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ABSTRACT 
Determining if a group of proteins are functionally associated 
among themselves is an open problem in molecular biology. 
Within our long term goal of applying Genetic Programming (GP) 
to this domain, this paper evaluates the feasibility of GP to predict 
if a given pair of proteins interacts. GP has been chosen because 
of its potential flexibility in many aspects, such as the definition 
of operations. In this paper, the if-unknown operation is defined, 
which semantically is the most appropriate in this domain for 
handling missing values. We have also used the Tarpeian bloat 
control method to decrease the computational time and the 
solution size. Our results show that GP is feasible for this domain 
and that the Tarpeian method can obtain large improvements in 
search efficiency and interpretability of solutions. 

Categories and Subject Descriptors 
I.2.2 [Artificial Intelligence]: Automatic Programming; J.3 [Life 
and Medical Sciences]: Biology and genetics. 

General Terms 
Algorithms, Measurement, Performance, Experimentation. 

1. INTRODUCTION 
Understanding the protein interaction networks is essential to 
identify, explain and regulate the biological process dynamics in 
living systems. In recent years, many different computational 
prediction methods have arisen [3] with the aim of reducing costs. 
Related data exist distributed among multiple databases. 

We intend to approach the problem of protein-protein functional 
association prediction from attributes obtained from different 
sources and methods, as a binary classification problem. This 
problem can be tackled by traditional Machine Learning (ML) 
methods. But our long-term aim is to apply GP [1] to this 
biological domain because of GP's potential flexibility. 

One of the reasons for choosing GP is that this technique allows 
us to define the primitives most appropriate for the problem (for 
example, the if_unknown (if_?) operator, which manages the 
missing values). Also, we try to improve the accuracy and 
readability of equations evolved by GP by using the well founded 
Tarpeian bloat control mechanism [2], which biases evolution 
towards simple solutions, avoiding GP individuals growing in size 
without apparent gain in fitness. We also expected that the 
Tarpeian method will speed-up the evolution of solutions. 

2. PROTEIN-PROTEIN FUNCTIONAL 
ASSOCIATION PREDICTION PROBLEM 
In this research, we do not predict physical but functional 
interaction between pairs of proteins. The application domain is 
the proteome of E.coli which 4,339 known proteins. 
The database sources where the 89,401 positive instances are 
retrieved from are BIND, DIP, IntAct, EcoCyc, KEGG, iHoP and 
Butland’s set. Each one contains information about evidence 
(such as physical interactions, complexes, regulation processes, 
metabolic pathways and text mining) which indicates the 
possibility of an interaction between pairs of proteins. 

3. EXPERIMENTAL SET UP 

3.1 Data Representation and Solution Coding 
The data are represented in attribute-value pairs. We define 9 
features: 5 scores from 5 prediction computational methods [3] 
based on different evidence, and 4 biological characteristics. 
The instances are divided in two classes. The positive class 
includes pairs of proteins which appear in some of the databases 
previously mentioned. The negative class includes the rest of 
pairs composed by E.coli proteins, but not included in the positive 
set. After applying different filters, train and test sets have 10,000 
instances each one (half positive class half negative class). 
We define here the elements which are part of the GP trees. There 
are 10 terminals: the 9 attributes explained above and 1 ERC [1]. 
The operators used are the arithmetical ones, the conditional one 
[if (a>=b) then x else y], and finally one new specific operator, 
tailored for this domain: if_? [if (k is unknown) then x else y].  

3.2 Evolutionary Process 
The evolved individual f, is applied to two proteins (p1, p2), and a 
threshold is used to give a positive or a negative class. Hence, if (f 
>= threshold) then (p1, p2) functionally interact; else (p1, p2) do 
not interact. In this work, the threshold is 0.5. 

The fitness function is (TP+TN)/(TP+TN+FP+FN), according to 
T, True; F, False; P, Positives; and N, Negatives. 

An appropriate base configuration for the evolutionary process 
parameters (a detailed description in the lil-gp 1.1 GP tool manual 
[5]) has been found from a few preliminary experiments: 1,000 
for population size, 50 for no. generations, 17 for maximum 
depth, 200 for maximum no. nodes, crossover, reproduction and 
mutation like genetic operators (with 0.5, 0.1 and 0.4 probability, 
respectively), tournament with size=7 for individuals selection 
method, and arithmetical and conditional operators. 
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4. RESULTS 

4.1 Comparison with other ML Techniques 
Table 1 summarizes results from other ML techniques (using 
Weka [4]). All the parameters follow default Weka options.  

Table 1. GP and Machine Learning: accuracy comparison. 

Algorithm % 
Train 

%  
Test 

% Test 
with 

unknown 
values 

Test 
Sensitivity
TP/TP+FN 

Test 
Specificity
TN/TN+FP 

GP 62.34 / 
62.92 

60.83 / 
61.44 

60.67 / 
61.22 

58.87 / 
63.54 

62.62 / 
59.34 

ADTree 61.28 60.02 60.35 64.56 55.48 
AODE 62.48 61.32 58.99 48.60 74.04 
KStar 98.86 61.60 58.92 60.24 62.96 
MLP 58.85 58.22 60.00 20.40 96.06 
PART 64.06 61.96 58.33 60.84 63.08 
Simple 
Logistic 60.29 60.70 57.61 56.34 65.06 

SMO 59.17 59.96 57.62 56.98 62.94 

Table 1 shows that the accuracy in both train and test results (first 
and second columns) is nearly the same in all classifiers (except 
Kstar), with values around 60-61% in test (in GP, 60.83% on 
average and 61.44 for the best run). Besides, almost all algorithms 
get similar correct predictions in both classes (see the two last 
columns). In conclusion, GP gets accuracy about as high as most of 
traditional ML algorithms that we have tested. 

4.2 Changing Significant Parameters: if_? 
Operator and the Tarpeian Method 
4.2.1 Missing Values Handling Comparison 
A missing value is a feature without a known value in some of the 
instances. Missing values are a relevant problem in this domain, 
because of the huge number of them. The if_unknown operator is 
designed in this work specifically to try to solve this problem. 

Two different approaches for missing values handling are validated 
in this section. The former fills them in with a specific numerical 
flag (base configuration). The latter one preserves the missing 
values in the data, where GP adds the new operator (if_?). 
The second and third columns in Table 1 show the test accuracy 
corresponding to the first and the second approach, respectively. In 
the first approach, PART is slightly better than GP. However, if 
unknown values are preserved in the data set, GP outperforms the 
other ML algorithms (see the highest value in the third column). 

4.2.2 Different Configurations Comparison 
Figure 1 shows how tree size and execution time change for six 
different experiment configurations. All the configurations 
displayed come from averaging 30 GP runs. (a)Base is the initial 
configuration, whose parameters were mentioned previously. 
(b)Base without limit means the base configuration but without 
restricting the maximum tree size. (c)If_? refers to base 
configuration including this new operator. Finally, (e)Tarpeian 
configuration comprises this control bloat method and the without 
limit characteristic. (d)if_? & without limit and (f)if_? & Tarpeian 
are configurations which includes the elements of both of them. 
In Figure 1, the Y-axis quantifies size (in no. nodes) and time (in 
seconds) on average. The scale is the same for both measures. 
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Figure 1. Influence of if_? and Tarpeian: tree size and time. 

With reference to tree size and time (see Figure 1), the values for ‘c’ 
to ‘f’ configurations, which include the if_? operator or/and the 
Tarpeian method, are considerably lower than others. In addition, 
the solution size is quite shorter than in PART. 
To sum up, the if_? operator and the Tarpeian method reduce tree 
size and time, dropping scarcely test accuracy. Nevertheless, the 
obtained trees have an easier interpretation and a very much faster 
evolution process. Therefore, it seems convenient to include in the 
solution both the if_? operator and the Tarpeian method. 

5. CONCLUSIONS 
In this paper, we have applied Genetic Programming (GP) to the 
protein-protein functional association prediction problem. Our initial 
work shows that GP manages to obtain accuracy results similar to 
other ML methods (around 61%). Besides, the predictor integrates 
information from different sources. 
We have taken advantage of the flexibility offered by GP to define 
primitives. For example, if_? operator, that takes into account the 
large number of unknown values in our data. GP handles missing 
values slightly better than the rest of ML algorithms tested. 
We have tried to reduce bloat by means of the if_? operator and the 
Tarpeian method. Two negative effects of bloat are controlled in 
this domain. First, the tree size has been reduced. Second, the 
execution time goes down, due to do not wasting evaluating 
excessive big trees, improving the efficiency of the GP system. Both 
effects are achieved with almost no decrease in accuracy. 
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