
Accurate Memory Signatures and Synthetic Address
Traces for HPC Applications

Jonathan Weinberg
University of California, San Diego

9500 Gilman Drive
La Jolla, California 92093-0404

jonw@cs.ucsd.edu

Allan E. Snavely
San Diego Supercomputer Center

9500 Gilman Drive
La Jolla, California 92093-0505

allans@sdsc.edu

ABSTRACT
Though the performance of many scientific codes is domi-
nated by memory behavior, our ability to describe, capture,
compare, and recreate that behavior is quite limited. This
inability underlies much of the complexity in the field of
performance analysis: it is fundamentally difficult to relate
benchmarks and applications or use realistic workloads to
guide system design and procurement. An observable, re-
producible, and machine-independent memory characteriza-
tion is needed.

The Chameleon framework is a software suite that in-
cludes tools to capture a concise memory signature from any
application and produce synthetic memory address traces
that mimic that signature. By simultaneously modeling spa-
tial and temporal locality, Chameleon produces uniquely ac-
curate, general-purpose synthetic traces. We demonstrate
that the cache hit rates generated by each synthetic trace
are nearly identical to those of the application it targets on
dozens of memory hierarchies representing many of today’s
commercial offerings.

We apply the framework to high-performance computing
(HPC) by leveraging sampling techniques to capture the
memory signatures of full-scale, parallel applications with
only a 5x slowdown. The overall result is therefore a con-
cise, observable, and machine-independent representation of
the memory requirements of full-scale applications that can
be tractably captured and accurately mimicked.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Measurement, Performance

Keywords
locality, caches, synthetic memory traces, HPC

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS’08, June 7–12, 2008, Island of Kos, Aegean Sea, Greece.
Copyright 2008 ACM 978-1-60558-158-3/08/06 ...$5.00.

1. INTRODUCTION
To evaluate systems, both designers and procurement de-

cision makers must understand the workloads for which those
systems are intended. Since one of the most important de-
terminants of scientific application performance is memory
behavior [16], a precise understanding and quantification of
that behavior is central to the field of performance analysis.
Though this problem has been widely recognized and thor-
oughly studied for almost 40 years, no satisfactory solution
has emerged [24, 43, 41].

The consequences of this historical inability to describe,
capture, and recreate memory behavior are numerous and
profound. Consider, for example, the difficulty of bench-
marking when we cannot meaningfully describe and relate
executables. Application benchmarks [4, 10], made from
whittling down full applications, are laborious to produce
and easily relatable to only one other application. Synthetic
benchmarks [5, 3], which perform some generic access pat-
tern, are simple to produce and easily relatable to no other
application. Instead of quantifying the behavior of applica-
tions and then observing their relationships, we are forced
to awkwardly infer this information from observed runtimes.

Benchmark suites such as the classic NAS Parallel Bench-
marks [10] or the more recent HPC Challenge benchmarks
[33] facilitate this type of induction using a scatter-shot ap-
proach. The reasoning may still be complex [38, 50] and
efforts to verify that a suite’s components cover an interest-
ing behavioral space still require quantification [52].

Benchmarking alternatives are likewise problematic. An-
alysts may spend months creating complex mathematical
models of specific codes [35, 28] or antithetically, collect full
memory address traces to drive cycle-accurate simulations.
In addition to being incomparable to one another, full mem-
ory address traces are prohibitively difficult to store and re-
play [23]. A 4-processor trace of the simple NAS benchmark
BT.A for example, requires more than a quarter of a ter-
abyte to store and consequently relies on disk performance
to replay; a 100x slowdown is realistic.

These difficulties have spurred long-running research into
synthetic address trace generation techniques whose smaller,
more manageable traces enable evaluations to proceed in sec-
onds instead of days [20, 49, 27]. However, while the accu-
racy of a synthetic trace is inescapably bound to the memory
signature underpinning it, recent studies have shown that no
suitable proposal has yet come forward [24, 43, 41].

Consequently, system designers strain to understand cus-
tomer workloads and design systems optimized for them.
Procurement decision-makers are even more precariously sit-

uated, neither able to describe their workloads to vendors
nor reliably interpret benchmarks results.

The Chameleon framework is a single integrated solution
to each of these problems. Based on an accurate and observ-
able model of memory reference locality, the framework pro-
vides tools to extract the model’s parameters from any ap-
plication and create synthetic address traces, or even stand-
alone benchmarks, that adhere to that signature.

In the following Section, we provide an overview of the
Chameleon framework and present results that demonstrate
its unique capability to capture and mimic the core local-
ity properties of any memory address stream. In Section 3,
we extend this work to HPC by introducing two advanced
sampling techniques that enable us to capture the memory
signatures of full-scale, parallel applications with only a 5x
slowdown. We thereby demonstrate how to extract memory
signatures for large-scale applications and produce synthetic
address traces that accurately match the cache hit rates of
those applications on many disparate real-world cache hier-
archies.

2. CHAMELEON FRAMEWORK
Central to the Chameleon framework are a model of ref-

erence locality, a memory tracer that extracts the model’s
parameters from applications, and a synthetic stream gen-
erator that uses these memory signatures to create a com-
pliant synthetic address trace. In this section, we provide
an overview of these components and present results demon-
strating that Chameleon can mimic arbitrary address streams
with great accuracy.

2.1 Modeling Locality
To understand the memory behavior of applications, one

must necessarily begin with a model of reference locality.
The principle of locality asserts that whenever a memory
address is referenced, it or addresses near it, are likely to be
referenced again soon. The principle has traditionally been
decomposed into spatial and temporal varieties [39].

Though dozens of studies dating back to the early 1970’s
have focused on quantifying locality in memory behavior
[36, 20, 15, 6, 56, 49, 24, 14, 13, 11, 43, 21, 52, 26], very few
have focused on capturing both types. Ordinarily, a tempo-
ral locality oriented solution might focus on reuse distance
analysis with fixed word sizes or cache hit rate distributions
with fixed line sizes [6, 56, 14, 57, 21, 34, 18, 52]. Spa-
tial locality oriented approaches might freeze the size of the
look-back window, that is, the number of previous addresses
examined to characterize the current address [48, 52, 17].

These models certainly have important uses, such as pre-
dicting approximate cache hit rates on single-level caches of
pre-known dimensions [13, 27, 34, 58]. Any model intended
to create general purpose address streams however, must
address both spatial and temporal locality. Unfortunately,
previous hybrid model proposals have not been accompa-
nied by techniques for converting their parameterizations
into synthetic traces [25, 40].

2.1.1 Cache Surfaces
Overwhelmingly, previous works have measured the accu-

racy of locality models using cache hit rates [15, 6, 30, 48,
14, 13, 58, 11, 34, 12, 52, 27, 26]. Instead of creating ab-
stractions and then measuring their relationship to hit rates,
we work backwards from the goal: the most trivially correct

model is a series of cache descriptions and an application’s
hit rate on each.

Many variables describe a cache, but for simplicity and
analogy to theory, we assume only fully-associative caches
with a least recently used (LRU) replacement policy. Re-
search has repeatedly shown that because capacity misses
are most common, hit rates on such caches are highly sim-
ilar to analogously sized set-associative configurations with
alternate replacement policies. [13, 27, 34, 58].

We therefore describe a cache simply by its two dimen-
sions: width and depth. We refer to the block size of a
cache as its width and the number of blocks as its depth.
We can thus visualize an application’s locality signature as
a surface hit(d, w) = z with each {d, w, z} coordinate repre-
senting a cache depth, cache width, and the corresponding
hit rate for the application.

Figure 1 displays a cache surface for CG.A, one of the NAS
Parallel benchmarks. The granularity at which one samples
points on this surface naturally depends on the precision one
requires. For the remainder of this study, we use the points
shown in Figure 1, representing various cache configurations
from 64 bytes to 33.5MB.

Cache Width
(bytes)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Cache Depth (Log2)

H
it

 R
at

e

512

256

128

64

,

Figure 1: Cache surface of CG.A

2.1.2 Spatial Locality
For all the of the cache surface’s simplicity, there may be

good reason why researchers have traditionally preferred in-
complete abstractions. One objection is the size of the char-
acterization. Even if we sample the surface at log intervals,
the area of interest for an application may consist of over a
hundred points. Perhaps speed is the problem. Fully asso-
ciative, LRU caches are notoriously expensive to simulate.
Why simulate over a hundred points when each modeler can
instead simulate just those he is interested in? Lastly, the
model does not readily admit of any obvious techniques for
generating synthetic traces.

Fortunately, instead of capturing all the points of the
cache surface, we can mitigate these concerns by capturing
only the statistical relationships between them. We observe
that the functions hit(d, W) that comprise the surface, as
shown in Figure 1, are not independent of one another. Im-
portantly, the function hit(d, W) is a predictable, statisti-
cal permutation of the function hit(d, W1) for any constant
W1 > W . This permutation is spatial locality.

Intuitively, we understand that caches use larger block
sizes to exploit spatial locality and not temporal locality.
The difference in hit rates between some cache with W -byte
blocks and another with W1 byte blocks is defined by the
spatial locality of the application at that point.

To illustrate, let Li be a reference to the ith word in
cache line L and consider the following sequence using cache
lines of 8 words: A0, B0, C0, B1, C6, A3. The reuse distance
of the reference to A3 is 2 because there are two unique
cache line addresses in the interval separating it from the
previous access to A0. If we halve the cache line length,
then the index 6 no longer exists and the trace becomes
A0, B0, C0, B1, D2, A3, where D is some other cache line.
Because C6 becomes D2, the reuse distance of A3 conse-
quently increases to 3.

When a cache width is halved, the reuse distance of each
reference can remain unchanged, or at most, double. To pre-
dict the new reuse distance for each element, and therefore
the new distribution, one needs three pieces of information.
First is the number of unique elements in a given interval.
This is equal to the element’s reuse distance. Second is the
number of reuses inside the interval. This is a function of the
first parameter and the reuse distance distribution describ-
ing the elements in the interval. Third is the probability
of each reuse in the interval reusing the same half cache
line as its previous instance. Because the first two pieces
of information are already described by the stream’s reuse
distribution, the only parameter we need obtain is the third.
Let us define this probability as follows:

Spatial Locality = α(S, U) = the probability of reusing
some contiguous subset of addresses S among consecutive
references to a contiguous superset U

Because a single α value theoretically suffices to relate any
two reuse distance CDF’s, we can parameterize this model
as a single reuse distance CDF and a series of α values that
iteratively project that CDF to ones with shorter word sizes.
Technically, since hit(d, F) = 1 for any application with
footprint less than or equal to F , it is possible to characterize
an application using only α values. We choose to add a reuse
CDF however, both to limit the number of α parameters
necessary and to mitigate error in the trace generation tools
as described later.

For this work, we use hit(d, 512) as the top end CDF,
meaning we can model caches with block sizes up to 512-
bytes. As in Figure 1, we constitute this CDF from points
sampled at log intervals up to a maximum cache depth of 216.
We then use six α values to capture the temporal behavior of
caches with identical depths but widths of 256, 128, 64, 32,
16, and 8 bytes; the resulting characterization is therefore
23 numbers altogether.

In practice, we can increase accuracy by pooling mem-
ory references by their reuse distances and characterizing
each pool’s α values independently instead of doing so on an
application-wide basis. Because the characterization’s terse-
ness is not important for this study, the results we present
here were gathered using separate α values for each reuse
distance in the CDF, meaning 119 numbers per application.

2.2 Observing Memory Behavior
To obtain the model’s parameters, we instrument an ap-

plication’s binary with simulation logic that is invoked upon

each memory reference. The simulation logic is essentially
independent of the instrumentation library, making it simple
to port onto various architectures. For this work, we have
deployed the tracer using the Pin instrumentation library
[32] for tracing on x86 architectures, and using PMaCInst
[51] for tracing on the Power architecture.

2.2.1 Obtaining the Reuse CDF
Our approach first requires that we obtain hit rates for

the 17 caches with maximum width (512-bytes in this case).
Simulating multiple, large, fully-associative, LRU caches re-
quires specialized software as conventional simulators are
untenably slow [8, 21, 29, 46].

Our simulator uses an approach similar to that described
by Kim et. al. [29] with some modifications. We maintain an
LRU ordering among all cache lines using a single, doubly-
linked list. To avoid a linear search through the list on every
memory access, we maintain a hashtable for each simulated
cache that holds pointers to the list elements representing
blocks resident in that cache. Each hashtable structure also
maintains a pointer to its least recently used element.

On each access, we find the smallest hashtable that con-
tains the touched block, recording a hit for it and larger
caches and a miss for all smaller caches. The hashtables
that missed then evict their least recently used element, add
the new, most recently used element, and update their LRU
pointer. Lastly, we update the doubly-linked list to maintain
ordering.

Our approach simulates all 17 caches concurrently with
a worst-case asymptotic running time of O(N*M) where N
is the number of memory addresses simulated and M the
number of caches. The average case runtime improves with
locality and the overall performance is comparable to the
most efficient published solutions [21, 29, 57].

2.2.2 Obtaining Alpha Values
We earlier defined α as the probability that a certain sized

working set will be reused between consecutive references to
a superset. In this case, the superset is initially a cache block
and the subset its halves. What is the probability that two
consecutive accesses to some block will hit the same half?
What is the probability that two accesses to a half will hit
the same quarter, etc? We stop after reaching a non-divisible
working set: 4 bytes in our case, corresponding to a single
32-bit integer.

To calculate these probabilities, each simulated block main-
tains its own access history as a binary tree. Each leaf rep-
resents a 4-byte working set. The parent of two siblings
represents the 8-byte superset and so forth until the root,
which represents the entire cache block.

On an access to some 4-byte word, a function traverses
the accessed block’s tree from root to the corresponding leaf.
At each node, it marks the edge along which the traversal
proceeded. Before doing so however, it observes whether
or not the edge is the same as the one chosen during the
previous visit to this specific node. If so, it increments the
global yes counter corresponding that that tree level and
if not, the global no counter. If the node had never been
visited, no counter is incremented.

The end result is a list of reuse and non-reuse counts for
each tree level across all cache lines. α(256, 512) for exam-
ple, is equal to the number of reuses reported by root nodes
divided by the number of non-reuses such nodes reported.

We can thus determine each of the α values we seek, reveal-
ing how frequently two consecutive accesses to some working
set reused the same half.

2.3 Generating Synthetic Traces
The Chameleon framework includes a tool to convert model

descriptions into synthetic traces. It accepts as input, the
unmodified output file from the tracer and creates a small
file containing the new synthetic trace’s seed. A trace seed is
a minimally sized trace that can be used to generate larger
traces of arbitrary length and footprint through replication
and repetition [56]. These concise seeds are preferable to the
full traces both because of their flexibility and their ease of
handling.

To create a synthetic trace, we begin by creating a trace
conforming to the CDF by sampling reuse distances from it.
We create an initial linked list of all possible cache blocks,
each with a unique identifier and representing a unique block.
Using inverse transform sampling, we sample reuse distances
from the CDF and record the identifier of the element at that
index. The element then moves to the head of the list as the
most recently used element.

We compensate for cold cache misses by iterative adjust-
ment. At regular intervals, the stream generator checks the
average and maximum discrepancy between the points of the
input CDF and those of the sample it has generated. The
trace continues to grow until it is either within some given er-
ror bounds or has exceeded a maximum length. If the latter
occurs before the former, the generator scales each point of
the original CDF by T/R where T is the original target and
R is the achieved hit rate. The generator uses the resulting
CDF as its new input and repeats the process until finding
a satisfactory trace. Though multiple iterations are seldom
needed for producing general-purpose synthetic traces, this
mechanism becomes important when the trace must meet
various constraints as with other Chameleon tools [54].

We now have a trace of block addresses. We must then
convert these to 8-byte or 4-byte word addresses as desired.
The generator iterates over the trace and for each block,
chooses an offset as dictated by the series of given α prob-
abilities. Each block maintains its own history using a tree
structure identical to that used by the tracer.

The generator writes the resulting trace to a small out-
put file and prefaces it with some metadata. That metadata
includes the original input, the size of the trace’s working
set, the size of each word, and a “minimum number of repli-
cations” needed to flush the cache and ensure that multiple
replications of the trace will always begin with the cold cache
on which its accuracy is predicated.

2.4 Trace Accuracy
The resulting synthetic traces mimic those of the origi-

nal applications quite accurately. Figures 2, 3, and 4 il-
lustrate the disparity in hit rates between serial versions of
three NAS benchmarks and their corresponding synthetic
traces on 68 LRU cache configurations. The traces emu-
lating CG.A, SP.A, and IS.A require only a few seconds to
simulate and err on absolute average by only 1.0%, 1.5%,
and 0.1% respectively.

Notice no error exists for caches specified by the model’s
temporal parameters (512-byte width). Chameleon’s trace
generation technique is therefore the most accurate possi-
ble for any temporal locality based solution. Moreover, be-

Cache Width
(bytes)

-0.50

-0.40

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0 4 8 12 16

Cache Depth (Log2)

E
rr

or

512

256

128

64

,

Figure 2: Trace vs CG.A

Cache Width
(bytes)

-0.50

-0.40

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0 4 8 12 16

Cache Depth (Log2)

E
rr

or

512

256

128

64

,

Figure 3: Trace vs SP.A

Cache Width
(bytes)

-0.50

-0.40

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0 4 8 12 16

Cache Depth (Log2)

E
rr

or

512

256

128

64

,

Figure 4: Trace vs IS.B

cause the alpha parameters capture spatial locality, the re-
sulting synthetic traces also match the hit rates of caches
with shorter widths. In this capacity, Chameleon is distinct
from all previous modeling and trace generation proposals.

Application Avg. L1 Error Avg. L2 Error
IS.B .05 .05
CG.A .01 .02
SP.A .03 .09

Table 1: Avg. absolute error of benchmarks on 48

simulated cache hierarchies

Beyond LRU caches, the traces also competently capture
the behavior of applications on real-world, set-associative
caches. To test this, we compare the hit rates of the actual
and synthetic traces for the three NAS benchmarks on all 48
real-world and theoretical cache hierarchies recently evalu-
ated by the U.S. Department of Defense’s HPCMO program
to support equipment procurement decisions in 2008 [1].

Table 1 lists the average absolute difference between the
hit rates produced by the actual traces and those produced
by the synthetics as measured by cache simulation. The
results demonstrate that the two are comparable, even when
multi-level caches of disparate widths and depths inhabit a
single hierarchy. The disparity in error between levels stems
from L1 errors propagating to L2.

3. HPC APPLICATIONS
The results in the previous section were collected on an

x86 machine by applying our Pin-based tracer to small scien-
tific benchmarks. While the results are promising, there are
several additional challenges one must overcome to extend
this framework to HPC applications. Most importantly, the
memory tracing is prohibitively slow, sometimes several or-
ders of magnitude over uninstrumented runtimes. This slow-
down in untenable for full-scale applications that execute for
several hours at a time. Additionally, this framework must
be extended to and evaluated on HPC resources executing
parallel applications.

In this section, we address these issues by investigating the
accuracy and performance tradeoffs made by two sampling-
based performance optimizations to the memory tracer. We
also extend our results to a full-scale parallel application
running on SDSC’s 2000+ processor Power4 system.

3.1 Interval Sampling
The first optimization we evaluate is interval sampling.

Rather than send every memory access through the simu-
lation logic, the tracer will send some consecutive number
through and then ignore a subsequent set. Previous research
has shown that memory tracing of scientific applications can
maintain good accuracy even when as few as 10% of ad-
dresses are sampled [22]. We follow this guideline and mod-
ify the tracer to iteratively simulate 1M addresses and then
ignore the subsequent 9M.

3.1.1 Performance
As expected, the performance increase is around one order

of magnitude. Table 3 lists the slowdown numbers for CG.A
and SP.A when traced with the Pin and PMaCInst (PMI)
instrumentation libraries.

The Pin traces were performed on a Pentium D820 while
the PMaCInst traces were collected on SDSC’s Power4-based
DataStar machine [2]. The base performance discrepancy
between the instrumentation libraries likely arises from their

Application Full Trace Sampling (10%)
CG.A(Pin) 1160 163
SP.A(Pin) 915 112

CG.A(PMI) 276 27
SP.A(PMI) 348 36

Table 2: Slowdown caused by memory tracing

underlying mechanisms: the Pin library is a dynamic instru-
mentation tool that performs instrumentation at runtime
while PMaCInst is a static binary re-writer that produces
an instrumented binary in advance of execution. PMaCInst
also shaves some runtime by assuming that all memory ref-
erences load a single word instead of checking the exact size
of the load.

3.1.2 Accuracy
Because we are using a locality model, the penalty we pay

for this sampling is simply the cold cache misses at the start
of each sampling interval. For the temporal locality portion
of the model, this is not a significant penalty. Recall that
this portion of the model is simply the reuse distance CDF
with word sizes of 512 bytes, corresponding to the cache hit
rates of 17 increasingly deep LRU caches. The maximum
number of additional cold-cache misses introduced by the
start of each sampling interval is at most equal to the depth
of each cache. Because this number is so small with respect
to the size of the sampling interval, there is no palpable
inaccuracy introduced to the model’s temporal elements.

The spatial parameters, represented by the α values, are
somewhat more susceptible to perturbation by interval sam-
pling. Intuitively, this is because each cache line carries with
it more spatial history than temporal; while the temporal
history is simply the line’s reuse distance, the spatial his-
tory is an entire tree representing every recursive subset in
the line. This history is lost at the end of each interval.

To determine the error that interval sampling introduces
into the spatial characterization, we use the same NAS bench-
marks from the previous section. We first perform five full
traces of each benchmark and record the average value of
each α parameter. We assume this average to be the actual
value. We then calculate the average deviation from the ac-
tual value between the five runs. These values constitute
the natural average deviations of each α value.

Next, we perform five traces of each benchmark using in-
terval sampling and record the average deviation of each α
value from the previously calculated actual. The error in-
troduced by the sampling technique is then equal to this
average deviation minus the natural deviation.

The maximum error among the α values characterizing
each test application is only 1.2%, meaning that interval
sampling does not cause a significant error in the spatial
characterization of these two benchmarks. Interval sampling
therefore reduces slowdown by an order of magnitude with-
out a significant accuracy penalty. The resulting 30-40x fig-
ure is tractable for common desktop applications and we use
this sampling mode as the default memory tracing technique
for serial applications in the remainder of this work.

3.2 Basic Block Sampling
The interval sampling technique reduces slowdown by an

order of magnitude without a significant accuracy penalty.
However, while the resulting 30-40x figure is tractable, it is
still high for working with codes whose base runtimes are
several hours long.

Another powerful sampling technique we may leverage is
basic block sampling. This technique, successfully employed
by the PMaC performance prediction framework [38], works
as follows: A preprocessing step decomposes the binary into
basic-blocks and instruments it to count the number of times
each is executed during runtime. This information is then
used by the instrumentor to identify the most important
basic-blocks to trace (perhaps those collectively constitut-
ing 95% of all memory operations). A cap (e.g. 50K visits)
is placed on the number of times that each basic block can
be simulated. The simulator, for its part, must output a
separate characterization for each basic block. In a post-
processing step, these per-block characterizations may be
combined with the execution counts collected in the pre-
processing step to derive the full application’s characteriza-
tion.

To deploy this strategy, we leverage preexisting PMaCInst
tools to decompose the binary into basic blocks and perform
the preprocessing runs [51]. We then modify our simulator
to isolate the locality model results by basic blocks. To sim-
ulate each memory reference, the simulator invocation now
requires a block id to accompany the address. Internally, it
performs an identical simulation as before, but then places
the outcome of each reference’s simulation into the bin spec-
ified by its block id. Note that this is not the same as per-
forming a separate simulation for each block; the internal
state of the simulator is shared among all blocks but only
the results are separated. Consequently, this separation in-
creases neither the simulator’s runtime nor space complexity
by any meaningful measure.

The output format is as before, but instead of containing
a single memory signature, the output file lists one signature
per basic block, preceded by that block’s unique identifier.
To produce a synthetic address trace, we pass this file, along
with one detailing the basic block execution counts, to the
stream generator. The generator combines the block signa-
tures into a single signature according to the given weights
and uses the resulting model to generate a synthetic trace.

3.2.1 Performance
To evaluate the performance gains of this technique, we

replace the two NAS benchmarks with larger-scale, parallel
applications. AMR [55] is an adaptive mesh refinement code
that we deploy across 96 processors of DataStar. S3D [31]
is a sectional 3-dimensional, high-fidelity turbulent reacting
flow solver developed at Sandia National Labs. We deploy
that code across 8 processors of the same machine.

We employ the interval and block sampling techniques to
observe the memory address streams of the applications on
each of their processors. The output is a separate locality
signature for each processor involved in each run.

Table 3 lists the results of several performance experi-
ments. The original, uninstrumented, AMR and S3D codes
execute for 140 and 23 minutes respectively. The prepro-
cessing that collects the basic block counts slows the ap-
plications by less than 2x while the simulation logic that
collects our memory signatures causes a total slowdown of
approximately 5x.

To determine how much of this 5x slowdown is due to

the simulation logic rather than other tracing overheads, we
replace the locality logic with a simulation of 15 caches from
Section 2.4 and retrace. The slowdown is nearly identical.
Finally, we execute a trace with both the locality and cache
simulation logic present, observing a total slowdown of only
5.16x and 5.73x for the two applications. We can therefore
conclude that the locality simulation logic itself accounts for
only a small fraction of the tracing overhead.

With such low overhead for the simulation logic, it is fea-
sible to simply insert it onto existing memory tracing ac-
tivities. For example, a modeler trying to evaluate an ap-
plication’s performance on these 15 caches can concurrently
collect it’s locality signature at little extra cost. If he later
wishes to determine the application’s expected performance
on a different cache, he could use the Chameleon framework
to generate a synthetic trace and make a hit rate approx-
imation without incurring the significant time and cost of
retracing. In the next section, we investigate just how close
that approximation is likely to be.

Configuration Runtime (min) Slowdown
AMR S3D AMR S3D

Uninstrumented 140 22 1.00 1.00
Basic Blocks 257 26 1.84 1.18

Memory Signature 721 111 5.09 5.05
Caches 710 120 5.09 5.45

Signature+Caches 710 126 5.16 5.73

Table 3: App. slowdown due to memory tracing

3.2.2 Accuracy
To evaluate the accuracy of these techniques, we wish to

compare the cache hit rates of our applications with those
produced by their synthetic traces across several systems.
First, we employ the interval and block sampling techniques
to observe the memory address streams of each application’s
processors. We use each stream to drive a simulation of the
15 real-world, set-associative caches from Section 3.2.1. Ma-
ture performance modeling results from recent HPC system
procurement efforts have shown that cache hit rates gath-
ered in this way are accurate enough to predict the perfor-
mance of full scientific applications within 10% [17]. They
are therefore useful approximations of the actual hit rates
of each processor on the 15 systems.

During this simulation, we concurrently collect each pro-
cessor’s locality signature and later use it to create a unique
synthetic address trace. Lastly, we use the synthetic traces
to drive a full simulation of the 15 caches with no sampling.

Table 4 lists the average absolute difference between the
hit rates produced by the processors of each application and
those produced by the corresponding synthetic traces. The
results sample an evenly distributed set of processors across
each application and demonstrate that the hit rates are vir-
tually identical across the 15 caches.

Lastly, we confirm that we can accurately characterize the
individual behavior of each block in the two applications. To
do this, we decompose the locality signature of processor 0
into its separate blocks and produce a trace for each of the
10 most important basic blocks. These blocks constitute
approximately 55% and 40% of AMR’s and S3D’s dynamic
memory references on the processor respectively.

AMR S3D
Proc Abs. Error Proc Abs. Error

0 .00 0 .01
10 .04 1 .00
20 .00 2 .01
30 .00 3 .01
40 .00 4 .01
50 .00 5 .02
60 .00 6 .01
70 .00 7 .01
80 .00 – –
90 .00 – –

Table 4: Average absolute error in cache hit rates

between applications and synthetic traces over 15

cache configurations by processor

We use each synthetic trace to drive a simulation of the
same 15 caches and compare the hit rates to those achieved
when the simulation is driven by the actual memory stream
of those blocks. The error rate for each block in the appli-
cations is less than 1%. The observed errors are likely so
low because the memory access patterns of each basic block
are short, stable, and less complex than the application’s
aggregate memory behavior.

These tests confirm that the framework can model each
block accurately across multiple cache configurations. Such
a capability is important for basic-block oriented perfor-
mance analysis tools such as the PMaC prediction frame-
work.

4. RELATED WORK
Over the past 40 years, a humbling breadth of work has

addressed locality modeling and the creation of synthetic ad-
dress traces. While a complete survey would merit a survey
publication, we mention some important contributions here.

One of the earliest reference models, the independent ref-
erence model, was introduced in 1971 by Denning [7, 20]. It
is noteworthy because unlike most subsequent models, it is
not based on locality per se, but rather, on the independent
probability of referencing each address.

Temporal locality, and reuse distance in particular, has
been a very popular basis for quantifying locality. Reuse
distance was first studied by Mattson et. al around 1970
[36]. Multiple studies, as recently as 2007, have leveraged
these ideas to create locality models and synthetic trace gen-
erators based on sampling from an application’s reuse dis-
tance CDF [9, 14, 21, 26, 27]. Many works have also used
reuse distance analysis for program diagnosis and compiler
optimization [21, 37, 57]. The Chameleon framework dis-
tinguishes itself by eliminating error when block widths are
known and modeling spatial locality to capture application
behavior under various block widths; all previous approaches
used fixed block widths.

In 2004, Berg proposed StatCache, a probabilistic tech-
nique for predicting miss rates on fully associative caches [12,
11]. His model is a histogram of reference distances with a
fixed cache width. The Chameleon framework also predicts
hit rates on fully associative caches of a particular width
very effectively. In fact, it does so with no error for any case
we have tested so far. In addition though, Chameleon also

captures hit rates when cache widths change. The ability to
create synthetic traces and benchmarks also distinguishes
Chameleon from Berg’s work.

Spatial locality has traditionally been quantified using
strides. The most straightforward approach is the distance
model, which captures the probability of encountering each
stride distances [44]. Thiebaut later refined this idea by
observing that stride distributions exhibit a fractal pattern
governed by a hyperbolic probability function [48, 47, 49].
More recently, the PMaC performance prediction framework
had focused on spatial locality but added a temporal element
by including a lookback window [38].

An interesting hybrid approach that fuses spatial and tem-
poral locality into locality surfaces was introduced by Grim-
srud [25, 24]. Sorenson later studied a refinement of this
idea extensively [41, 42, 43]. Neither Grimsrud nor Soren-
son however, proposed techniques for converting their char-
acterizations into synthetic traces.

Contrastingly, Strohmaier and Shan developed the tun-
able memory benchmark Apex-MAP [45] which uses spatial
and temporal parameters to generate a synthetic address
stream. However, Apex-MAP’s locality parameters are not
observable: their value cannot be determined for a given
application or address stream.

Conte and Hwu also described separate locality measures
using inter-reference temporal and spatial density functions
[19]. More recently, spatial and temporal locality “scores”
have been proposed for describing the propensity of applica-
tions to benefit from temporal and spatial cache optimiza-
tions [52].

5. CONCLUSIONS
In this work, we have shown that the Chameleon frame-

work can capture accurate memory signatures from parallel
HPC applications with only a 5x slowdown. To achieve this,
we used the PMaCInst binary instrumentation library to
show that the interval and basic block sampling techniques
can reduce memory tracing overheads by as much as two or-
ders of magnitude without significant loss of accuracy. We
have further demonstrated that the captured signatures can
be used to generate synthetic address traces whose cache hit
rates are highly similar to those of target applications across
dozens of real-world caches.

Chameleon can thus be used to describe, compare, and
mimic the memory access patterns of arbitrary HPC appli-
cations. The solution is unique in this space due to its com-
bination of high accuracy, ability to model spatial locality,
and tractable tracing time for large-scale, parallel codes.

Chameleon can be leveraged in application analysis, archi-
tecture evaluation, performance prediction, and benchmark
development. It enables users to understand their workloads
and describe them to vendors. It enables vendors to under-
stand customer requirements and evaluate system designs
more quickly, accurately, cheaply, and completely by using
synthetic memory traces with transparent relationships to
realistic workloads.

We intend to incorporate Chameleon’s simulation logic
into the memory tracing activities of the HPCMO’s yearly
performance evaluation and system procurement effort. Do-
ing this will allow us to characterize important parallel ap-
plications on an ongoing basis while guiding system procure-
ment in a richer fashion than has been possible in the past.

We also intend to expand work on the Chameleon bench-

mark, a tunable memory benchmark that can be calibrated
using memory signatures to behave as a memory proxy for
any application [54]. Doing so will help us to study the com-
plex relationships between memory behavior, performance,
instruction level parallelism, and contention among concur-
rently scheduled applications [53].

6. ACKNOWLEDGEMENTS
This work was supported by NSF NGS Award #0406312

entitled Performance Measurement & Modeling of Deep Hi-
erarchy Systems. We would like to thank Jiahua He, Michael
McCracken, and Cynthia Lee for their valuable input and
Nick Wright for his assistance with S3D.

7. REFERENCES
[1] High Performance Computing Modernization

Program: http://www.hpcmo.hpc.mil/.

[2] http://www.npaci.edu/DataStar/guide/home.html.

[3] RandomAccess benchmark:
http://icl.cs.utk.edu/projectsfiles/hpcc/RandomAccess/.

[4] Spec benchmarks: http://www.spec.org/.

[5] Stream benchmark:
http://www.cs.virginia.edu/stream/.

[6] A. Agarwal, J. Hennessy, and M. Horowitz. An
analytical cache model. ACM Trans. Comput. Syst.,
7(2):184–215, 1989.

[7] A. Aho, P. Denning, and J. Ullman. Principles of
optimal page replacement. Journal of the ACM, pages
80–93, January 1971.

[8] G. Almási, C. Caşcaval, and D. A. Padua. Calculating
stack distances efficiently. In MSP ’02: Proceedings of
the 2002 workshop on Memory system performance,
pages 37–43, New York, NY, USA, 2002. ACM Press.

[9] J. Archibald and J. Baer. Cache coherence protocols:
Evaluation using a multiprocessor simulation model.
ACM Transactions on Computer Systems,
4(4):273–298, November 1986.

[10] D. H. Bailey, E. Barszcz, J. T. Barton, D. S.
Browning, R. L. Carter, D. Dagum, R. A. Fatoohi,
P. O. Frederickson, T. A. Lasinski, R. S. Schreiber,
H. D. Simon, V. Venkatakrishnan, and S. K.
Weeratunga. The NAS Parallel Benchmarks. The
International Journal of Supercomputer Applications,
5(3):63–73, Fall 1991.

[11] E. Berg and E. Hagersten. Statcache: A probabilistic
approach to efficient and accurate data locality
analysis. In Proceedings of the 2004 IEEE
International Symposium on Performance Analysis of
Systems and Software (ISPASS-2004), Austin, Texas,
USA, March 2004.

[12] E. Berg and E. Hagersten. Fast data-locality profiling
of native execution. In SIGMETRICS ’05: Proceedings
of the 2005 ACM SIGMETRICS international
conference on Measurement and modeling of computer
systems, pages 169–180, New York, NY, USA, 2005.
ACM Press.

[13] K. Beyls and E. D’Hollander. Reuse distance as a
metric for cache behavior. In Proceedings of PDCS’01,
pages 617–662, August 2001.

[14] M. Brehob and R. Enbody. An analytical model of
locality and caching. Technical Report

MSU-CSE-99-31, Michigan State University,
September 1999.

[15] R. Bunt and J. Murphy. Measurement of Locality and
the Behaviour of Programs. The Computer Journal,
27(3):238–245, 1984.

[16] L. Carrington, M. Laurenzano, A.Snavely,
R. Campbell, and L. Davis. How well can simple
metrics represent the performance of HPC
applications? In Supercomputing, November 2005.

[17] L. Carrington, N. Wolter, A. Snavely, and C. B. Lee.
Applying an Automated Framework to Produce
Accurate Blind Performance Predictions of Full-Scale
HPC Applications. In Proceedings of the 2004
Department of Defense Users Group Conference.
IEEE Computer Society Press, 2004.

[18] R. Cheng and C. Ding. Measuring temporal locality
variation across program inputs. Technical Report TR
875, University of Rochester. Computer Science
Department., 2005.

[19] Conte and Hwu. Benchmark characterization for
experimental system evaluation. In Proceedings of the
Twenty-Third Annual Hawaii International
Conference on System Sciences, volume 1, pages 6–18,
January 1990.

[20] P. J. Denning and S. C. Schwartz. Properties of the
working-set model. Commun. ACM, 15(3):191–198,
1972.

[21] C. Ding and Y. Zhong. Predicting Wholeprogram
Locality Through Reuse Distance Analysis. In PLDI
Š03: Proceedings of the ACM SIGPLAN 2003
conference on Programming language design and
implementation, pages 245–157. ACM Press, 2003.

[22] X. Gao, M. Laurenzano, B. Simon, and A. Snavely.
Reducing overheads for acquiring dynamic traces. In
International Symposium on Workload
Characterization, 2005.

[23] X. Gao, A. Snavely, and L. Carter. Path grammar
guided trace compression and trace approximation. In
HPDC’06: Proceedings of the 15th IEEE International
Symposium on High Performance Distributed
Computing, Paris, France, June 2006.

[24] K. Grimsrud, J. Archibald, R. Frost, and B. Nelson.
On the accuracy of memory reference models. In
Proceedings of the 7th international conference on
Computer performance evaluation : modelling
techniques and tools, pages 369–388, Secaucus, NJ,
USA, 1994. Springer-Verlag New York, Inc.

[25] K. Grimsrud, J. Archibald, R. Frost, and B. Nelson.
Locality as a visualization tool. IEEE Transactions on
Computers, 45(11):1319–1326, 1996.

[26] R. Hassan, A. Harris, N. Topham, and A. Efthymiou.
A hybrid markov model for accurate memory reference
generation. In Proceedings of the IAENG International
Conference on Computer Science. IAENG, 2007.

[27] R. Hassan, A. Harris, N. Topham, and A. Efthymiou.
Synthetic trace-driven simulation of cache memory. In
AINAW ’07: Proceedings of the 21st International
Conference on Advanced Information Networking and
Applications Workshops, pages 764–771, Washington,
DC, USA, 2007. IEEE Computer Society.

[28] D. J. Kerbyson, H. J. Alme, A. Hoisie, F. Petrini, H. J.
Wasserman, and M. Gittings. Predictive performance

and scalability modeling of a large-scale application.
In Supercomputing ’01: Proceedings of the 2001
ACM/IEEE conference on Supercomputing (CDROM),
pages 37–37, New York, NY, USA, 2001. ACM.

[29] Y. H. Kim, M. D. Hill, and D. A. Wood.
Implementing stack simulation for highly-associative
memories. In SIGMETRICS ’91: Proceedings of the
1991 ACM SIGMETRICS conference on Measurement
and modeling of computer systems, pages 212–213,
New York, NY, USA, 1991. ACM Press.

[30] S. Laha. Accurate low-cost methods for performance
evaluation of cache memory systems. PhD thesis,
Urbana, IL, USA, 1988.

[31] S. Liu and J. Chen. The effect of product gas
enrichment on the chemical response of premixed
diluted methane/air flames. In Proceedings of the
Third Joint Meeting of the U.S. Sections of the
Combustion Institute, Chicago, Illinois, March 16-19
2003.

[32] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and
K. Hazelwood. Pin: building customized program
analysis tools with dynamic instrumentation. In PLDI
’05: Proceedings of the 2005 ACM SIGPLAN
conference on Programming language design and
implementation, pages 190–200, New York, NY, USA,
2005. ACM Press.

[33] P. Luszczek, J. Dongarra, D. Koester, R. Rabenseifner,
B. Lucas, J. Kepner, J. McCalpin, D. Baily, and
D. Takahashi. Introduction to the HPC Challenge
Benchmark Suite, April 2005. Paper LBNL-57493.

[34] G. Marin and J. Mellor-Crummey. Crossarchitecture
Performance Predictions for Scientific Applications
Using Parameterized Models. In SIGMETRICS 2004
/PERFORMANCE 2004: Proceedings of the Joint
International Conference on Measurement and
Modeling of Computer Systems, pages 2–13, New
York, NY, 2004. ACM Press.

[35] M. Mathis and D. J. Kerbyson. Performance modeling
of mcnp on large-scale systems. In Proceedings of the
LACSI Symposium, Los Alamos, NM, 2002. Los
Alamos Computer Institute.

[36] R. Mattson, J. Gecsei, D. Slutz, and I. Traiger.
Evaluation Techniques for Storage Hierarchies. IBM
System Journal, 9(2):78–117, 1970.

[37] X. Shen, Y. Zhong, and C. Ding. Regression-based
multi-model prediction of data reuse signature. In
Proceedings of the 4th Annual Symposium of the Las
Alamos Computer Science Institute, Sante Fe, New
Mexico, November 2003.

[38] A. Snavely, L. Carrington, N. Wolter, J. Labarta,
R. Badia, and A. Purkayastha. A Framework for
Application Performance Modeling and Prediction. In
Supercomputing Š02: Proceedings of the 2002
ACM/IEEE Conference on Supercomputing, pages
1–17, Los Alamitos, CA, 2002. IEEE Computer
Society Press.

[39] M. Snir and J. Yu. On the theory of spatial and
temporal locality. Technical Report
UIUCDCS-R-2005-2611, July 2005.

[40] E. S. Sorenson. Using locality to predict cache
performance. Master’s thesis, Brigham Young
University, 2001.

[41] E. S. Sorenson. Cache Characterization and
Performance Studies Using Locality Surfaces. PhD
thesis, Brigham Young University, 2005.

[42] E. S. Sorenson and J. K. Flanagan. Cache
characterization surfaces and prediction workload miss
rates. In Proceedings of the Fourth IEEE Annual
Workshop on Workload Characterization, pages
129–139, December 2001.

[43] E. S. Sorenson and J. K. Flanagan. Evaluating
synthetic trace models using locality surfaces. In
Proceedings of the Fifth IEEE Annual Workshop on
Workload Characterization, pages 23–33, November
2002.

[44] J. R. Spirn. Program Behavior: Models and
Measurements. Elsevier Science Inc., New York, NY,
USA, 1977.

[45] E. Strohmaier and H. Shan. Apex-map: A global data
access benchmark to analyze hpc systems and parallel
programming paradigms. In SC ’05: Proceedings of
the 2005 ACM/IEEE conference on Supercomputing,
page 49, Washington, DC, USA, 2005. IEEE
Computer Society.

[46] R. A. Sugumar. Multi-configuration simulation
algorithms for the evaluation of computer architecture
designs. PhD thesis, Ann Arbor, MI, USA, 1993.

[47] D. Thiebaut. From the fractal dimension of the
intermiss gaps to the cache-miss ratio. IBM J. Res.
Dev., 32(6):796–803, 1988.

[48] D. Thiebaut. On the fractal dimension of computer
programs and its application to the prediction of the
cache miss ratio. IEEE Trans. Comput.,
38(7):1012–1026, 1989.

[49] D. Thiebaut, J. L. Wolf, and H. S. Stone. Synthetic
traces for trace-driven simulation of cache memories.
IEEE Trans. Comput., 41(4):388–410, 1992.

[50] M. Tikir, L. Carrington, E. Strohmaier, and
A. Snavely. A genetic algorithms approach to
modeling the performance of memory-bound
computations. In Proceedings of the 2007 ACM/IEEE
Conference on Supercomputing, pages 82–94, Reno,
Nevada, November 10-13 2007.

[51] M. Tikir, M. Laurenzano, L. Carrington, and
A. Snavely. The PMaC binary instrumentation library
for PowerPC. In Workshop on Binary Instrumentation
and Applications, 2006.

[52] J. Weinberg, M. McCracken, A. Snavely, and
E. Strohmeir. Quantifying locality in the memory
access patterns of hpc applications. In SC ’05:
Proceedings of the 2005 ACM/IEEE conference on
Supercomputing, Seattle, WA, November 2005.

[53] J. Weinberg and A. Snavely. Symbiotic space-sharing
on sdsc’s datastar system. In The 12th Workshop on
Job Scheduling Strategies for Parallel Processing
(JSSPP ’06), St. Malo, France, June 2006.

[54] J. Weinberg and A. Snavely. Chameleon: A framework
for observing, understanding, and imitating the
memory behavior of applications. In PARA08:
Workshop on State-of-the-Art in Scientific and
Parallel Computing, Trondheim, Norway, May, 2008.

[55] T. Wen, J. Su, P. Colella, K. Yelick, and N. Keen. An
adaptive mesh refinement benchmark for modern
parallel programming languages. In Supercomputing
2007, November 2007.

[56] W. S. Wong and R. J. T. Morris. Benchmark synthesis
using the lru cache hit function. IEEE Trans.
Comput., 37(6):637–645, 1988.

[57] Y. Zhong, C. Ding, and K. Kennedy. Reuse distance
analysis for scientific programs. In Proceedings of
Workshop on Languages, Compilers, and Run-time
Systems for Scalable Computers, Washington DC,
March 2002.

[58] Y. Zhong, S. G. Dropsho, and C. Ding. Miss rate
prediction across all program inputs. In PACT ’03:
Proceedings of the 12th International Conference on
Parallel Architectures and Compilation Techniques,
page 79, Washington, DC, USA, 2003. IEEE
Computer Society.

