An lterated Greedy Algorithm for the Node Placement
Problem in Bidirectional Manhattan Street Networks

Fubito Toyama
Faculty of engineering,
Utsunomiya University

7-1-2, Yoto, Utsunomiya-shi,

321-8585 JAPAN

fubito@is.utsunomiya-

u.ac.jp

ABSTRACT

Wavelength Division Multiplexing (WDM) is a technology
which multiplexes optical carrier signals on a single opti-
cal fiber by using different wavelengths. Lightwave net-
works based on WDM are promising ones for high-speed
communication. If network nodes are equipped with tun-
able transmitters and receivers, a logical topology can be
changed by reassigning wavelengths to tunable transceivers
of nodes. Network performance is influenced by the logi-
cal node placements. Therefore, an efficient algorithm to
obtain the optimal node placement to achieve the best net-
work performance is necessary. In this paper, an iterated
greedy algorithm is proposed for this node placement prob-
lem. The proposed iterated greedy algorithm consists of
two phases, construction and destruction phases. As a lo-
cal search algorithm, variable depth search is applied after
the construction phase. The computational results showed
that this iterated greedy algorithm outperformed the best
metaheuristic algorithm for this problem.

Categories and Subject Descriptors

1.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

General Terms
Algorithms

Keywords
Metaheuristics, Iterated greedy

1. INTRODUCTION

Recently, the Internet is used in many fields and is grow-
ing rapidly. Internet users are explosively increasing and the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GECCO’08, July 12-16, 2008, Atlanta, Georgia, USA.

Copyright 2008 ACM 978-1-60558-130-9/08/07...$5.00.

Keniji Shoji
Faculty of engineering,
Utsunomiya University

7-1-2, Yoto, Utsunomiya-shi,
321-8585 JAPAN
shoji@is.utsunomiya-

u.ac.jp

579

Juichi Miyamichi
Faculty of engineering,
Utsunomiya University

7-1-2, Yoto, Utsunomiya-shi,
~ 321-8585 JAPAN
miya@is.utsunomiya-

u.ac.jp

Internet is a main part of our life. The network capacity is
not sufficient because the communications traffic is increas-
ing year by year. Therefore expanding network capacity
has become a demand. Wavelength Division Multiplexing
(WDM) is a technology which multiplexes optical carrier sig-
nals on a single optical fiber by using different wavelengths.
WDM are promising ones for wideband communication net-
works. There are two types of WDM networks, single-hop
and multi-hop networks [11, 12]. In single-hop networks,
source and destination nodes communicate directly without
any intermediate nodes. Single-hop networks achieve higher
throughput than multi-hop networks. On the other hand, in
multi-hop networks, each network node is equipped with a
limited number of transmitters and receivers. Thus, source
and destination nodes may communicate through interme-
diate nodes. The logical topology of multi-hop networks
can be changed by reassigning wavelengths to the transmit-
ters and receivers of the nodes. If new nodes are added
to a system, a new network can be easily constructed by
reassigning wavelengths, without requiring new hardware.
Therefore multi-hop networks are suitable for constructing
large scale networks because it is easy to expand. Multi-hop
networks with regular topology are suitable for high-speed
communication because the routing between the nodes is
simple. Bidirectional Manhattan Street Network (BMSN),
one of the multi-hop networks with regular topology, pro-
vides high performance compared with other networks with
regular topology [10, 2, 1]. For this reason, we focus on the
node assignment in the BMSN. In WDM-based multi-hop
networks, since each node is equipped with tunable trans-
mitters and receivers, the logical topology can be changed
by reassigning wavelengths to tunable transceivers of nodes.
In BMSN, each node has four sets of transmitters and re-
ceivers. Bidirectional direct links between one node and four
different nodes are constructed by these transmitters and re-
ceivers. Figure 1 and figure 2 show an example of a BMSN
physical topology and its logical topology of four network
nodes (No, N1, N2, N3). In figure 2, the logical topology of
No, N1, N2, and N3 is changed by reassigning wavelengths
Ao to A15. Network performance is influenced by their node
placements. Therefore, the efficient algorithm to obtain the
optimal node placement to achieve the best network perfor-
mance is necessary. For this problem, various metaheuristics
such as multistart local search, tabu search, simulated an-
nealing, and genetic algorithm are applied by Kato and Oie

A, A3 A2, A3
114,115 14,11
N3 e N,
6. A optical fiber As. A
Ao o A8 Vs A ds |) Ao, An
A A WAs Ao A6 Aal WAz Aus
N |

Figure 1: A BMSN physical topology.

[6]. They reported that the tabu search using an initial so-
lution generated by a greedy method is the best one in their
comparison. Kitani, et al. proposed a new simulated anneal-
ing approach called HIWAS (HIerarchical Wavelength AS-
signment algorithm) in which an initial solution is generated
hierarchically at first and the initial solution is improved by
simulated annealing [7]. They showed that HIWAS obtains
better solutions with shorter running times than the tabu
search, but there is a restriction that the size of BMSN is
fixed by 2™ x 2™ (where m is a positive integer). Katayama,
et al. proposed a new local search called variable k-swap lo-
cal search (KLS) [5], based on variable depth search. In
KLS, the neighborhood is defined as sequences of the single-
swap moves and the length of the sequence is adaptively
decided. Therefore, a small fraction of the large neighbor-
hoods can be searched efficiently in reasonable times. They
proposed iterated k-swap local search (IKLS), an iterated lo-
cal search metaheuristic embedded with KLS. Their results
showed that IKLS was highly effective when compared to
state-of-the-art methods.

In this paper, an iterated greedy algorithm is proposed
for the node placement problem. Iterated greedy (IG) has
been applied to various optimization problems with success
[14, 3, 9]. Although IG algorithm is very simple, it is very
effective as shown in their experimental results. The pro-
posed IG algorithm consists of two central phases, construc-
tion and destruction phases. These phases are applied in
[14], and the performance is very competitive to the other
metaheuristics. In the proposed method, variable k-swap
local search (KLS) by Katayama, et al. [5] is applied af-
ter the construction phase as a local search algorithm. The
computational results showed that our IG algorithm with
KLS, called IGKLS, outperformed IKLS which is the best
performing algorithm for this problem.

2. NODE PLACEMENT IN BMSN

We assume that the network consists of X X Y (= Nsjze)
nodes. Each node is equipped with four sets of tunable
transmitters and receivers. In BMSN, bidirectional direct
links between one node and four different nodes are con-
structed. The logical topology is symmetric and 2D torus.
Figure 1 and figure 2 show an example of a 2x 2 BMSN phys-
ical topology and its logical topology. In figure 2, Node Ny
can communicate directly with node N; and Ny. But node
No and N3 communicate through intermediate node N; or
N3. Therefore, the total amount of traffic between Ny and
N3 is twice as much as that of traffic between Ng and N;.
The logical topology can be changed by reassigning wave-
length to transmitters and receivers of the nodes. Network
performance is influenced by the node placements. There-
fore, the efficient algorithm to obtain the optimal wave-

580

Figure 2: A BMSN logical topology of figure 1.

length assignment to achieve the best network performance
is necessary. This wavelength assignment problem can be
regarded as a node placement problem.

In this paper, the optimal node placement in which the
total amount of traffic is minimized is searched. Once BMSN
node placement is decided, wavelengths of all nodes can be
assigned automatically.

In a X xY BMSN physical topology, the logical address of
the node on the k-th row and the [-th column is represented
as (k,0) (k=0,1,...,X-1,1=0,...,Y—1). Figure 3 shows
the logical address of the node in X x Y BMSN physical
topology. X XY nodes are assigned to these logical addresses
in the node placement problem.

Network node placements are represented by the X x Y
placement matrix. An element of placement matrix is a
node number. For example, the node placement of figure

2 can be represented by matrix { (2) é } Let xx;) €

{0,1,..., Ngize — 1} denote a node number at place (k,1),
and let o denote the node placement matrix of X XY whose
element is (4. Equation (1) represents an example of a
node placement matrix. This matrix is generated from the
logical topology of figure 4.

5 15 6 3
13 0 14 8

=1 4 9 11 2 @
12 7 1 10

Furthermore, let ¢; ; denote the amount of traffic from node
N; to node Nj (i # j), and T = [ti;](4,7 = 0,1,..., Neize —
1) represents the traffic matrix of X XY whose element is t; ;.
We assume that the traffic matrix T is known beforehand.
The amount of traffic, t; ;, is simplified into two types of
traffic, heavy traffic flow, tm, and light traffic flow, tr. ty
and t; are set to 1 and 0 respectively in our experiments.
The total amount of traffic in the network given by o is
defined as

N 1N

size—1

Z t@j X h(dz,d])

J=0

size

F(o)

(2)

=0

where d; represents the logical place of a node N;, and

ress
I
e

Figure 3: Logical address of the node in BMSN.

.@.
&

t

an
G
o

»
)

2,1 2,Y-1

X-1,0 X-1,Y-1

i

QT

Zigiosal
b

SRR

Figure 4: Example of node placements of a 4 x 4
BMSN.

h(di,d;) represents the number of hops along the short-
est path between d; and d;. Let d;, d; be (4,5) and (k,1).
h(d;,d;) is defined as

h(ds dy) = min(|i — k|, X — [i — k[) +min(lj — 1, Y = |j ~).
(3)
For example, in the node placement matrix of equation (1),
the number of hops between ds (place (0,0)) and ds (place
(1,3)) is 2, i.e. h(ds,ds) = 2.
In this paper, the optimal node placement in which the
total amount of traffic, F'(o), is minimized is searched from
the obtained traffic matrix T.

3. AN ITERATED GREEDY ALGORITHM
FOR THE NODE PLACEMENT
PROBLEM

The goal of the node placement problem is to minimize the
cost function F, expressed by equation (2). In this paper,
an iterated greedy (IG) algorithm with variable k-swap local
search, called IGKLS, is proposed for this node placement
problem. IGKLS consists of two central phases, construction
and destruction phases, and a local search. The outline of
the IGKLS is shown in figure 5

581

Procedure Iterated_Greedy_for_NPP
begin
o := Greedy_heuristic;
o := LocalSearch(o);
Obest :— O
while (termination criterion not satisfied) do
o4 := remove d nodes at random from o
0 := reassign d nodes by greedy heuristic
o := LocalSearch(o);
if F(0) < F(0pest) then
Obest = O
endif
endwhile
return opest
end

Figure 5: An iterated greedy algorithm for the node
placement problem.

First, an initial solution which denotes an initial node
placement is generated by a greedy heuristic. Then the so-
lution is locally optimized by a local search. Next, d nodes
are removed at random from the locally optimal solution in
the destruction phase. In the construction phase, these d
nodes are reassigned to this solution by a greedy heuristic.
In order to avoid generating the same solution, the removed
node is not reassigned to the same place again. Then the
new solution is locally optimized by a local search again.
The destruction, construction, and local search steps are re-
peated until some stopping criterion is met. Finally, the best
solution, opest, found in the search is returned.

3.1 Generating an initial solution

First, an initial solution which denotes an initial node
placement is generated by a greedy heuristic. As a greedy
heuristic for generating an initial solution, we use the greedy
method proposed by Kato et al. [6].

Let U be the set of unassigned nodes. u € U represents
an element of the set U, and let fi(ih) be the total amount
of offered traffic between node wu assigned at the specific
place and each node already assigned at the places which
are h hops away from the specific place. Then the greedy
heuristic selects the node u which has the maximum value
of the following evaluation function z(u).

2(w) =D onfi (@)
h=1

where ay, represents the weight of the evaluation function,
and H represents the limited hops of the evaluation function.
ap = 1/2h71 and H = 1/Ng;.e/2 are set in our experiments.
The first node u is selected randomly and assigned at the
place (0,0). In step k, the node v which has the maximum
value of the function (4) is assigned at the place (|k/Y], k
mod Y).

3.2 Local search

The performance of a local search depends on the defi-
nition of a neighborhood. One of the simplest local search
methods is the 1-swap local search in which a neighborhood
is defined as the set of solution derived by swapping a pair of
nodes in the current solution. Katayama, et al. proposed a

Procedure Variable_k-swap_LS (o)
begin
Obest = 0, Pan :={0,..., Nsize — 1}, grastrmp := 00;
repeat
0 = Opest; §:= 0, goest := 0;
Ppa?‘t = {07 e 7N€ize - 1}1

ihase := Select a node at random from FP,;
Ppart = Ppa?‘t\{ibase}7 Poy = Pall\{ibase};
repeat

find a node 7 with
MM Ppary 0i = SwapGain(ivase, i, 0);
o = SwapMove(ipgse, i, 0);
g:=g-+ 61’7 Ppart = Ppart\{i}§
if Gbest > g then opest = O, Gbest -= g
until Ppart =0 or g > JLastImp;
if gpest < 0 then
Pay = {07 vooy Najze — 1}7 GLastImp ‘= |gbest|;
until Pa” = (Z);
return opest
end

Figure 6: Variable k-swap local search (KLS).

variable k-swap local search (KLS) based on variable depth
search (VDS). The idea of VDS was first proposed by Lin
and Kernighan [8]. In VDS, the neighborhood is defined as
sequences of moves to a given solution rather than only one
move at each iteration. The length of the sequence is vari-
able. Thus, the size of neighborhood is also variable. VDS
can effectively traverse larger search space within reasonable
time by changing the size of the neighborhood adaptively.
Similarly, in KLS, the neighborhood is defined as sequences
of the single-swap moves and the length of the sequence is
adaptively decided. VDS and KLS were applied in many
combinatorial optimization problems, and its effects were
reported in [13, 15, 4].

Therefore, we use KLS as a local search algorithm for
the node placement problem. The pseudo-code of KLS is
shown in figure 6. In figure 6, P,; and Pp.r: are used to
avoid being swapped twice in one sequence. KLS consists
of outer and inner loops. First, node ipese is selected ran-
domly from P,;;. In the inner loop, the counterpart node
¢ for which the value of SwapGain(ivase,i,0) is minimal is
selected from Ppart, where SwapGain(ipese,i,0) is a cost
difference between the current solution and the neighbor
one by swapping nodes ipqse and . The pair of nodes ipgse
and 7 is swapped by SwapMove(ipgse, i, o) even if the value
of SwapGain(ipvgse,i,0) is larger than zero, i.e. the cost
function F(o) is worse. Such swapping is repeated until
Ppart = 0. In the inner loop, the best gain value gpes: and
its solution opes: are saved. If the best gain value is smaller
(better) than zero, P,y is initialized. In the outer loop, the
selection of ipqse and inner loop is repeated until Py = 0.
Finally, the best solution opes: is returned. To reduce the
running time, grastrmp which is the best gain value recorded
at the previous last iteration is used in figure 6. The inner
loop is terminated if the current gain is larger than grastrmp-
By adding this termination condition, the efficiency of KLS
increases without large loss of solution qualities. The details
of KLS is described in [5].

582

5 15 3 4
10 7 13 0 Local optimal solution by a local search,
o= =
8§ 2 9 11 Hor=21
6 14 1 12
Destruction Phase ‘
(5 15 * 4]
Remove d (3) nodes at random
o - 10 7 13 0 D, =8,D,=3,D,=12
¢ * 2 9 11| (*representsan unassigned node)
6 14 1 * Flop=17
Construction Phase ‘
5 15 8 4]
Best position (0,2) for D, is selected from
o = 10 7 13 0 the places, (0,2), (3,3). 1
e 209 11 Fe)=20
6 14 1 *)
(5 15 8 4] o
10 13 0 After reassigning node N,
o, = =
7|3 9 11| "®
6 14 1 %
[5 15 8 4]
D, (Dy)is automatically reassigned to
o= 10 7 13 0 thse urd1assigned place, (3,3)
3 2 9 11 F(o)=28
6 14 1 12

Figure 7: Example of the destruction and the con-
struction procedures.

3.3 Destruction and construction phases

The destruction and the construction procedures are two
central procedures in IGKLS. The destruction procedure is
applied to a locally optimal solution o obtained by KLS.
First, d nodes are selected randomly. These d nodes are then
removed from o in the order in which they were selected.
Let o4 denote a node placement after the removal of the d
nodes. The cost value of o4 is calculated by equation (2).
However, the number of hops including d nodes is set to 0
in the calculation of equation (2), i.e. the value of (h;, h;)
including the removed nodes is set to 0.

In the construction procedure, d nodes are reassigned to
o4 in the order in which they were removed from o. Let D;
(i =1,2,...,d) denote the removed d nodes, where i rep-
resents the order in which they were selected. First, D; is
reassigned to all unassigned places except for the place be-
fore the removal of the node D;. The cost value is calculated
for these places, The cost function is the same one that is
used in the destruction procedure. Finally, D; is reassigned
the best place (the smallest F'(04)). This process is iterated
until Dg_1 is reassigned. The last removed node Dy is au-
tomatically reassigned to an unassigned place without the
calculation of F(o4).

Table 1: Performance comparison of IGKLS and IKLS

|Method| Ngize | F | Q | Time(s) | #Iter |

16 19.00 1.0000 <€ 2.05

IKLS 64 82.25 0.9240 0.14 46.10
256 366.20 0.8383 15.92 206.90

1024 1681.55 0.7303 3230.30 874.70

16 19.00 1.0000 <€ 1.90

64 83.35 0.9125 0.13 27.15

IGKLS 256 358.55 0.8565 15.50 162.50
1024 1533.15 0.8012 2201.63 829.90

An example of the destruction and construction proce-
dures using d = 3 is illustrated in figure 7. In this example,
the d nodes (d = 3), Ns, N3 and Ni2, are first removed from
o. The cost value of o4 is calculated. The traffic amount for
the d nodes is not included in the cost function. Thus, F(oq)
is smaller than the cost value before the removal of nodes.
In the construction phase, the best place (0,2) for D1 (node
Ng) is selected from all unassigned places, (0,2) and (3, 3),
except for the place (2,0), and Ns is reassigned to the place
(0,2). Similarly, D2 (node N3) is reassigned to the place
(2,0). The last removed node Dy (N12) is automatically re-
assigned to the remaining unassigned place (3,3). The same
place before the removal of the node Dy can be selected in
the reassignment of Dy. The new solution generated by the
destruction and construction procedures is locally optimized
by the local search (KLS) as shown in figure 5.

4. EXPERIMENTAL RESULTS

To evaluate the performance of IGKLS, we compare the
performance of IGKLS with that of IKLS proposed by
Katayama, et al. [5]. IKLS is currently the best metaheuris-
tic algorithm for the node placement problem. For the com-
parisons, the benchmark instances provided by Katayama
[5] are used. The benchmark set consists of 80 instances of
4 different problem sizes, Nsi.e = 16 (4 x 4), 64 (8 x 8), 256
(16 x 16), 1024 (32 x 32). 20 different traflic matrices are
contained for each problem size.

In the benchmark set, the traffic matrices are generated
by assigning two types of traffic flow, heavy traffic flow,tz,
and light traffic flow, t1. ty and ¢, are set to 1 and 0 respec-
tively. The elements of the traffic matrices are only 0 (1) or
1 (tzr). Each node has four outgoing links in BMSN. There-
fore the total number of outgoing links in BMSN is equal
to0 4Ngize. The number of |4aNgize] (0 < a < 1) links are
randomly selected among 4Ns;.. outgoing links, and heavy
traffic flows are assigned to the selected links. The number
of the outgoing links assigned heavy traffic flows is limited to
less than Limgs (1 < Limaz < 4) per node. Given parameters
a and Lpqq are set to 0.3 and 3 respectively in the bench-
mark. Light traffic flows are assigned all the other pairs
of nodes. In the traffic matrices (problem instances) gener-
ated by this process, the optimal solution and its value of
F(oopt) are known beforehand. For example, if the optimal
node placement in 4 x 4 BMSN is defined as

0 1 2 3
4 5 6 7

Jert= 1 8 9 10 11 5)
12 13 14 15

583

the candidates of heavy traffic flows are the links between
neighbors in o,p¢ such as the links from Ng to N1, Ng to Ns,
Ni4 to Na, and Ny to N7. The other elements (except heavy
traffic) of the traffic matrix is set to 0 (light traffic). In oopt,
the number of hops between all the heavy traffic nodes is 1,
and the minimum value of the total amount of traffic F' is
the number of heavy traffic links.

The proposed IG algorithm was coded in C, and run on
Intel Xeon 3.0 GHz PC, 2GB RAM, using the gcc compiler
2.95 with -O3’ option. We set the parameter d = 2v/Ngize
(d is used in the destruction phase). Therefore, the users
parameter settings for each of the problem size, are not re-
quired in IGKLS.

The performance of IGKLS was compared with IKLS. The
iteration number of each method (the execution number of
local searches) is set to Ngize. Thus, the two methods are
executed in almost the same condition. Table 1 shows the
results of IGKLS and IKLS. The results of IKLS were cited
from [5]. IKLS algorithm has been coded in C, and the
results have been obtained on Pentium4 3.4GHz, 4GB RAM,
using the gcc compiler 4.11 with -O3’ option. Although
the computer systems are different, the iteration number of
local searches of each method is the same parameter (Ng;ze).
Furthermore, the same local search algorithm (KLS) is used
in IGKLS and IKLS methods. Therefore, we focus on the
quality of obtained solutions rather than the running time.
The first two columns of the table 1 represent the name
of the method and the problem size Ngi.e, respectively. In
the following columns we show the average cost value (F)
of the best solutions obtained in each of 20 instances, its
quality (Q), the average running time (Time(s)) in which the
algorithm found the best solution, and the average number
of local searches to the best solution. The solution quality Q
(with the range [0, 1]) is defined as @ = f(oopt)/f(0), where
Oopt is the optimum solution. @ = 1.0 means the obtained
solution o is the optimum. “< €” in Times(s) means that
the average running times are less than 0.01 seconds.

The results indicate that the solution quality Q of IGKLS
is better than that of IKLS for the larger size of problems.
Especially, for the largest problem (Ns;ze = 1024), IGKLS
performs much better than IKLS. For the small size problem,
the performance of IGKLS is almost the same as that of
IKLS, although the performance of IGKLS is a little worse
than that of IKLS for the problem size Nsi.. = 64. The value
of #lIter of IGKLS also obtained better results. Therefore,
the average running time of IGKLS is also better than IKLS,
despite using a slower CPU (in terms of clock speed) in our
method.

Next, we compare the running times and 1l-swap move

Table 2: Comparison of running times to reach the
specified solution quality

IGKLS IKLS

Nsize QF) Time(s) | Time(s)
16 1.0(19.00) <e€ <e€
64 | 0.8(95.00) < <
256 0.7(438.57) 0.40 0.52
1024 | 0.6(2046.67) 21.69 98.74

Table 3: Comparison of move times to the specified
solution quality

IGKLS IKLS
Noize QF) Move times | Move times
16 1.0(19.00) 402.2 450.9
64 0.8(95.00) 1932.3 2776.8
256 0.7(438.57) 13406.1 31173.3
1024 | 0.6(2046.67) 87931.8 1025314.0

times (move times) to reach the specified solution quality.
A rough comparison can be made for the algorithm efficien-
cies by this comparison. The same benchmark instances are
used in the comparison. Table 2 shows the average running
times for 20 instances to reach the specified solution qual-
ity. The specified solution quality is set to smaller values
for larger problems because the larger size problems become
more difficult to reach high quality solutions. The values
of the specified solution quality are the same as used in [5],
and the results of IKLS in table 2 and table 3 were cited
from [5]. As shown in table 2, the average running times of
IGKLS are much shorter than those of IKLS, despite using a
slower CPU in our method. Table 3 shows the average num-
ber of 1-swap moves of IGKLS and IKLS when the solutions
reached the specified quality. Move times represent the sum
of KLS move times and greedy (or kick) move times. Since
the computational time is almost consumed by the evalua-
tion of the cost function, the number of 1-swap move times
is a good indicator of the computational complexity and the
efficiency. The numbers of 1-swap move times of IGKLS
is clearly much smaller than those of IKLS for all problem
sizes. Thus, IGKLS is more efficient than IKLS.

From the above comparisons, it can be concluded that
IGKLS is superior to IKLS which is the best metaheuristic
algorithm for the node placement problem.

S. CONCLUSIONS

In this paper, we have proposed an Iterated Greedy algo-
rithm with variable K-swap Local Search (IGKLS) for the
node placement problem in bidirectional Manhattan Street
Networks (BMSN). IGKLS consists of two central phases,
the destruction phase that randomly removes some nodes
from the solution, and the construction phase that reassigns
the previously removed nodes using a greedy heuristic.

In our experiments, we compared IGKLS with iterated
k-swap local search (IKLS) which is the best metaheuristic
algorithm. Experimental results showed that IGKLS out-
performs IKLS. Especially IGKLS was more efficient than
IKLS for the large size problem.

To evaluate the algorithm performances more fairly, we
need to reimplement IKLS and perform all tests on the same
machine.

584

6. REFERENCES

[1] C. Baransel, W. Dobosiewicz, and P. Gburzynski.
Routing in multihop packet switching networks: Gb/s
challenge. IEEE Network, pages 38-61, May/June
1995.

M. M. Freire and H. J. A. da Silva. Performance
comparison of wavelength routing optical networks
with chordal ring and mesh-torus topologies. In
International Conference on Networking (ICN) 2001,
pages 358-367, 2001.

L. Jacobs and M. Brusco. A local search heuristic for
large set-covering problems. Naval Research Logistics
Quarterly, 42(7):1129-1140, 1995.

K. Katayama, A. Hamamoto, and H. Narihisa. An
effective local search for the maximum clique problem.
Information Processing Letters, 95(5):503-511, 2005.
K. Katayama, H. Yamashita, and H. Narihisa.
Variable depth search and iterated local search for the
node placement problem in multihop wdm lightwave
networks. In the 2007 IEEE Congress on Evolutionary
Computation (CEC-2007), pages 3508-3515,
September 2007.

M. Kato and Y. Oie. Reconfiguration algorithms
based on metaheuristics for multihop wdm lightwave
networks. In IEEE International Conference on
Communications (ICC) 2000, pages 1638-1644, June
2000.

T. Kitani, M. Yonedu, N. Funabiki, T. Nakanishi,

K. Okayama, and T. Higashino. A two-stage
hierarchical algorithm for wavelength assignment in
wdm-based bidirectional manhattan street networks.
In the 11th IEEE International Conference on
Networks, pages 419-424, 2003.

S. Lin and B. Kernighan. An effective heuristic
algorithm for the traveling salesman problem.
Operations Research, 21:498-516, 1973.

E. Marchiori and A. Steenbeek. An evolutionary
algorithm for large set covering problems with
applications to airline crew scheduling. In
EvoWorkshops 2000, pages 367-381, 2000.

M. Marsan, G. Alberengo, A. Francesea, E. Leonardi,
and F. Neri. All-optical bidirectional manhattan
networks. In IEEFE International Conference on
Communications (ICC) 92, pages 1461-1467, 1992.
B. Mukherjee. Wdm-based local lightwave networks
part i: single-hop systems. IEEE Network, pages
12-27, May 1992.

B. Mukherjee. Wdm-based local lightwave networks
part ii: multihop systems. IEEE Network, pages
22-32, July 1992.

K. A. Murthy, Y. Li, and P. M. Pardalos. A local
search algorithm for the quadratic assignment
problem. Informatica, 3(4):524-538, 1992.

R. Ruiz and T. Stutzle. A simple and effective iterated
greedy algorithm for the permutation flowshop
scheduling problem. Furopean Journal of Operational
Research, 177:2033-2049, 2007.

S. R. Tiourine, C. A. J. Hurkens, and J. K. Lenstra.
Local search algorithms for the radio link frequency
assignment problem. Telecommunication Systems,
13(2-4):293-314, 2000.

(11]

(12]

(13]

(14]

