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ABSTRACT
In human genetics it is now possible to measure large num-
bers of DNA sequence variations across the human genome.
Given current knowledge about biological networks and dis-
ease processes it seems likely that disease risk can best be
modeled by interactions between biological components, which
may be examined as interacting DNA sequence variations.
The machine learning challenge is to effectively explore in-
teractions in these datasets to identify combinations of vari-
ations which are predictive of common human diseases. Ge-
netic programming is a promising approach to this problem.
The goal of this study is to examine the role that an expert
knowledge aware initializer can play in the framework of ge-
netic programming. We show that this expert knowledge
aware initializer outperforms both a random initializer and
an enumerative initializer.
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1. INTRODUCTION
In human genetics it is now possible to measure more than

one million DNA sequence variations from across the hu-
man genome. An important goal in human genetics is the
determination of which of the variations are useful for pre-
dicting individual risk for common diseases. Because of the
complexity of biological networks, epistasis, which describes
nonlinear interactions between genes, is likely to be ubiq-
uitous. Combining the difficulty of modeling nonlinear at-
tribute interactions with the challenge of attribute selection
yields for this domain what Goldberg [1] calls a needle-in-a-
haystack problem. There may be a particular combination
of attributes that together with the right nonlinear function
are a predictor of disease susceptibility. Considered indi-
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vidually they may not look any different than thousands of
other noisy attributes not involved in the disease process.

Genetic programming (GP) is an automated computa-
tional discovery tool that is inspired by Darwinian evolu-
tion and natural selection. This is accomplished by first
generating computer programs that are composed of the
building blocks needed to solve or approximate a solution
to a problem. Each generated program is evaluated, and
the good programs are selected, recombined, and mutated
to form new computer programs. Genetic programming and
its many variations have been applied successfully to a wide
range of different problems. Work here examines whether or
not it is possible to use expert knowledge in initialization to
develop a GP strategy which performs better than one with
a standard initialization operator.

Work on initialization in GP has largely centered on the
problem of generating diverse and valid tree structures with-
out overwhelming computational complexity. O’Neill and
Ryan [4] discuss the importance of initialization and the im-
pact of diversity on final solutions. Here we apply their
principles of sensible initialization through an exhaustive ini-
tializer focused on diversity and an expert knowledge based
initializer focused on exploiting knowledge about the prob-
lem to population initialization.

2. AN EXPERT KNOWLEDGE AWARE
INITIALIZATION OPERATOR

The goal of this study was to examine whether expert
knowledge could be used to ensure good building blocks are
introduced into the population through initialization. We
compared three initializers in this study. All of these initial-
izers create a tree with the MDR function as the root node
and two attributes (SNPs) as the leaves. The first initializer
is a random initializer. The attributes chosen as leaves are
selected randomly from the list of available attributes. The
second initializer is an exhaustive initializer. All available
attributes are stored in a vector. The vector is shuffled and
the attributes chosen as leaves are selected successively from
the shuffled vector. When the end is reached the vector is
reshuffled and the process begins at the beginning again.
The third initializer is an expert knowledge aware proba-
bilistic initializer. Attributes are selected as leaves via a
roulette wheel approach using TuRF scores to prepare the
roulette wheel. The same attribute is not allowed to be used
twice within the same tree, but it may be used any number
of times within the generated population.
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2.1 Parameter Settings
For this study, we use a population size of 5000 and run

the GP for 10 generations. We use a crossover probability
of 0.9 and no mutation. Since each tree has exactly two
attributes, an initial population size of 5000 trees will in-
clude 10,000 total attributes. The initial population was
generated using one of the three initializers. Runs were per-
formed both with and without the use of expert knowledge
in the fitness function.

3. MULTIFACTOR DIMENSIONALITY
REDUCTION (MDR) FOR ATTRIBUTE
CONSTRUCTION

Multifactor dimensionality reduction (MDR) was devel-
oped as a nonparametric and genetic model-free data mining
strategy for identifying combination of SNPs that are pre-
dictive of a discrete clinical endpoint. The MDR method has
been successfully applied to detecting gene-gene interactions
for a variety of common human diseases.

4. EXPERT KNOWLEDGE FROM TUNED
RELIEFF (TURF)

Our goal is to provide an external measure of attribute
quality that can be used as expert knowledge for population
initialization by the GP. Kira and Rendell [2] developed an
algorithm called Relief that is capable of detecting attribute
dependencies. Kononenko improved upon Relief by choos-
ing n nearest neighbors instead of just one. This new Re-
liefF algorithm has been shown to be more robust to noisy
attributes and missing data [5] and is widely used in data
mining applications. We have developed a modified ReliefF
algorithm for the domain of human genetics called Tuned
ReliefF (TuRF).

5. DATA SIMULATION AND ANALYSIS
The goal of the simulation study is to generate artificial

datasets with high concept difficulty to evaluate the power
of GP in the domain of human genetics. We develop 30 dif-
ferent penetrance functions (i.e. genetic models) that define
a probabilistic relationship between genotype and pheno-
type where susceptibility to disease is dependent on geno-
types from two SNPs in the absence of any independent
effects. The penetrance functions include heritabilities of
0.025, 0.05, 0.1, 0.2, 0.3, or 0.4. Each functional SNP has
two alleles with frequencies of 0.4 and 0.6.

For each set of 100 datasets and for each set of param-
eters we count the number of times the correct two func-
tional attributes are selected as the best model by the GP.
This count, expressed as a percentage, is an estimate of the
power of the method. We compare the significance of power
estimates between the methods (e.g. exhaustive initializer
vs expert knowledge initializer) by performing a chi-square
test of independence. Results are considered statistically
significant when the p-value for the chi-square test statistic
was ≤ 0.05.

6. EXPERIMENTAL RESULTS
The exhaustive initializer did not perform differently than

the random initializer in most cases (p > 0.05). In contrast
across all heritabilities for a major allele frequency of 0.6 the

expert knowledge aware initializer was significantly different
than both the exhaustive and random initializers (p < 0.05)
when expert knowledge was also used in the fitness function.
When expert knowledge was not used in the fitness function
the expert knowledge initializer significantly differed from
the exhaustive initializer and random initializer across all
tested heritabilities when the major allele frequency was 0.6
and across heritabilities (p < 0.05). This is clear evidence
that the expert knowledge initializer provides the rest of
the GP operators with a population containing many good
building blocks.

7. DISCUSSION AND CONCLUSION
Firstly, we have shown that expert knowledge can pro-

vide building blocks necessary to find the genetic needle
in the genome-wide haystack. Secondly, expert knowledge
aware initialization performs better than both random ini-
tialization and exhaustive initialization. The initialization
method makes a significant difference in the outcome con-
firming O’Neill and Ryan’s suggestion [4] that the initial
population has a large impact on the outcome. In addition
the results using a simple fitness function which integrates
TuRF scores show that the expert knowledge initializer also
greatly increases the success when other expert knowledge
features are added to the GP. Combining this initializer with
other knowledge guided strategies in selection, mutation,
and recombination may provide additional benefits.

Moore et al. have recently shown that Symbolic Discrimi-
nant Analysis (SDA), which uses a GP approach to generate
models, was able to successfully model predictors of atrial
fibrillation in a well characterized dataset which included a
two-way epistatic interaction [3]. Integrating expert knowl-
edge into the SDA approach should increase the efficiency
of the search, assisting SDA in finding higher order inter-
actions and allowing SDA to be applied to larger datasets.
One attractive feature of the probabilistic initializer is that
it is easily integrated into already existing approaches. This
study brings us one step closer to routine use of GP strate-
gies for the genetic analysis of common human diseases.
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