
Protein-Protein Functional Association Prediction Using
Genetic Programming

Beatriz Garcia, Ricardo Aler, Agapito Ledezma, and Araceli Sanchis
Universidad Carlos III de Madrid, Computer Science Department

Avda. de la Universidad 30, 28911, Leganes, Madrid, Spain

{beatrizg, aler, ledezma, masm}@inf.uc3m.es

ABSTRACT
Determining if a group of proteins are functionally associated
among themselves is an open problem in molecular biology.
Within our long term goal of applying Genetic Programming (GP)
to this domain, this paper evaluates the feasibility of GP to predict
if a given pair of proteins interacts. GP has been chosen because
of its potential flexibility in many aspects, such as the definition
of operations. In this paper, the if-unknown operation is defined,
which semantically is the most appropriate in this domain for
handling missing values. We have also used the Tarpeian bloat
control method to decrease the computational time and the
solution size. Our results show that GP is feasible for this domain
and that the Tarpeian method can obtain large improvements in
search efficiency and interpretability of solutions.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming; J.3 [Life
and Medical Sciences]: Biology and genetics.

General Terms
Algorithms, Measurement, Performance, Experimentation.

1. INTRODUCTION
Understanding the protein interaction networks is essential to
identify, explain and regulate the biological process dynamics in
living systems. In recent years, many different computational
prediction methods have arisen [3] with the aim of reducing costs.
Related data exist distributed among multiple databases.

We intend to approach the problem of protein-protein functional
association prediction from attributes obtained from different
sources and methods, as a binary classification problem. This
problem can be tackled by traditional Machine Learning (ML)
methods. But our long-term aim is to apply GP [1] to this
biological domain because of GP's potential flexibility.

One of the reasons for choosing GP is that this technique allows
us to define the primitives most appropriate for the problem (for
example, the if_unknown (if_?) operator, which manages the
missing values). Also, we try to improve the accuracy and
readability of equations evolved by GP by using the well founded
Tarpeian bloat control mechanism [2], which biases evolution
towards simple solutions, avoiding GP individuals growing in size
without apparent gain in fitness. We also expected that the
Tarpeian method will speed-up the evolution of solutions.

2. PROTEIN-PROTEIN FUNCTIONAL
ASSOCIATION PREDICTION PROBLEM
In this research, we do not predict physical but functional
interaction between pairs of proteins. The application domain is
the proteome of E.coli which 4,339 known proteins.
The database sources where the 89,401 positive instances are
retrieved from are BIND, DIP, IntAct, EcoCyc, KEGG, iHoP and
Butland’s set. Each one contains information about evidence
(such as physical interactions, complexes, regulation processes,
metabolic pathways and text mining) which indicates the
possibility of an interaction between pairs of proteins.

3. EXPERIMENTAL SET UP

3.1 Data Representation and Solution Coding
The data are represented in attribute-value pairs. We define 9
features: 5 scores from 5 prediction computational methods [3]
based on different evidence, and 4 biological characteristics.
The instances are divided in two classes. The positive class
includes pairs of proteins which appear in some of the databases
previously mentioned. The negative class includes the rest of
pairs composed by E.coli proteins, but not included in the positive
set. After applying different filters, train and test sets have 10,000
instances each one (half positive class half negative class).
We define here the elements which are part of the GP trees. There
are 10 terminals: the 9 attributes explained above and 1 ERC [1].
The operators used are the arithmetical ones, the conditional one
[if (a>=b) then x else y], and finally one new specific operator,
tailored for this domain: if_? [if (k is unknown) then x else y].

3.2 Evolutionary Process
The evolved individual f, is applied to two proteins (p1, p2), and a
threshold is used to give a positive or a negative class. Hence, if (f
>= threshold) then (p1, p2) functionally interact; else (p1, p2) do
not interact. In this work, the threshold is 0.5.

The fitness function is (TP+TN)/(TP+TN+FP+FN), according to
T, True; F, False; P, Positives; and N, Negatives.

An appropriate base configuration for the evolutionary process
parameters (a detailed description in the lil-gp 1.1 GP tool manual
[5]) has been found from a few preliminary experiments: 1,000
for population size, 50 for no. generations, 17 for maximum
depth, 200 for maximum no. nodes, crossover, reproduction and
mutation like genetic operators (with 0.5, 0.1 and 0.4 probability,
respectively), tournament with size=7 for individuals selection
method, and arithmetical and conditional operators.

Copyright is held by the author/owner(s).
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
ACM 978-1-60558-130-9/08/07.

347

4. RESULTS

4.1 Comparison with other ML Techniques
Table 1 summarizes results from other ML techniques (using
Weka [4]). All the parameters follow default Weka options.

Table 1. GP and Machine Learning: accuracy comparison.

Algorithm %
Train

%
Test

% Test
with

unknown
values

Test
Sensitivity
TP/TP+FN

Test
Specificity
TN/TN+FP

GP 62.34 /
62.92

60.83 /
61.44

60.67 /
61.22

58.87 /
63.54

62.62 /
59.34

ADTree 61.28 60.02 60.35 64.56 55.48
AODE 62.48 61.32 58.99 48.60 74.04
KStar 98.86 61.60 58.92 60.24 62.96
MLP 58.85 58.22 60.00 20.40 96.06
PART 64.06 61.96 58.33 60.84 63.08
Simple
Logistic 60.29 60.70 57.61 56.34 65.06

SMO 59.17 59.96 57.62 56.98 62.94

Table 1 shows that the accuracy in both train and test results (first
and second columns) is nearly the same in all classifiers (except
Kstar), with values around 60-61% in test (in GP, 60.83% on
average and 61.44 for the best run). Besides, almost all algorithms
get similar correct predictions in both classes (see the two last
columns). In conclusion, GP gets accuracy about as high as most of
traditional ML algorithms that we have tested.

4.2 Changing Significant Parameters: if_?
Operator and the Tarpeian Method
4.2.1 Missing Values Handling Comparison
A missing value is a feature without a known value in some of the
instances. Missing values are a relevant problem in this domain,
because of the huge number of them. The if_unknown operator is
designed in this work specifically to try to solve this problem.

Two different approaches for missing values handling are validated
in this section. The former fills them in with a specific numerical
flag (base configuration). The latter one preserves the missing
values in the data, where GP adds the new operator (if_?).
The second and third columns in Table 1 show the test accuracy
corresponding to the first and the second approach, respectively. In
the first approach, PART is slightly better than GP. However, if
unknown values are preserved in the data set, GP outperforms the
other ML algorithms (see the highest value in the third column).

4.2.2 Different Configurations Comparison
Figure 1 shows how tree size and execution time change for six
different experiment configurations. All the configurations
displayed come from averaging 30 GP runs. (a)Base is the initial
configuration, whose parameters were mentioned previously.
(b)Base without limit means the base configuration but without
restricting the maximum tree size. (c)If_? refers to base
configuration including this new operator. Finally, (e)Tarpeian
configuration comprises this control bloat method and the without
limit characteristic. (d)if_? & without limit and (f)if_? & Tarpeian
are configurations which includes the elements of both of them.
In Figure 1, the Y-axis quantifies size (in no. nodes) and time (in
seconds) on average. The scale is the same for both measures.

a b c d e f
0

500

1000

1500

2000

2500

3000

3500
No.nodes
Time

configuration

si
ze

(n
od

es
)

&
 t

im
e(

se
cs

)

Figure 1. Influence of if_? and Tarpeian: tree size and time.

With reference to tree size and time (see Figure 1), the values for ‘c’
to ‘f’ configurations, which include the if_? operator or/and the
Tarpeian method, are considerably lower than others. In addition,
the solution size is quite shorter than in PART.
To sum up, the if_? operator and the Tarpeian method reduce tree
size and time, dropping scarcely test accuracy. Nevertheless, the
obtained trees have an easier interpretation and a very much faster
evolution process. Therefore, it seems convenient to include in the
solution both the if_? operator and the Tarpeian method.

5. CONCLUSIONS
In this paper, we have applied Genetic Programming (GP) to the
protein-protein functional association prediction problem. Our initial
work shows that GP manages to obtain accuracy results similar to
other ML methods (around 61%). Besides, the predictor integrates
information from different sources.
We have taken advantage of the flexibility offered by GP to define
primitives. For example, if_? operator, that takes into account the
large number of unknown values in our data. GP handles missing
values slightly better than the rest of ML algorithms tested.
We have tried to reduce bloat by means of the if_? operator and the
Tarpeian method. Two negative effects of bloat are controlled in
this domain. First, the tree size has been reduced. Second, the
execution time goes down, due to do not wasting evaluating
excessive big trees, improving the efficiency of the GP system. Both
effects are achieved with almost no decrease in accuracy.

6. ACKNOWLEDGMENTS
Data used in these experiments has been obtained in support of the
Structural Computational Biology Group in Spanish National
Cancer Research Centre (CNIO). This work has been supported by
CICYT (2004-07) TRA2004-07441-C03-02/IA project.

7. REFERENCES
[1] Koza J. Genetic Programming II. MIT Press, 1994.
[2] Poli R. A Simple but Theoretically-Motivated Method to

Control Bloat in Genetic Programming. In Proceedings of
EuroGP’03. Springer Berlin, (Apr 2003), 43-76.

[3] Valencia A. and Pazos F. Computational methods for the
prediction of protein interactions. Curr. Opin. Struct. Biol., 12,
3 (Jun 2002), 368-373.

[4] Witten I. H. and Frank E. Data Mining: Practical machine
learning tools and techniques. San Francisco, 2005.

[5] Zongker D. and Punch B. lil-gp. Michigan State University,
Michigan, 1998. http://garage.cse.msu.edu/software/lil-gp/.

348

