
Fast Mining of Complex Time-Stamped Events

Hanghang Tong† Yasushi Sakurai‡ Tina Eliassi-Rad§ Christos Faloutsos†
†Carnegie Mellon University, ‡NTT Communication Science Labs, §Lawrence Livermore National

Laboratory
†{htong, christos}@cs.cmu.edu, ‡yasushi.sakurai@acm.org, §eliassirad1@llnl.gov

ABSTRACT
Given a collection of complex, time-stamped events, how do we
find patterns and anomalies? Events could be meetings with one or
more persons with one or more agenda items at zero or more loca-
tions (e.g., teleconferences), or they could be publications with au-
thors, keywords, publishers, etc. In such settings, we want to solve
the following problems: (1) find time stamps that look similar to
each other and group them; (2) find anomalies; (3) provide inter-
pretations of the clusters and anomalies by annotating them; (4) au-
tomatically find the right time-granularity in which to do analysis.
Moreover, we want fast, scalable algorithms for all these problems.

We address the above challenges through two main ideas. The
first (T3) is to turn the problem into a graph analysis problem, by
carefully treating each time stamp as a node in a graph. This view-
point brings to bear the vast machinery of graph analysis meth-
ods (PageRank, graph partitioning, proximity analysis, and Cen-
terPiece Subgraphs, to name a few). Thus, T3 can automatically
group the time stamps into meaningful clusters and spot anomalies.
Moreover, it can select representative events/persons/locations for
each cluster and each anomaly, as their interpretations. The second
idea (MT3) is to use temporal multi-resolution analysis (e.g., min-
utes, hours, days). We show that MT3 can quickly derive results
from finer-to-coarser resolutions, achieving up to 2 orders of mag-
nitude speedups. We verify the effectiveness as well as efficiency
of T3 and MT3 on several real datasets.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications – Data
Mining

General Terms
Algorithm, experimentation

Keywords
multi-resolution analysis, scalability, graph mining

Copyright 2006 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by an employee,
contractor or affiliate of the U.S. Government. As such, the Government re-
tains a nonexclusive, royalty-free right to publish or reproduce this article,
or to allow others to do so, for Government purposes only.
CIKM’08, October 26–30, 2008, Napa Valley, California, USA.
Copyright 2008 ACM 978-1-59593-991-3/08/10 ...$5.00.

1. INTRODUCTION
In many real applications, datasets are often collected at different

time stamps. At each time stamp, we might observe a set of events,
where each event consists of a set of entities. Furthermore, each en-
tity can have its own attributes. For example, in social networks, we
might observe activities (events) at each day (time), where each ac-
tivity involves a set of different people (entities) – each with his/her
own attributes (e.g., job title). Another example is the yearly DBLP
datasets, where a time stamp is ‘publish year’; an event is a ‘paper’;
and entities are ‘author,’ ‘conference,’ etc.

How can we analyze time in such a complex context. For ex-
ample, are there any two time stamps that look similar with each
other? Can we find any abnormal time stamp whose behavior is
very different from other time stamps? How can we interpret our
findings? Furthermore, how can we do such analysis on multiple
scales in an efficient way?

In this paper, we address the above challenges in multiple di-
mensions. First in a single scale, our method (T3) can automat-
ically group time stamps into meaningful clusters as well as spot
the abnormal stamps. For each cluster/abnormal time stamp, it also
outputs the selective subsets of events/entities/attribute values as
their interpretations. Here, the main idea is (1) to adopt a graph
representation for the datasets at different time stamps and (2) to
explore the proximity among different nodes (time/events/entities/
attribute values), based on this we will find clusters and anomalies
as well as their interpretations. Our experiments on several real
datasets demonstrate that T3 always outputs results (i.e., clusters
and anomalies as well as their interpretations) that are consistent
with human intuitions. Furthermore, we propose MT3 to allow ef-
ficient analysis on multiple scales. Here, the key idea is to explore
the “smoothness” (i.e., redundancy) among different scales. Our
experiments show that MT3 leads to exactly the same results (i.e,
no quality loss), but achieves significant speed-ups (up to 2 orders
of magnitude).

The main contributions of the paper are summarized as follows:

• A generic framework (T3) to mine time in complex context

• An efficient algorithm (MT3) for multiple scale analysis

• Power of our approach illustrated by extensive experiments
on several real datasets

The rest of the paper is organized as follows. We begin in Sec-
tion 2 with the formal problem definition. We present T3 for the
single scale analysis and MT3 for the multiple scale analysis in
Section 3 and Section 4, respectively. The experimental results are
reported in Section 5. We review the related work in Section 6 and
conclude the paper in Section 7.

Table 1: Symbols
Symbol Definition and Description

O1 the ‘time’ object: O1 = {t1, ..., tn1}
O2 the ‘event’ object: O2 = {e1, ..., en2}
Ox the (x− 2)th ‘entity’ object: Ox = {b(x−2)

1 , ..., b
(x−2)
nx }, (x = 3, ..., 2 + p)

Oy the (y − 2− p)th ‘attribute’ object: Oy = {a(y−2−p)
1 , ..., a

(y−2−p)
ny }, (y = 3 + p, ..., 2 + p + q)

Wx,y the adjacency matrix (nx × ny) from the xth object to the yth object (x, y = 1, ..., 2 + p + q)
Dx,y the degree matrix: Dx,y(i, i) =

P
j Wx,y(i, j) and Dx,y(i, j) = 0(i �= j)

W = [Wx,y] the overall adjacency matrix (n× n)
0 a matrix with all elements equal to 0
I an identity matrix
p the number of different types of entities
q the number of different types of attributes
nx the number of instances for the xth type of object (x = 1, ..., 2 + p + q)
n the number of total instances (n =

P2+p+q
x=1 nx)

sx the number of objects connected to the xth type of object
z the number of clusters for time stamps
ri,j the proximity score from node j to node i
c (1− c) is the restart probability for random walk with restart (c = 0.95 in this paper.)
ttP = [ri,j] the time-to-time proximity matrix (n1 × n1, and i, j = 1, ..., n1)
toP = [ri,j] the time-to-others proximity matrix ((n− n1)× n1, and i = 1, ..., n− n1, j = 1, ..., n1)
f the aggregation function (n1 × 1 vector)
g the cluster membership function (n1 × 1 vector)

2. PROBLEM DEFINITION
In this section, we first introduce our notations and data repre-

sentation, and then give the formal problem definitions.
Table 1 lists the main symbols we use throughout this paper. Fol-

lowing standard notation, we use calligraphic letter for sets (e.g.,
O1 is the set of all time stamps), capital bolded letters for matrices
(e.g., W), and lower case bolded letters for vectors (e.g., g). We
denote the transpose with a prime (i.e., W′ is the transpose of W),
and we use superscripts to denote the indices for object types (e.g.,
Os is the sth type of object) and the indices for block matrices
(e.g., Wx,y is a block matrix of the matrix W). For matrix/vector,
we use the subscript to represent the size of the matrix/vector (e.g.
0k×l means a matrix of size k × l, whose elements are all zero).
If the size of a matrix/vector is clear from the context, we omit
such subscripts. Also, we represent the elements in a matrix using
a convention similar to Matlab, e.g., W(i, j) is the element at the
ith row and jth column of the matrix W, and W(i, :) is the ith

row of W, etc.
In our setting, the datasets are collected at different time stamps.

At each time stamp, we observe a set of events, where each event
consists of a set of entities. Furthermore, each entity may or may
not have its own attributes. For example, in the running example in
Table 2(a), we observe 9 events (e1, ..., e9), each of which is a so-
cial event (e.g., e1 is a ‘technical meeting’, e2 is a ‘football game’,
etc). The events are spreaded among 6 time stamps (t1, ..., t6), each
of which is a day (e.g., t1 is ‘Monday’, t2 is ‘Tuesday’, etc). Fur-
thermore, each event involves 2 entities (b1, ..., b8), each of which
is a person (e.g., b1 is ‘John’, b2 is ‘Smith’, etc) .

To simplify the description, we refer to ‘time’, ‘event’, each type
of ‘entity’, and each ‘attribute’ as one type of object, respectively.
If we have p types of entities (in the running example, p = 1), and
q types of attributes (in the running example, q = 0), we define the
following object setOx(x = 1, ..., 2+p+q), where the first type of
object is always ‘time’; the second type of object is always ‘event’;
each of the next p objects is one type of ‘entity’; and each of the

next q objects is one type of ‘attribute’. For the running example
in Table 2(a), we have 3 types of objects in the object set Ox(x =
1, 2, 3). They are ‘time’, ‘event’, and ‘entity’, respectively. (There
is no ‘attribute’ in this example.) Each object type has a set of
instances. For example, the instances for the ‘time’ object (O1) are
different time stamps (e.g., t1, t2, ...).

In this paper, we use a graph representation for the whole dataset
covering all time stamps. To be specific, we treat each instance for
each type of object as a node in the graph. For example, Table 2(b)
gives the graph representation for the original time-stamped datasets
(depicted in Table 2(a)) – where each time stamp, each event in-
stance, and each entity instance is represented as a single node in
the graph. Furthermore, the relationship between different types
of objects are modeled by the adjacency matrices (Wx,y(x, y =
1, ..., 2 + p + q)). For example, we can use W1,2 to model the
relationship between the ‘time’ object and ‘event’ object, where
W1,2(i, j) = 1 iff the jth event happens at the ith time stamp;
W1,2(i, j) = 0 otherwise. Similarly, we can use W2,2+x(x =
1, .., p) to model the relationship between the ‘event’ object and the
xth ‘entity’ object, where W2,2+x(i, j) = 1 iff the ith event in-
volves the jth instance of the xth type of entity; W2,2+x(i, j) = 0
otherwise. We can use W2+x,2+p+y(x = 1, ..., p, y = 1, ..., q) to
model the relationship between the xth type of ‘entity’ object the
yth type of ‘attribute’ object, where W2+x,2+p+y(i, j) = 1 iff the
ith instance of the xth type of ‘entity’ has the jth attribute value
of the yth type of ‘attribute’; W2+x,2+p+y(i, j) = 0 otherwise.
For the running example, two such adjacency matrices (W1,2 and
W2,3) are enough to model all the relationships (see Table 2(c)).

If we always reserve the first n1 rows/columns for the time nodes;
the next n2 rows/columns for the event nodes; followed by rows/
columns for entity nodes and attribute nodes respectively; we can
define W = Wx,y (x, y = 1, ..., 2+p+q) as the overall adjacency
matrix for the whole graph. Note that if there is no relationship be-
tween the xth and the yth objects, the corresponding block matrix
Wx,y = 0. Also, by this notation, we allow additional relationship

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t
1

t
4

t
5 t

6

t
3

First eigen−vector v
1

S
ec

on
d

ei
ge

n−
ve

ct
or

 v
2

t
2

representative entities:
b

7
, b

6
 and b

8

representative entities:
 b

5
 and b

4

representative entities:
 b

3
, b

2
 and b

1

(a) The finest scale

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t
1
−−t

2

t
5
−−t

6

t
3
−−t

4

First eigen vector v
1

S
ec

do
nd

 e
ig

en
 v

ec
to

r
v 2 representative entities: b

6
 and b

7

representative entities: b
2
 and b

3

(b) The aggregated scale (by every two time stamps)

Figure 1: The outputs for the running example in Table 2.

within the same type of object. For example, if we want to consider
the continuous property of time, we can put extra links between
consecutive time nodes, which will lead to a non-zero block matrix
W1,1. For the running example in Table 2, its overall adjacency
matrix W has the following format (Eq. (1)):

W =

0
@ 0 W1,2 0

(W1,2)′ 0 W2,3

0 (W2,3)′ 0

1
A (1)

With the above notation, our datasets can be denoted by the ob-
ject setOx(x = 1, ..., 2+p+q) together with the overall adjacency
matrix W. Our goal is to find (1) similar/anomalous time stamps
and (2) their interpretations. In this paper, we define an anomalous
time stamp as a special time cluster, which contains a single time
stamp. Therefore, we define the cluster membership function g as
an n1 × 1 vector, and each element in g as an integer between 1
and z (z is the cluster number for time stamps), indicating to which
cluster it belongs. To provide an interpretation for each time clus-
ter, we want to select a representative subset of instances from each
type of object (except ‘time’ object). Thus, our problem (The
Single Scale Analysis) can be formally defined as follows:

PROBLEM 1. The Single Scale Analysis

Given: The datasets collected at different time stamps: {Ox,W}(x =
1, .., 2 + p + q).

Find: (i) The cluster membership function g for time stamps (as
well as the cluster number z); and (ii) for each time cluster,
a representative subset of instances from each type of object
(except ‘time’ object).

For example, Fig. 1(a) shows the output of the proposed T3 (for
the single scale analysis) applied to the datasets we list in Table 2,
where we find 2 clusters of time stamps ({t1, t2} and {t4, t5, t6})
and 1 abnormal time stamp (t3). Therefore, our cluster membership
function satisfies: g = [1, 1, 3, 2, 2, 2]′. For each time cluster
as well as the abnormal time stamp, we also output a representative
subset of the entity nodes as its interpretations.1

Besides the finest scale, we might also want to do the same anal-
ysis (i.e., to find the time cluster/anomaly as well as their inter-
pretations) on some coarser scale. To this end, we introduce the
aggregation function f , which is an n1 × 1 vector. For exam-
ple, if we aggregate the time by every two time stamps for the
datasets in Table 2, the aggregation function �u is a 6 × 1 vector:
f = [1, 1, 2, 2, 3, 3]′. Also, let g̃ be the cluster membership
function and z̃ be the cluster number at the aggregated scale, re-
spectively. With this notation, our problem (The Multiple Scale
Analysis) can be formally defined as follows:

PROBLEM 2. The Multiple Scale Analysis

Given: (i) The datasets collected at different time stamps:
{Ox,W}(x = 1, .., 2 + p + q); and (ii) the aggregation
function f .

Find: (i) The cluster membership function g̃ for time stamps (as
well as the cluster number z̃); and (ii) for each time cluster
at aggregated scale, a representative subset of instances from
each type of object (except ‘time’ object).

For example, Fig. 1(b) shows the output of the proposed MT3
applied to the datasets in Table 2 if we aggregate the time by every
two time stamps. Notice that in this case, the abnormal time stamp
(i.e., t3 at the finest scale) disappears.

3. T3 FOR SINGLE SCALE ANALYSIS
In this section, we propose T3 to address problem 1. We first give

an overview of the proposed algorithm (T3), and then introduce
each component of T3 in detail.

3.1 Overview of T3
Alg. 1 gives the overview of the proposed T3 for single scale

analysis. In T3, we first construct the graph representation W
from the original raw datasets as introduced in Section 2 (step 1).
Then (step 2), we will compute two proximity matrices from the
adjacency matrix W: the time-to-time proximity matrix (ttP) and
the time-to-others proximity matrix (toP). The time-to-time prox-
imity matrix (ttP) will be used to find the time cluster member-
ship function g (step 3); while the time-to-others proximity matrix
(toP) will be used to find the representative subset of instances as
the interpretations for time cluster (step 4).

3.2 Compute the Proximity matrices
The key point in T3 is to construct two proximity matrices (ttP

and toP), based on which we will find the time cluster membership
function g and its interpretations, respectively.

Alg. 2 lists detailed procedures to compute these two proxim-
ity matrices. Overall, we adopt the well-studied model of random
1For the sake of simplicity, the representative events are not shown
in the figure.

(a) Original datasets (b) Graph representation (c) Adjacency matrices

Table 2: A running example: notations and representation illustration.

Algorithm 1 Overview of T3
1: construct the graph W from the raw datasets
2: compute the proximity matrices ttP and toP
3: find time cluster membership function g based on ttP
4: find the interpretation for each time cluster based on toP

walk with restart [19, 27, 33] for this purpose (steps 7-12). Sup-
pose a random particle starts from the time node j, the particle
iteratively transmits to its neighborhood with the probability that
is proportional to the edge weight between them; and also at each
step, it has some probability (1 − c) to return to the starting node
j. The proximity score ri,j is defined as the steady-state probabil-
ity that the particle will finally stay at node i. A subtle point in
computing the proximity matrices is how to normalize the original
adjacency matrix W. In Alg. 2, we propose to normalize it by ob-
ject type (steps 1-7). That is, suppose the random particle stays at
some node of type x and overall there are sx different types of ob-
jects connected to the xth type of object; then at the next step, the
particle will have equal chance (1

sx
) to jump to each of sx types of

objects.

Algorithm 2 Compute the Proximity Matrices ttP and toP

Input: the adjacency matrix W and c
Output: the proximity matrices ttP and toP
1: for x = 1 : 2 + p + q do
2: for y = 1 : 2 + p + q do
3: normalize by object type: Wx,y ← 1

sx
·(Dx,y)−1 ·Wx,y

4: end for
5: end for
6: set W← [Wx,y]
7: for j = 1 : n1 do
8: let e = 0n×1; then set e(j) = 1
9: solve r from the equation r = cW′r + (1− c)e

10: set ttP(:, j) = r(1 : n1)
11: set toP(:, j) = r(n1 + 1 : n)
12: end for

3.3 Find Time Cluster g

Here, we want to find the cluster membership function g for time
stamps based on the time-to-time proximity matrix ttP. The algo-

Algorithm 3 Find the Time Cluster
Input: the time-to-time proximity matrix ttP
Output: the cluster membership function g
1: do eigen value decomposition for ttP; let {λ1, ..., λn1}

be the eigen values for ttP (from largest to smallest) and
{v1, ..., vn1} be the corresponding eigen vectors

2: find the cluster number z = argmaxi(λi−1 − λi)
3: let V = [v1, ..., vz]
4: treat each row of V as a data point in z-dimensional space
5: use k-means to find z clusters on V and output the correspond-

ing cluster membership function g

rithm is listed in Alg. 3. We use a spectral clustering algorithm.2

In Alg. 3, we first use the eigen-gap [9] (step 2) to choose cluster
number z. Then, we treat the first z eigen vectors as the embedding
of the time nodes in the z-dimensional space (steps 3-4) and run
k-means to find the final cluster membership function g (step 5).

As mentioned before, if we find some cluster which contains a
single time stamp, we flag it as the abnormal time stamp.

One benefit of using spectral clustering method is that we can
use the first few eigen vectors as the embedding of the time stamps
in some low dimensional space. For example, we can visualize the
time stamps by plotting its first two eigen vectors in Fig. 1 for the
running example.

3.4 Find Interpretations for Time Clusters
For each time cluster, we want to select a representative subset of

instance nodes from each type of object (except the ‘time’ object)
as the interpretations for that time cluster.

Suppose we want to find the interpretations for the time cluster
u (u = 1, ..., z). Let r̄(j, u) be the average proximity score from
the time cluster u to the instance node j:

r̄(j, u) =

Pn1
i=1 I(g(i) = u)toP(j, i)Pn1

i=1 I(g(i) = u)
(2)

2Notice that our framework is orthogonal to the specific cluster-
ing methods. We can plug in any clustering algorithm that takes a
proximity matrix between nodes as input. For example, we could
transfer the time-to-time proximity matrix ttP to be the normal-
ized graph Laplacian and find its eigen-decomposition instead (step
1). Alternatively, we can normalize each row of V to have the unit
length in step 3 as suggested in [25].

where I(.) is an indicator function, which is 1 if the condition in
the parenthesis is true and 0 otherwise.

Based on r̄(j, u), we can define the representative score r(j, u)
for each instance node j w.r.t. the given time cluster u as follows:

r(j, u) = r̄(j, u)
zY

w=1,w �=u

(1− r̄(j, w)) (3)

The intuition of Eq. (3) is that we want to find the node j which
is close to the time cluster u (higher r̄(j, u) is better) and far away
from other time clusters (lower r̄(j, w)(w �= u) is better) on aver-
age. Finally, we can output a subset of instance nodes with high
representative scores r(j, u) from each type of object as the inter-
pretations for the time cluster u.

4. MT3 FOR MULTIPLE SCALE ANALYSIS
In this section, we propose MT3 to address problem 2. Concep-

tually, we can apply T3 for each scale of interest independently.
Here, the challenge is to make the analysis on the coarser scales as
efficient as possible, given that we have already done the analysis
at the finest scale.

Algorithm 4 Update the Proximity Matrices
Input: the proximity matrices ttP and toP, the normalized adja-

cency matrix W at the finest scale, the aggregation function f
and c;

Output: the proximity matrices ˜ttP and ˜toP at the aggregated
scale.

1: set up the normalized adjacency matrix W̃ = [W̃x,y] at the
aggregated scale.

2: initialize the transformation matrices: T1 = 0ñ1×n1 , and
T2 = 0n1×ñ1

3: for ĩ = 1 : ñ1 do
4: find time stamps at the finest scale: J = {i : g(i) = ĩ}
5: for each i ∈ J do
6: set T1 (̃i, i) = h(i)/

P
i∈J h(i)

7: set T2(i, ĩ) = 1
8: end for
9: end for

10: set Λ = In1×n1 − cW′
1,1 − (1− c)(ttP)−1

11: update ˜ttP = (1− c)(Iñ1×ñ1 − cW̃′
1,1 −T′

2ΛT′
1)

−1

12: update ˜toP = toP(ttP)−1T′
1

˜ttP

In Alg. 1, the computational bottleneck lies in step 2 – i.e., to
compute the two proximity matrices ttP and toP. For example,
our experiments show that the time for this step usually accounts
for more than 95% of the overall running time of the algorithm.
Therefore, our goal in Multiple Scale Analysis is to efficiently up-
date these two proximity matrices (˜ttP and ˜toP) at the aggregated
scale, given that we have already computed the proximity matrices
(ttP and toP) at the finest scale.

We introduce the following vector hn1×1, where h(i) := num-
ber of event/entity/attribute nodes connected to the time node i at
the finest scale. Suppose that we will have ñ1 time stamps at the
aggregated scale (i.e., ñ1 = max(f)). Alg. 4 gives the detailed
procedure to update the proximity matrices. In Alg. 4, after we
get the overall normalized adjacency matrix W̃ at the aggregated
scale (step 1), we set up two transformation matrices T1 and T2

(steps 2-9). Then (steps 10-12), we need two matrix inversions (one
n1 × n1 in step 10 and one ñ1 × ñ1 in step 11) to get the proxim-
ity matrices (˜ttP and ˜toP) at the aggregated scale. Note that in
many real applications the number of time nodes at the finest scale

is usually much smaller compared to the total nodes in the graph
(i.e., n1 � n). Typically, n1 (the number of time nodes at the
finest scale) is up to a few thousand whereas n (the total nodes in
the graph) could be up to a few hundred thousand. For example,
in the DBLP dataset, we only have about 49 among 988,947 time
nodes at the finest scale. Therefore, we can efficiently update the
proximity matrices at the aggregated scale by Alg. 4.

The correctness of Alg. 4 is guaranteed by the following theo-
rem:

THEOREM 1. The proximity matrices ˜ttP and ˜toP by Alg. 4
are correct. That is, they are exactly the same as we apply Alg. 2 to
the adjacency matrix W̃.

PROOF. To simplify the description, we re-write the normalized
adjacency matrix as the following 2× 2 block form:

W =

„
A1,1 A1,2

A2,1 A2,2

«
, W̃ =

„
Ã1,1 Ã1,2

Ã2,1 Ã2,2

«
(4)

where

A1,1 = W1,1, Ã1,1 = W̃1,1

A1,2 = [W1,y], Ã1,2 = [W̃1,y] (y = 2, ..., 2 + p + q)

A2,1 = [Wx,1], Ã2,1 = [W̃x,1] (x = 2, ..., 2 + p + q)

A2,2 = [Wx,y], Ã2,2 = [W̃x,y] (x, y = 2, ..., 2 + p + q)

(5)

Notice that only time nodes change before/after the aggregation,
we have,

Ã2,2 = A2,2 (6)

Furthermore, we can verify the following equations hold for the
two off-diagonal blocks in Eq. (4):

Ã1,2 = T1A
1,2

Ã2,1 = A2,1T2 (7)

Define the following matrix inversion:

Q = (I− cW)−1

=

„
Q1,1 Q1,2

Q2,1 Q2,2

«

Q̃ = (I− cW̃)−1

=

„
Q̃1,1 Q̃1,2

Q̃2,1 Q̃2,2

«
(8)

By the property of random walk with restart [33], we have the
following equations for the proximity matrices:

ttP = (1− c)(Q1,1)′, toP = (1− c)(Q1,2)′

˜ttP = (1− c)(Q̃1,1)′, ˜toP = (1− c)(Q̃1,2)′ (9)

Now, apply block matrix inversion lemma [28] to Eq. (8). To-
gether with Eq. (4)-(9), we have

1

1− c
(ttP)′ = (I− cW1,1 − c2A1,2(I −A2,2)−1A2,1)−1

(toP)′ = c(ttP)′A1,2(I −A2,2)−1

1

1− c
(˜ttP)′ = (I− cW̃1,1 − c2T1A

1,2(I −A2,2)−1A2,1T2)
−1

(˜toP)′ = c(˜ttP)′T1A
1,2(I −A2,2)−1 (10)

Table 3: Datasets used in our evaluations
Dataset name p q n1 n m

NIPS 1 0 13 3,900 11,460
CIKM 2 1 15 3,299 10,228
DBLP 2 0 49 988,947 5,216,722

DeviceScan 2 0 294 114,540 684,276

In Eq. (10), we have four equations for four unknown variables
(˜ttP, ˜toP, A1,2(I−A2,2)−1A2,1, and A1,2(I−A2,2)−1). Solv-
ing this well-defined linear system, we have

˜ttP = (1− c)(I− cW̃′
1,1 −T′

2ΛT′
1)

−1

˜toP = toP(ttP)−1T′
1

˜ttP (11)

where Λ = I − cW′
1,1 − (1 − c)(ttP)−1, which completes the

proof of theorem 1. �

Based on Alg. 4, the complete algorithm for Multiple Scale Anal-
ysis is given in Alg. 5.

Algorithm 5 MT3 for Multiple Scale Analysis
Input: the proximity matrices ttP and toP, the normalized adja-

cency matrix W at the finest scale, the aggregation function f
and c

Output: (i) the cluster membership function g̃ at the aggregated
scale; and (ii) for each time cluster at aggregated scale, a rep-
resentative subset of instances from each type of object (except
‘time’ object)

1: update the proximity matrices ˜ttP and ˜toP by Alg. 4
2: find the cluster membership function g̃ by Alg. 3
3: for each time cluster ũ in g̃, compute the representative score

r(j, ũ) for each instance j by ˜toP and Eq. (3); and output
a representative subset of instances from each type of object
(except ‘time’ object) based on r(j, ũ)

5. EXPERIMENTAL RESULTS
In this section, we introduce four real datasets and present our

experimental results. All of the experiments are designed to answer
the following questions:

• effectiveness: What is the quality of T3 and MT3 proposed
in this paper?

• efficiency: How fast are the proposed algorithms?

5.1 Datasets
We use four real datasets, which are summarized in Table 3. For

each dataset, Table 3 lists the number of different types of ‘entity’
objects (p), the number of different types of ‘attribute’ objects (q),
the number of time nodes in the finest scale (n1), the number of
nodes (n) and edges (m) in the whole graph in the finest scale.
We verify the effectiveness of the proposed T3 and MT3 on NIPS,
CIKM, and DeviceScan, and measure the efficiency of our algo-
rithms using the larger DBLP and DeviceScan datasets.

The first dataset (NIPS) is from the NIPS proceedings.3 The time
stamps are publication years, from 1987 to 1999. We treat paper as
‘event’ object and author as ‘entity’ object; there is no ‘attribute’
object in this dataset. Overall, there are 13 time nodes, 1,740 paper
nodes, 2,037 author nodes, and 11,460 edges at the finest scale.
3http://www.cs.toronto.edu/~roweis/data.html

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
1987
1988

1989

1990

1991

19921993

19941995

1996
1997

1998
1999

First eigen vector v
1

S
ec

on
d

ei
ge

n
ve

ct
or

 v
2

Figure 2: The embedding for the time nodes of NIPS dataset.

The CIKM dataset is constructed from the CIKM proceedings.4

Again, time stamps are publication years, from 1993 to 2007. (No-
tice that we do not include papers from CIKM 1992 since the ses-
sion information for that year is not available.) We treat paper as
‘event’ object. For this dataset, we have two types of ‘entity’ ob-
jects: the authors of the paper and the session name where the paper
is presented during the conference. For the session name, we fur-
ther extract 158 keywords as its attribute. Overall, there are 15 time
nodes, 952 paper nodes, 1,895 author nodes, 279 session nodes,
158 keyword nodes, and 10,228 edges at the finest scale.

The DBLP dataset is constructed from all the papers in the DBLP.5

Again, time stamps are publication years, from 1959 to 2007. We
treat paper as ‘event’ object. For this dataset, we have two types
of ‘entity’ objects: the authors of the paper and the conference
where the paper is published. There is no additional ‘attribute’
object for this dataset. Overall, there are 49 time nodes, 567,090
paper nodes, 418,236 author nodes, 3,571 conference nodes, and
5,216,722 edges at the finest scale.

The DeviceScan is from MIT reality mining project.6 Here, the
‘event’ object is blue tooth device scanning persons, and the time
stamps are the day when such scanning events happen, from Jan.
1, 2004 to May. 5, 2005. For this dataset, we have two types of
‘entity’ objects: the blue tooth device and the person to be scanned;
there is no additional ‘attribute’ object. Overall, there are 294 time
nodes, 114,046 scanning nodes, 103 device nodes, 97 person nodes,
and 684,276 edges at the finest scale.

5.2 Effectiveness: Case Studies
Here, we show the experimental results for the three real datasets,

all of which are consistent with our intuition.
Fig. 2 gives the embedding of the time nodes for NIPS dataset

using the first two eigen vectors (v1 and v2) of toP, which reveal
a line shape of time over publication years. Using T3, we find two
time clusters (green circles vs. red dots in Fig. 2) as well as their
interpretations in Table 4. From Fig. 2 and Table 4, we can see that
while NIPS is a relatively stable community on the whole (e.g., the
majority representative authors do not change over years), there is a
topic shift from early 1990s (mainly on ‘neural network’ and ‘neu-
ral information processing’) to late 1990s (mainly on ‘statistical
learning’).

Fig. 3 gives the embedding of the time nodes for CIKM dataset
using the first two eigen vectors (v1 and v2) of toP, which reveal

4http://www.informatik.uni-trier.de/~ley/db
/conf/cikm/
5http://www.informatik.uni-trier.de/~ley/db/
6http://reality.media.mit.edu/

Table 4: The interpretations for NIPS dataset.

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

1993

1994

1995
19961997

19981999

2000

2001

2002
2003

2004 2005
2006 2007

First eigen vector v
1

S
ec

on
d

ei
ge

n
ve

ct
or

 v
2

Figure 3: The embedding for the time nodes of CIKM dataset.

a line shape of time over publication years as for the NIPS dataset.
Using T3, we find two time clusters (green circles vs. red dots in
Fig. 3) as well as their interpretations in Table 5. (For simplicity,
we do not show the representative papers in the table.) From Fig. 3
and Table 5, we can see that while there are quite a lot of research
interest in deductive databases and rule systems in the CIKM com-
munity in 1990s, attention has shifted to XML, statistical learning,
language, etc since 2000.

Fig. 4 shows the results of applying the proposed MT3 to the
DeviceScan dataset on two different scales: (a) daily scale and (b)
monthly scale. From Fig. 4(a), it can be seen that, there are two
time clusters on the daily scale. We found that one time cluster
(green circles) corresponds to semester breaks as well as holidays;
and the other cluster (red dots) corresponds to the week days during
the semester. On the other hand, we found an abnormal time stamp
(red dot, which is Apr. 2004) on the monthly scale (Fig. 4(b)).

5.3 Efficiency
Here, we study the wall-clock time of the proposed MT3 using

two relatively larger datasets: DeviceScan and DBLP. For these
results, all of the experiments are done on the same machine with
four 2.4GHz AMD CPUs and 48GB memory, running Linux (2.6
kernel). We vary the aggregation length (e.g., aggregate by every
2 time stamps, by every 3 time stamps, etc) and compare the wall-
clock time by the proposed MT3 and that by applying T3 to each
of the aggregated scale from scratch (referred to as the ‘straight-
forward’ method).

0 0.05 0.1 0.15
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

First eigen vector v
1

S
ec

on
d

ei
ge

n
ve

ct
or

 v
2

(a) on daily scale

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Apr. 2004 is anomaly

First eigen−vector v
1

S
ec

on
d

ei
ge

n−
ve

ct
or

 v
2

(b) on monthly scale
Figure 4: The embedding for the time nodes of DeviceScan
dataset.

Fig. 5 shows the results. Notice that time is in logarithm scale. It
can be seen that the proposed MT3 is much more efficient. For ex-
ample, it is 120x faster (6.1 seconds vs. 734 seconds) for DeviceS-
can dataset if we aggregate the time by every three time stamps
(Fig. 5(a)); and it is 263x faster (6.0 seconds vs. 1,603 seconds) for
DBLP dataset if we aggregate the time by every two time stamps
(Fig. 5(b)). Overall, the proposed MT3 is 25x-263x faster than the
straight-forward method. We would like to emphasize that such
speed-ups are totally free, i.e., the proposed MT3 leads to exactly
the same outputs as we apply T3 to each aggregated scale from
scratch.

Table 5: The interpretation for CIKM dataset.

5 10 15 20 25 30
1

5

10

50

100

500

1,000

5,000

Aggregation Length

Lo
g

W
al

l−
C

lo
ck

 T
im

e
(S

ec
on

ds
)

MT3
Straight−foward

1 2 3 4 5 6 7 8 9 10

5

1

10

50

100

500

1,000

5,000

Aggregation Length

Lo
g

W
al

l−
C

lo
ck

 T
im

e
(S

ec
on

ds
)

MT3
Straight−foward

(a) DeviceScan dataset (b) DBLP dataset

Figure 5: Comparison on wall-clock time

6. RELATED WORK
In this section, we review the related work, which can be cate-

gorized into three parts: graph mining, proximity measurement on
graphs and relational learning.

Graph Mining. There exists a lot of research on static graph
mining, including pattern and law mining [4, 11, 13, 7, 24], fre-
quent substructure discovery [35], influence propagation [20], com-
munity mining [14, 16, 17], etc. More recently, there has been an
increasing interest in mining time-evolving graphs, such as densifi-
cation laws and shrinking diameters [22], community evolution [5],
dynamic communities [8], and proximity tracking [34], etc. It is
worth pointing out that in these work, the focus is on utilizing the
time information to better understand other nodes (event/entity/attribute)
in the graphs; while in T3 and MT3 we focus on the other side of
the problem, i.e., to better understand time itself based on other
information (event/entity/attribute).

Measuring Proximity on Graphs. One of the most widely used
proximity measurement on graphs is random walk with restart [19,
27, 33], which is the main idea behind Google’s PageRank al-
gorithm [26]. Other representative proximity measurements on
static graphs include the sink-augmented delivered current [12],
cycle-free effective conductance [21], survivable network [18], and

direction-aware proximity [32]. Notice that the fast algorithms
to compute the proximity measurements designed for querying,
such as the one in [33], do not apply in our settings since the pre-
computational time for these algorithms will flood the overall run-
ning time of T3 and MT3.

Also, there are a lot of applications of proximity measurements.
Representative work includes connection subgraphs [12, 21, 30],
content-based image retrieval [19], cross-modal correlation discov-
ery [27], the BANKS system [1], link prediction [23], pattern match-
ing [31], ObjectRank [6], RelationalRank [15], and NetRank [3, 2].
Among them, the most related works are [27, 6, 3, 2] in the sense
that they all use a graph representation for the dataset(s). However,
these approaches mainly focus on querying with or without learn-
ing; while T3 and MT3 are focusing on mining time in the context
of complicated events.

Relational Learning. Sharan and Neville [29] present a two-
step approach for incorporating temporal information on links (e.g.,
co-authorship and citation) into a relational classifier. First, they
summarize the time-varying interaction as weights on links of a
static summary graph. The summarization uses an exponential
weighting scheme [10]. Second, they incorporate these link weights
into a relational Bayes classifier. Their approach requires a sum-

mary parameter (θ), that needs to be either provided by the user
or tuned by the learning algorithm. Furthermore, their approach
cannot handle temporally-varying attributes. Our approach do not
require a user-provided parameter and can handle time associated
with any aspect of an event.

7. CONCLUSION
In this paper, we study how to find patterns in a collection of

time-stamped, complex events. Our main contributions are the fol-
lowing:

1. We propose to treat each time-stamp as a node in a carefully
constructed graph. This opens the door for the vast arse-
nal of graph mining algorithms (PageRank, graph partition-
ing, proximity analysis, CenterPiece Subgraphs, etc). We
show how the proposed T3 can automatically group the time
stamps into meaningful clusters, spot anomalies, and provide
interpretations.

2. We propose MT3 to handle multiple scale analysis, achieving
up to 2 orders of magnitude speedups.

3. Finally, we verify the effectiveness as well as the efficiency
of T3 and MT3 with experiments on several real datasets.

A promising research direction is to extend the T3 and MT3 to
include additional continuous attributes, like geographical coordi-
nates.

8. ACKNOWLEDGEMENT
This material is based upon work supported by the National Sci-

ence Foundation under Grants No. IIS-0326322, No. IIS-0534205,
and performed under the auspices of the U.S. Department of En-
ergy by Lawrence Livermore National Laboratory under contract
DE-AC52-07NA27344 (LLNL-CONF-405539). This work is also
partially supported by the Pennsylvania Infrastructure Technology
Alliance (PITA), an IBM Faculty Award, a Yahoo Research Al-
liance Gift, with additional funding from Intel, NTT and Hewlett-
Packard. Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation, or
other funding parties.

9. REFERENCES
[1] B. Aditya, G. Bhalotia, S. Chakrabarti, A. Hulgeri, C. Nakhe, and

S. S. Parag. Banks: Browsing and keyword searching in relational
databases. In VLDB, pages 1083–1086, 2002.

[2] A. Agarwal and S. Chakrabarti. Learning random walks to rank
nodes in graphs. In ICML, pages 9–16, 2007.

[3] A. Agarwal, S. Chakrabarti, and S. Aggarwal. Learning to rank
networked entities. In KDD, pages 14–23, 2006.

[4] R. Albert, H. Jeong, and A.-L. Barabasi. Diameter of the world wide
web. Nature, 401:130–131, 1999.

[5] L. Backstrom, D. P. Huttenlocher, J. M. Kleinberg, and X. Lan.
Group formation in large social networks: membership, growth, and
evolution. In KDD, pages 44–54, 2006.

[6] A. Balmin, V. Hristidis, and Y. Papakonstantinou. Objectrank:
Authority-based keyword search in databases. In VLDB, pages
564–575, 2004.

[7] A. Broder, R. Kumar, F. Maghoul1, P. Raghavan, S. Rajagopalan,
R. Stata, A. Tomkins, and J. Wiener. Graph structure in the web:
experiments and models. In WWW Conf., 2000.

[8] Y. Chi, X. Song, D. Zhou, K. Hino, and B. L. Tseng. Evolutionary
spectral clustering by incorporating temporal smoothness. In KDD,
pages 153–162, 2007.

[9] F. R. K. Chung. Spectral Graph Theory. American Mathematical
Society, 1997.

[10] C. Cortes, D. Pregibon, and C. Volinsky. Communities of interest. In
Proc. of the 4th Int’l Symp. of Intelligent Data Analysis (IDA’01),
pages 105–114, 2001.

[11] S. Dorogovtsev and J. Mendes. Evolution of networks. Advances in
Physics, 51:1079–1187, 2002.

[12] C. Faloutsos, K. S. McCurley, and A. Tomkins. Fast discovery of
connection subgraphs. In KDD, pages 118–127, 2004.

[13] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law
relationships of the internet topology. In SIGCOMM, pages 251–262,
1999.

[14] G. Flake, S. Lawrence, C. L. Giles, and F. Coetzee. Self-organization
and identification of web communities. IEEE Computer,
35(3):66–71, 2002.

[15] F. Geerts, H. Mannila, and E. Terzi. Relational link-based ranking. In
VLDB, pages 552–563, 2004.

[16] D. Gibson, J. Kleinberg, and P. Raghavan. Inferring web
communities from link topology. In 9th ACM Conf. on Hypertext and
Hypermedia, pages 225–234, New York, 1998.

[17] M. Girvan and M. E. J. Newman. Community structure is social and
biological networks. Proc. Natl. Acad. Sci. USA, 99:7821–7826,
2002.

[18] M. Grötschel, C. L. Monma, and M. Stoer. Design of survivable
networks. In Handbooks in Operations Research and Management
Science 7: Network Models. North Holland, 1993.

[19] J. He, M. Li, H.-J. Zhang, H. Tong, and C. Zhang. Manifold-ranking
based image retrieval. In ACM Multimedia, pages 9–16, 2004.

[20] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of
influence through a social network. In KDD, pages 137–146, 2003.

[21] Y. Koren, S. C. North, and C. Volinsky. Measuring and extracting
proximity in networks. In KDD, pages 245–255, 2006.

[22] J. Leskovec, J. M. Kleinberg, and C. Faloutsos. Graphs over time:
densification laws, shrinking diameters and possible explanations. In
KDD, pages 177–187, 2005.

[23] D. Liben-Nowell and J. Kleinberg. The link prediction problem for
social networks. In CIKM, pages 556–559, 2003.

[24] M. E. J. Newman. The structure and function of complex networks.
SIAM Review, 45:167–256, 2003.

[25] A. Ng, M. Jordan, and Y. Weiss. On spectral clustering: Analysis and
an algorithm. In NIPS, pages 849–856, 2001.

[26] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank
citation ranking: Bringing order to the web. Technical report,
Stanford Digital Library Technologies Project, 1998. Paper
SIDL-WP-1999-0120 (version of 11/11/1999).

[27] J.-Y. Pan, H.-J. Yang, C. Faloutsos, and P. Duygulu. Automatic
multimedia cross-modal correlation discovery. In KDD, pages
653–658, 2004.

[28] W. Piegorsch and G. E. Casella. Inverting a sum of matrices. SIAM
Review, 32(3):470, 1990.

[29] U. Sharan and J. Neville. Exploiting time-varying relationships in
statistical relational models. In 1st SNA-KDD Workshop, 2007.

[30] H. Tong and C. Faloutsos. Center-piece subgraphs: problem
definition and fast solutions. In KDD, pages 404–413, 2006.

[31] H. Tong, C. Faloutsos, B. Gallagher, and T. Eliassi-Rad. Fast
best-effort pattern matching in large attributed graphs. In KDD, pages
737–746, 2007.

[32] H. Tong, C. Faloutsos, and Y. Koren. Fast direction-aware proximity
for graph mining. In KDD, pages 747–756, 2007.

[33] H. Tong, C. Faloutsos, and J.-Y. Pan. Fast random walk with restart
and its applications. In ICDM, pages 613–622, 2006.

[34] H. Tong, S. Papadimitriou, P. S. Yu, and C. Faloutsos. Proximity
tracking on time-evolving bipartite graphs. In SIAM-DM, pages
704–711, 2008.

[35] D. Xin, J. Han, X. Yan, and H. Cheng. Mining compressed
frequent-pattern sets. In VLDB, pages 709–720, 2005.

	Introduction
	Problem Definition
	T3 for Single Scale Analysis
	Overview of T3
	Compute the Proximity matrices
	Find Time Cluster g
	Find Interpretations for Time Clusters

	MT3 for Multiple scale Analysis
	Experimental Results
	Datasets
	Effectiveness: Case Studies
	Efficiency

	Related Work
	Conclusion
	Acknowledgement
	References

