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ABSTRACT

This paper investigates the utility of sampling as an
evaluation-relaxation technique in genetic algorithms (GAs).
In many real-world applications, sampling can be used to
generate a less accurate, but computationally inexpensive
fitness evaluator to speed GAs up. This paper focuses on
the problem of polynomial regression as an example of prob-
lems with positive dependency among genes. Via statistical
analysis of the noise introduced by sampling, this paper de-
velops facet-wise models for the optimal sampling size, and
these models are empirically verified. The results show that
when the population is sized properly, small sampling sizes
are preferred for most applications. When a fixed population
size is adopted, which is usually the case in real-world appli-
cations, an optimal sampling size exists. If the sampling size
is too small, the sampling noise increases, and GAs would
perform poorly because of an insufficiently large population.
If the sampling size is too large, the GA would spend too
much time in fitness calculation and cannot perform well
either within limited run duration.

Categories & Subject Descriptors

G.1.6 [Mathematics of Computing]: Global Optimization–
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1. INTRODUCTION
Over last few decades, significant progress has been made

in the theory, design and application of genetic and evolu-
tionary algorithms. A decomposition design theory has been
proposed and several competent genetic algorithms (GAs)
have been developed [11], which aim to solve boundedly dif-
ficult problems within a sub-quadratic number of function
evaluations.

However, in real-world problems, even a sub-quadratic
number of function evaluations can be intractable. There-
fore, a number of efficiency enhancement techniques (EETs)
have been proposed to alleviate the computational burden.
One such technique is evaluation relaxation [22], where an
accurate, costly fitness evaluator is replaced by an inexpen-
sive, less accurate one. Partial evaluation through sampling
is an example of evaluation relaxation, which has been em-
pirically shown to yield a significant speed-up [13]. Evalu-
ation relaxation through sampling has also been analyzed
by developing facet-wise and dimensional models [18, 7,
25]. Apparently contradicting with Grefenstette and Fitz-
patrick’s results [13], those models indicate that sampling
does not yield speed-up in terms of number of samples for
problems with uniform salience. Later, Yu et. al [24] pro-
posed an adaptive sampling scheme which yields speed-up
for problems with nonuniform salience. However, Grefen-
stette and Fitzpatrick’s image registration problem is with
uniform salience, and hence the speed-up in their results are
still not yet understood.

The objective of this paper is to resolve the above paradox
by investigating the effect of sampling on both convergence
time and population sizing of GAs. Specifically, the problem
of polynomial regression is studied. The remainder of this
paper is composed of four primary parts: (1) background
knowledge including previous work related to sampling for
GAs, introductions to population sizing, convergence time,
and fitness relaxation, (2) facet-wise model development for
sampling in polynomial regression, (3) empirical results and
discussions, and (4) extensions and conclusions of this work.

2. PREVIOUS WORK
Grefenstette and Fitzpatrick achieved a great success in

applying sampling techniques to the image registration prob-
lem [13]. Their goal was to map a slightly distorted image to
its original. The mapping function they used was a simple
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2D non-linear function:
{

x′ = a0 + a1x + a2y + a3xy

y′ = a4 + a5x + a6y + a7xy
(1)

The dimension of the images is 100 by 100, and hence 10000
pixels in total. They used a GA to optimize the eight param-
eters a0, a1, · · · , a7. The fitness function was the summation
of the differences in each pixel. Instead of calculating the
differences for all 10000 pixels, they randomly sample some
pixels and calculate their differences only:

Σ(x,y)∈S |m1(x, y) − m2(x
′
, y

′)|, (2)

where S is the set of those samples, m1 and m2 are the
original and the distorted images respectively, and (x′, y′) is
the mapped pixel using the above mapping function. Their
experiments indicated that the GA performed best when
|S| = 8 ∼ 10.

Grefenstette and Fitzpatrick’s success motivated the in-
vestigation of the use of sampling techniques in both the
fields of GAs and evolutionary strategies [2, 14]. Aizawa
and Wah studied sampling techniques as scheduling prob-
lems in GAs [1]. Specifically, they investigated how many
samples that GAs should spend on each generation and each
individual in a noisy environment. They also proposed an
adaptive scheme when the computational cost and noise are
unknown.

Under the assumption that the computational cost and
noise are given, Miller et al. investigated the optimal num-
ber of sampling. The problem is OneMax where the fitness
function is clouded by a zero-mean Gaussian noise [19]:

f
′(~x) = f(~x) + N(0, σ

2
N ), (3)

where σ2
N is the variance of the noise. They considered cal-

culating fitness by multiple sampling to reduce the external
noise:

f
′
s(~x) =

1

s
Σs

i=1 f
′(~x), (4)

where s is the number of samples. Assume the cost of the
evaluation of f ′(x) is β. Sampling reduces the variance of
the noise while increases the evaluation cost.

variance:
σ2

N

s
(5)

cost: sβ (6)

Assuming an overhead, optimal sampling can be derived:

s
∗ =

√

α

β

σ2
N

σ2
F

, (7)

where α is the overhead, i.e., the total cost of s samples
is (α + sβ), and σ2

F is the variance of the original fitness.
This result is later theoretically verified by Sastry and Gold-
berg [22].

The problem models in both [1] and [19] are different from
Grefenstette and Fitzpatrick’s image registration problem.
In the image registration problem, the sampling noise was
endogenous and its variance came to be zero when the sam-
pling size is so long as the chromosome length. In both [1]
and [19], the sampling noise was exogenous. The variance
of noise will never be zero no matter how large the sampling
size is.

To better understand the behavior of endogenous noise,
Giguère and Goldberg [7] and Yu et al. [25] investigated a
problem called the sampling OneMax (SOM):

fs(~x) =
ℓ

s
(Σi∈S xi), (8)

where s is the sampling size (0 < s ≤ ℓ), S is a subset
of {1, 2, · · · , ℓ} with a restriction that |S| = s, and ℓ is the
chromosome length. The term ℓ

s
is for normalization so that

the expectation of the sampled fitness fs(~x) is the same as
the original fitness f(~x).

SOM has an special property: partial-string-partial-
evaluation (PSPE), which is essential for studying endoge-
nous noise. Although the assumption of PSPE may not
be suitable for problems like deceptions or trap [8, 6], it
is true for image registration, regression (both numeric or
symbolic [16]), and function mapping.

It has been shown that if population is sized properly
according to the gambler’s ruin model [15], sampling does
not make much difference; it gives speed-up about only 1

ℓ

in the best case [25]. When the population size is fixed,
GAs prefer a sampling size as small as possible (s = 1)
on SOM. Both results did not reveal an optimal sampling
size somewhere in between 1 and ℓ, and Grefenstette and
Fitzpatrick’s results were still not yet understood.

We believe that the investigation on SOM did not explain
Grefenstette and Fitzpatrick’s results because SOM is still
different from the image registration problem in terms of
the dependency among samples. In SOM, every sample is
independent, e.g., a bit being one or zero does not affect
another bit being one or zero. However, images are usually
smooth, and hence the values of pixels usually depend on
each other. For example, in a typical 8-bit grayscale image,
the neighbors of a pixel of value 255 are rarely 0.

To reduce the difference between modeling and the image
registration problem, we focus on the problem of polynomial
regression, where data points are believed to be related. We
will describe the problem in detail later.

3. BACKGROUND
This section provides background knowledge for readers

to easily go through this paper. Specifically, it gives intro-
ductions to population sizing, convergence time, and fitness
relaxation.

3.1 Population Sizing
In the real world, the running time of a GA is bounded. In

this situation, finding a proper population size is important.
Because an undersized population offers poor supply, while
an oversized population consumes more time for each gener-
ation. It has been shown that both undersized and oversized
population reduce the solution quality [19]. Therefore, hav-
ing an accurate population-sizing model becomes urgent for
real-world applications.

Goldberg et al. [12] proposed a population-sizing model
based on decision-making arguments. Their decision-
making model can be expressed as follows:

N = Γ · σ2
F , (9)

where N is the population size, Γ is the population coeffi-
cient as defined in [19], and σ2

F is the fitness variance.
The decision-making model assumes that if an incorrect

decision is made in the first generation, GAs are unable
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to recover from the error. Harik et al. [15] refined the
decision-making model by incorporating cumulative effects
of decision making over time rather than in first generation
only. They modeled the decision making between the cor-
rect schema and its strongest competitor in a partition as
a gambler’s ruin problem. Miller expressed their gambler’s
ruin model as the following [17]:

N = Γ′ · σF ln(ψ), (10)

where N and σ2
F are the same as those in equation (9), Γ′ is

another coefficient, and ψ is the failure rate, defined as the
probability that a particular partition in the chromosome
fails to converge to the correct alleles. In other words, (1 −
ψ) is the expected proportion of the correct alleles in an
individual.

In many theoretical analyses, the failure rate in OneMax
domain is usually set to be 1

ℓ
( 1
2ℓ

in [7]), where ℓ is the chro-
mosome length. In this case, the expected solution quality
of the OneMax problem is (ℓ − 1).

3.2 Convergence Time
Mühlenbein and Schlierkamp-Voosen [20] gave the follow-

ing convergence-time model for OneMax by assuming an
infinite population size and perfect mixing.

tconv =
(

π

2
− arcsin(2p0 − 1)

)

√
ℓ

I
, (11)

where p0 is the initial proportion of ones for OneMax prob-
lem, I is selection intensity. The convergence-time model
can be derived directly from the definition of selection in-
tensity [20, 23]:

I =
ft+1 − ft

σft

, (12)

where ft is the average fitness at generation t, and σ2
ft

is the
fitness variance at generation t. The above equation can be
written as

ft+1 − ft = I · σft . (13)

Blickle and Thiele [3] showed that for the tournament selec-
tion with a fixed selection pressure, the selection intensity
is independent of t. Therefore, the fitness improvement de-
pends mainly on the fitness variance.

Note that although these convergence-time models are de-
rived under the assumption of infinite population size, exper-
iments have shown that they are good approximations for a
large enough population [22]. Readers who are interested in
convergence time with a finite population are referred to [21,
4].

3.3 Evaluation Relaxation
Sastry and Goldberg [22] investigated evaluation relax-

ation for problems with uniform salience. They derived
models of the number of function evaluations separately for
two noise sources: variance and bias. Since sampling tech-
niques usually only introduce variance-type noises, the work
on bias-type noises will not be mentioned here. The idea of
their work is to determine which one to use between two fit-
ness functions with different costs and difference variances
of noises. The decision, of course, should be made in the
favor of shorter run duration under a fixed solution quality.

In their work, they adjusted the population-sizing and
convergence time models for fitness relaxation. When the

fitness function is relaxed, the fitness variance increases. For
unbiased noises, the fitness variance can be modeled as

σ
′2
F = σ

2
F + σ

2
N , (14)

where σ2
F is the variance of original fitness, and σ2

N is the
variance of the noise introduced by fitness relaxation.

Recall that both the population size and convergence time
increase with the fitness variance increasing. The population
size and convergence time can be modeled as:

N
′ = N

√

σ2
F + σ2

N

σ2
F

, (15)

t
′
conv = tconv

√

σ2
F + σ2

N

σ2
F

, (16)

where N and tconv are the original population size and con-
vergence time respectively, and N ′ and t′conv are those after
relaxation.

4. SAMPLING ON POLYNOMIAL

REGRESSION
In this paper, we investigate the problem of polynomial

regression as an example for problems with uniform salience
and positive dependencies among samples. A typical poly-
nomial regression can be described as follows [5]. Consider
a polynomial function

f(x) = Σm
i=0 aix

i
, (17)

where m is the degree of the polynomial. Given a set of
data points D = (xi, yi), the objective of regression is to
find appropriate polynomial coefficients a0, a1, · · · , am such
that

Σ(x,y)∈D |f(x) − y| (18)

is minimal. Note that every sample contributes equally
to the summation, which validates the assumption of uni-
form salience. It is also not difficult to see the samples
are positively depend on each other. Assume that these
data points come from some underlying polynomial of de-
gree m: yi = g(xi). When |f(xi) − yi| are small for many
i’s, it is highly probable that f ≃ g. In other words,
d(x) = g(x) − f(x) has small coefficients. Therefore, for
any other samples j, d(xj) should also be small. Formal
proofs are omitted since they are beyond the scope of this
paper.

For the ease of analysis, the mean squared error (MSE)
criterion is more often used than the absolute value:
1

|D|Σ(x,y)∈D (f(x)−y)2. To alleviate the computational bur-

den, one may consider computing the squared errors over a
small, sampled data set instead of the whole one:

fS =
1

s
Σ(x,y)∈S (f(x) − y)2, (19)

where S is the sampled data set, S ⊆ D, and |S| = s.
With the sampling technique, computing the sampled fit-

ness for one individual becomes faster. However, the pop-
ulation size and convergence time would be elongated ac-
cordingly (Equations 15 and 16). To determine if it is really
beneficial to adopt sampling, we need to investigate the dis-
tributions of the original and the sampled fitness, which is
addressed in the next section.
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5. VARIANCE OF THE ORIGINAL AND

THE SAMPLED FITNESS
The main goal of this section is to derive the variances of

the original and the sampled fitness.
Here we make some assumptions to simplify the deriva-

tions. First we assume that the xi’s in the given data set
are uniformly distributed within the range of (0, R] with a
resolution of r. In other words, xi = iR

r
for i = 1, 2, · · · , r.

We then further assume that yi’s comes from some under-
lying polynomial: yi = g(xi) = Σm

j=0 bjx
j
i . This scenario is

similar to function mapping with finite observations. With
this setting, we know that the optimal solution is ai = bi,
∀i ∈ {0, 1, · · · , m}.

Define d(x) = f(x)−g(x) = Σm
j=0 djx

j , where dj = aj−bj .
MSE can be written as

MSE =
1

r
Σr

i=1 d
2(xi). (20)

The sampled MSE can be written as

MSES =
1

|S|Σi∈S d
2(xi), (21)

where S ⊆ {1, 2, · · · , r}. MSE is a random variable where
dj ’s are uncertain, and MSES is also a random variable
where both dj ’s and S are uncertain.

Recall that the sampled fitness variance can be modeled
as the summation of the original fitness variance and the
variance of sampling noise (Equation 14). We have the fol-
lowing relations:

V [MSE] = σ
2
F , (22)

V [MSES ] = σ
2
F + σ

2
N , (23)

where V[.] denotes the variance of the parenthesized random
variable.

Two variables would come to be handy and are defined
here.

O1 = Σr
i=1 h

2(xi), (24)

O2 = (Σr
i=1 h(xi))

2
, (25)

where h(x) = d2(x).
The remainder of this section is organized as follows: (1)

we first show that both the fitness variance and the vari-
ance of sampling noises variance can be expressed by these
two variables, and then (2) we derive O1 and O2 by assum-
ing that dj are uniformly distributed over a small range of
[−δ, δ]. Combing (1) and (2), the derivation of the variances
is completed, and it is then empirically verified.

5.1 Expressing Variances by O1 and O2

Now we derive σ2
F and σ2

N . Since MSE and MSES have
different dimensions of uncertainties, we use subscriptions
under V [.] and E[.] to indicate the variance and expectation
over some particular uncertainty, respectively.

It is easily seen that MSE = 1
r

√
O2. By definition,

Vdj
[MSE] = Edj

[(MSE − Edj
[MSE])2] = Edj

[MSE2] −
(Edj

[MSE])2. Therefore, σ2
F can be then expressed as

σ
2
F = Vdj

[MSE] =
1

r2

(

Edj
[O2] − (Edj

[
√

O2])
2
)

. (26)

Note that the expectation values are the arithmetic means
over all possible dj ’s.

The derivation of σ2
N is slightly more complicated since

MSES is a random variable where both dj ’s and S are un-
certain. We derive σ2

N in a 2-stage manner. In the first
stage, assuming dj ’s are given, we compute the variance of
MSES overall possible S’s. Then in the second stage, we
average the variances over all possible dj ’s to retrieve σ2

N . In
other words, instead of using Equation 23 to compute σ2

N ,
we use the following relation:

σ
2
N = Edj

[VS [MSES ]] . (27)

This subsection focuses on the first stage, and the next sub-
section will complete the second stage.

We know that the expectation of MSES over all possible

S’s should be unbiased: ES [MSES ] = MSE =
√

O2

r
. There

are totally Cr
s sets of size s for a given s. Number them as

S1, S2, · · · , SCr
s
. 1 The variance of MSES can be expressed

as

VS [MSES ] = ES [MSE
2
S ] − (ES [MSES ])2

=
Σi (MSESi

)2

Cr
s

− O2

r2
. (28)

Take a closer look at the term Σi MSE2
Si

. MSE2
Si

is

of the formation:
[

1
s

(· · · + h(xu) + h(xv) + · · · )
]2

, where
xu and xv are two distinct sampling points in set Si. By
power expansion, the above formula can be written as
1
s2

[

· · · + h2(xu) + h2(xv) + · · · + 2h(xu)h(xv) + · · ·
]

. If we

consider all possible Si’s, there are Cr−1
s−1 sets containing the

term h2(xu) for any specific u; similarly, there are Cr−2
s−2

sets containing the term h(xu)h(xv) for any specific u and
v where u 6= v. Therefore, Σi MSE2

Si
can be expressed as

Σi MSE
2
Si

=
1

s2

(

C
r−1
s−1Σr

u=1 h
2(xu) + C

r−2
s−2Σu6=v h(xu)h(xv)

)

.

(29)
With algebra manipulations, we can rewrite the above equa-
tion as:

Σi MSE
2
Si

= 1
s2

(

(Cr−1
s−1 − Cr−2

s−2 )Σr
u=1 h2(xu)

+Cr−2
s−2Σr

u=1 Σr
v=1 h(xu)h(xv)

)

. (30)

Since Cr−1
s−1 − Cr−2

s−2 = Cr−2
s−1 and the double summation is

actually a perfect square, we can express Σi MSE2
Si

as:

Σi MSE
2
Si

=
1

s2

(

C
r−2
s−1O1 + C

r−2
s−2O2

)

. (31)

By substituting Equation 31 into Equation 28, we can sim-
plify the variance of MSES as:

VS [MSES ] =
r − s

rs(r − 1)
(O1 −

1

r
O2). (32)

5.2 Computing O1 and O2

Recall that h(x) = d2(x) =
(

Σm
j=0 djx

j
)2

and that x is
within the range of (0, R]. For a large R and large x, the
leading term dominates. Therefore, h(x) and h2(x) can be
approximated as follows.

h(x) ≃ d
2
mx

2m
. (33)

h
2(x) ≃ d

4
mx

4m
. (34)

1Cr
s is the notation of combination, which is read as “r

choose s.”
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Figure 1: Variance of the original fitness versus dif-
ferent polynomial degrees (m) for R = 10 and R = 20.
δ is set at 0.1, and resolution (r) is set at 100.

Given these approximations, O1 and O2 can be approxi-
mated as

O1 = Σi h2(xi) ≃ d
4
mΣi x

4m
i . (35)

O2 = (Σi h(xi))
2 ≃ d

4
m

(

Σi x
2m
i

)2
. (36)

Both approximations involve the calculation of Σi xt
i. Recall

that xi = iR
r

. Here we use integral to approximate the
summation:

Σi x
t
i ≃

rRt

t + 1
. (37)

Finally, we get

O1 ≃ d
4
m

rR4m

4m + 1
. (38)

O2 ≃ d
4
m

r2R4m

(2m + 1)2
. (39)

√
O2 ≃ d

2
m

rR2m

2m + 1
. (40)

Assuming that dj ’s are uniformly distributed over a small
range of [−δ, δ], we then calculate their expectations:

Edj
[O1] ≃ δ4

5

rR4m

4m + 1
. (41)

Edj
[O2] ≃ δ4

5

r2R4m

(2m + 1)2
. (42)

Edj
[
√

O2] ≃ δ2

3

rR2m

2m + 1
. (43)

5.3 Putting It All Together
Given the approximations of the expectations of O1 and

O2, we can derive the variances of fitness and sampling
noises.

σ
2
F =

1

r2

(

Edj
[O2] − (Edj

[
√

O2])
2
)

≃ 4

45

δ4R4m

(2m + 1)2
. (44)
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Figure 2: Variance of sampling noise versus different
sampling size for r = 40 and 100. δ is set at 0.1, and
R is set at 100.

σ
2
N = Edj

[VS [MSES ]]

=
r − s

rs(r − 1)
(Edj

[O1] −
1

r
Edj

[O2])

≃ (r − s)δ4R4m

5s(r − 1)

(

1

4m + 1
− 1

(2m + 1)2

)

. (45)

Experiments are conducted to verify the above deriva-
tions. In these experiments, every data point is averaged
over 105 randomly generated chromosomes. Figure 1 shows
the variance of the original fitness, σ2

F , versus different poly-
nomial degrees, m, for R = 10 and R = 20. δ is set at 0.1,
and resolution, r, is set at 100.

Figure 2 shows the variance of sampling noises, σ2
N , for

different resolutions, r, and sampling sizes, s. As expected,
σ2

N tends to zero when s = r. Basically, both models match
the experimental data pretty well.

6. OPTIMAL SAMPLING
In this section, we investigate the effect of sampling noise

on GA running time for different population-sizing scenar-
ios. Specifically, we investigate the optimal sampling size
(1) when population is properly sized, and (2) when a fixed
population size is used. We firstly adopt the population
sizing model and convergence time model under fitness re-
laxation [22], and investigate the optimal sampling size such
that the overall GA running time is minimal. Then we in-
vestigate the same thing but with a fixed population size.
The second scenario is more realistic for most real-world
applications since many parameters are unknown in the
population-sizing model. Finally, we explain Grefenstette
and Fitzpatrick’s results from the findings of our models
and experiments.

6.1 Optimal Sampling When Population
Is Properly Sized

From Equations 15 and 16, we can model the total number
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sampling size. The underlying objective function is
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of samples that a GA requires as:

ns = sNtconv

(

1 +
σ2

N

σ2
F

)

. (46)

Note that the minimal of s is 1 for GAs to work. With
Equations 44 and 45, we can approximate the ratio:

σ2
N

σ2
F

≃ 9

4

r − s

s(r − 1)

4m2

4m + 1

≃ 9

4

r − s

s(r − 1)
m. (47)

The second approximation is valid for a large m. By sub-
stituting Equation 47 into Equation 46, and discarding ir-
relative terms to the sampling size, we obtain the following
relation:

ns ∝ s +
9

4

r − s

r − 1
m, (48)

which is a simple linear relation. Therefore, the optimum
occurs at the boundaries, either s = 1 or s = r. We can
check when the optimum occurs at the minimal sampling
size:

ns(s = 1) < ns(s = r)

⇒ m < 4
9
(r − 1). (49)

This is the case for most polynomial regression applications,
where usually m ≪ r to prevent over-fitting since there are
only r data points. The exception is when the objective
polynomial is not full. For example, one might want to fit
ax50+bx13+c to 20 data points. In this case, the polynomial
degree, m, is 50, and r is only 20, which breaks the above
relation. However, in this case, our derivations are no longer
valid since our assumptions are violated.

A series of experiments are conducted to verify the con-
clusion drawn from the analytical model. To get the ap-
propriate population size, a procedure of bisection is in-
voked. Given the minimal and maximal limits, the pro-
cedure seeks the minimal population size such that the GA
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Figure 4: Population size versus sampling size. R =
1000, r = 100, m = 3. N ≃ 10000 for s = 60. If a fixed
population size N = 10000 is used, GAs in region
I (s < 60) would suffer from insufficient population
size, and GAs in region II (s > 60) would be less
efficient than s = 40 since small sampling sizes are
preferred.

are able to converge for 30 out of 30 times. In the experi-
ment, R = 1000, r = 100, m is set at 3, and the objective
bj ’s are set at 1. In other words, the underlying objective
function is x3 + x2 + x + 1. A chromosome is a vector of
4 real numbers. Binary tournament selection and extended
line crossover [20] are adopted, and there is no mutation.
The termination criterion is that all alleles in the best chro-
mosome are within the range [1−10−3, 1+10−3]. The result
is shown in Figure 3. As predicted, the optimal sampling
size is s = 1.

6.2 Optimal Sampling For A Fixed
Population Size

The previous section indicated that if population is sized
properly, a small sampling size is preferred. In reality, when
facing an unknown problem, it is virtually impossible for
one to determine an appropriate population size. Instead, a
population with fixed size is usually used.

Figure 4 shows the population sizes of the experiment in
Figure 3, where R = 1000, r = 100, m = 3. Note that n ≃
10000 for s = 60. Now suppose that a fixed population size
of 10000 is used. Those GAs with a sampling size smaller
than 60 (region I) would suffer from insufficient information
to make good decision [12], and hence would perform poorly.
On the other hand, those GAs with a sampling size greater
than 60 (region II) would require more number of samples
since we know that small sampling sizes are preferred when
population is sufficiently large.

The above argument can also be explained via the
population-sizing models. The gambler’s ruin model is of
the following form [15] (Equation 10):

N = cN ln ψ, (50)

where cN represents the rest terms, and ψ is the probabil-
ity that GAs fail to converge as mentioned in Section 3.1.
In our previous experiment, the requirement was successful
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Figure 5: Performance versus sampling size. R =
1000, r = 100, m = 3. The population size, N , is fixed
at 10000. It can be seen that the GA performs well
around s = 60 as predicted.

convergence for 30 times. Therefore, we can estimate an up-
per bound of ψ by (1 − ψ)30 ≥ 0.5, which yields ψ < 0.023.
Suppose that the fixed population size is N ′. Given that
cN is constant for the same problem, we have the following
relation:

N ′ = cN ln ψ′ (51)

⇒ ψ′ = ψ
N′

N . (52)

In the above equation, we see that the smaller N ′ is, the
greater ψ′ becomes, and hence the GA is unlikely to satisfy
the convergence criterion, resulting in worse performance.

Experiments are conducted to support the above argu-
ment. All other parameters are the same, but with a fixed
population size of 10000. We let the GA continue until the
total number of samples exceeds 108. Then we use maximal
distance between the objective and the current best chro-
mosome as a measurement of GA performance. The results
are shown in Figure 5, where every data point is averaged
over 200 independent runs. Basically, the GA performs best
around s = 60 as we expected, although the actual optimum
occurs at s = 50, which is slightly off from our prediction.
We believe that the reason lies on hill-climbing behavior.
When the population size is not large enough, the behav-
ior of crossover is not far from mutation. Given a maximal
number of samples, the smaller the population size is, the
more generations that the GA can execute. Therefore, even
though the population size may be slightly too small to make
good decisions, the GA spends longer time on hill climbing
and performs well.

6.3 Resolving the Paradox
Now we revisit Grefenstette and Fitzpatrick’s image regis-

tration results [13]. The sample space was 10000, and max-
imal number of samples is limited at 200000. They used a
fixed population size of 80, and found the optimal sampling
size is around 8 ∼ 10.

Given the modeling and experiments in this paper, we
believe that the minimal population size requirement of their

image registration problem at s = 8 ∼ 10 should be around
80. The reason that the GA did not perform well for too
small and too large sampling sizes is described above.

Note that if our explanation is true, the optimal sampling
size depends on the fixed population size. In the previous
experiment, if we fixed the population size at 20000 (the
minimal population size requirement around s = 20) instead
of 10000, the optimal sampling size would then occur at
s = 20 instead of s = 60. Generally speaking, a larger fixed
population size favors a smaller sampling size, and a smaller
fixed population size favors a larger sampling size.

7. CONCLUSIONS
This paper investigates optimal sampling for GAs on poly-

nomial regression problems. Specifically, the variances of
the original fitness and sampling noises are modeled. Based
on [22], facet-wise models for the total number of samples
as a function of sampling size are derived. Then the derived
models are applied to two different population-sizing scenar-
ios, namely, (1) the gambler’s ruin model [15] adjusted for
fitness relaxation [22], and (2) fixed population sizing.

The results indicate that a small sampling size is preferred
if the population is properly sized. When a fixed popula-
tion size is adopted, an optimal sampling size, s∗, exists.
For sampling sizes less than s∗, GAs suffer from insufficient
population size; for sampling sizes greater than s∗, GAs suf-
fer from inefficient fitness calculation. Generally speaking,
a larger fixed population size favors a smaller sampling size,
and a smaller fixed population size favors a larger sampling
size. This paper also well explains the results of Grefenstette
and Fitzpatrick’s image registration problem [13].

Although this paper focuses on polynomial regression, the
indications of the results are not limited to this specific type
of problem. We expect that the indications can be applied to
any problem with uniform salience and substantial positive
dependency among samples. By positive dependency, we
mean that if the fitness contribution of a sample is high, it
is likely that the fitness contributions of other samples are
also high. Combined with previous work, we conclude

1. That sampling techniques are useful when overhead is
taken into consideration, and an optimal sampling size
exists [19].

2. That sampling techniques are not useful for problems
with uniform salience and no dependency among sam-
ples, unless overhead is taken into consideration [7,
25].

3. Small sampling sizes are preferred for problems with
uniform salience and substantial positive dependency
among samples. Optimal sampling size exists when a
fixed population is used.

4. That sampling techniques are useful for problems
with non-uniform salience when the adaptive sampling
scheme is adopted [24].

There is still plenty of room for the sampling issue. For
example, although this paper indicates that an optimal sam-
pling size exists as a function of the fixed population size,
the location of the optimal sampling is still yet unpredictable
for real-world applications. It is desirable to develop some
adaptive sampling scheme similar to [24] for problems with
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uniform salience. Also, the use of sampling techniques en-
forces two phenomena: genetic drift—genes converge with-
out good reason [10] and premature convergence. Genetic
drift did not cause any problem in the experiments in this
paper maybe the selection pressure was not too low; how-
ever, we need to quantify this enforcement so that a lower
bound of the selection pressure can be suggested. For a
higher selection pressure, on the other hand, we will need
some mechanism to keep diversity. Niching techniques [9]
seem to be a good choice, but the interaction between nich-
ing and sampling needs to be investigated. Finally, we would
also like to quantify the dependency among samples so that
the representativeness of the polynomial regression problem
can be measured. The main challenge would be assuming
an underlying distribution of the data points that is general
enough.
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[15] G. Harik, E. Cantú-Paz, D. E. Goldberg, and B. L.
Miller. The gambler’s ruin problem, genetic
algorithms, and the sizing of populations. Proceedings
of 1997 IEEE International Conference on
Evolutionary Computation, pages 7–12, 1997.

[16] J. R. Koza. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. MIT Press, Cambridge, MA, 1992.

[17] B. L. Miller. Noise, sampling, and efficient genetic
algorithms. doctoral dissertation, University of Illinois
at Urbana-Champaign, Urbana, 1997.

[18] B. L. Miller and D. E. Goldberg. Genetic algorithms,
selection schemes, and the varying effects of noise.
Evolutionary Computation, 4(2):113–131, 1996.

[19] B. L. Miller and D. E. Goldberg. Optimal sampling
for genetic algorithms. Proceedings of the Artificial
Neural Networks in Engineering Conference (ANNIE
1996), 6:291–297, 1996.

[20] H. Mühlenbein and D. Schlierkamp-Voosen. Predictive
models for the breeder genetic algorithm: I.
Continuous parameter optimization. Evolutionary
Computation, 1(1):25–49, 1993.

[21] M. Rattray and J. L. Shapiro. Noisy fitness
evaluations in genetic algorithms and the dynamics of
learning. Foundations of Genetic Algorithms,
4:117–139, 1997.

[22] K. Sastry and D. E. Goldberg. Genetic algorithms,
efficiency enhancement, and deciding well with
differing fitness variances. Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO
2002), pages 528–535, 2002.

[23] D. Thierens and D. E. Goldberg. Convergence models
of genetic algorithm selection schemes. In Parallel
Problem Solving fron Nature (PPSN III), pages
119–129, 1994.

[24] T.-L. Yu, Y.-p. Chen, D. E. Goldberg, and J.-H.
Chen. An adaptive sampling scheme for genetic
algorithms on the sampled onemax problem.
Proceedings of Artificial Neural Networks in
Engineering 2003 (ANNIE 2003), pages 39–44, 2003.

[25] T.-L. Yu, D. E. Goldberg, and K. Sastry. Opitmal
sampling and speed-up for genetic algorithms on the
sampled onemax problem. Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO
2003), pages 1554–1565, 2003.

1096


