, P. Buonadonna, D. Gay, and W. Hong.
A macroscope in the redwoods. In Proc. of the Int’l Conf. on
Embedded Networked Sensor Systems, pp. 51–63, 2005.

[25] T. van Dam and K. Langendoen. An adaptive energy-efficient
MAC protocol for wireless sensor networks. In Proc. of the
Int’l Conf. on Embedded Networked Sensor Systems, 2003.

[26] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and
M. Welsh. Fidelity and yield in a volcano monitoring sensor
network. In Proc. of the Symp. on Operating Systems Design
and Implementation, 2006.

[27] H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat. ECOSys-
tem: Managing energy as a first class operating system re-
source. In Proc. of the Int’l Conf. on Architectural Support for
Programming Lang. and Operating Syst., pp. 123–132, 2002.




