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ABSTRACT

Bio-inspired ad hoc routing is an active area of research.
The designers of these algorithms predominantly evaluate
the performance of their protocols with the help of simula-
tion studies. Such studies are mostly scenario and simula-
tor specific and their results cannot be generalized to other
scenarios and simulators. Therefore, we argue that math-
ematical tools should be utilized to develop a consistent,
provable and compatible formal framework in order to pro-
vide an unbiased evaluation of Bio-inspired ad hoc routing
protocols. Motivated by this requirement, in this paper, we
develop a probabilistic performance evaluation framework
that can be used to model the following key performance
metrics of an ad hoc routing algorithm: (1) routing over-
head, (2) route optimality, and (3) energy consumption. We
utilize this framework to model a well known Bee-inspired
routing protocol for ad hoc sensor networks, BeeSensor. We
also show that the proposed framework is generic enough
and can easily be adapted to even model a classical rout-
ing protocol, Ad Hoc on Demand Distance Vector (AODV).
The modeled metrics of the two algorithms not only allow
unbiased performance comparison but also provide interest-
ing insights into the parameters governing the behavior of
these routing protocols.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]|: [Distributed
networks, Wireless communication, Network communications,
Network topology]; C.2.2 [Network Protocols]: [Rout-
ing protocols]; C.4 [Performance of Systems]: [Modeling
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techniques]; G.3 [Probability and Statistics]: [Distrib-
ution functions, Probabilistic algorithms (including Monte
Carlo), Stochastic processes]

General Terms

Algorithms, Design, Performance, Theory

Keywords

Mathematical Models, Routing and Layout, Swarm Intelli-
gence, Telecommunications, Wireless Ad Hoc Networks

1. INTRODUCTION

Wireless ad hoc sensor networks is an active area of re-
search due to their potential utilization in a large set of
applications that include target field imaging, intrusion de-
tection, weather monitoring, security and tactical surveil-
lance and disaster management [8]. Design and develop-
ment of Bio-inspired routing protocols for sensor networks
has received little attention. In [3] and [15], the authors
reported the ant based routing algorithms for wireless sen-
sor networks. Recently proposed BeeSensor [12] protocol
tries to combine the efficient performance of BeeHive [5, 13]
with the energy efficiency of BeeAdHoc [4]. These relevant
protocols, though inspired from totally different colony sys-
tems, have one important thing in common:the designers of
the protocols have predominantly evaluated the performance
metrics of their protocols with the help of simulation studies
only. But a statistical survey by Kurkowski et al. [6] clearly
identifies the serious shortcomings of simulation-based per-
formance evaluation. Therefore, we argue that simulation
studies must be complemented with mathematical evalu-
ation for a consistent, provable, compatible and unbiased
evaluation of Bio-inspired ad hoc routing protocols.
Designing a formal framework that models the key perfor-
mance parameters of Bio-inspired ad hoc routing protocols
is a difficult task due to a number of challenges: (1) sto-
chastic nature of the physical medium in wireless networks,
(2) continuously changing network topology, (3) random ge-
ographical placement of the sensors nodes in real networks,
(4) stochastic re-broadcasting principle utilized by many ad
hoc routing protocols, (5) stochastic routing mechanism em-
ployed by the Bio-inspired protocols, and last but not least
(6) no agreed definition about the notion of optimality. The
real daunting task is to model the behavior of a stochastic
routing protocol deployed in a stochastic environment. In
this paper we report, to the best of our knowledge, first ever



formal performance evaluation framework that can be used
to model the following widely-accepted performance metrics
of wireless ad hoc routing algorithms [2]: (1) routing over-
head, (2) route optimality, and (3) energy consumption.
The derived metrics can be parameterized in a generic model,
which can then be easily adapted to a number of specific ad
hoc routing protocols. In this paper, we model BeeSensor
and the de facto AODV protocol 7] by utilizing our proposed
framework. This effort provides us with intriguing insights
into the behavior of these protocols that could not be in-
ferred through simulation-based evaluations. For instance,
one important finding of our study is that a purely stochastic
flooding approach is inappropriate for ad hoc routing because
such an approach cannot ensure route establishment even if
the probability of rebroadcasting route requests is quite high.
We will discuss other insights once we introduce our model.
Related Work. As mentioned before, virtually no at-
tempts are made to formally model the behavior of Bio-
inspired routing protocols with the exception of the work of
Roth [9] [10] and Zahid et al. [14]. The later work, however,
is limited to the fixed networks only. In [10], Roth provided
an analytical justification of the three pheromone update
mechanisms used in Termite [11]. He has also developed an
analytical framework based on the Markov chains for the
analysis of probabilistic routing protocols [9].
Organization of Paper. The rest of the paper is orga-
nized as follows. Section 2 contains system description and
modeling assumptions. Section 3 describes the modeling of
routing overhead followed by the route optimality model in
Section 4. The expressions for the total energy consumed
during the transmission and reception of the packets are de-
rived in Section 5. Finally we conclude our paper with an
outlook to our future research.

2. SYSTEM DESCRIPTION AND MODEL-
ING ASSUMPTIONS

2.1 Basic Graph Terminology

A typical graph is denoted by G(V, E) in which V is a set
of vertices in the graph and F is the set of edges. This model
can be used to represent an ad hoc network in which indi-
vidual nodes are the vertices of the graph connected through
wireless links (edges of the graph). In this section, defini-
tions of basic graph-theoretic terms are provided.

Node degree: Degree of a node z, d(z), represents the
number of nodes directly connected with z. Minimum de-
gree of a graph G is then defined as:

dmin(G) = min {d(x)}

A similar term is the average node degree defined as:

VxeG

A node with zero degree is an isolated node.

Connected and disconnected graphs: A graph is said
to be connected if there exists at least a single path between
each pair of nodes in the graph [1]; otherwise, the graph is
said to be disconnected. If there exists at least & mutually
independent paths between each node pair in the graph, the
graph is said to be k-connected. Another interesting term is
edge connectivity. A graph is said to be k-edge connected
if and only if k edge-disjoint paths exist between each node
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pair. A k-connected graph is also a k-edge connected graph
but the reverse is not always true.

2.2 Network Topology

Network topology of an ad hoc network plays the piv-
otal role in modeling of an upper layer protocol. As nodes
are connected through wireless links, their deployment pat-
tern and adjustment of their transmission powers is criti-
cal to keep the graph connected. Fortunately, this problem
has already been addressed in Bettstetter’s seminal work
[1]. Assuming that N nodes are randomly distributed and
connected through symmetric links, Bettstetter derived an
expression that, for a given node density p, determines the
transmission range ro to ensure that a randomly chosen node
will have exactly mo neighbors. Specifically, probability P
that a node has exactly no neighbors is given by

(,071'7'8)”0 . 6—p‘rr'r§

P(d=
( ’fLo!

no) = (1)

Putting n = 0 in (1) gives the probability that a node se-
lected at random will be an isolated node; i.e. P(d =0) =

e=PmT, Expected or average degree of a node is given by
the following relation:

E(d) = dgvg = prrg — 1. (2)

To be sure with a certain probability p that the network
having n >> 1 nodes is connected, we must set

—In(1 —p~)

o 3)

To =2
Equation (2) and (3) can be used to create an ad hoc net-
work with desired on-average topology characteristics. For
example, if 1000 nodes (n = 1000) are distributed in an area
of 108 mz, transmission radius ro of each node must be set to
a value greater than 60 m so that the network is connected
(with 99 % probability) and each node has an average degree
of 11.

2.3 Modeling Assumptions

We assume a dense network with an average degree of
davg and having symmetric links between the nodes. The
nodes are deployed according to a homogeneous Poisson dis-
tribution with the node density p and each node having a
transmission radius 9. For performance evaluation under
ideal routing conditions, we ignore Medium Access Control
(MAC) layer contention/collisions and link quality varia-
tions. Thus we study the behavior of a routing algorithm
in a purely geometric graph model by ignoring the problems
that are beyond the control of a network layer protocol.

3. ROUTING OVERHEAD MODEL
3.1 Generic Model

In this section, we describe and model the route discov-
ery mechanism of typical reactive ad hoc routing protocols.
In reactive protocols, route discovery is initiated by a node,
called source node, when it has some data to deliver to an
unknown destination. The source node broadcasts a route
request (RREQ) packet to all the nodes within its transmis-
sion radius. In a pure flooding protocol, each intermediate
node rebroadcasts this RREQ packet until it reaches the
intended destination. However, to keep the model generic,



Transmission circle
of source node S

Figure 1: Route discovery in an ad hoc network

we assume that intermediate nodes rebroadcast the RREQ
with some probability p,. Henceforth, we refer to p, as the
rebroadcasting probability.

We define Routing overhead as: the number of RREQs that a
protocol transmits in the network up to a particular number
of hops, h, during the route discovery phase. Our definition
of Routing overhead is a generic definition that also incor-
porates the distinguishing feature of many ad hoc routing
protocols that do not flood the RREQs in the entire net-
work e.g. expanding ring search algorithms.

Consider a source node S that initiates a route discovery
process (see Figure 1) by broadcasting an RREQ packet to
all its neighbors. In the rest of this section, we derive an ex-
pression for the expected routing overhead incurred during
this process in a reactive ad hoc routing algorithm.

3.1.1 Routing Overhead in terms of Expected For-
ward Degree

The initial RREQ broadcasted by the source is received by
davg nodes, the average degree of a node. Each one of dgug
neighbors rebroadcasts the RREQ with probability p, and,
hence, the first hop rebroadcasting nodes equal p, X daug.
The receiving nodes rebroadcast the RREQ with probability,
pr, and the process continues. To compute total expected
routing overhead, we can accumulate the total number of
RREQs, Cp, injected into the network up to h hops from
the source node. This cumulative term is given as:

Cp = 1 + prdavg + pzdavgdf‘*‘

Prdavgds + ... + Pl davgd} . (4)

Individual terms in (4) represent the number of rebroadcast-
ing nodes at each hop. We have introduced a new term in
the equation, dy. We call it the expected forward degree of
a node and define it as: “the number of new neighbors of a
node that will receive the RREQ of that node and rebroad-
cast it to the next hop with probability p,”. This definition
is a direct consequence of the fact that every node receiv-
ing an RREQ is not likely to rebroadcast it. For example,
the rebroadcast of node T (see Figure 1) is received by the
nodes in strip I as well as the nodes located within the trans-
mission circle of source node S. However, the neighbors of
node S have already received a copy of RREQ and hence
are bound to drop the duplicate RREQ. It is important to
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Figure 2: Overlapping transmission circles of Node
Sand T

note here that we do not consider the case of super flood-
ing in which intermediate nodes might decide to rebroadcast
the duplicate RREQ if it is coming from a better path e.g.
shortest hop path.

The initial RREQ broadcasted by the source node is re-
ceived by duvg nodes and each one of them in turn rebroad-
casts the RREQ with probability p,. Hence, the first hop
rebroadcasting nodes equal prdavg. As each one of prdaug
nodes can reach dy nodes on the average, the total num-
ber of new nodes that will receive the first hop rebroadcasts
are prdavg X df. Now the receivers (prdavg X dy) are likely
to repeat it with probability p,, hence the total number
of rebroadcasting nodes at 2 hops from the source equals
Pr X (Prdavg X df) = p2davgdy (see the third term in (4)). In
this way, we calculate the number of rebroadcasting nodes
at each step using the expected forward degree of the nodes.
Getting back to (4), we have a total of h + 1 terms. The
closed form of the expression is

h—1
Cp =1+ prdavg Z(prdf)z~

=0

(5)

Cp includes the broadcasting of nodes at a distance of h
hops and all the previous hops’ broadcasts. Noting that the
summation in (5) is a finite geometric series, we obtain

1+ hprdavg
P 1+ prdavg (

if prdf =1
(6)

_ h
1 (erdp)? ) otherwise

1-prdy

Equation (6) validates the intuition that routing overhead
C, is directly proportional to rebroadcasting probability p,
and the number of hops that an RREQ packet has to travel.
As p, — 1, routing overhead becomes a univariate function
of h. Clearly, the value of h will increase with the size of the
network and so does the routing overhead. For p,. < 1, the
routing overhead will be comparatively smaller because not
all nodes in the network rebroadcast RREQs. The only re-
maining parameter of routing overhead in (6) is the expected
forward degree, dg, of a node. The next section derives the
expression for expected forward degree of a node.



3.1.2  Derivation of Node Expected Forward Degree

Expected forward degree of a node, dy, is dependent upon
the geometrical position of the node. Nodes located near the
periphery of the transmission circle of a node can cover the
maximum uncovered area. For example node T in Figure 1
is the peripheral node of the source S and is likely to reach
higher number of nodes in strip I than the interior nodes.
To calculate the forward degree of node T, we need to eval-
uate the number of nodes common to the source node S and
the node T, denoted by dcommon. Then, the forward degree
of node T will be davg — decommon- NOW dcommon is a func-
tion of the overlapping region which is the area in which
transmissions of both the nodes can be received correctly
(see Figure 2). Area of the sector VT'Z, Aj ., making an
angle 0 at the center of the circle is

s 1
vTZ = 57“(2)9

where 6 is in radians. When 0 — 27 radians, a case of
complete overlap, A}y, approaches 7ra. We need to com-
pute the area of the overlapping region containing black dots
i.e. Agot- Then the total area of the overlapping region is
simply the twice of this area i.e. Aoveriap = 2Adot. Adot
can be obtained by subtracting the area of triangle VT Z,
Ay = ?7‘3, from the area of sector VI'Z, A3 r,. After
simplification, we obtain

V3
—). 7
) 7)
0 can easily be calculated by considering the right angled tri-
angle VIT'W. Finally, we multiply (7) with the node density
(p) to calculate deommon.

2
onerlap =To (9 -

o V3

2

dcommon - ,07’0( 3 2 ) (8)
Equation (8) shows that the number of common neighbors
of any two nodes will vary directly with the node density (p)
and the transmission radius of the nodes (r9). Now forward
degree of node T is davg — decommon Which is the maximum
possible forward degree of a node within transmission range
of the source node S. On the other hand, nodes lying closer
to source will have approximately zero forward degree as
their rebroadcasts may not be heard by any node in strip
I. Hence, the Expected forward degree of a node within the
transmission circle of the source S is approximately equal to
_ duny = pri(E = )

dy 5 : 9)

Equation (9) shows that the Ezpected forward degree of a
node depends upon dgvg, node density p and the transmis-
sion radius ro. It is also important to mention that we as-
sume a constant value of dy at each hop of the network for
the sake of simplicity. In real networks, dy will keep decreas-
ing for protocols with p, > 0.5 as we move away from the
source and hence routing overhead calculated through our
proposed model will be higher, especially in large scale net-
works. However, for routing protocols with smaller values of
pr (e.g. pr < 0.5), df will approximately remain constant.

3.1.3 Evaluation for Varying Model Parameters

To further illustrate the significance of our proposed model,
we setup three networks with 1000, 3000 and 8000 nodes
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Figure 3: Routing overhead for varying rebroadcast-
ing probabilities (p:).

distributed randomly in an area of 1000m? with average de-
grees of 11, 12 and 13 respectively. ro, is chosen according
to (3) in order to keep the graphs connected. Figure 3 plots
the total number of control packets generated up to a dis-
tance of 5 hops against p,. As expected, as p, increases, the
number of control packets generated increase exponentially
because more and more RREQ receivers are now rebroad-
casting the route request. An interesting observation is the
dependence of C, on davg only. No matter what the node
density is, if the average degree of the node does not change,
Cy is same in each topology. This does not make sense intu-
itively, however. With higher node density, routing overhead
must increase. But keep in mind that as node density in-
creases, 1o need to be decreased to keep the graph connected
and hence expected increase in C}, is nullified accordingly.

3.2 Adaptation of Generic Model to Specific
Protocols

3.2.1 Routing Overhead of BeeSensor

BeeSensor is a multi-path routing algorithm for wireless
sensor networks based on the foraging principles of honey
bees [12] with an on-demand route discovery. BeeSensor
mainly utilizes three types of agents: packers, scouts and
foragers. Packers locate appropriate foragers for the data
packets at the source node. Scouts are responsible for discov-
ering a path to an unknown destination using broadcasting.
Foragers are the main workers of BeeSensor which follow
a point-to-point mode of transmission and carry the data
packets to a sink node.

When a source node detects an event and does not have
a route to the sink node, it launches a forward scout and
caches the event. A forward scout is propagated using the
broadcasting principle to all the neighbors of a node. In-
termediate nodes at a distance of two hops or less always
broadcast the forward scout with p, = 1 while rest of the
nodes rebroadcast it with p, = %
When the sink node receives a forward scout, it selects a
unique path ID (PID), converts the forward scout into a
backward scout and returns it to the source node. Each in-
termediate node including the sink node associates a reward
with the neighbors through which they receive the replicas
of a forward scout. A backward scout is propagated back
to the source node based on the reward. The sink node
forwards the backward scout to the neighbor for which this
reward is maximum. The process is repeated at all interme-



diate nodes until the backward scout is back at the source
node. The source node calculates a dance number using the
reported path quality and updates the routing table.
Routing overhead can be modeled by adaptation of (4) to
the broadcasting principles used in BeeSensor. Recall that
the nodes at a distance of two hops or less re-broadcast the
forward scout with p, = 1 while rest of the nodes rebroad-
cast the forward scout with p, = % Hence, total number
of forward scouts injected into the network or BeeSensor’s
routing overhead (in terms of number of forward scouts),
Cffi is given by:

OZ&& = 1 + davg + davgdf +

1.he _
)h Qdavgd? 1.

2

Summing up all the A + 1 terms and applying the finite
geometric series summation, we have

1
5al,wgcl’jﬂr...4-(

1+ davg + (25%) davg - d} for h=1/ds =2

bee
™ =V 1+ duvg+
Q,L%de,g ~dy (%) otherwise.

(10)
where dy is given by (9). Equation (10) shows that as we
move away from the source, the routing overhead decays
exponentially (in powers of 2) with respect to the number

of hops.

3.2.2 Routing Overhead of AODV

We skip the description of AODV for the sake of brevity
because it is a de facto routing algorithm for ad hoc net-
works. However, an interested reader can refer to [7] for
further details. Routing overhead model for AODV is even
simpler to derive. Since each intermediate node in AODV
rebroadcast the RREQ packet with p, = 1, its routing over-

head, C°% is obtained by putting p, = 1 in (6).
C;g,od'u — (1 1)
17(df)h .
1+ davg ( T—d; ) otherwise.

We have intentionally avoided the case in which intermedi-
ate nodes may generate RREPs instead of rebroadcasting
the RREQs. Hence, CS"d” is the worst case AODV routing
overhead. As number of hops increase, the term (dy)" will
increase, thereby resulting in higher routing overhead.

3.2.3 Comparison of BeeSensor and AODV Routing
Overheads

To compare the routing overheads of both protocols, we
plot C’g()d” and Cgee as a function of the number of hops
from the source node in a network of 8000 nodes. The re-
sults are shown in Figure 4. Initially, up to 2 hops, both
protocols generate the same number of control packets as
they both use p, = 1 up to this hop limit. Beyond this
point, BeeSensor starts rebroadcasting forward scouts selec-
tively with p, = %, thereby drastically reducing its routing
overhead.

Based on these results, we conclude that BeeSensor gen-
erates significantly fewer control packets than AODV for
number of hops greater than 2. While having higher rout-
ing overhead, AODV has the advantage that it will discover
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Figure 4: Comparison of AODV and BeeSensor

routing overheads at different hops from the source
node.

the shortest or optimal path to a destination. As BeeSen-
sor does not broadcast forward scouts on all possible paths,
its route optimality characteristics should be compared with
AODYV. The following section provides this comparison.

4. ROUTE OPTIMALITY
4.1 Generic Model

Route optimality is another key performance metric that
is used for evaluation of ad hoc routing protocols. Therefore,
in this section, we first propose a generic model for route op-
timality. This model is then adapted to the BeeSensor and
AODV protocols.

We define an optimal route as a path with the least number
of hops between a source and a destination. Let ¢ denote the
length of the optimal path between two nodes. We assume
a dense network in which there are k edge disjoint paths be-
tween the source-destination pair under consideration. The
reason for assuming edge-disjoint paths is to model the most
common broadcasting pattern found in ad hoc routing pro-
tocols. Under this scheme, intermediate nodes rebroadcast
the first RREQ received from one of their neighbors and dis-
card the future RREQs. In this way, they are only likely to
discover edge-disjoint paths. The model also assumes that
the routing protocol only maintain a single shortest path to
the destination.

We assume, as in the case of routing overhead model, that
intermediate nodes rebroadcast RREQs with probability p,
during route discovery. As another generalization, we as-
sume that a function f[i — ¢] provides the total number of
edge-disjoint paths of length ¢ between the source-destination
nodes under consideration. For instance, if there exist 10
edge-disjoint optimal paths of length ¢ and 12 edge-disjoint
paths of length ¢+ 1 between the source and the destination,
then f[0] = 10 and f[1] = 12.

4.1.1 Probability of Optimal Path Discovery

Now if the probability of discovering an optimal path be-
tween the given node pair is ¢, then the probability of failure
(i.e. probability of not finding any optimal path) is (1 — ¢).
Given that optimal paths are ¢ hops long and p, is the re-
broadcasting probability, ¢ = (p-)". The present problem
represents a Bernoulli trial with € as the probability of suc-
cess and (1—e€) as the probability of failure. Now the success
probability of finding j optimal paths out of a total of f[0]



optimal paths is simply a binomial distribution given by the
following expression.

710}

b 100 = Pxt =) = (71

) F(1— e,
where X|[t] is a random variable representing the number of
t hop paths discovered successfully. Then the probability of
discovering at least a single optimal path is P(X[t] > 1) =
1—-(1- e)f[o]. Plugging in the value of ¢ yields:

P(X[] > 1) =1—(1—(p)")"", (12)

where the term (1 — (p,)!)I” characterizes the probability
that the routing algorithm fails to find any optimal path.
The imperative question at this point is: What parameters
minimize the failure probability for a given routing proto-
col? This minimization can be achieved in two ways: (1) By
increasing the value of f[0] (i.e. by increasing the number
of optimal paths), or (2) by increasing the value of p,. This
argument can also be verified intuitively: for a fixed p,, as
the number of optimal path (f[0]) increases, the probabil-
ity of failure in discovering any of the f[0] optimal paths
decreases. A similar argument holds for p, and the proba-
bility of failure; note that the limiting case of p, = 1 will
ultimately result in a zero failure probability.

4.1.2 Probability of Suboptimal Path Discovery

Based on the derivations in the last section, we now derive
the probability of discovering a suboptimal route i.e. the
routes of length ¢ +n hops where n = 1,2,.... The question
that we are trying to address is: What is the probability of
discovering at least a single route of ¢+ 1 hops? Discovering
a path of t + 1 hops automatically implies that an optimal
path of length ¢ hops has mot been discovered because if
the optimal path is available then the suboptimal routes
would be discarded by the source or intermediate nodes.
Similarly, the probability that a t + 2 hops suboptimal path
is discovered assumes that no paths of lengths ¢ and ¢ + 1
have been discovered. We apply this chain rule and use (12)
to derive expressions for these probabilities.

PX[+1]21) = (1- (1= ep)™) (1= 0"

P(X[t+2]>1)= (1 _ (1 _ e(pr)Q)f[Q]) %
(1 —ep) M (1 — &)

P(X[t+3]>1) = (1 _ (1 _ E(pT)3)f[3]) o
(1= e(pr)?)™ (1 = ep) M (1 — &7,

where f[1], f[2] and f[3] provide the total number of avail-
able edge-disjoint paths of length t + 1, ¢t + 2 and t + 3,
respectively. In a similar way, probability of finding at least
a path of length ¢t + n hops is

P(X[t+n]>1)= (1 — (1 —e(pr)™)/ ) x
(L= o)1) (1= 70

The above expression shows that as n — oo, failure prob-
ability of finding any path to the sink node approaches 1,
which in turn leads to zero probability of finding any path
of length t + n hops. Hence, we conclude that suboptimal
paths are less probable as compared to optimal paths even
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in case of a protocol that performs purely stochastic broad-
casting of RREQs. This argument favors the use of selective
broadcasting, pr < 1, in ad hoc networks. Such selective
broadcasting will reduce the routing overhead while optimal
routes would still be discovered with fairly high probability.

4.1.3 Expected Probability of Path Establishment

Now that we have derived and compared probabilities of
optimal and suboptimal path discoveries, we turn our at-
tention to another related problem. Specifically, we note
that route establishment is not always guaranteed for pro-
tocols that use p, < 1. For instance, in a sparse graph, if
all the nodes are not forwarding RREQ packets, there is a
likelihood that no RREQ will reach the destination, and con-
sequently a source-destination path will not be established.
Therefore, in addition to the path optimality problem, it is
important to evaluate the marginal probability of path es-
tablishment, irrespective of the path length.

Based on the probabilities of optimal and suboptimal paths,
the expected probability of finding a path (irrespective of
the path length) between a source-destination pair is:

B{X} ~ wlo] (1-(1-o/)+

. NG

> wli <17 (176(;”)) ) x

=1
: N\ Fli—d]
[1(1-<tw™) (13)
j=1

where w[i] = % is the normalized weight of the paths

of lengths i. A closer look at expressions for P(X|[t + 1]),
P(X[t+2]), P(X[t+ 3]) and so on, reveals that the number
of terms in the product continue to increase with an increase
in the path length. Each new term represents a probability
value which is always less than or equal to 1. When p, = 1,
this summation simply reduces to 1. As a result, optimal
path is discovered with probability 1. For p, < 1, we note
that when the fractions in (13) are multiplied together, the
product is a fraction which is less than the smallest frac-
tion, (1 — €)?1° in this case. Thus the probability of failing
to establish a route decays with an increase in the number
of available paths.

In Figure 5, we plot optimal and suboptimal route discov-
ery probabilities for varying values of p, . The optimal path
length in the figure is 5 hops, f[i] is an exponentially de-
creasing function, and n is set to 3 in (13). In the same
figure, we also plot the expected probability of path estab-
lishment, irrespective of the path length. It is clear that as
pr increases, the probability of finding an optimal route also
increases, thereby resulting in a diminishing probability of
finding suboptimal paths. It is also clear from Figure 5 that
the success probabilities of finding suboptimal paths is very
small even at very high values of p,. In fact, we observe a
very sharp decrease in these probabilities as p, approaches
1. We have already discussed that the reason for this is the
increase in the optimal route discovery probability.
Another very interesting result can be observed from Figure
5. The figure shows that the expected probability of route
establishment exhibits a steady and linear increase with re-
spect to p,. However, the probability of route establishment
reaches 0.4 at p, =~ 0.6 which means that in many cases
a probabilistic RREQ forwarding protocol will not even be
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Figure 6: Expected probability of path discovery
against different lengths of optimal path.

able to establish a path to the destination. We contemplate
that probably the authors of BeeSensor introduced the con-
dition that the first two hops must always rebroadcast for-
ward scouts with p, = 1 to mitigate this problem. We show
in the following section that this optimization significantly
increases the route establishment probability. Nevertheless,
this result is a clear indication that a purely stochastic flood-
ing model is inappropriate for ad hoc routing because such
an approach cannot ensure route establishment even if the
rebroadcasting probability is quite high.

Figure 6 shows the expected probabilities against different
optimal route lengths at different values of the rebroadcast-
ing probability p,. Expected probabilities seem to be a di-
rect function of the rebroadcasting probability, p,.. Thus
while the value of expected success probability increases
with p,, length of the optimal path seems to have very neg-
ligible effect on the path discovery probability.

4.2 Adaptation of Generic Route Optimality
Model to Specific Protocols

We now map the route optimality probabilities to AODV
and BeeSensor. Mapping to AODV is trivial because it uses
pure flooding, p, = 1. As we are assuming perfect channel
conditions and no contention, it is guaranteed that an opti-
mal path will be discovered i.e. E*°¥{X} = 1. Henceforth,
we focus on evaluating the route optimality of BeeSensor.
BeeSensor uses a mix of pure and stochastic broadcasting
techniques to deliver the forward scouts to the destination
node. Before we talk about the route optimality of BeeSen-
sor, recall that it is a multi-path routing protocol in which
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routes with better energy metric are preferred. However, for
the sake of consistent comparison, we do not consider this
energy metric in the definition of optimal path. Rather, we
assume that all routes have equal energy and therefore the
shortest path is the optimal path.

Probability of discovering an optimal route in BeeSensor
is dependent upon the length of the optimal route, ¢t. If
t < 3, probability of discovering an optimal route is 1 be-
cause nodes within two hop distance of the source rebroad-
cast the forward scouts with p, = 1. Hence, in the remainder
of this section, we only model the probability of success in
discovering the routes of 4 or more hops.

We go back to (13) and solve it for BeeSensor. The value of
¢ in this case will be (p,)" ™, where t is the length of optimal
route. As individual nodes more than two hops away from
the source rebroadcast the forward scout with probability
pr = %, approximate expected probability (by considering
just three suboptimal path lengths) of discovering at least a
single path using BeeSensor is

wl0] (1 —(1- e)f“’]) +

~

Ebee{X}

jﬁ(l— (;)i_])f[i—j] "

Equation (14) can be analyzed by comparing it with Figure
6 which shows the expected success probability for a purely
probabilistic routing protocol with p, = % We emphasize
that € = (p,)" for pure probabilistic forwarding, while in the
case of BeeSensor it is (p.)' which is a much larger value.
This means that (1 — €)/%)] the failure (of route establish-
ment) probability of BeeSensor will be much lower than the
failure probability of a purely probabilistic protocol shown
in Figure 6.

5. ENERGY CONSUMPTION MODEL

Route optimality and routing overhead are the baseline
metrics used for evaluation of ad hoc routing algorithms.
Route optimality provides us with the success probability of
finding a route of particular length, while routing overhead
represents the expenditures in terms of bandwidth/energy
incurred during the route discovery phase. Once we have
these two metrics, we can infer a number of other perfor-
mance metrics from these two baseline metrics. In this sec-
tion, we use these metrics to derive simple expressions of
total energy consumption to show their significance. The
energy expressions only count the energy consumed during
the transmission and reception of packets from the network
interface, the two main sources of energy drain in an ad hoc
network.

We divide the energy consumption into two broad categories.
In the first category, we count the energy consumed during
the route discovery process, F,q. In the second category, we
model the energy consumed during data transmission, F4qtq.
The total energy consumed, Eiotq; in joules, is E.q + Eqata-
Eq is the sum of energy consumed during the broadcasting
of RREQ packets (Erreq) and the energy consumed dur-
ing the propagation of route reply back to the source node
(Errep) ie. Eq= Erreq + E'r‘rep~

Knowing the number of control packets generated in the net-



work, Cp, through equation (6), Erreq in joules, is given by
the following expression:

E’r'req = CpBrreq(Et + dangr)~ (15)

Where B;req is the size of RREQ packet in bits, and E,
and FE are the energies (in joules) required for the reception
and transmission of one bit. Clearly, E;.c, depends on the
length of the path discovered in terms of the number of hops.
If L; is the length of the route, then E,r¢p (in joules) is

Errep = LtB'rrep(Et + ET)7 (16)

where Bjrep represents the size (bits) of an RREP packet.
Equation (16) provides the energy consumed in the propa-
gation of a single RREP packet. Now the only remaining
component is the energy consumed during the data trans-
mission phase, Fguto. Energy consumed in this phase is
dependent upon the total number of data packets generated
at the source node. If M is the number of data packets and
Buyata is the size of data packet, we have

Edatu = LtMBdata(Et + ET‘) (17)

Combining equations (15), (16) and (17) gives the final generic
expression for Eiotq; as

Eiotar = Ly (MBdata+Brrep)(Et+Er)+CpBrreq(Et+davg(]E7‘))-
18
The above expression shows that broadcast traffic is the
dominant source of energy drain in an ad hoc network, es-
pecially when M is very small. C, for a pure flooding pro-
tocol, is theoretically equal to the size of the network while
L is comparatively a very small number. In large scale net-
works, where number of nodes might be in the order of few
thousands, this contribution will be prohibitive for network
lifetime as each broadcast packet is received by da.g nodes.
Equation (18) can be easily adapted to any protocol. Size
of the packets (Bdata, Brrep and Brreq) might be different
in different routing algorithms along with their respective
routing overheads. These values can be plugged in (18) to
calculate the total energy consumed by a routing protocol.

6. CONCLUSION AND FUTURE WORK

The major contribution of this paper is a probabilistic
formal framework that can be used to model important per-
formance parameters: routing overhead, route optimality
and energy consumption, of ad hoc routing algorithms. We
modeled a Bee-inspired routing protocol, BeeSensor, and a
well known classical algorithm, AODV, with the help of our
framework. The important conclusions of this undertaking
are: (1) Routing overhead generated in a given network is
a function of the rebroadcasting probability as well as the
size of the network (number of hops), (2) In a sparse but
connected network, the number of rebroadcasting nodes re-
quired to deliver the information to each node of the network
is much smaller than the size of the network. This is a valu-
able piece of information that can help in conserving both
energy and bandwidth, which are precious resources in an ad
hoc network, (3) Route optimality is a function of the prob-
ability with which nodes rebroadcast RREQ packets and the
total number of available paths, (4) Success probability of
optimal paths discovery is always higher than the probabil-
ity of suboptimal path discovery, and (5) Energy consumed
during the broadcasting process is much higher in a dense
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network as each packet is received by a large number of re-
ceivers. As a future work, we want to refine our expression
of expected forward degree and incorporate the contention
at MAC layer so that our framework captures important
features of real ad hoc networks.
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