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ABSTRACT 
The aim of process mining is to identify and extract process 
patterns from data logs to reconstruct an overall process 
flowchart. As business processes become more and more complex 
there is a need for managers to understand the processes they 
already have in place. To undertake such a task manually would 
be extremely time consuming so the practice of process mining 
attempts to automatically reconstruct the correct representation of 
a process based on a set of process execution traces. This paper 
outlines an alternative approach to business process mining 
utilising a Genetic Programming (GP) technique coupled with a 
graph based representation. The graph based representation allows 
greater flexibility in the analysis of process flowchart structure 
and offers the possibility of mining complex business processes 
from incomplete or problematic event logs. A number of event 
logs have been mined by the GP technique featured in this paper 
and the results of the experimentation point towards the potential 
of this novel process mining approach.  

Categories and Subject Descriptors 
 I.2.6 [Artificial Intelligence]: Learning --- Induction; I.2.8 
[Artificial Intelligence]: Problem Solving, Control Methods, and 
Search --- Graph and tree search strategies. 

General Terms 
Algorithms, Experimentation 

Keywords 
Business process mining, Genetic programming, Graph based 
representation 

1. INTRODUCTION 
Process mining, as a practice adopts many of the techniques used 
for data mining [9]. One of the first techniques for process mining 
was developed by Cook & Wolf [9] for use in the discovery of 

software process models. The first use of process mining in the 
context of business processes was made by Agrawal et al. [3]. The 
mining technique developed by [3] reconstructed process models 
from the event logs produced by the IBM Flowmark system. The 
aim of process mining is to identify and extract process patterns 
from data logs to reconstruct an overall process flowchart, an 
example is shown in Figure 1. The data logs, more commonly 
known in the business process field as event logs, contain 
execution data for a live process (an excerpt from an event log, 
used in this papers experiment set, is shown at the end in Figure 
8). Such event logs may be hosted within Business Process 
Management (BPM) and workflow systems, owned by medium 
and large organisations; recording the task by task completion of 
computer assisted processes. In some organizations event logs 
will be hosted by Enterprise Resource Planning (ERP) systems 
[2]. 
Increasingly modern business practice requires managers to fully 
understand how business processes operate in a live environment. 
To manually reconstruct a live process from a set of process 
execution traces would be very time consuming and error prone 
so software based process mining techniques are employed to 
automate this task.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Process data 1, an example of a process flowchart 
(template provided by [4]) 
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It is also the case that managers need to identify departures from 
normal process execution; a call centre manager may need check 
for parts of a process being bypassed by telephone operatives and 
financial institutions could detect instances of fraud through the 
identification of suspicious process execution traces. Event logs 
containing process traces also present a range of mining problems 
such as noise (due to incorrect or missing entries in the log, or 
partially executed jobs), process loops and parallel paths of 
execution [1]. In this paper the practice of process mining using 
genetic based approaches will be explored and particular 
reference given to a new GP based approach put forward by the 
authors. A number of test process event logs, developed for 
current process mining techniques, will be mined by the GP 
approach and the results presented later on. The test event logs 
used in this paper are not obtained from ‘live’ business processes 
but aim to model the most common process features. However, 
the next stage of development of this technique will include the 
use of actual corporate process data. 
 

2. GA APPROACHES TO PROCESS 
MINING 
Currently many approaches to process mining make use of 
heuristic algorithms [5] (‘rules of thumb’ based on the 
relationships between tasks in business process patterns [20]). 
One heuristic approach to process mining has been developed by 
Weijters [19] [20].  The approach of [20] involves a set of rules 
that are used to determine dependency relations between tasks in 
a process event log (order and precedence between process tasks). 
Such rules have also been tested for mining process patterns that 
contain loops and event logs with incomplete/noisy data by [20].  
Genetic based techniques for process mining are now being 
explored due to their resilience to noisy data and their ability to 
produce novel sub-process combinations from a given set of data. 
A GA based technique has been introduced by Alves de Medeiros 
[4] which aims to mine processes in the presence of a range of 
mining problems.  
The approach of [4] utilises a causal matrix which details input 
and output edges for each task of a process instance (an edge is a 
link between two process tasks). The relationships between edges 
are also detailed in the causal matrix; such relationships are 
restricted to ‘AND’ and ‘XOR’ operators only. For the GA of [4], 
the causal matrix had to be represented as a binary string. The 
technique draws on the work of [20] in its use of heuristics to 
determine the relationships between process tasks. Heuristics are 
used to build the initial generation of individuals for use within 
the GA. The GA technique has already provided some positive 
results with simple processes exhibiting limited levels of parallel 
constructs [4]. However, the GA approach as implemented by [4] 
experiences drawbacks in that the mining of more complex 
processes, especially those exhibiting high levels of parallel 
execution, is error prone.  
This paper outlines an evolutionary approach to process mining 
utilising Genetic Programming (GP). A GP technique is beneficial 
in the practice of process mining in that the representation of 
individuals need not be abstracted to the level of a binary string. 
Instead the GP process mining technique presented here utilises a 
directed graph structure, provided by the JGraphT software 
Application Programming Interface (API) [13]. This abstraction 
allows a better fit to the practice of process mining in that 

individuals’ fitness may be evaluated more efficiently (as 
explained later on). In a GP approach an individual is effectively 
an executable program [8].  
The use of graph structures in combination with genetic 
algorithms is not a new concept [7]. Genetic Programming is 
generally known for the generation of either tree structures or 
linear programming code [14] (in [21] Daida et al. give guidance 
on the visualisation of tree structures). However, GP has been 
used for generating graphs for Artificial Neural Networks [12], 
bond graphs [18], electronic circuits [15], and algorithm structures 
[17]. Genetic Network Programming [11] deals with the evolution 
of graph structures in which the numbers of nodes and their 
functional behaviour is fixed. Graph structured program evolution 
(GRAPE) as introduced by [17] is a GP technique using graph 
structures for generating computer programs with branches and 
loops. GRAPE uses a linear string of integers as its genotype. The 
visualisation A directed graph of a process provides executable 
decision points, such as ‘XOR’ and ‘AND’, between tasks. A 
graph may in effect be parsed against a set of criteria or overall 
graph schema for fitness. This is the approach attempted by [4]; 
however their binary causal matrix requires substantial effort in 
decoding for fitness assessment, crossover and mutation activities.  
A graph structure with API can be far easier manipulated for such 
activities. A graph structure representation, when used with GP, 
can also deal with loop constructs [8]. As with a GA approach GP 
evolved individuals benefit greatly from crossover and mutation 
operations.   
 

3. GP PROCESS MINING ALGORITHM 
While the process mining approach outlined by this paper and the 
approach of [4] both manipulate graph structures only the GP 
approach acts directly upon a graph based representation.  This 
provides benefits in operations such as crossover, where the 
approach of [4] can only swap the input and output edges of a 
single task as opposed to the GP approach which has the potential 
to allow entire sub-graph structures to be swapped over with 
comparative ease.  

 
 

Figure 2: GP Process Mining Algorithm Stages 
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3.1 Outline of the GP approach 
As can be seen from Figure 2 the five stages are followed in the 
operation of a GP process mining algorithm. In the first stage the 
event log, containing process execution data, is read (this data in 
the XML format accepted by the ProM [10] process mining suite). 
The second stage involves calculating dependency relations 
between the activities recorded in the process log (based on a set 
of heuristics). The third stage builds individuals from the event 
log relationships discovered in stage 2.  For the purposes of the 
experiments detailed in this paper stages 2 and 3 are based on the 
heuristics used by [4]. The heuristics try to determine the 
precedence and order of tasks in a process log by utilising a 
dependency measure. The dependency measure aims to ascertain 
the strength of the relationship between tasks by calculating the 
amount of times one task is directly preceded by another. The 
measure is also able to determine which tasks are in loop 
constructs [4].  Once a set of individuals has been created their 
causal matrix representations are then translated automatically 
into JGraphT objects (allowing each individual to be manipulated 
by JGraphT API functions).  

Stage 4 of the GP process mining algorithm involves the 
measurement of an individual’s fitness. Again for the purposes of 
this paper the fitness measure of [4] will be used. In practice a 
number of adaptations have had to be made in the coding of the 
fitness function to take account of the graph structure used by the 
GP approach while not affecting the overall behaviour of the 
fitness function in general. Each process trace in the event log is 
parsed against every individual generated for the process mining 
algorithm. For comparison purposes the parsing process used by 
[4] has been adapted for the GP mining approach.  

The parsing technique employed involves the stages shown in 
Figure 3. Each trace in the event log is parsed against the 
individual in a task by task fashion. A task from an event trace is 
compared to the individual and the input edges (edges are the 
directed links between tasks) are examined to see whether they 
have been marked as possibly enabled. Particular attention is 
given to incoming edges that are in an AND relationship. If such 
edges are not marked as possibly enabled then the task is marked 
as disabled. Edges that are in an AND relationship, unlike XOR 
edges, are mandatory for the task to execute correctly.  

Once all of the mandatory incoming edges of a task can be 
marked as enabled all of the output edges of that task can then be 
marked as possibly enabled. This parsing cycle continues until the 
last task of a process trace has been parsed; at which point the 
next process trace is parsed against the same individual. Once all 
traces have been parsed against the individual the next individual 
is parsed in the same manner until all individuals in a generation 
have been parsed against the set of traces in the event log.  

 

3.2 Fitness Function of the GP Approach 
The algorithm shown in equation 1 details part of the fitness 
function of [4] that is used in the experiments with the GP mining 
approach. Once the entire event log has been parsed against an 
individual, equation 1 is used to assign that individual a fitness 
score.  

               (1)
  

 

In equation 1 L is an event log and CM an individual. The 
notation CM[] represents a generation of process models. Each 
individual in a generation is being measured for completeness and 
preciseness in its reflection of the event log process traces. For 
completeness if all of the traces in the event log can be parsed 
against an individual without error then the fitness will be 1.0 [6].  
When a trace cannot be parsed against an individual correctly, 
either because a task has not been enabled or missing inputs have 
disabled a task, that individual’s fitness is reduced. 

 

 
Figure 3: The Parsing Cycle (GP Fitness Function) 
 

In equation 2 the PFcomplete function of equation 1 is detailed 
along with the fitness reduction measure. When mandatory inputs 
to a task are missing a token is added for each missing input 
which acts as a penalty in the fitness calculation. It is possible that 
there may be tokens left behind when a trace has been fully 
parsed (that is edges still set to possibly enabled as the task they 
refer to has not been enabled).  
 
Tokens left behind are counted and used to reduce the fitness 
score for that individual as they are an indication that the 
individual is potentially incorrect. For an XOR set that still has all 
its edges marked as ‘possibly enabled’ one token is added; a token 
is added for each AND that is left as ‘possibly enabled’ at the end 
of parsing for a trace. 
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In terms of preciseness the individual should not contain 
behaviour (expressed as tasks and edges) that is not detailed in the 
event log traces. The measure PFprecise in equation 1 provides an 
approximate measure of the amount of extra behaviour (additional 
edges not recorded in the event log but present in the mined 
process) an individual allows for in comparison to other 
individuals in the generation [6]. According to [6] on average 
individuals with a higher amount of enabled tasks tend to be more 
likely to express extra behaviour. In equation 3 the amount of 
enabled activities in an individual is divided by the maximum 
value obtained for enabled tasks from parsing the entire 
generation of individuals.  

 

[])),(max(
),([]),,(

CMLActivitiesallEnabled
CMLActivitiesallEnabledCMCMLPFprecise =     (3) 

 

Once  PFcomplete and PFprecise have been calculated the value 
κ , shown in equation 1, acts as a punishment weighting for the 
amount of extra behaviour found in an individual. The value ofκ   
may be within the interval [0, 1] [6]. 

 

3.3 GP Approach Fitness Parsing and Process 
Marking Rules 
The parsing process used for the GP approach uses a different 
marking schema than that used by [4]. Each edge in an individual 
can be marked. In total 3 markings are used –  
 
Marking 1.0 – Edge is not enabled 
Marking 2.0 – Edge is possibly enabled 
Marking 3.0 – Edge is enabled 
 
 
A number of parsing rules have been used with the GP parser 
shown in Table 1.  
Parsing takes place in a directed fashion as all trace tasks are 
arranged in order of execution with each trace possessing a 
generic start and end task. For each task that is parsed against an 
individual the input edges to that individual are assessed for the 
presence of mandatory AND edges. Such edges must be marked 
as 2.0 (possibly enabled) for the parser to progress to the next 
task. If all the mandatory (AND) incoming task edges are set to 
2.0   (possibly enabled) they can then be set to 3.0 (enabled) to 
show that the preceding task and edges in the individual match the 
trace being parsed. If this is not the case the task is noted as 
disabled and token is added for each non-enabled AND edge 
(counted in equation 2 as a missing token).  

An incoming XOR edge even when set to 1.0 does not necessarily 
indicate a problem, as another branch of the XOR may be set to 
3.0 or the XOR is not involved in that particular process trace. 
When a trace has been parsed against an individual all XOR edge 
sets are examined to check that one edge has been set to ‘enabled’ 
or all edges are ‘not-enabled’. If all the edges of an XOR set are 
found to be marked as ‘possibly enabled’ a single token is added 
(counted in equation 2 as an extra token left behind). Both 
missing tokens, tokens left behind and disabled tasks reduce the 
fitness score for an individual.  

Table 1. GP Fitness Parsing Rules 

Rule Reason 

If  incoming XOR edge is ‘not 
enabled’ then leave 

An incoming XOR edge 
that is ‘not enabled’ could 
mean that another edge in 
that XOR set is ‘enabled’ or 
will be enabled in the future 

Any incoming edges that are 
‘AND’ and are not marked as  
‘possibly enabled’ – set task as 
disabled 

A task cannot execute 
unless all of its mandatory 
inputs (AND edges) are 
marked as ‘enabled’ 

Mark all incoming AND edges, 
that are currently marked as  
‘possibly enabled’, as ‘enabled’ 

In order to register that a 
task has fired correctly all 
mandatory AND edges and 
XOR edges that are marked 
as ‘possibly enabled’ must 
be marked as ‘enabled’ 

When an incoming possibly 
enabled edge is marked as 
possibly enabled visit edge set 
to mark as ‘enabled’ and mark 
the other edges in that XOR to 
‘not enabled’ 

Only one edge of an XOR 
set can be marked as 
‘enabled’, all other edges 
must be set to ‘not enabled’ 

If a task in the trace does not 
exist in the individual, register 
the task as missing 

A missing task is a serious 
omission from an individual 

If an XOR edge (or edges)  is 
the only input into a task and 
an edge in that edges’ XOR set 
is already marked as ‘enabled’ 
add a token and mark task as 
disabled 

An XOR can only have one 
edge marked as ‘enabled’ 

Additional rule (after a trace 
has been parsed against an 
individual) 

Reason 

Check each XOR edge set; if 
all edges in a set are still 
marked as ‘possibly enabled’ 
add a token 

Any ‘possibly enabled’ 
XOR edge sets that have not 
been enabled indicate a 
potential error, a token must 
be added as punishment for 
this 

Check each AND, if still 
marked as ‘possibly enabled’ 
add a token  

Any ‘possibly enabled’ 
AND edges that have not 
been enabled indicate a 
potential error, a token must 
be added as punishment for 
this 
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3.4 Crossover Operator 
For the purposes of the experiments in this paper the crossover 
operator of [4] has been adapted for the GP approach. Further 
discussion of GP genetic operators and their effects may be found 
in [22]. In terms of this operator a five individual tournament 
selection process is used to select two parent individuals from a 
generation. A task, which exists in both individuals, is selected at 
random as the crossover point. The input and output edge sets of 
the task are then split at a randomly chosen swap point. In Figure 
4 below example input sets for two parent tasks are shown. The 
letters in the sets refer to the names of process tasks that link to 
the task in the form of an edge. The operator for each set defines 
the edge relationships. In Figure 4 assume the swap point is after 
the second set in each parent.  
 
parentTask1 = AND(B), AND(E), XOR(B,C,D) 
parentTask2 = XOR(B, E), AND(C), AND(B), AND(D) 
 
swapset1 = XOR(B,C,D), remainder1 = AND(B), AND(E) 
swapset2 = AND(B), AND(D), remainder2 =XOR(B,E),      
AND(C) 
swapset2 + remainder 1            
swapset1 + remainder 2 

 
If crossover rate = crossover 
 
For each set in swapset 1 select, with equal  
probability, one of the following three 
crossover methods –  
 
For each set in swapset1 do - 
 
1. Add set as a new subset in remainder2 
XOR(B,E), XOR(B,C,D) 
 
2. Join set with an existing set in remainder2 
XOR(B,E,C,D) 
 
3. Select a set in remander2 and remove the  
edges that are in common between that set  
and the set from swapset 1 
XOR(B,E,C,D) 
 

Repeat for the combination swapset2 & remainder1 
 
Figure 4: An Illustration of GP Crossover (adapted from [4]). 
 
The cycle shown in Figure 4 is repeated for both input and output 
sets of the selected crossover task. A pre-selected crossover rate 
determines how often crossover will take place in a generation. In 
the GA approach of [4] the crossover and mutation operators 
utilise a repair routine which is executed after an input or output 
set has been changed to make sure that only viable changes are 
made to individuals, the need for similar routines is very much 
reduced in the GP approach due to the inherent error checking 
provided by JGraphT [12] graph objects.  
 
In addition to the crossover operator and as practiced by [4], 
elitism is used to copy over a percentage of the best individuals to 
the next generation. 

 
If mutation rate = mutate 
Input set task A = AND(B), AND(E), XOR(B,C,D) 
For each set in input set s 
 
   1. Choose a set and add a task edge to the set 
                (randomly chosen from the complete set of 

 available tasks in the individual) 
AND(B), AND(F, E), XOR(B,C,D) 
Task F is added 
 
2. Remove a task edge from a set 
AND(B), AND(E), XOR(B,D) 
Task C is removed 
 
3. Random redistribution of task edges 
AND(C), XOR(B,E,D) 

 
 
Figure 5: An Illustration of GP Mutation (adapted from [4]) 
 
 

4. OUTLINE OF EXPERIMENTS 
The following Koza Tableau [8], shown in Table 2 describes the 
key parameters used in the GP.  
 

Table 2. Koza Tableau for the GP approach 

Parameters Values 
Objective To mine a best fit process from the given 

event log data 
Terminal Set The process task marked as STOP 

terminates the parsing of the process it is 
contained in. Similarly the START task 
initiates the parsing of a process. 

Function Set AND, XOR, Node Marking 
Fitness Cases Parse event log traces against each 

individual 
Raw Fitness  Number of correctly parsed traces for 

each individual  
Standardized Fitness Number of correctly parsed traces for 

each individual with a penalty for each 
missing task and for non enabled tasks 
calculated against the values for the 
generation as a whole (see Table 1 for 
parsing rules and equation 1 for the 
fitness measure) 

Termination criterion Fitness of 1.0 or maximum number of 
generations chosen 

Selection Tournament section, five individuals 
Initialization Method Parse first event log trace against first 

individual (of a generation created by 
heuristics) 

 
The experiments presented in this section give an indication of the 
abilities of the GP process mining approach. The following 
parameters are being used for the GP approach.  
Population size 100 
Maximum generations 1000 
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Elitism rate 0.02 
Crossover rate 0.8 
κ (extra behaviour fitness reduction) 0.025 
 
The event logs for three processes will be mined by the GP 
approach and the mining result compared to a ‘correct’ template 
for that process. Table 3 details the three processes to be mined. 
The processes have been used as test data in the work of [4].  For 
the experiments the GP approach will use just crossover (using 
crossover technique 1 - add set as a new subset) and elitism in its 
operation. 
The GP code is written in Java and hosted in the ProM process 
mining framework [10]. The experiments are being carried out on 
a Windows XP PC with 500MB RAM and a Pentium 4 3GHz 
processor. 
 

Table 3. Process Test Data Sets for Experiments 

 Sequences Parallelism 

Process data 1  Low Low 

Process data 2  Medium Medium 

Process data 3  Medium High 

 

5. RESULTS 
For interest the processes in Table 3 have also been mined by the 
GA of [4] using the same parameter settings outlined before; and 
unlike the GP approach, the addition of a mutation operator using 
a rate of 0.02. Process data 1 could be mined correctly by both GP 
and GA techniques and the mined process is shown in Figure 1. 
The results for process data 2 and 3 are displayed in Figure 6 
below. 
 
 
 

                                
 

                      
 

            
 
Figure 6: The results of mining process data 2 and 3 with the 
GP and GA process mining approaches (event logs provided 
by [4]). 
 
Process data 2 could also be mined by both the GA and GP 
techniques (flowchart A for GP and B for GA). However, the 
mining of process data 3 caused problems for the GA (flowchart F 
is GA). The GP mined this process with a higher level of 
structural accuracy (flowchart E in Figure 6). It is known that 
processes containing highly parallel constructs are difficult for the 
GA approach to mine [4]. The process templates for each process 
data set are shown in Figure 7. As mentioned earlier the GP 
approach did not utilise a mutation operator to obtain the results 
presented. The initial GP code implemented an adapted version of 
the mutation function used by [4] but tests showed that this 
operator was quite destructive in terms of the process flow 
diagrams returned, even when the mutation rate was reduced from 
0.02 to 0.0002.  
In the GA of [4] the crossover operator acts in a way that is not 
too dissimilar to a mutation operator, just crossing over edge sets 
for the same single task in each of the two offspring at any one 
time. After experimentation with the GP it was found that the 
‘Add set as a new subset’ method of crossover from [4] gave the 
best results. The GP parameters, such as population size and 
number of generations through to elitism and crossover rates, 
were set to the values recommended and used in the work of [4]. 
Overall 10 runs were conducted with each of the three process 
data sets for the GP and GA techniques, with each run taking 
approximately 10 minutes to complete. The main observations for 

(A) GP 
Result 

(C) GP  
Result 

(D) GA 
Result 

(B) GA 
Result 

(E) GP  
Result 

(F) GA  
Result 
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process data 1 was that the flowchart for the process could be 
mined correctly on each of the runs with both techniques. There 
was a similar outcome for process data 2 though on one or two 
runs of the GP one extra link was generated between two tasks. 
For process data 3 the GA consistently produced extra links 
between the parallel tasks. The GP produced either two or three 
superfluous links emanating from task A. From these tests the GP 
offers both consistency of results and a level of robustness when 
mining a range of structures, including parallel constructs. In 
conducting process mining with the GP approach there is, at this 
initial stage, a concentration on mining process structure rather 
than process behaviour expressed as semantic operators (such as 
XOR, AND).   

6. CONCLUSIONS AND FUTURE WORK 
The GP approaches’ use of the graph abstraction for representing 
the individuals provides a major advantage in terms of flexibility. 
This allows for more reliable crossover operations as the graph 
abstraction helps to ensure valid connections are made between 
tasks.  This is due to the implicit error checking in the creation of 
edges with the JGraphT API. Manipulation and traversal of input 
and output edge sets is also relatively straightforward with a 
graph abstraction.  
The GP process mining technique outlined in this paper holds 
much promise for the mining of more complex processes. The GP 
technique takes an alternative approach to the practice of process 
mining and gives rise to the possibility that a greater range of real 
life processes can be mined automatically. This approach may 
eventually be able to mine processes from event logs containing 
noise and other mining problems. A more formal assessment of 
the GP approach will be undertaken in the near future which will 
assess the technique with a wider range of process data, 
alternative parameter values and the use of a mutation operator. 
As mentioned earlier on in this paper, the test event logs used in 
this paper are not obtained from ‘live’ business processes but aim 
to model the most common process features. However, the next 
stage of development of this technique will include the use of 
actual corporate process data. Further work will also focus on the 
mining and placement of semantic operators within the completed 
process flowchart. Alternative approaches to mutation and 
crossover, that are more suitable to a graph based representation, 
are currently being developed for use with this GP process mining 
technique. 

                           

 
 

Figure 7: Correct process templates for each of the three 
process data sets (provided by [4] through ProM [10]) 
 
 
<ProcessInstance id="0" description=""> 
<AuditTrailEntry> 

         <WorkflowModelElement>START</WorkflowModelElement>  
</AuditTrailEntry> 
<AuditTrailEntry> 

         <WorkflowModelElement>A</WorkflowModelElement>  
</AuditTrailEntry> 
<AuditTrailEntry> 

         <WorkflowModelElement>C</WorkflowModelElement> 
</AuditTrailEntry> 

 
Figure 8: An excerpt from the event log for process data 3 
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