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Abstract

We present a platform independent runtime interface for moving
data and computation through parallel machines with multi-level
memory hierarchies. We show that this interface can be used as a
compiler target and can be implemented easily and efficiently on
a variety of platforms. The interface design allows us to compose
multiple runtimes, achieving portability across machines with mul-
tiple memory levels. We demonstrate portability of programs across
machines with two memory levels with runtime implementations
for multi-core/SMP machines, the STI Cell Broadband Engine, a
distributed memory cluster, and disk systems. We also demonstrate
portability across machines with multiple memory levels by com-
posing runtimes and running on a cluster of SMP nodes, out-of-
core algorithms on a Sony Playstation 3 pulling data from disk,
and a cluster of Sony Playstation 3’s. With this uniform interface,
we achieve good performance for our applications and maximize
bandwidth and computational resources on these system configura-
tions.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Run-time environments

General Terms Design, Languages, Performance, Experimenta-
tion

Keywords Memory Hierarchies, Parallelism, Runtime, Sequoia

1. Introduction

Most parallel programs today are written using a two-level mem-
ory model, in which the machine architecture, regardless of how it
is physically constructed, is abstracted as a set of sequential pro-
cessors executing in parallel. Consistent with many parallel pro-
gramming languages, we refer to the two memory levels as local
(local to a particular processor) and global (the aggregate of all lo-
cal memories). Communication between the global and local levels
is handled either by explicit message passing (as with MPI) or by
language-level distinctions between local and global references (as
in UPC [6] and Titanium [27]).! Using a two-level abstraction to

!'The literature on runtime systems, such as MPI, uses slightly different
terminology, referring to the two levels as local and remote.
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program a multi-level system, a configuration with more than one
level of communication, obscures details of the machine that may
be critical to performance. On the other hand, adding support out-
side of the programming model for moving computation and data
between additional levels leads to a multiplicity of mechanisms for
essentially the same functionality (e.g., the ad hoc or missing sup-
port for out-of-core programming in most two-level systems). It is
our thesis that programming abstractions, compilers, and runtimes
directly supporting multi-level machines are needed.

Our work is based on the belief that three trends in machine ar-
chitecture will continue for the foreseeable future. First, future ma-
chines will continue to increase the depth of the memory hierarchy,
making direct programming model support for more than two-level
systems important. Second, partly as a result of the increasing num-
ber of memory levels, the variety of communication protocols for
moving data between memory levels will also continue to increase,
making a uniform communication API desirable both to manage
the complexity and improve the portability of applications. Lastly,
architectures requiring explicit application control over the mem-
ory system, often through explicit memory transfers, will become
more common. A current extreme example of the kind of machine
is LANL’s Roadrunner, which combines disk, cluster, SMP, and the
explicit memory control required by the Cell processor.

In this paper, we present an API and a runtime system that vir-
tualizes memory levels, giving a program the same interface to data
and computation whether the memory level is a distributed mem-
ory, a shared memory multiprocessor (SMP), a single processor
with local memory, or a disk system, among other possibilities.
Furthermore, our API is composable, meaning that a runtime for
a new multi-level machine can be easily constructed by composing
the runtimes for each of its individual levels.

The primary benefit of our approach is a substantial improve-
ment in portability and ease of maintenance of a high performance
application for multiple platforms. Consider, for example, a hypo-
thetical application first implemented on a distributed memory clus-
ter. Typically such a program relies on MPI for data transfer and
control of execution. Tuning the same application for an SMP either
requires redesign or reliance on a good shared memory MPI imple-
mentation; unfortunately, in most cases the data transfers required
on the cluster for correctness are not required on a shared memory
system and may limit achievable performance. Moving the applica-
tion to a cluster of SMPs could use an MPI process per processor,
which relies on an MPI implementation with recognition of which
processes are running on the same node and which are on other
nodes to orchestrate efficient communication. Another option is to
use MPI between nodes and Pthreads or OpenMP compiled code
within a node, thus mixing programming models and mechanisms
for communication and execution. Another separate challenge is
supporting out-of-core applications needing access to data from



disk, which adds yet another interface and set of mechanisms that
need to be managed by the programmer. As a further complication,
processors that require explicit memory management, such as the
STI Cell Broadband Engine, present yet another interface that is not
easily abstracted with traditional programming techniques. Deal-
ing with mixed mode parallel programming and the multiplicity of
mechanisms and abstractions makes programming multi-level ma-
chines a daunting task. Moreover, as bandwidth varies through the
machine, orchestrating data movement and overlapping communi-
cation and computation become difficult.

The parallel memory hierarchy (PMH) programming model
provides an abstraction of multiple memory levels [2]. The PMH
model abstracts parallel machines as trees of memories with slower
memories toward the top near the root, faster memories toward
the bottom, and with CPUs at the leaves. The Sequoia project has
created a full language, compiler, and a set of applications based
on the PMH model [11, 21]. The basic programming construct in
Sequoia is a task, which is a function call that executes entirely
in one level of the memory hierarchy, except for any subtasks that
task invokes. Subtasks may execute in lower memory levels of the
system and recursively invoke additional subtasks at even lower
levels. All task arguments, including arrays, are passed by value-
result (i.e., copy-in, copy-out semantics). Thus a call from a task to
a subtask represents bulk communication, and all communication
in Sequoia is expressed via task calls to lower levels of the machine.
The programmer decomposes a problem into a tree of tasks, which
are subsequently mapped onto a particular machine by a compiler
using a separate mapping dictating which tasks are to be run at
which machine levels.

Although the previous Sequoia work demonstrates applications
running on IBM Cell blades and a cluster of PCs, it does not show
portability to multi-level memory hierarchies. More importantly, in
our view, they also rely on a custom compiler back-end for Cell and
a separate, custom runtime for a cluster of PCs which manages all
execution and data movement in the machine. The difficulty with
this approach is that every new architecture requires a monolithic,
custom backend. The Sequoia compiler, along with the bulk opti-
mizations and custom backend used for Cell, is described by Knight
et al. [21]. For this paper, we build on the previous PMH and Se-
quoia work, but we take the approach of defining an abstract run-
time interface as the target for the Sequoia compiler, and provide
separate runtime implementations for each distinct kind of memory
in a system. As discussed above, our approach is to define a single
interface that all memory levels support; since these interfaces are
composable, adding support for a new architecture only requires
assembling an individual runtime for each adjacent memory level
pair of the architecture, rather than reimplementing the entire com-
piler backend.

We begin by presenting our runtime interface (Section 2) and
discussing implementations for multi-core/SMP machines, clus-
ters, the STI Cell Broadband Engine, and disk systems (Sec-
tions 3.1-3.4). We also show how these runtimes can be composed,
allowing us to mix and match runtimes and enabling rapid construc-
tion of composite runtimes for machines with multi-level memory
hierarchies (Section 4). We present results for applications run-
ning on a cluster of SMP nodes, a Sony Playstation 3 running
out-of-core applications from disk with 6 SPEs, and a cluster of
Playstation 3’s; we also show several Sequoia applications on our
runtimes and analyze the overheads and efficiency of the imple-
mentations and the abstraction (Section 5). For all eight machine
configurations that we test (five two-level and three multi-level) we
make no source changes at all to our application suite; we simply
define an appropriate mapping of each application to the machine
and recompile. We believe our work is the first to actually demon-

strate portability of the same program to such a wide diversity of
machine architectures with good performance.
In summary, the contributions of this paper are:

e aruntime interface for a compiler which allows the compiler to
optimize and generate code for a variety of machines without
knowledge of the specific bulk communication and execution
mechanisms required;

implementations of our interface on a wide variety of machines
demonstrating application portability while maximizing the us-
age of bandwidth and computational resources; and

the composition of runtimes to easily allow applications to
run on machines with complex, multi-level memory hierarchies
with a variety of different communication mechanisms without
compiler or source code modifications.

2. The Runtime Interface

A runtime in our system provides three main services for code
(tasks) running within a memory level: (1) initialization/setup of
the machine, including communication resources and resources at
all levels where tasks can be executed; (2) data transfers between
memory levels using asynchronous bulk transfers between arrays;
and (3) task execution at specified (child) levels of the machine.
Each runtime straddles the transition between two memory levels,
which we refer to as fop and bottom. There is only one memory at
the top level, but the bottom level may have multiple memories; i.e.,
the memory hierarchy is a tree, where the bottom level memories
are children of the top level. An illustration is provided in Figure 1.

The top and bottom interfaces of a runtime have different ca-
pabilities and present a different API to clients running at their re-
spective memory levels. A listing of the C++ public interface of the
top and bottom parts of a runtime is given in Figure 2. We briefly
explain each method in turn.

We begin with Figure 2(a), the API for the top side of the run-
time. The top is responsible for both the creation and destruction of
runtimes. The constructor requires two arguments: a table of tasks
representing the functions that the top level can invoke in the the
bottom level of the runtime, and a count of the number of children
of the top. At initialization, all runtime resources, including exe-
cution resources, are created, and these resources are destroyed at
runtime shutdown.

Our API emphasizes bulk transfer of data between memory
levels, and for this reason the runtimes directly support arrays.
Arrays are allocated and freed via the runtimes (AllocArray and
FreeArray) and are registered with the system using the array’s
reference (AddArray) and unregistered using the array’s descriptor
(RemoveArray). An array descriptor is a unique identifier supplied
by the user when creating the array. Only arrays allocated using the
top of the runtime can be registered with the runtime; registered
arrays are visible to the bottom of the runtime via the arrays’
descriptors (GetArray) and can only be read or written using
explicit block transfers.

As mentioned above, tasks are registered with the runtime
via a task table when the runtime is created. A request to run
a task on multiple children can be performed in a single call to
CallChildTask. When task f is called, the runtime calling f is
passed as an argument to f, thereby allowing f to access the run-
time’s resources, including registered arrays, transfer functions,
and synchronization with other children. Finally, there is a syn-
chronization function WaitTask enabling the top of the runtime
to wait on the completion of a task executing in the bottom of the
runtime.

The API for the bottom of the runtime is shown in Figure 2(b).
Data is transferred between levels by creating a list of transfers
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Figure 1. A runtime straddles two memory levels.

// create and free runtimes
Runtime (TaskTable table, int numChildren);
virtual “Runtime();

// allocate and deallocate arrays

virtual Array_tx* AllocArray(Size_t elmtSize, int dimensions, Size_t* dim_sizes,
ArrayDesc_t descriptor, int alignment) = 0;
virtual void FreeArray(Array_t* array) = O;

// register arrays and find/remove arrays using array descriptors

virtual void AddArray (Array_t array);
virtual Array_t GetArray (ArrayDesc_t descriptor);
virtual void RemoveArray (ArrayDesc_t descriptor);

// launch and synchronize on tasks
virtual TaskHandle_t CallChildTask(TaskID_t taskid,

ChildID_t start, ChildID_t emnd) = O;
virtual void WaitTask(TaskHandle_t handle) = 0;

(a) Top interface.

// look up array using array descriptor
virtual Array_t GetArray(ArrayDesc_t descriptor);

// create, free, invoke, and synchronize on transfer lists

virtual XferListx* CreateXferList (Array_t* dst, Array_t* src,
Size_t*x dst_idx, Size_t* src_idx,
Size_t* lengths, int count) = 0;

virtual void FreeXferList (XferList* list) = O;
virtual XferHandle_t Xfer(XferList* list) = 0;
virtual void WaitXfer (XferHandle_t handle) = 0;

// get number of children in bottom level, get local processor id, and barrier

int GetSiblingCount () ;
int GetID();
virtual void Barrier(ChildID_t start, ChildID_t stop) = O;

(b) Bottom interface.

Figure 2. The runtime APIL.



between an array allocated using the top of the runtime and an array
at the bottom of the runtime (CreateXferList), and requesting
that the given transfer list be executed (Xfer). Transfers are non-
blocking, asynchronous operations, and the client must issue a wait
on the transfer to guarantee the transfer has completed (WaitXfer).
Data transfers are initiated by the children using the bottom of the
runtime.

Synchronization is done via a barrier mechanism that can be
performed on a subset of the children (Barrier). Children can
learn their own process id’s (GetID) and the range of id’s of other
children (GetSiblingCount).

These simple primitives map efficiently to our target machines,
providing a mechanism independent abstraction of memory levels.
In a multi-level system the multiple runtimes have no direct knowl-
edge of each other. Traversal of the memory levels, and hence run-
times, is done via task calls. The interface represents, in many re-
spects, the lowest common denominator of many current systems;
we explore this further in the presentation of runtime implementa-
tions in Section 3.

2.1 System Front-end

The front-end of our system is an adaptation of the Sequoia com-
piler [21]. Input programs are coded in the Sequoia programming
language [11], a C variant with extensions for explicit hierarchi-
cal bulk operations. The compiler (1) transforms a standard AST
representation of input programs into a machine-independent in-
termediate representation (IR) consisting of a dependence graph of
bulk operations, (2) performs various generic optimizations on this
IR, and (3) generates code targeting the runtime interface described
in this paper. The runtime interface provides a portable layer of ab-
straction that enables the compiler’s generated code to run on a
variety of platforms.

The compiler’s generic IR optimizations span three main cate-
gories:

e locality optimizations, in which data transfer operations are
eliminated from the program at the cost of increasing the life-
times of their associated data objects;

e operation grouping, in which “small”, independent operations
are fused into larger operations, thereby reducing the relative
overheads of the operations; and

e operation scheduling, in which an ordering of operations is cho-
sen to attempt to simultaneously maximize operation concur-
rency and minimize the amount of space needed in each mem-
ory in the machine.

With the exception of the scheduling algorithms, which operate
on the entire program at once, all compiler optimizations are local:
they apply to a single operation at a time and affect data in either
a single memory level or in a pair of adjacent memory levels. The
compiler’s optimizations require two pieces of information about
each memory in the target machine’s abstract machine model: its
size and a list of its properties, specifically whether the memory has
the same namespace as any other memories in the machine model
(as happens in the SMP target) and whether its logical namespace
is distributed across multiple distinct physical memory modules
(as in the cluster target). These specific machine capabilities affect
the choice of memory movement optimizations the compiler ap-
plies. For example, copy elimination is required on machines with
a shared namespace to prevent unneeded transfer overhead. A per-
machine configuration file provides this information. Aside from
these configuration details, the compiler’s optimizations are obliv-
ious to the underlying mechanisms of the target machine, allowing
them to be applied uniformly across a range of different machines

and also across a range of distinct memory levels within a single
machine.

Although the input programs describe a single logical compu-
tation spanning an entire machine, the compiler generates separate
code for each memory level and instantiates a separate runtime in-
stance for each pair of adjacent levels. Each runtime is oblivious to
the details of any runtimes either above or below it.

3. Runtime Implementations

We implemented our runtime interface for the following platforms:
SMP, disk, Cell Broadband Engine, and clusters. This section de-
scribes key aspects of mapping the interface onto these machines.

3.1 SMP

The SMP runtime implements execution on shared memory ma-
chines. A distinguishing feature of shared memory machines is that
explicit communication is not required for correctness, and thus
this runtime serves mainly to provide the API’s abstraction of par-
allel execution resources and not the mechanisms to transfer data
between memory levels.

On initialization of the SMP runtime a top runtime instance and
the specified number of bottom runtimes are created. Each bottom
runtime is initialized by creating a POSIX thread, which waits on
a task queue for task execution requests. On runtime shutdown, a
shutdown request is sent to each child thread; each child cleans up
its resources and exits. The top runtime performs a join on each
of the children’s shutdowns, after which the top runtime also cleans
up its resources and exits.

CallChildTask is implemented by placing a task execution
request on the specified child’s queue along with a completion
notification object. When the child completes the task, it notifies
the completion object to inform the parent. When a WaitTask is
issued on the parent runtime, the parent waits for a task completion
signal before returning control to the caller.

Memory is allocated at the top using standard malloc routines
with alignment specified by the compiler. Arrays are registered
with the top of the runtime with AddArray and can be looked up
via an array descriptor from the bottom runtime instances. Calling
GetArray from the bottom returns an array object with a pointer
to the actual allocated memory from the top of the runtime. Since
arrays can be globally accessible, the compiler can opt to directly
use this array’s data pointers, or issue data transfers by creating
XferLists with CreateXferList and using Xfer’s, which are
implemented as memcpy’s.

3.2 Disk

The disk runtime is interesting because the disk’s address space is
logically above the main processor’s; that is, the disk is the top of
the runtime and the processor is the bottom of the runtime, which
can pull data from and push data to the parent’s (disk’s) address
space. Our runtime API allows a program to read/write portions of
arrays from its address space to files on disk. Arrays are allocated
at the top using mkstemp to create a file handle in temporary
space. This file handle is mapped to the array descriptor for future
reference. Memory is actually allocated by issuing a 1seek to the
end of the file, using the requested size as the seek value, and a
sentinel is written to the file to verify that the memory could be
allocated on disk.

Data transfers to and from the disk are performed with the Linux
Asynchronous I/O API. The creation of a transfer list (XferList
in Figure 2) constructs a list of aio_cb structures suitable for
a transfer call using lio_listio. Memory is transfered using
lio_listio with the appropriate aio_read or aio_write calls.
On a WaitXfer, the runtime checks the return status of each re-



quest and issues an aio_suspend to yield the processor until the
request completes.

CallChildTask causes the top to execute the function pointer
and transfer control to the task. The disk itself has no computational
resources, and so the disk level must always be the root of the
memory hierarchy—it can never be a child where leaf tasks can
be executed.

3.3 Cell

The Cell Broadband Engine comprises of a PowerPC (PPE) core
and eight SPEs. At initialization, the top of the runtime is created
on the PPE and an instance of the bottom of the runtime is started
on each of the SPEs. We use the IBM Cell SDK 2.1 and 1ibspe2
for command and control of SPE resources [18].

Each SPE waits for commands to execute tasks via mailbox
messages. For the PPE to launch a task in a given SPE, it sig-
nals that SPE’s mailbox and the SPE loads the corresponding code
overlay of the task and begins execution—SPE’s have no instruc-
tion cache and so code generated for the SPE must include explicit
code overlays to be managed by the runtime. Note that being able
to move code through the system and support code overlays is one
of the reasons a task table is passed to the runtime at initialization.

The majority of the runtime interfaces for data transfer have
a direct correspondence to functions in the Cell SDK. Creating a
XferList maps to the construction of a DMA list for the mfc_getl
and mf c_putl SDK functions which are executed on a call to Xfer.
XferWait waits on the tag used to issue the DMA. Allocation
in a SPE is mapped to offsets in a static array created by the
compiler, guaranteeing the DMA requirement of 16 byte memory
alignment. Synchronization between SPEs is performed through
mailbox signaling routines.

The PPE allocates memory via posix_memalign to align arrays
to the required DMA transfer alignment. To run a task in each
SPE, the PPE sends a message with a task ID corresponding to
the address of the task to load as an overlay. Overlays are created
for each leaf task by the build process provided by the compiler and
are registered with the runtime on runtime initialization.

3.4 Cluster Runtime

The cluster runtime presents the standard two-level memory inter-
face described in Section 1. The aggregate of all node memories is
the top (global) level, which is implemented as a distributed shared
memory system, and the individual node memories are the bottom
(local) level, with each cluster node as one child of the top level.
Similar to the disk, the cluster’s aggregate memory space is log-
ically above any processor’s local memory, and the runtime API
allows the local level to read/write portions of the potentially dis-
tributed arrays. We implement the cluster runtime with a combina-
tion of Pthreads and MPI-2 [24].

On initialization of the runtime, node 0 is designated to execute
the top level runtime functions. Other nodes initialize as bottom
runtimes and wait for instructions from node 0. Two threads are
launched on every node: an execution thread to handle the run-
time calls and the execution of specified tasks, and a communica-
tion thread to handle data transfers, synchronization, and task call
requests across the cluster.

Bottom runtime requests are serviced by the execution thread,
which identifies and dispatches data transfer requests to the com-
munication thread, which performs all MPI calls. Centralizing all
asynchronous transfers in the communication thread simplifies im-
plementation of the execution thread and works around issues with
multi-threading support in several MPI implementations.

We provide a distributed shared memory (DSM) implementa-
tion to manage memory across the cluster. However, unlike con-
ventional DSM implementations, we need not support fully general

memory or coherence. All access to memory from the bottom of the
runtime must be explicit and in bulk, and the parallel memory hier-
archy programming model forbids aliasing. The strict access rules
on arrays give us great flexibility in strategies for allocating arrays
across the cluster. We use an interval tree per allocated array, which
allows specifying a distribution on a per array basis. Because of
the copy-in, copy-out semantics of access to arrays passed to tasks
in the Sequoia programming model, we can support complex data
replication where distributions partially overlap. Unlike traditional
DSM implementations where data consistency and coherence must
be maintained by the DSM layer, the programming model asserts
this property directly. For the purposes of this paper, we use sim-
ple block-cyclic data distributions as complex distributions are not
currently generated by the compiler.

We use MPI-2 single-sided communication to issue gets and
puts on remote memory systems. If the memory region requested
is local to the requesting node and the requested memory region
is contiguous, we can directly use the memory from the DSM
layer by simply updating the destination pointer, therefor reducing
memory traffic. However, the response of a data transfer in this
case is not instantaneous since there is communication between the
execution and communication threads as well as logic to check for
this condition. If the data is not contiguous in memory on the local
node, we must use memcpys to construct a contiguous block of the
requested data.

When the top of the runtime (node 0) launches a task execution
on a remote node, node 0’s execution thread places a task call re-
quest on its command queue. The communication thread monitors
the command queue and sends the request to the specified node.
The target node’s communication thread receives the request and
adds the request to the task queue, where it is subsequently picked
up and run by the remote node’s execution thread. Similarly, to per-
form synchronization an execution thread places a barrier request
in the command queue and waits for a completion signal from the
communication thread.

4. Multi-Level Machines With Composed
Runtimes

Because the runtimes share a generic interface and have no direct
knowledge of each other, the compiler can generate code that ini-
tializes a runtime per pair of adjacent memory levels in the ma-
chine. Which runtimes to select is machine dependent and is given
by the programmer in a separate specification of the machine archi-
tecture; the actual “plugging together” of the runtimes is handled by
the compiler as part of code generation.

Two key issues are how isolated runtimes can be initialized at
multiple levels and how communication can be overlapped with
computation. In our system, both of these are handled by appropri-
ate runtime API calls generated by the compiler. Initializing multi-
ple runtimes is done by initializing the topmost runtime, then call-
ing a task on all children that initializes the next runtime level, and
so on, until all runtimes are initialized. Shutdown is handled simi-
larly, with each runtime calling a task to shutdown any child run-
times, waiting, and then shutting down itself. To overlap communi-
cation and computation, the compiler generates code that initiates
a data transfer at a parent level and requests task execution on child
levels. Thus a level in the memory hierarchy can be fetching data
while lower levels are performing computation.

For this paper, we have chosen several system configurations
to demonstrate composition of runtimes. Currently available Cell
machines have a limited amount of memory, 512MB per Cell on
the IBM blades and 256MB of memory on the Sony Playstation 3,
which uses a Cell processor with 6 SPEs available when running
Linux. Given the high performance of the processor it is common
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SAXPY BLAS L1 saxpy

SGEMV BLAS L2 sgemv

SGEMM BLAS L3 sgemm

CONV2D Convolution using a 9x9 filter with a large single-precision float-
ing point input signal obeying non-periodic boundary conditions.

FFT3D Discrete Fourier transform of a single-precision complex N 3
dataset. Complex data is stored in struct-of-arrays format.

GRAVITY  An O(N?) N-body stellar dynamics simulation on 8192 par-
ticles for 100 time steps. We operate in single-precision using
Verlet update and the force calculation is acceleration without
jerk [13].

HMMER Fuzzy protein string matching using Hidden Markov Model eval-

uation. The Sequoia implementation of this algorithm is derived
from the formulation of HMMER-search for graphics processors
given in [15] and is run on a fraction of the NCBI non-redundant
database.

Table 1. Applications tested with runtimes

to have problem sizes limited by available memory. With the pro-
gramming model, compiler, and runtimes presented here, we can
compose the Cell runtime and disk runtime to allow running out of
core applications on the Playstation 3 without modification to the
user’s Sequoia code. We can compose the cluster and Cell runtimes
to leverage the higher throughput and aggregate memory of a clus-
ter of Playstation 3’s. Another common configuration is a cluster
of SMPs. Instead of requiring the programmer to write MPI and
Pthreads/OpenMP code, the programmer uses the cluster and SMP
runtimes to run Sequoia code unmodified.

5. Evaluation

We evaluate the cost of the generic abstraction layer using several
applications written in Sequoia (Table 1. The applications are exe-
cuted on a variety of two-level systems (Section 5.1) as well as sev-
eral multi-level configurations (Section 5.2) with no source level
modifications, only remapping and recompilation. Our evaluation
centers on how efficiently the applications utilize each configura-
tion’s bandwidth and compute resources. We find that despite the
uniform abstraction, we maximize bandwidth or compute resources
for most applications across our configurations.

5.1 Two-level Portability

For the two-level portability tests, we utilize the following concrete
machine configurations:

e The SMP runtime is mapped to an 8-way, 2.66GHz Intel Pen-
tium4 Xeon machine with four dual-core processors and 8GB
of memory.

e The cluster runtime drives a cluster of 16 nodes, each with dual
2.4GHz Intel Xeon processors, 1GB of memory, connected with
Infiniband 4X SDR PCI-X HCAs. With MVAPICH2 0.9.8 [16]
using VAPI we achieve ~400MB/s node to node.> We utilize
only one processor per node for this two-level configuration.

2MVAPICH?2 currently exhibits a data integrity issue on our configuration
limiting maximum message length to <16KB resulting in a 25% perfor-
mance reduction over large transfers using MPI-1 calls in MVAPICH



SMP Disk Cluster Cell PS3 Cluster of SMPs Disk + PS3 Cluster of PS3s
SAXPY 16M 384M T6M 16M T6M T6M 64M 16M
SGEMV 8Kx4K | 16Kx16K | 8Kx4K | 8Kx4K | 8Kx4K | 8Kx4K 8Kx8K 8Kx4K
SGEMM 4Kx4K | 16KxI6K | 4Kx4K | 4Kx4K | 4Kx2K | 8Kx8K 8Kx8K 4Kx4K
CONV2D | 8Kx4K | 16Kx16K | 8Kx4K | 8Kx4K | 4Kx4K | 8Kx4K 8Kx8K 8Kx4K
FFT3D 256° 5128 256° 256° 1282 256° 256° 256°
GRAVITY | 8192 8192 8192 8192 8192 8192 8192 8192
HMMER 500MB | 500MB 500MB | 500MB | 160MB | 500MB 320MB 500MB

Table 3. Dataset sizes used for each application for each configuration
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Figure 5. Execution time breakdown for each benchmark when running on SMP, Disk, Cluster, Cell, and Playstation 3 (left to right for each

application)
Baseline | SMP | Disk Cluster | Cell | PS3
SAXPY 0.3 0.7 0.007 4.9 3.5 3.1
SGEMV 1.1 1.7 0.04 12 12 10
SGEMM 6.9 45 55 90 119 94
CONV2D 1.9 7.8 0.6 24 85 62
FFT3D 0.7 3.9 0.05 5.5 54 31
GRAVITY 4.8 40 3.7 68 97 71
HMMER 0.9 11 0.9 12 12 7.1

Table 2. Two-level Portability - Application performance
(GFLOPS) on a 2.4GHz P4 Xeon (Baseline), 8-way 2.66GHz
Xeons (SMP), with arrays on a single parallel ATA drive (Disk),
a cluster of 16 2.4GHz P4 Xeons connected with Infiniband
(Cluster), a 3.2GHz Cell processor with 8 SPEs (Cell), and a Sony
Playstation 3 with a 3.2GHz Cell processor and 6 available SPEs.

e The Cell runtime is run both on a single 3.2GHz Cell processor
with 8 SPEs and 1GB of XDR memory in an IBM QS20 blade-
server [17], as well as the 3.2GHz Sony Playstation 3 (PS3) Cell
processor with 6 SPEs and 256MB of XDR memory [26].

e The disk runtime is run on a 2.4GHz Intel Pentium 4 with an
Intel 945P chipset, a Hitachi 180GXP 7,200 RPM ATA/100
hard drive, and 1GB of memory.

Application performance in effective GFLOPS is shown in Ta-
ble 2. Information about the dataset sizes used for each configu-
ration are provided in Table 3. The time spent in task execution,
waiting on data transfer, and runtime overhead is shown in Fig-
ure 5. In order to provide a baseline performance metric to show
the tuning level of our kernels, we provide results from a 2.4GHz
Intel Pentium4 Xeon machine with 1GB of memory directly calling
our computation kernel implementations in Table 2. Our applica-
tion kernels utilize the fastest implementations publicly available.
For x86, we use FFTW [12] and the Intel MKL[19], and for the
Cell, we use the IBM SPE matrix [18] library. All other leaf tasks
are best effort implementations, hand-coded in SSE or Cell SPE
intrinsics.

Several tests, notably SAXPY and SGEMYV, are limited by
memory system performance on all platforms but have high uti-
lization of bandwidth resources. SAXPY is a pure streaming band-
width test and achieves ~40MB/s from our disk runtime, 3.7GB/s
from our SMP machine, 19GB/s from the Cell blade, and 17GB/s
on the PS3, all very close to peak available bandwidth on these ma-
chines. The cluster provides an amplification effect on bandwidth
since there is no inter-node communication required for SAXPY,
and we achieve 27.3GB/s aggregate across the cluster. SGEMV
performance behaves similarly, but compiler optimizations result
in the  and y vectors being maintained at the level of the proces-
sor and, as a result, less time is spent in overhead for data transfers.
Since Xfers are implicit in the SMP runtime, it has no direct mea-
surement of memory transfer time, and shows no idle time waiting
on Xfers in Figure 5, but these applications are limited by memory
system performance.

FFT3D has complex access patterns through memory. On Cell,
we use a heavily optimized 3-transpose version of the code similar
to the implementation of Knight et al. [21]. On the Cell blade,
we run a 256° FFT, and our performance is competitive with
the large FFT implementation for Cell from IBM [7], as well as
the 3D FFT implementation of Knight et al. [21]. On the PS3,
128? is the largest cubic 3D FFT we can fit in-core with the 3-
transpose implementation. With this smaller size, the cost of a
DMA, and therefore the time waiting on DMAs, increases. Our
other implementations, running on machines with x86 processors,
utilize FFTW for a 2D FFT on XY planes followed by a 1D FFT
in Z to compute the 3D FFT. On the SMP system, we perform
a 256 FFT and get a memory system limited speedup of 4.7 on
eight processors. We perform a 512 FFT from disk, first bringing
XY planes in-core and performing XY 2D FFTs, followed by
bringing X Z planes in-core and performing multiple 1D FFTs in
Z. Despite reading the largest possible blocks of data at a time from
disk, we are bound by disk access performance, with most of the
time waiting on memory transfers occurring during the Z-direction



FFTs. For the cluster runtime, we distribute the XY planes across
the cluster, making XY 2D FFTs very fast. However, the FFTs
in Z become expensive, and we become limited by the cluster
interconnect performance.

CONV2D with a 9x9 window tends to be bound by memory
system performance on several of our platforms. From disk, we
once again achieve very close to the maximum read performance
available. On the cluster, we distribute the arrays across nodes,
and thus have to read parts of the image from neighboring nodes
and we become limited by the network performance. For the Cell
platforms, we are largely compute limited, but because we use
software-pipelined transfers to the SPEs generated by the compiler
to hide memory latency, leading to smaller array blocks on which to
compute, the overhead of the support set for the convolution begins
to become large and limits our performance.

SGEMM is sufficiently compute intensive that all platforms
start to become bound by task execution instead of memory system
performance. On our 8-way SMP machine, we achieve a speedup of
6 and observe 5.3GB/s from the memory system, which is close to
peak memory performance. Our performance from disk for a 16K
by 16K matrix multiply is similar in performance to the in-core
performance of a 4K by 4K matrix used for our baseline results.
Our cluster performance for a distributed 4K by 4K matrix multiply
achieves a speedup of 13. On Cell, we are largely computation
bound, and the performance scales with the number of SPEs as can
be seen from the performance on the IBM blade vs. the PS3.

HMMER and GRAVITY are compute bound on all platforms.
The only noticeable time spent in anything but compute for these
applications is GRAVITY on the cluster runtime, where there is idle
time waiting for memory transfers caused by fetching updated par-
ticle locations each time-step, and HMMER on the PS3, where we
can only fit 160MB of the NCBI non-redundant database in mem-
ory (the sequences were chosen at random). All other platforms
run the same database subset used in Fatahalian et al. [11] for re-
sults parity, which, including the surrounding data structures, totals
more than 500MB. For disk, we do not bring the database in-core,
but instead load the database as needed from disk, and yet perfor-
mance closely matches the in-core performance. The SMP exhibits
super-linear scaling because these processors have larger L2 caches
(IMB vs. 512KB) than our baseline machine. The cluster achieves
a speedup of 13 on 16 nodes, or 83% of the maximum achievable
speedup, with much of the difference due to load imbalance be-
tween nodes when processing different length sequences.

In general, for these applications and dataset sizes, the overhead
of the runtime implementations is low. The disk and cluster run-
times are the most expensive, the disk runtime because of the kernel
calls required for asynchronous 1/O and the cluster runtime because
of the DSM layer and threading overheads. The overheads are mea-
sured as all critical path execution time other than waiting for mem-
ory transfers and leaf task execution, and thus accounts for runtime
logic, including transfer list creation and task calling/distribution,
and time in barriers. The time spent issuing memory transfers is
included within the transfer wait times.

The consequences of our implementation decisions for our Cell
and cluster runtimes can be seen in the performance differences
between our system and the custom Cell backend from Knight
et al. [21] and the high-level cluster runtime from Fatahalian et
al. [11]. When scaling the performance results from Knight et al.
to account for clock rate differences between the 2.4GHz Cell
processor used in their paper and our 3.2GHz Cell processor, we
see that our runtime incurs slightly more overhead than their sys-
tem. For example, for SGEMM, scaling the previously reported
numbers, they would achieve 128GFLOPS whereas we achieve
119GFLOPS, a difference of 7%. For FFT, GRAVITY, and HM-
MER, our performance is 10%, 13%, and 10% lower, respectively,

Cluster of SMPs Disk + PS3 Cluster of PS3s
SAXPY 1.9 0.004 53
SGEMV 4.4 0.014 15
SGEMM 48 3.7 30
CONV2D 4.8 0.48 19
FFT3D 1.1 0.05 0.36
GRAVITY 50 66 119
HMMER 14 8.3 13

Table 4. Multi-level Portability - Application performance
(GFLOPS) on four 2-way, 3.16GHz Intel Pentium 4 Xeons con-
nected via GigE (Cluster of SMPs), a Sony Playstation 3 bringing
data from disk (Disk + PS3), and two PS3’s connected via GigE
(Cluster of PS3s).

than previously reported results. This overhead is the difference
between our more general runtime and their custom build envi-
ronment which produces smaller code, thus allowing for slightly
larger resident working sets in the SPE, more optimization by the
compiler by emitting static bounds on loops, and other similar as-
sistance for the IBM compiler tool-chain to heavily optimize the
generated code.

The differences between our cluster runtime implementation
and that of Fatahalian et al. [11] is in their implementation, much of
the work performed dynamically is now performance at compiler
time. Since we have a much thinner layer, we have less runtime
logic overhead in general, and for some applications we achieve
better performance as the generated code has static loop bounds
and alignment hints. SAXPY, SGEMYV, and GRAVITY are faster
than the previous cluster runtime implementation mainly due to to
these improvements. FFT3D performance is lower on our imple-
mentation as compared to their implementation due to the lower
achievable bandwidth when using MPI-2 single-sided communica-
tion through MVAPICH2, as noted above.

5.2 Multi-level Portability

We compose runtimes to explore multi-level portability. By com-
posing the cluster and SMP runtimes, we can execute on a cluster
of SMP nodes comprised of four 4-way Intel 3.16GHz Pentium4
Xeon machines connected with GigE; we utilize two out of the four
processors in the node for our tests. Using MPICH2 [3], we achieve
~80MB/s node-to-node for large transfers. By composing the disk
and Cell runtimes, we can overcome the memory limitations of the
PS3 to run larger, out-of-core datasets from the 60GB disk in the
console. Further, we can combine the cluster and Cell runtimes to
drive two PS3’s connected via GigE, achieving a higher peak FLOP
rate and support for larger datasets.

The raw GFLOPS rates for our applications are shown in Ta-
ble 4. Figure 6 shows a breakdown of the total execution time, in-
cluding the task execution time in the lowest level (MO0), the over-
head between the bottom two levels (M1-MO), the time idle wait-
ing on Xfer’s between the bottom levels (M1-MO0), overhead be-
tween the top two memory levels (M2-M1), and time idle waiting
on Xfer’s between the top levels (M2-M1). Memory system per-
formance of the slowest memory system dominates the memory
limited applications, whereas the compute limited applications are
dominated by execution time in the bottom-most memory level. On
all three configurations, SAXPY, SGEMV, CONV2D, and FFT3D
become bound by the performance of the memory system, while
GRAVITY and HMMER, which are very math intensive, are com-
pute bound.

For SAXPY and SGEMV on the cluster of SMPs, we get a
bandwidth amplification effect similar to the cluster runtime from
above. Since the data is local to the node, there are no actual mem-
ory transfers, only the overhead of the runtime performing this op-
timization. SAXPY and SGEMYV also exhibit a larger overhead for
M1-MO which can be attributed to larger scheduling differences
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Figure 6. Execution time breakdown for each benchmark when running on Cluster+-SMP, Disk-+PS3, and Cluster+-PS3 (left to right for

each application)

and differing start and completion times of the executing tasks.
CONV2D has the scaling behavior of the 8-way SMP from Sec-
tion 5.1 but with the bandwidth limitations of the GigE interconnect
for transmission of support regions. FFT3D becomes bound by the
interconnect performance during the FFTs in the Z direction, sim-
ilar to the cluster results from Section 5.1. SGEMM using 8K by
8K matrices is compute bound but we are able to hide most of the
data transfer time. HMMER and GRAVITY are insensitive to the
memory performance of this configuration and scale comparably to
the 8-way SMP system when clock rate differences are taken into
account.

By composing the disk and Cell runtimes, we are able to over-
come the memory size limitations on the PS3 and handle larger
datasets. However, attaching a high performance processor to a
30MB/s memory system has a large impact on application perfor-
mance if the compute to bandwidth ratio is not extremely high.
Only HMMER and GRAVITY achieve performance close to the
in-core versions, with performance limited mainly by overheads
in the runtimes. We ran HMMER with a 500MB portion of the
NCBI non-redundant database from disk. As with the disk config-
uration from Section 5.1 for GRAVITY, at each timestep, the par-
ticles are read from and written to disk. For SGEMM, there is not
enough main memory currently available to allow us to work on
large enough blocks in-core to hide the transfer latency from disk
and we currently spend 80% of our time waiting on disk. All the
other applications perform at the speed of the disk, but we are able
to run much larger instances than possible in-core.

We are also able drive two PS3’s connected with GigE by com-
bining the cluster and Cell runtimes. HMMER and GRAVITY
nearly double in performance across two PS3’s compared to sin-
gle PS3 performance, and HMMER can run on a database twice
the size. The combined runtime overhead on GRAVITY is ~8%
of the total execution time. For HMMER, we spend ~15% of the
execution time waiting on memory due to the naive distribution
of the protein sequences. SGEMM scalability is largely bound by
interconnect performance; with the limited available memory, we
cannot hide the transfer of the B matrix with computation. FFT3D
is limited to network interconnect performance during the 2 direc-
tion FFTs, similar to the other platforms. SAXPY and SGEMYV are
bound by M1-MO DMA performance between the SPE’s LS mem-
ory and node memory as well as runtime overheads. CONV2D are
largely limited by the GigE interconnect when moving non-local
portions of the image between nodes.

6. Related Work

Previous efforts to design portable languages and runtimes focus
mostly on two-level systems with either a uniform or partitioned
global address space and fine-grain communication. Examples in-
clude Co-Array Fortran [25], UPC [6], Titanium [27], ZPL [9], and
OpenMP [8]. Our runtime interface focuses on bulk communica-
tion and composability, allowing runtimes for multi-level machines
to be assembled from runtimes for each adjacent pair of memory
levels.

Cilk [4] provides a language and runtime system for light-
weight threading, which is suited to cache-oblivious algorithms im-
plicitly capable of using a hierarchy of memories. The execution
model is fine-grain and thus efficient memory access on machines
without shared memory, or virtualized shared memory, is difficult
as Cilk has no notion of explicit or bulk data transfers. However,
Cilk runtimes have the ability to better adapt to irregular computa-
tion load through work-stealing, which is difficult for our current
implementation as the compiler statically assigns work to proces-
SOrS.

The Parallel Virtual Machine (PVM) [14] and MPI [23] are per-
haps the oldest and most widely used systems for programming par-
allel machines and are supported on many platforms. Both systems
concentrate on the explicit movement of data between processors
within one logical level of the machine. The Pthreads library allows
direct programming of shared-memory systems through a thread-
ing model and also assumes a uniform global address space. Other
two-level runtime systems include Charm++ [20], Chores [10], and
the Stream Virtual Machine (SVM) [22]. None of these systems are
designed for handling more than two levels of memory or parallel
execution in a unified way. MPI-2 [24] adds support for abstracting
parallel I/O resources but uses a different API than the core com-
munication API functions.

Our emphasis on bulk communication is shared by MPI, PVM,
and SVM. Centering our API around bulk operations allows us to
simply and directly map onto machine primitives such as DMAs on
Cell, RDMA and other fast operations on network interconnects,
and asynchronous I/O to disk systems. Also, by requiring the pro-
grammer to allocate data structures through the runtime interfaces,
the runtime is able to hide alignment requirements for correctness
and performance on machines such as Cell, as well as the use of
distributed and remote memories, from the application.

7. Conclusion

We have presented a runtime system that allows programs written
in Sequoia, and more generally in the parallel memory hierarchy
model, to be portable across a wide variety of machines, includ-



ing those with more than two levels of memory and with varying
data transfer and execution mechanisms. Utilizing our runtime ab-
straction, our applications run on multiple platforms without source
level modifications and maximize available bandwidth and compu-
tational resources on those platforms.

One of the most interesting features of our design is that vir-
tualization of all memory levels allows the user to use disk and
distributed memory resources in the same way that they use other
memory systems. Out-of-core algorithms using disk fit naturally
into our model, allowing applications on memory constrained sys-
tems like the Sony Playstation 3 to run as efficiently as possible.
Programs can make use of the entire aggregate memory and com-
pute power of a distributed memory machine using the same mech-
anisms. And, despite the explicit data transfers in the programming
model, through a contract between the runtime and compiler we
also run efficiently on shared memory machines without any extra
data movement.

All of our runtimes are implemented using widely used APIs
and systems. Many systems, like those underpinning the languages
and runtime systems from Section 6, could be adapted relatively
easily to support our interface. Conversely, our interface and im-
plementations are also easily adaptable for systems that use explicit
memory transfers and control of parallel resources. And, although
we have presented the runtime as a compiler target, it can also be
used directly as a simple programming APIL.

There are also other systems for which it would be useful to de-
velop an implementation of our API. For example, GPUs use an ex-
plicit memory management system to move data and computational
kernels on and off the card. The BrookGPU system [5] has a sim-
ple runtime interface which can be adapted to our interface. Having
an implementation of our runtime for GPUs would, in combination
with our existing runtimes, immediately enable running on multi-
ple GPUs in a machine, a cluster of nodes with GPUs, and other,
more complex compositions of GPU systems. However, it should
be mentioned that generating efficient leaf tasks for GPUs is non-
trivial; our runtime and system would aim to solve data movement
and execution of kernels on the GPUs, not the development of the
kernels themselves.

Scalability on very large machines, which we have not yet
demonstrated, is future work. Previous successful work on dis-
tributed shared memory implementations for large clusters can be
adapted to our runtime system. Dealing with load imbalance is also
a problem for the current implementation. However, since our run-
times use queues to control task execution, adapting previous work
on work-stealing techniques appears to be a promising solution, but
will require support from the compiler for dynamic scheduling of
tasks by the runtime and consideration of the impact of reschedul-
ing tasks on locality as discussed in Blumofe et al. [4] and explored
further in Acar et al. [1]. Scaling to machines with many more pro-
cessors as well as even deeper memory hierarchies is the next goal
of this work.
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