
A Genetic Programming Approach to Business Process
Mining

Chris J. Turner

School of Applied Sciences
Cranfield University

Bedfordshire, MK43 0AL, UK
c.j.turner@cranfield.ac.uk

Ashutosh Tiwari

School of Applied Sciences
Cranfield University

Bedfordshire, MK43 0AL, UK
a.tiwari@cranfield.ac.uk

JÖrn Mehnen

School of Applied Sciences
Cranfield University

Bedfordshire, MK43 0AL, UK
j.mehnen@cranfield.ac.uk

ABSTRACT
The aim of process mining is to identify and extract process
patterns from data logs to reconstruct an overall process
flowchart. As business processes become more and more complex
there is a need for managers to understand the processes they
already have in place. To undertake such a task manually would
be extremely time consuming so the practice of process mining
attempts to automatically reconstruct the correct representation of
a process based on a set of process execution traces. This paper
outlines an alternative approach to business process mining
utilising a Genetic Programming (GP) technique coupled with a
graph based representation. The graph based representation allows
greater flexibility in the analysis of process flowchart structure
and offers the possibility of mining complex business processes
from incomplete or problematic event logs. A number of event
logs have been mined by the GP technique featured in this paper
and the results of the experimentation point towards the potential
of this novel process mining approach.

Categories and Subject Descriptors
 I.2.6 [Artificial Intelligence]: Learning --- Induction; I.2.8
[Artificial Intelligence]: Problem Solving, Control Methods, and
Search --- Graph and tree search strategies.

General Terms
Algorithms, Experimentation

Keywords
Business process mining, Genetic programming, Graph based
representation

1. INTRODUCTION
Process mining, as a practice adopts many of the techniques used
for data mining [9]. One of the first techniques for process mining
was developed by Cook & Wolf [9] for use in the discovery of

software process models. The first use of process mining in the
context of business processes was made by Agrawal et al. [3]. The
mining technique developed by [3] reconstructed process models
from the event logs produced by the IBM Flowmark system. The
aim of process mining is to identify and extract process patterns
from data logs to reconstruct an overall process flowchart, an
example is shown in Figure 1. The data logs, more commonly
known in the business process field as event logs, contain
execution data for a live process (an excerpt from an event log,
used in this papers experiment set, is shown at the end in Figure
8). Such event logs may be hosted within Business Process
Management (BPM) and workflow systems, owned by medium
and large organisations; recording the task by task completion of
computer assisted processes. In some organizations event logs
will be hosted by Enterprise Resource Planning (ERP) systems
[2].
Increasingly modern business practice requires managers to fully
understand how business processes operate in a live environment.
To manually reconstruct a live process from a set of process
execution traces would be very time consuming and error prone
so software based process mining techniques are employed to
automate this task.

Figure 1: Process data 1, an example of a process flowchart
(template provided by [4])

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-130-9/08/07…$5.00.

1307

It is also the case that managers need to identify departures from
normal process execution; a call centre manager may need check
for parts of a process being bypassed by telephone operatives and
financial institutions could detect instances of fraud through the
identification of suspicious process execution traces. Event logs
containing process traces also present a range of mining problems
such as noise (due to incorrect or missing entries in the log, or
partially executed jobs), process loops and parallel paths of
execution [1]. In this paper the practice of process mining using
genetic based approaches will be explored and particular
reference given to a new GP based approach put forward by the
authors. A number of test process event logs, developed for
current process mining techniques, will be mined by the GP
approach and the results presented later on. The test event logs
used in this paper are not obtained from ‘live’ business processes
but aim to model the most common process features. However,
the next stage of development of this technique will include the
use of actual corporate process data.

2. GA APPROACHES TO PROCESS
MINING
Currently many approaches to process mining make use of
heuristic algorithms [5] (‘rules of thumb’ based on the
relationships between tasks in business process patterns [20]).
One heuristic approach to process mining has been developed by
Weijters [19] [20]. The approach of [20] involves a set of rules
that are used to determine dependency relations between tasks in
a process event log (order and precedence between process tasks).
Such rules have also been tested for mining process patterns that
contain loops and event logs with incomplete/noisy data by [20].
Genetic based techniques for process mining are now being
explored due to their resilience to noisy data and their ability to
produce novel sub-process combinations from a given set of data.
A GA based technique has been introduced by Alves de Medeiros
[4] which aims to mine processes in the presence of a range of
mining problems.
The approach of [4] utilises a causal matrix which details input
and output edges for each task of a process instance (an edge is a
link between two process tasks). The relationships between edges
are also detailed in the causal matrix; such relationships are
restricted to ‘AND’ and ‘XOR’ operators only. For the GA of [4],
the causal matrix had to be represented as a binary string. The
technique draws on the work of [20] in its use of heuristics to
determine the relationships between process tasks. Heuristics are
used to build the initial generation of individuals for use within
the GA. The GA technique has already provided some positive
results with simple processes exhibiting limited levels of parallel
constructs [4]. However, the GA approach as implemented by [4]
experiences drawbacks in that the mining of more complex
processes, especially those exhibiting high levels of parallel
execution, is error prone.
This paper outlines an evolutionary approach to process mining
utilising Genetic Programming (GP). A GP technique is beneficial
in the practice of process mining in that the representation of
individuals need not be abstracted to the level of a binary string.
Instead the GP process mining technique presented here utilises a
directed graph structure, provided by the JGraphT software
Application Programming Interface (API) [13]. This abstraction
allows a better fit to the practice of process mining in that

individuals’ fitness may be evaluated more efficiently (as
explained later on). In a GP approach an individual is effectively
an executable program [8].
The use of graph structures in combination with genetic
algorithms is not a new concept [7]. Genetic Programming is
generally known for the generation of either tree structures or
linear programming code [14] (in [21] Daida et al. give guidance
on the visualisation of tree structures). However, GP has been
used for generating graphs for Artificial Neural Networks [12],
bond graphs [18], electronic circuits [15], and algorithm structures
[17]. Genetic Network Programming [11] deals with the evolution
of graph structures in which the numbers of nodes and their
functional behaviour is fixed. Graph structured program evolution
(GRAPE) as introduced by [17] is a GP technique using graph
structures for generating computer programs with branches and
loops. GRAPE uses a linear string of integers as its genotype. The
visualisation A directed graph of a process provides executable
decision points, such as ‘XOR’ and ‘AND’, between tasks. A
graph may in effect be parsed against a set of criteria or overall
graph schema for fitness. This is the approach attempted by [4];
however their binary causal matrix requires substantial effort in
decoding for fitness assessment, crossover and mutation activities.
A graph structure with API can be far easier manipulated for such
activities. A graph structure representation, when used with GP,
can also deal with loop constructs [8]. As with a GA approach GP
evolved individuals benefit greatly from crossover and mutation
operations.

3. GP PROCESS MINING ALGORITHM
While the process mining approach outlined by this paper and the
approach of [4] both manipulate graph structures only the GP
approach acts directly upon a graph based representation. This
provides benefits in operations such as crossover, where the
approach of [4] can only swap the input and output edges of a
single task as opposed to the GP approach which has the potential
to allow entire sub-graph structures to be swapped over with
comparative ease.

Figure 2: GP Process Mining Algorithm Stages

1308

3.1 Outline of the GP approach
As can be seen from Figure 2 the five stages are followed in the
operation of a GP process mining algorithm. In the first stage the
event log, containing process execution data, is read (this data in
the XML format accepted by the ProM [10] process mining suite).
The second stage involves calculating dependency relations
between the activities recorded in the process log (based on a set
of heuristics). The third stage builds individuals from the event
log relationships discovered in stage 2. For the purposes of the
experiments detailed in this paper stages 2 and 3 are based on the
heuristics used by [4]. The heuristics try to determine the
precedence and order of tasks in a process log by utilising a
dependency measure. The dependency measure aims to ascertain
the strength of the relationship between tasks by calculating the
amount of times one task is directly preceded by another. The
measure is also able to determine which tasks are in loop
constructs [4]. Once a set of individuals has been created their
causal matrix representations are then translated automatically
into JGraphT objects (allowing each individual to be manipulated
by JGraphT API functions).

Stage 4 of the GP process mining algorithm involves the
measurement of an individual’s fitness. Again for the purposes of
this paper the fitness measure of [4] will be used. In practice a
number of adaptations have had to be made in the coding of the
fitness function to take account of the graph structure used by the
GP approach while not affecting the overall behaviour of the
fitness function in general. Each process trace in the event log is
parsed against every individual generated for the process mining
algorithm. For comparison purposes the parsing process used by
[4] has been adapted for the GP mining approach.

The parsing technique employed involves the stages shown in
Figure 3. Each trace in the event log is parsed against the
individual in a task by task fashion. A task from an event trace is
compared to the individual and the input edges (edges are the
directed links between tasks) are examined to see whether they
have been marked as possibly enabled. Particular attention is
given to incoming edges that are in an AND relationship. If such
edges are not marked as possibly enabled then the task is marked
as disabled. Edges that are in an AND relationship, unlike XOR
edges, are mandatory for the task to execute correctly.

Once all of the mandatory incoming edges of a task can be
marked as enabled all of the output edges of that task can then be
marked as possibly enabled. This parsing cycle continues until the
last task of a process trace has been parsed; at which point the
next process trace is parsed against the same individual. Once all
traces have been parsed against the individual the next individual
is parsed in the same manner until all individuals in a generation
have been parsed against the set of traces in the event log.

3.2 Fitness Function of the GP Approach
The algorithm shown in equation 1 details part of the fitness
function of [4] that is used in the experiments with the GP mining
approach. Once the entire event log has been parsed against an
individual, equation 1 is used to assign that individual a fitness
score.

 (1)

In equation 1 L is an event log and CM an individual. The
notation CM[] represents a generation of process models. Each
individual in a generation is being measured for completeness and
preciseness in its reflection of the event log process traces. For
completeness if all of the traces in the event log can be parsed
against an individual without error then the fitness will be 1.0 [6].
When a trace cannot be parsed against an individual correctly,
either because a task has not been enabled or missing inputs have
disabled a task, that individual’s fitness is reduced.

Figure 3: The Parsing Cycle (GP Fitness Function)

In equation 2 the PFcomplete function of equation 1 is detailed
along with the fitness reduction measure. When mandatory inputs
to a task are missing a token is added for each missing input
which acts as a penalty in the fitness calculation. It is possible that
there may be tokens left behind when a trace has been fully
parsed (that is edges still set to possibly enabled as the task they
refer to has not been enabled).

Tokens left behind are counted and used to reduce the fitness
score for that individual as they are an indication that the
individual is potentially incorrect. For an XOR set that still has all
its edges marked as ‘possibly enabled’ one token is added; a token
is added for each AND that is left as ‘possibly enabled’ at the end
of parsing for a trace.

)(
),(),(

),(

LiesLognumActivit
CMLpunishmentCMLctivitiesallParsedA

CMLPFComplete
−

=
 (2)

[]),,(*
),([]),,(

CMCMLPFprecise
CMLPFcompleteCMCMLFitness

κ−
=

1309

where

1),()(
),(

1),()(
),(

),(

+−

+−

=

CMLLeftBehindxtraTokensnumTracesELognumTracesL
CMLhindkensLeftBeallExtraTo

CMLnsissingTokenumTracesMLognumTracesL
CMLTokensallMissing

CMLpunishment

 +

In terms of preciseness the individual should not contain
behaviour (expressed as tasks and edges) that is not detailed in the
event log traces. The measure PFprecise in equation 1 provides an
approximate measure of the amount of extra behaviour (additional
edges not recorded in the event log but present in the mined
process) an individual allows for in comparison to other
individuals in the generation [6]. According to [6] on average
individuals with a higher amount of enabled tasks tend to be more
likely to express extra behaviour. In equation 3 the amount of
enabled activities in an individual is divided by the maximum
value obtained for enabled tasks from parsing the entire
generation of individuals.

[])),(max(
),([]),,(

CMLActivitiesallEnabled
CMLActivitiesallEnabledCMCMLPFprecise = (3)

Once PFcomplete and PFprecise have been calculated the value
κ , shown in equation 1, acts as a punishment weighting for the
amount of extra behaviour found in an individual. The value ofκ
may be within the interval [0, 1] [6].

3.3 GP Approach Fitness Parsing and Process
Marking Rules
The parsing process used for the GP approach uses a different
marking schema than that used by [4]. Each edge in an individual
can be marked. In total 3 markings are used –

Marking 1.0 – Edge is not enabled
Marking 2.0 – Edge is possibly enabled
Marking 3.0 – Edge is enabled

A number of parsing rules have been used with the GP parser
shown in Table 1.
Parsing takes place in a directed fashion as all trace tasks are
arranged in order of execution with each trace possessing a
generic start and end task. For each task that is parsed against an
individual the input edges to that individual are assessed for the
presence of mandatory AND edges. Such edges must be marked
as 2.0 (possibly enabled) for the parser to progress to the next
task. If all the mandatory (AND) incoming task edges are set to
2.0 (possibly enabled) they can then be set to 3.0 (enabled) to
show that the preceding task and edges in the individual match the
trace being parsed. If this is not the case the task is noted as
disabled and token is added for each non-enabled AND edge
(counted in equation 2 as a missing token).

An incoming XOR edge even when set to 1.0 does not necessarily
indicate a problem, as another branch of the XOR may be set to
3.0 or the XOR is not involved in that particular process trace.
When a trace has been parsed against an individual all XOR edge
sets are examined to check that one edge has been set to ‘enabled’
or all edges are ‘not-enabled’. If all the edges of an XOR set are
found to be marked as ‘possibly enabled’ a single token is added
(counted in equation 2 as an extra token left behind). Both
missing tokens, tokens left behind and disabled tasks reduce the
fitness score for an individual.

Table 1. GP Fitness Parsing Rules

Rule Reason

If incoming XOR edge is ‘not
enabled’ then leave

An incoming XOR edge
that is ‘not enabled’ could
mean that another edge in
that XOR set is ‘enabled’ or
will be enabled in the future

Any incoming edges that are
‘AND’ and are not marked as
‘possibly enabled’ – set task as
disabled

A task cannot execute
unless all of its mandatory
inputs (AND edges) are
marked as ‘enabled’

Mark all incoming AND edges,
that are currently marked as
‘possibly enabled’, as ‘enabled’

In order to register that a
task has fired correctly all
mandatory AND edges and
XOR edges that are marked
as ‘possibly enabled’ must
be marked as ‘enabled’

When an incoming possibly
enabled edge is marked as
possibly enabled visit edge set
to mark as ‘enabled’ and mark
the other edges in that XOR to
‘not enabled’

Only one edge of an XOR
set can be marked as
‘enabled’, all other edges
must be set to ‘not enabled’

If a task in the trace does not
exist in the individual, register
the task as missing

A missing task is a serious
omission from an individual

If an XOR edge (or edges) is
the only input into a task and
an edge in that edges’ XOR set
is already marked as ‘enabled’
add a token and mark task as
disabled

An XOR can only have one
edge marked as ‘enabled’

Additional rule (after a trace
has been parsed against an
individual)

Reason

Check each XOR edge set; if
all edges in a set are still
marked as ‘possibly enabled’
add a token

Any ‘possibly enabled’
XOR edge sets that have not
been enabled indicate a
potential error, a token must
be added as punishment for
this

Check each AND, if still
marked as ‘possibly enabled’
add a token

Any ‘possibly enabled’
AND edges that have not
been enabled indicate a
potential error, a token must
be added as punishment for
this

1310

3.4 Crossover Operator
For the purposes of the experiments in this paper the crossover
operator of [4] has been adapted for the GP approach. Further
discussion of GP genetic operators and their effects may be found
in [22]. In terms of this operator a five individual tournament
selection process is used to select two parent individuals from a
generation. A task, which exists in both individuals, is selected at
random as the crossover point. The input and output edge sets of
the task are then split at a randomly chosen swap point. In Figure
4 below example input sets for two parent tasks are shown. The
letters in the sets refer to the names of process tasks that link to
the task in the form of an edge. The operator for each set defines
the edge relationships. In Figure 4 assume the swap point is after
the second set in each parent.

parentTask1 = AND(B), AND(E), XOR(B,C,D)
parentTask2 = XOR(B, E), AND(C), AND(B), AND(D)

swapset1 = XOR(B,C,D), remainder1 = AND(B), AND(E)
swapset2 = AND(B), AND(D), remainder2 =XOR(B,E),
AND(C)
swapset2 + remainder 1
swapset1 + remainder 2

If crossover rate = crossover

For each set in swapset 1 select, with equal
probability, one of the following three
crossover methods –

For each set in swapset1 do -

1. Add set as a new subset in remainder2
XOR(B,E), XOR(B,C,D)

2. Join set with an existing set in remainder2
XOR(B,E,C,D)

3. Select a set in remander2 and remove the
edges that are in common between that set
and the set from swapset 1
XOR(B,E,C,D)

Repeat for the combination swapset2 & remainder1

Figure 4: An Illustration of GP Crossover (adapted from [4]).

The cycle shown in Figure 4 is repeated for both input and output
sets of the selected crossover task. A pre-selected crossover rate
determines how often crossover will take place in a generation. In
the GA approach of [4] the crossover and mutation operators
utilise a repair routine which is executed after an input or output
set has been changed to make sure that only viable changes are
made to individuals, the need for similar routines is very much
reduced in the GP approach due to the inherent error checking
provided by JGraphT [12] graph objects.

In addition to the crossover operator and as practiced by [4],
elitism is used to copy over a percentage of the best individuals to
the next generation.

If mutation rate = mutate
Input set task A = AND(B), AND(E), XOR(B,C,D)
For each set in input set s

 1. Choose a set and add a task edge to the set
 (randomly chosen from the complete set of

 available tasks in the individual)
AND(B), AND(F, E), XOR(B,C,D)
Task F is added

2. Remove a task edge from a set
AND(B), AND(E), XOR(B,D)
Task C is removed

3. Random redistribution of task edges
AND(C), XOR(B,E,D)

Figure 5: An Illustration of GP Mutation (adapted from [4])

4. OUTLINE OF EXPERIMENTS
The following Koza Tableau [8], shown in Table 2 describes the
key parameters used in the GP.

Table 2. Koza Tableau for the GP approach

Parameters Values
Objective To mine a best fit process from the given

event log data
Terminal Set The process task marked as STOP

terminates the parsing of the process it is
contained in. Similarly the START task
initiates the parsing of a process.

Function Set AND, XOR, Node Marking
Fitness Cases Parse event log traces against each

individual
Raw Fitness Number of correctly parsed traces for

each individual
Standardized Fitness Number of correctly parsed traces for

each individual with a penalty for each
missing task and for non enabled tasks
calculated against the values for the
generation as a whole (see Table 1 for
parsing rules and equation 1 for the
fitness measure)

Termination criterion Fitness of 1.0 or maximum number of
generations chosen

Selection Tournament section, five individuals
Initialization Method Parse first event log trace against first

individual (of a generation created by
heuristics)

The experiments presented in this section give an indication of the
abilities of the GP process mining approach. The following
parameters are being used for the GP approach.
Population size 100
Maximum generations 1000

1311

Elitism rate 0.02
Crossover rate 0.8
κ (extra behaviour fitness reduction) 0.025

The event logs for three processes will be mined by the GP
approach and the mining result compared to a ‘correct’ template
for that process. Table 3 details the three processes to be mined.
The processes have been used as test data in the work of [4]. For
the experiments the GP approach will use just crossover (using
crossover technique 1 - add set as a new subset) and elitism in its
operation.
The GP code is written in Java and hosted in the ProM process
mining framework [10]. The experiments are being carried out on
a Windows XP PC with 500MB RAM and a Pentium 4 3GHz
processor.

Table 3. Process Test Data Sets for Experiments

 Sequences Parallelism

Process data 1 Low Low

Process data 2 Medium Medium

Process data 3 Medium High

5. RESULTS
For interest the processes in Table 3 have also been mined by the
GA of [4] using the same parameter settings outlined before; and
unlike the GP approach, the addition of a mutation operator using
a rate of 0.02. Process data 1 could be mined correctly by both GP
and GA techniques and the mined process is shown in Figure 1.
The results for process data 2 and 3 are displayed in Figure 6
below.

Figure 6: The results of mining process data 2 and 3 with the
GP and GA process mining approaches (event logs provided
by [4]).

Process data 2 could also be mined by both the GA and GP
techniques (flowchart A for GP and B for GA). However, the
mining of process data 3 caused problems for the GA (flowchart F
is GA). The GP mined this process with a higher level of
structural accuracy (flowchart E in Figure 6). It is known that
processes containing highly parallel constructs are difficult for the
GA approach to mine [4]. The process templates for each process
data set are shown in Figure 7. As mentioned earlier the GP
approach did not utilise a mutation operator to obtain the results
presented. The initial GP code implemented an adapted version of
the mutation function used by [4] but tests showed that this
operator was quite destructive in terms of the process flow
diagrams returned, even when the mutation rate was reduced from
0.02 to 0.0002.
In the GA of [4] the crossover operator acts in a way that is not
too dissimilar to a mutation operator, just crossing over edge sets
for the same single task in each of the two offspring at any one
time. After experimentation with the GP it was found that the
‘Add set as a new subset’ method of crossover from [4] gave the
best results. The GP parameters, such as population size and
number of generations through to elitism and crossover rates,
were set to the values recommended and used in the work of [4].
Overall 10 runs were conducted with each of the three process
data sets for the GP and GA techniques, with each run taking
approximately 10 minutes to complete. The main observations for

(A) GP
Result

(C) GP
Result

(D) GA
Result

(B) GA
Result

(E) GP
Result

(F) GA
Result

1312

process data 1 was that the flowchart for the process could be
mined correctly on each of the runs with both techniques. There
was a similar outcome for process data 2 though on one or two
runs of the GP one extra link was generated between two tasks.
For process data 3 the GA consistently produced extra links
between the parallel tasks. The GP produced either two or three
superfluous links emanating from task A. From these tests the GP
offers both consistency of results and a level of robustness when
mining a range of structures, including parallel constructs. In
conducting process mining with the GP approach there is, at this
initial stage, a concentration on mining process structure rather
than process behaviour expressed as semantic operators (such as
XOR, AND).

6. CONCLUSIONS AND FUTURE WORK
The GP approaches’ use of the graph abstraction for representing
the individuals provides a major advantage in terms of flexibility.
This allows for more reliable crossover operations as the graph
abstraction helps to ensure valid connections are made between
tasks. This is due to the implicit error checking in the creation of
edges with the JGraphT API. Manipulation and traversal of input
and output edge sets is also relatively straightforward with a
graph abstraction.
The GP process mining technique outlined in this paper holds
much promise for the mining of more complex processes. The GP
technique takes an alternative approach to the practice of process
mining and gives rise to the possibility that a greater range of real
life processes can be mined automatically. This approach may
eventually be able to mine processes from event logs containing
noise and other mining problems. A more formal assessment of
the GP approach will be undertaken in the near future which will
assess the technique with a wider range of process data,
alternative parameter values and the use of a mutation operator.
As mentioned earlier on in this paper, the test event logs used in
this paper are not obtained from ‘live’ business processes but aim
to model the most common process features. However, the next
stage of development of this technique will include the use of
actual corporate process data. Further work will also focus on the
mining and placement of semantic operators within the completed
process flowchart. Alternative approaches to mutation and
crossover, that are more suitable to a graph based representation,
are currently being developed for use with this GP process mining
technique.

Figure 7: Correct process templates for each of the three
process data sets (provided by [4] through ProM [10])

<ProcessInstance id="0" description="">
<AuditTrailEntry>

 <WorkflowModelElement>START</WorkflowModelElement>
</AuditTrailEntry>
<AuditTrailEntry>

 <WorkflowModelElement>A</WorkflowModelElement>
</AuditTrailEntry>
<AuditTrailEntry>

 <WorkflowModelElement>C</WorkflowModelElement>
</AuditTrailEntry>

Figure 8: An excerpt from the event log for process data 3

7. ACKNOWLEDGMENTS
This research is funded in part by the Engineering and Physical
Sciences Research Council (EPSRC) grant no: EP/C54899X/1,
UK, and British Telecommunications plc (BT).

8. REFERENCES
[1] Aalst, W.M.P. Process mining: a research agenda,

Computers in Industry, 53(3):pp. 231-244, 2004.
[2] Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L.,

Schimm, G., Weijters, A.J.M.M. Workflow mining: A
survey of issues and approaches, Journal of Data &
Knowledge Engineering, 47: pp. 237-267. 2003.

[3] Agrawal, R., Gunopulos, D., Leymann, F. Mining process
models from workflow logs, in Schek, H.J, ed., Proceedings
of the 6th International Conference on Extending Database
Technology: Advances in Database Technology, Springer
Verlag, Heidelberg, pp. 469-483. 1998.

[4] Alves de Medeiros, A.K., Genetic Process Mining. Ph.D
Thesis, Eindhoven Technical University, Eindhoven, The
Netherlands, 2006.

Process
Data 2

Process
Data 1

Process
Data 3

1313

[5] Alves de Medeiros, A.K., van Dongen, B.F., van der Aalst,
W.M.P., Weijters, A.J.M.M. Process mining: extending the
a-algorithm to mine short loops, Beta Working Paper,
Eindhoven University of Technology, The Netherlands,
2004.

[6] Alves de Medeiros, A.K., Weijters, A.J.M.M., van der Aalst,
W.M.P. Genetic process mining: an experimental Evaluation,
Journal of Data Mining and Knowledge Discovery, 14(2):pp.
245-304, 2007.

[7] Ashlock, D., Smucker, M., Walker, J. Graph based genetic
algorithms, Congress on Evolutionary Computation-CEC99,
Vol. 2, 6-9 July 1999, IEEE, Washington, DC, USA, pp.
1362-1368, 1999.

[8] Banzhaf, W, Nordin, P, Keller, R.E, Francone, F.D. Genetic
Programming: An Introduction, Morgan Kaufmann, San
Francisco, 1998.

[9] Cook, J.E., Wolf, A.L. Discovering models of software
processes from event-based data, ACM Transactions on
Software Engineering and Methodology, 7(3): pp. 215-249,
1998.

[10] Dongen, B.F., Alves de Medeiros, A. K., Verbeek, H.M.W.,
Weijters, A.J.M.M., Aalst, W.M.P. The ProM framework: -
a new era in process mining tool support, in Proceedings of
26th International Conference on Applications and Theory of
Petri Nets (ICATPN 2005),G. Ciardo, and P. Darondeau,
Eds. Heidelberg, Springer Verlag, pp. 444-454, 2005.

[11] Hirasawa, K., Okubo, M., Katagiri, H., Hu, J. and Murata, J.
Comparison between Genetic Network Programming (GNP)
and Genetic Programming (GP), Proceedings of the 2001
Congress on Evolutionary Computation, Vol. 2, 27-30 May
2001, IEEE, Seoul, South Korea, pp. 1276-1282, 2001.

[12] Hornby, G.S. Shortcomings with using edge encodings to
represent graph structures”, Genetic Programming and
Evolvable Machines, 7(3): pp. 231-252, 2006.

[13] JGraphT, An open source Java graph library that provides
mathematical graph-theory objects and algorithms,
http://www.jgrapht.org/, viewed 01/18/2008.

[14] Koza, J.R. Genetic Programming, MIT Press, London, 1992.
[15] Miller, J.F., Banzhaf, W. Evolving the program for a cell:

from French flags to Boolean circuits, in On Growth, Form
and Computers, S. J. Kumar and P. J. Bentley, Eds. New
York: Academic, pp. 278-301, 2003.

[16] Poli R. Evolution of graph-like programs with parallel
distributed genetic programming, In E Goodman, Ed.
Proceedings of Seventh International Conference on Genetic
Algorithms, Michigan State University, pp. 346-353, East
Lansing, USA, Morgan Kaufmann, 1997.

[17] Shirakawa, S., Ogino, S. and Nagao, T. Graph structured
program evolution, 9th Annual Genetic and Evolutionary
Computation Conference, GECCO 2007, Jul 7-11 2007,
Association for Computing Machinery, New York, NY
10036-5701, United States, London, United Kingdom, pp.
1686-1693, 2007.

[18] Wang, J., Fan, Z., Terpenny, J. P. and Goodman, E. D.
Knowledge interaction with genetic programming in
Mechatronic systems design using bond graphs", IEEE
Transactions on Systems, Man and Cybernetics Part C:
Applications and Reviews, 35(2):pp. 172-182, 2005.

[19] Weijters, A.J.M.M., van der Aalst, W.M.P. Process mining:
discovering workflow models from event based data, in
Kröse, B, Rijke., M, Schreiber, G, Someren, M, Eds.
Proceedings of the 13th Belgium-Netherlands Conference on
Artificial Intelligence, Amsterdam, The Netherlands, pp.
283-290, 2001.

[20] Weijters, A.J.M.M., van der Aalst, W.M.P., Rediscovering
workflow models from event-based data using little thumb,
Integral Computer-Aided Engineering, 10(2):pp. 151-162,
2003.

[21] Daida, J.M., Hilss, A.M., Ward, D.J., Long, S.L., Visualising
tree structures in genetic programming, Genetic
Programming and Evolvable Machines, 6: pp.79-110, 2005.

[22] Daida, J.M., Hilss, A.M., Identifying structural mechanisms
in standard genetic programming, in Genetic and
evolutionary computing - GECCO 2003, E. Cantu - Paz et
al., Eds. Berlin: Springer-Verlag., pp. 1639-1651, 2003.

1314

