
Modeling Scenario Variability as Crosscutting Mechanisms

Rodrigo Bonifácio
Informatics Center

Federal University of Pernambuco
Recife, Brazil

rba2@cin.ufpe.br

Paulo Borba
Informatics Center

Federal University of Pernambuco
Recife, Brazil

phmb@cin.ufpe.br

ABSTRACT
Variability management is a common challenge for Software
Product Line (SPL) adoption, since developers need suit-
able mechanisms for specifying and implementing variabil-
ity that occurs at different SPL artifacts (requirements, de-
sign, implementation, and test). In this paper, we present
a novel approach for use case scenario variability manage-
ment, enabling a better separation of concerns between lan-
guages used to manage variabilities and languages used to
specify use case scenarios. The result is that both represen-
tations can be understood and evolved in a separate way.
We achieve such a goal by modeling variability management
as a crosscutting phenomenon, for the reason that artifacts
such as feature models, product configurations, and config-
uration knowledge crosscut each other with respect to each
specific SPL member. After applying our approach to dif-
ferent case studies, we achieved a better feature modularity
and scenario cohesion.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements—Languages,
Methodologies; D.2.13 [Software Engineering]: Reusable
Software

General Terms
Design, Documentation

Keywords
Software product line, variability management, requirements
models

1. INTRODUCTION
The support for variation points enables product customiza-
tion from a set of reusable assets [23]. However, variabil-
ity management, due to its inherent crosscutting nature, is
a common challenge in software product line (SPL) adop-
tion [10, 23]. First, nontrivial features often require associ-
ated variation points to be scattered through SPL artifacts.

AOSD’09, March 2–6, 2009, Charlottesville, Virginia, USA.

Second, some approaches include product variant and con-
figuration information tangled with software engineering ar-
tifacts. Both problems can be observed for use case scenario
specifications.

Several authors have proposed the use of aspect-oriented
mechanisms to better modularize the specification of cross-
cutting concerns [21, 9]. These techniques minimizes the
first problem, since they can be used to modularize the
specification of certain features. However, they do not sup-
port the different sources of variability that occur in SPL
requirements. With respect to the second problem, exist-
ing approaches [7, 13] proposed to scenario variability man-
agement do not offer a clear separation between variability
management and scenario specification. As a consequence,
in the case where details about product variants are tangled
with use case scenarios, the removal of one variant from the
product line requires changes to all related scenarios. In
summary, it is difficult to evolve both representations.

So in this paper we go beyond the common-variant scenario
composition issues and consider a more encompassing no-
tion of variability management, including artifacts such as
feature models [15, 11] and configuration knowledge [11, 23].
We explain this as a crosscutting phenomenon, using Ma-
suhara and Kiczales work [20], and apply this view of vari-
ability management as crosscutting for modularizing SPL
use case scenarios, providing the necessary separation be-
tween variability and scenario specification concerns. We
also formalize the derivation of product specific scenarios in
our approach, as demanded by current SPL generative prac-
tices [19]. This formalization is based on our framework for
modeling the composition process of scenario variabilities
with feature models, product configuration, and configura-
tion knowledge. Besides supporting the mentioned separa-
tion of concerns, this framework helps to precisely specify
how to weave the different representations in order to gen-
erate specific scenarios for a SPL member. Therefore, the
main contributions of this work are the following:

• Characterization of the languages of variability man-
agement as a crosscutting concern and, in this way,
proposing an approach where variability concerns are
separated from other concerns (Section 3).

• A framework for modeling the composition process
of scenario variability mechanisms (Section 4). This
framework gives a basis for describing variability as

crosscutting mechanisms; but, differently from exist-
ing works [22, 16], it considers the contribution of dif-
ferent input languages: feature models, product con-
figuration, configuration knowledge and SPL use case
model. Moreover, the reference implementation pro-
vided for each variability mechanism corresponds to
the essential parts of a tool environment for scenario
variability management. In this paper we focus just in
these essentials.

• Specification of three sources of variability for use case
scenarios: variability in function (Section 4.1), vari-
ability in data (Section 4.2), and variability in control
flow (Section 4.3). This specification provides a more
formal semantic representation when compared to ex-
isting works; which is an important property for sup-
porting the automatic derivation of product specific ar-
tifacts. Although the sources of variability presented
here are not complete, we believe that our modeling
framework is able to represent other interesting ones,
such as context-aware adaptability.

Since our concept of crosscutting mechanism is based on
the Masuhara and Kiczales work [20], a smaller contribu-
tion of this paper is to apply their ideas to the languages of
variability management, reinforcing the generality of their
model, which was originally instantiated only for mecha-
nisms of aspect-oriented programming languages. Based on
their view of crosscutting, we can reason about variability
management as a crosscutting concern that involves differ-
ent input specifications that contribute to derive a specific
member of a given SPL.

Finally, we evaluate our approach (Section 5) by comparing
it to alternative approaches using different product lines.
We also relate our work with other research topics (Sec-
tion 6) and present our concluding remarks (Section 7). In
the remainder of this paper, we use the word scenario as a
synonym for the textual specifications of use cases.

2. MOTIVATING EXAMPLE
In order to customize specific products, by selecting a valid
feature configuration, variation points must be represented
in the product line artifacts. Several notations for rep-
resenting variation points in use case scenarios have been
proposed, such as Product Line Use Cases (PLUC) [7] and
Product Line Use Case Modeling for Systems and Software
Engineering (PLUSS) [13]. However, in spite of the bene-
fits of variability representation, existing approaches do not
present a clear separation between variability management
and scenario specifications. In this section we illustrate the
resulting problems using the eShop Product Line [24] as a
motivating example.

The primary use cases of the eShop Product Line (EPL) al-
low the user to Register as a Customer, Search for Products,
and Buy Products. Five variant features are described in
the original specification, corresponding to a product fam-
ily composed of 72 valid configurations [24]. In this paper
we consider additional features and use cases, such as Up-
date User Preferences, which updates the user’s preferences
based on her historical data of searches and purchases.

Figure 1 presents part of the EPL feature model [15, 11],
which represents the common and variable features of our
example. Here we represent it by a tree like notation where
relationships between a parent feature and its children are
categorized as Optional (features that might not be selected
in a specific product), Mandatory (feature that must be se-
lected, if the parent is also selected), Inclusive Or (one or
more sub-features might be selected), and Exclusive Or (ex-
actly one sub-feature must be selected for each product).
Besides these relationships, feature models allow the spec-
ification of constraints among features. For instance, the
constraint (Shopping Cart ⇔ Bonus) states that the fea-
ture Shopping Cart is selected iff the feature Bonus is also
selected.

Search Options

eShop

Economical Fast Foreign Ship Hints Similar Results

Optional Mandatory Inclusive OR Exclusive OR

Shopping Cart Bonus Shipping Method Update User Preferences

Shopping Cart ⇔ Bonus

Figure 1: eShop feature model.

Figure 2 depicts the Buy Product scenarios written in the
PLUSS notation. Notice that a single artifact is used to
represent all valid configurations related to this scenario,
mixing common behavior, variant behavior, and configura-
tion information (feature selection inside square brackets).
For example, steps 1(a) and 1(b) are never performed to-
gether. They are alternative steps: Step 1(a) will be present
only if the Shopping Cart feature is selected, otherwise Step
1(b) will be present. In a similar way, we have to choose be-
tween options (a) and (b) for Step 2 (depending on whether
the Bonus feature is selected or not). Finally, Step 6 is op-
tional and would be present only if the feature Update User
Preference was selected.

As a consequence, since all possible variants are described
in the same artifact, the behavior of specific products is dif-
ficult to understand with the PLUSS approach. In addition,
this tangling between common and variant behavior results
in maintainability issues: introducing a new product vari-
ant requires changes in several points of existing scenarios.
For example, including a B2B Integration feature, which
allows the integration between partners in order to share
their warehouses, changes the specification of the Buy Prod-
uct scenario, enabling the search for product availability in
remote warehouses (a new variant for Step 1) and updating
a remote warehouse when the user confirms the purchase
(a new variant for Step 5). Moreover, the inclusion of this
new optional feature also changes the specification of the
Search for Products scenario (the search might also be re-
mote). The effort needed to understand and evolve a prod-
uct line increases, since the specification of certain features
is scattered through several scenarios, and each scenario de-
scribes several configurations.

Id User Action System Response

1(a) Select the checkout op-
tion. [ShoppingCart]

Present the items in the
shopping cart and the

amount to be paid. The
user can remove items

from shopping cart.

1(b) Select the buy

product option.
[not ShoppingCart]

Present the selected

product. The user can
change the quantity of
items that he wants to

buy. Calculate and show
the amount to be paid.

2(a) Select the confirm op-
tion. [Bonus]

Request bonus and payment
information.

2(b) Select the confirm op-
tion. [not Bonus]

Request payment informa-
tion.

3 Fill in the requested in-
formation and select the

proceed option.

Request the shipping
method and address.

4 Select the $Shipping-

Method$, fill in the
destination address and
select the proceed op-

tion.

Calculate the shipping

costs.

5 Confirm the purchase. Execute the order and

send a request to the
Delivery System in order

to dispatch the products.

(6) Select the close

session option.
[Update User Preferences]

Register the user prefer-

ences.

Figure 2: Buy Products scenarios using PLUSS.

Differently, PLUC introduces special tags for representing
variation points in use case scenarios. For example, the VP1
tag in Figure 3, which also describes the Buy Products sce-
nario, denotes a variation point that might assume the values
“checkout” or “buy product”, depending on which product is
being configured. For each alternative or optional step, one
tag must be defined. The actual value of each tag is specified
in the Variation Points section of a scenario specification.

Another kind of tangling occurs in this case. The specifi-
cations of common and variant behavior are separate, but
both are tangled with the variation points. Additionally, the
definition of the SPL members, described using the same
tag notation, is scattered throughout the Products Defini-
tion section of many scenarios (Figure 3). Indeed, differ-
ently from PLUSS, there is no explicit relationship between
product configurations and feature models. In the example,
two products (P1 and P2) are defined. The first product
is configured by an implicit selection of the Shopping Cart,
Bonus, and Update User Preferences features; in contrast
to the second product that is not configured with these fea-
tures. Since the values of alternative and optional variation
points are computed based on the defined products, instead
of specific features, the inclusion of a new member in the
product line might require a deep review of the scenarios’
Variation Points section. This problem does not occur in
the PLUSS notation. Moreover, due to the variation points
and the product definitions are spread among several sce-
nario specifications, it is hard and time consuming to keep
consistent the relationships between them. Finally, the same
definitions (product configuration and variation points) are
often useful to manage variabilities in other artifacts, such
as design and source code, implying that PLUC requires the
replication of such definitions in different SPL views.

Buy Products Scenario
Main Flow

01 Select [VP1] option

02 [VP2]
03 Select the confirm option
04 [VP3]

05 Fill in the requested information and select the proceed
option

06 Request the shipping method and address
07 Select the [VP4] shipping method, fill in the destination

address and select the proceed option

08 Calculate the shipping costs.
09 Confirm the purchase.

10 Execute the order and sends a request to the Delivery
System in order to dispatch the products

11 Select the close section option.
12 {[VP5] Register the user preferences.}

Products definition:
P = (P1, P2)

Variation points:
VP1 = if (P == P1) then (checkout)

else (buy product)
VP2 = if (P == P1)

then (Presents the items in the shopping cart...)
else (Present the selected product. The user...)

VP3 = if (P == P1)
then (Requests bonus and payment information.)
else (Requests payment information.)

VP4 = (Economic, Fast)
VP5 requires (P == P1)

Figure 3: Buy Products scenarios using PLUC.

In conclusion, both PLUSS and PLUC do not present a clear
separation between variability assets and scenario specifica-
tions, which compromises the evolution of a SPL.

3. SVCM APPROACH
To solve the problems mentioned in the previous section, we
introduce now our approach for modeling variabilities in use
case scenarios, which was named Modeling Scenario Vari-
ability as Crosscutting Mechanisms (MSVCM). It improves
the separation of concerns between variability management
and scenario specifications, dealing with scenario variabil-
ity as a composition of different artifacts: SPL use case
model, feature model, product configuration, and configu-
ration knowledge.

Motivated by the Masuhara and Kiczales (MK) work [20],
our approach for scenario variability management relies
on a weaving process that takes as input the aforementioned
artifacts, which crosscut each other with respect to the re-
sulting product specific use case model (Figure 4). The se-
mantics of the weaving process (and the meta-model of the
input and output languages) are described using the Haskell
programming language. This led to concise descriptions and
kept our model close to the MK work, where their weaving
processes are specified using Scheme— another functional
programming language. The related source code is available
at a web site [2]

In what follows, we detail our approach showing how it can
be used to specify the motivating example. Several artifacts
of each input model are shown; mentioning the contribution
of these models to the whole weaving process.

SPL Use Case
Configuration

Product

Weaving Process

Use Case Model
Product Specific

Model
Feature
Model Knowledge

Configuration

Figure 4: Overview of our weaving process.

3.1 Feature model
Feature models have an important contribution to our weav-
ing process, since they are used for checking if a product
configuration is a valid member of the product line. We
have implemented specific functions in Haskell to deal with
this kind of validation. Basically, these functions verify if
all constraints defined in a feature model are satisfied by a
product configuration.

For instance, below we present the signature of the topmost
function for checking instances of a feature model. It states
that checkConfiguration takes as input a feature model
(FM) and a product configuration (PC), returning all con-
straints that a PC does not satisfy. If a PC complies with
all constraints, the function returns an empty list.

checkConfiguration :: FM → PC → ErrorList

Going into details, the checkConfiguration function tra-
verses two trees of features, representing both feature model
and product configuration, at the same time that it calls spe-
cific functions for checking the rules applied for each type of
feature relationship (mandatory, exclusive or, inclusive or)
and constraints.

Moreover, auxiliary functions were defined for importing
feature models, generated by the Feature Modeling Plugin
(FMP) [4], to our environment. In the remainder of this
section, we consider the eShop feature model introduced in
the motivating example (Figure 1).

3.2 SPL use case model
This artifact defines scenarios that describe the expected be-
havior of the SPL’s members. Scenarios might be optional,
have parameters, and change (advice) the behavior of other
scenarios. A use case model is composed by use cases and
aspectual use cases. A use case has a name, a description
and a list of scenarios, which are composed by a sequence of
steps (pairs of User action x System response). An aspec-
tual use case has a name and a list of advices, which can be
used to extend the behavior of existing scenarios.

Regarding tool support, instances of the use case model can
be written in any text editor that is able to export docu-
ments using a specific XML format1. Additional functions
were developed for parsing these documents to the abstract
data type of our use case model. In this running example,
we consider the following scenarios and advices:

1Templates are available for Microsoft Word.

Proceed to Purchase: this mandatory scenario (Figure 5)
specifies the common behavior that is required for confirm-
ing a purchase. Notice that a parameter (SM) is referenced
in Step P2. This parameter allows the reuse of the Pro-
ceed to Purchase scenario for different configurations of the
Shipping Method feature. The configuration knowledge ar-
tifact (Section 3.3) is responsible for relating parameters to
features.

The annotation [CustomerPreferences] (Step P3) is an-
other variation point of Proceed to Purchase scenario. This
annotation, also assigned to the Step S3 of Search for Prod-
ucts (Figure 8), reveals points in the specification that are
related to the customer preferences. Since pointcuts can
make references to annotations, the advice Register User
Preferences (Figure 9) extends the behavior of Proceed to
Purchase after Step P3. Note that our annotations just re-
veal variation points, which means that annotated steps are
obliviousness about which features extend the corresponding
behavior.

Id: SC01
Description: Proceed to purchase

Id User Action System Response

P1 Fill in the requested in-
formation and select the

proceed option.

Request the shipping method
and address.

P2 Select one of the available

shipping methods (<SM>),
fill in the destination
address and proceed.

Calculate the shipping

costs.

P3 Confirm the purchase. Execute the order and
send a request to the

Delivery System to dis-
patch the products.

[CustomerPreferences]

Figure 5: Proceed to purchase scenario.

Buy Product: this advice (Figure 6) enables a customer
to buy goods from an on-line shopping store. It is only
available in the SPL members that are not configured with
the Shopping Cart and Bonus features. This advice intro-
duces an optional behavior before the join points identified
in its pointcut clause. In this case, the Step P1 defined in
the Proceed to Purchase scenario. Therefore, the pointcut
clause can refer either to step ids or step annotations (as
explained before). We encourage the definition of pointcuts
based on annotations, since they mitigate the problem of
fragile pointcuts. This problem occurs because changes in
the order of steps might break pointcuts.

Id: ADV01
Description: Buy a specific product
Before: P1

Id User Action System Response

B1 Select the buy product
option.

Present the selected product.
The user can change the quan-
tity of items he wants to buy.

Calculate and show the amount
to be paid.

B2 Select the confirm
option.

Request payment information.

Figure 6: Buy a product advice.

Buy Products with Shopping Cart and Bonus: this
advice (Figure 7) allows purchasing products that have been
previously added to a shopping cart. It extends the behav-
ior of the Proceed to Purchase scenario by introducing the
specific behavior required by the Shopping Cart and Bonus
features. So, this advice is required by products that are
configured with both Shopping Cart and Bonus features.

Id: ADV02
Description: Buy products using a shopping-cart
Before: P1

Id User Action System Response

C1 Select the checkout option. Present the items in the
shopping cart and the

amount to be paid. The
user can remove items from

the shopping cart.

C2 Select the confirm option. Request bonus and payment

information.

Figure 7: Buy products with shopping cart advice.

Search for Products: this mandatory scenario (Figure 8)
allows a customer to search for products. In order to save
space, we only present Step S3, which performs a search
based on the input criteria. Note that, similarly to the
Step P3 shown in Figure 5, this step is also assigned to
the [CustomerPreferences] annotation. Therefore, any
advice that points to this annotation extends, at least, the
behavior of Proceed to Purchase and Search for Product sce-
narios.

Id: SC02
Description: Search for products.

Id User Action System Response

...

S3 Inform the search criteria. Retrieve the products that
satisfy the search cri-
teria. Show a list with

the resulting products.
[CustomerPreferences]

Figure 8: Search for products scenario.

Register User Preferences: this advice (Figure 9) up-
dates the user preferences based on the user’s history of
searches and purchases. Its behavior can be started after

any step assigned to the [CustomerPreferences] (see the
pointcut clause) annotation and is available in products that
are configured with the Update User Preferences feature.

Id: ADV03
Description: Register user preferences.

After: [CustomerPreferences]

Id User Action System Response

R1 - Update the preferences

based on the search results
or purchased items.

Figure 9: Register user preferences.

At this point we are able to present some remarks related
to our use case model. As discussed in Section 2, PLUSS
and PLUC represent all valid configurations of a scenario in

a single artifact. Differently, using our approach, we could
separate the common behavior required to confirm a pur-
chase (the base scenario Proceed to Purchase) from its vari-
ants, specified in the Buy Product and Buy Product with
Shopping Cart advices.

Another distinction is that, in our approach, feature and use
case models are syntactically independent from each other.
There is no direct association joining these models and all
relationships between them are kept by the configuration
knowledge (Section 3.3). Actually, the weaving process,
whose semantics are presented in Section 4, is responsible
for binding the variation points defined in the SPL use case
model. In order to do that, other assets (such as product
configurations and configuration knowledge) have to be con-
sidered.

As a final remark, since different advices can make references
to a same join point, interferences between advices may oc-
cur. Nevertheless, the weaving process evaluates each advice
in a sequence defined by the configuration knowledge. For
this reason, interferences between advices are deterministic
and do not require specific constructs in the use case model
to deal with them.

3.3 Configuration knowledge
This artifact corresponds to a list of configuration items,
which relates feature expressions to tasks (or transforma-
tions) used for automatically generating a SPL member.
Consequently, the configuration knowledge guides the weav-
ing process. For this running example, the configuration
knowledge shown in Table 1 enforces that

• Both Proceed to Purchase (SC01) and Search for Prod-
ucts (SC02) scenarios are mandatory, since their selec-
tion is related to the (mandatory) root feature of the
eShop product line;

• The Buy Product advice (ADV01) is used in the com-
position of products that do not have been configured
with both Shopping Cart and Bonus features— if both
features were selected for a product, it would be config-
ured with the Buy Product with Cart advice (ADV02).
Remember that there is a mutual dependency between
Shopping Cart and Bonus features. As a consequence,
no product can be configured with just one of them;

• The Register User Preferences advice (ADV03) is not
used in a product composition unless the Update User
Preferences feature has been selected; and

• References to the “SM” parameter are bound to the
selected alternatives of the Shipping Method feature.

Three different tasks are shown in Table 1: select scenario,
evaluate advice, and bind parameter. According to Bach-
mann et al. [6], the first type of task deals with the source of
variability named as variation in function, being responsible
for selecting scenarios; the second one deals with variation
in control flow, being responsible for composing advices at
specific join points; and the last one deals with variation in
data, being responsible for binding parameters to features.

Feature Expression Tasks

eShop
select scenario SC01
select scenario SC02

not (Shopping Cart and Bonus) evaluate advice ADV01

(Shopping Cart and Bonus) evaluate advice ADV02

Update User Preferences evaluate advice ADV03

Shipping Method
bind SM to Shipping

Method

Table 1: Example of configuration knowledge

The semantics of these tasks are described as crosscutting
mechanisms in Section 4. Besides that, the configuration
knowledge data type is shown bellow. As explained before,
it is a list of configuration items, which relate feature ex-
pressions to tasks. Actually, the type Task is a synonymous
for the family of functions that receive a SPL use case model
(SPL) and a product specific use case model (SPLMember)
as parameters; and then returns a refinement of the product
specific model.

type ConfigurationKnowledge = [Configuration]
data Configuration = Configuration {

exp :: FeatureExpression ,

tasks :: [Task]
}
type Task = (SPL→ SPLMember)→ SPLMember

Note that feature expressions have to be written in proposi-
tional logic, because it is necessary to express, for example,
that the Buy Products advice will be evaluated iff the fea-
ture expression “not ShoppingCart and Bonus” is true
for a specific product configuration.

Indeed, the weavingProcess function, whose source code is
presented bellow, behaves like a generator that applies the
appropriate list of tasks (ts) for a given product configura-
tion. This means that, first of all, it is necessary to ver-
ify (eval pc (exp c)) which expressions (exp c) are valid
for a specific product configuration (pc). After that, the
stepRefinement function composes the sequence of tasks
that must be applied.

weavingProcess spl fm pc ck =
stepRefinement [(t spl) | t ← ts] empty
where

ts = concat [tasks c | c ← ck , eval pc (exp c)]
empty = (emptyInstance spl pc)
stepRefinement l m = ...

As a consequence, supposing the list of tasks

ts = [select(SC01), evaluate(ADV 01), evaluate(ADV 02)],

the semantics of this hypothetical product would be given
by: p = f (spl, g (spl, h)), where:

h = (select SC01) spl emptyInstance

g = (evaluate ADV 01)

f = (evaluate ADV 02)

3.4 Product configuration
This artifact identifies a specific SPL member, which is char-
acterized by a configuration of features. One important
property is that each product configuration must comply
to the relationships and constraints specified in the corre-
sponding feature model. Product configurations may be also
represented using the Feature Modeling Plugin [4]. Auxil-
iary functions parse such configurations to our environment,
instantiating the abstract representation of the product con-
figuration— basically a tree representing a selection of fea-
tures. For the eShop example, two possible configurations
are shown in Figure 10.

Figure 10: Examples of product configurations.

The first configuration (on the left side of the Figure 10)
defines a product that does not have support for Shopping
Cart, Bonus and Update User Preferences. Additionally,
it supports only the economical and fast shipping methods.
The second configuration is more complete, being configured
with the features Shopping Cart, Bonus, and Update User
Preferences.

As explained in the previous section, the features selected to
a specific product (represented as a product configuration)
identify which tasks (or transformations) must be performed
in order to generate the corresponding SPL member. Fig-
ure 11 depicts the resulting scenarios after evaluating the
configuration knowledge of Table 1 and considering the sec-
ond configuration of Figure 10. According to what was ex-
plained in the previous section, such a configuration requires:

1. The selection of Proceed to Purchase and Search for
Product scenarios. This selection is directly responsi-
ble for the resulting scenarios shown in Figure 11.

2. The evaluation of Buy Products with Cart advice. The
result of this evaluation is the introduction of the first
two steps in the resulting specification of the Proceed
to Purchase scenario.

3. The evaluation of Register User Preferences advice.
The result of this evaluation is the introduction of the
last steps on both Search for Products and Proceed to
Purchase scenarios.

4. The binding of the SM parameter to the selected op-
tions of the Shipping Method feature. This binding
is responsible for setting the options Economical and
Fast in the fourth step of the resulting Proceed to Pur-
chase scenario.

Scenario: Search for products.

id User Action System Response

...

3 Inform the search criteria. Retrieve the products that

satisfy the search crite-
ria. Show a list with the

resulting products.

4 - Update the preferences

based on the search results
or purchased items

Scenario: Proceed to purchase.

id User Action System Response

1 Select the checkout option. Present the items in the
shopping cart and the

amount to be paid. The
user can remove items from

the shopping cart.

2 Select the confirm option. Request bonus and payment

information.

3 Fill in the requested in-

formation and select the
proceed option.

Request the shipping method

and address.

4 Select one of the available
shipping methods (Eco-
nomical, Fast), fill in

the destination address and
proceed.

Calculate the shipping
costs.

5 Confirm the purchase. Execute the order and send
a request to the Deliv-

ery System to dispatch the
products.

6 - Update the preferences
based on the search results

or purchased items.

Figure 11: Resulting scenarios of the example

4. MODELING FRAMEWORK
In this Section we describe the notation proposed to repre-
sent variability management as crosscutting mechanisms. In
fact, our notation is a slight customization of the Crosscut-
ting Modeling Framework, proposed by Masuhara and Kicza-
les (the MK framework) [20].

The goal of the MK framework is to explain how different
aspect-oriented mechanisms support crosscutting modular-
ity. In order to do that, each mechanism is represented as
a three-part description: the related weaving processes take
two programs as input, which crosscut each other with re-
spect to the resulting program or computation [20]. Their
requirement for characterizing a mechanism as crosscutting
is fulfilled by our approach, in the sense that different spec-
ifications contribute to the definition of a SPL member.

Similarly to the MK work, our modeling framework repre-
sents each weaver as an 6-tuple (Eq. 1 and Table 2), high-
lighting the contribution of each input language in the com-
position processes. We represent each weaver by filling in the
six parameters of our 6-tuple representation, by providing a
reference implementation for each weaver, and by stating
how elements of the weaver implementation correspond to
elements of the model.

W = {o, ojp, L, Lid, Leff , Lmod}, (1)

Table 2: Modeling framework elements.

Element Description

o Output language used for describing the re-
sults of the weaving process

ojp Set of join points in the output language
L Set of languages used for describing the in-

put specifications
LID(l) Set of constructions in each input language

l, used for identifying the output join points
LEF F (l) For each input language l, this element rep-

resent the effect of its constructions in the
weaving process

LMOD(l) Set of modular unities of each input lan-
guage l

Next, we describe the semantics of our weaving process,
modeling one weaver for each source of variability and pro-
viding reference implementations for them.

4.1 Variability in function
Variability in function occurs when a particular function
might exist in some products and not in others [6]. For this
source of variability, a corresponding weaver is responsible
for selecting scenarios based on specific product configura-
tions.

This weaver is implemented by the function selectScenarios
(next code fragment). It takes as input the list of scenario
ids that should be selected for a specific feature expression,
the SPL use case model (spl), and the product being gen-
erated. Then, this function returns a new configuration of
the product, which is refined by each scenario s in the SPL
use case model that satisfies the condition (id s) ∈ ids. In
this case, the configuration knowledge (CK) and the SPL
use case model (UCM) crosscut each other with respect to
the list of selected scenarios of a specific SPL member.

selectScenarios ids spl product =
addScenarios (product , scenarios)
where

scenarios = [s | s ← (splScenarios spl), (id s) ∈ ids]
addScenarios ...

Below we present the concrete instantiation of the first line
of the eShop configuration knowledge (Table 1), which deals
with this source of variability. Notice that the configuration
knowledge binds the first parameter of the selectScenario
function. Therefore, particularly to this weaver, the con-
figuration knowledge contributes to the identification of the
scenarios that must be selected to a specific product.

c1 = Configuration (“eShop′′,

selectScenarios [“SC01 ′′, “SC02 ′′])

The model of the Variability in Function Weaver, in terms
of the framework, is shown in Table 3. The selectScenarios
function is used to argue that the model is realizable and
appropriate [20]. We achieve this by matching the model el-
ements to the corresponding parameters and auxiliary func-
tions in the implementation.

The input languages configuration knowledge (CK) and SPL
use case model (UCM) contributes to the binding of se-
lectScenarios parameters. An instance of the SPL use case
model corresponds to the specification of all SPL scenar-
ios. Instead, the identification of which scenarios must be
selected to a specific feature expression are documented in
the configuration knowledge. Finally, the product configura-
tion (PC) specifies which features were selected for a specific
product.

Table 3: Model of Product Derivation

Element Description

o Product specific scenarios (list of scenarios)
ojp Scenario declarations
L {UCM, CK, PC}
UCMID SPL scenarios
CKID Feature expressions and scenario IDs
PCID Product specific feature selection
UCMEF F Provides declaration of scenarios
CKEF F Relates feature expressions to scenario Ids
PCEF F Triggers scenario selection
UCMMOD Scenario
CKMOD Each configuration item
PCMOD Each selected feature

4.2 Variability in data
This kind of variability occurs whenever two or more sce-
narios share the same behavior (the sequence of steps) and
differ in relation only to values of a same concept. For in-
stance, the Proceed to Purchase scenario (Figure 5) can be
reused for different kinds of shipping method.

The function bindParameter is the reference implementation
of this weaver. It receives as input a parameter identifier
(pId); a feature identifier (fId); the SPL use case model
(spl); and the product being generated. Then, it replaces
all references to pId in product by a suitable representation
of the corresponding feature selection (features). For ex-
ample, if a product is configured with both Economical and
Fast shipping methods, applying this weaver for the Proceed
to Purchase scenario (Figure 5) replaces each reference to
the “SM” parameter by the text (Economical, Fast).

bindParameter pId fId spl product =
bindParameter ′ product steps options
where

features = (configuration product)
steps = [s | s ← (steps spl), (s ’refers’ pId)]
options = selectedOptions (features , fId)
bindParameter ′ ...

Below we present the concrete instantiation of the fifth line
of the eShop configuration knowledge (Table 1), which deals
with this source of variability. In this case, the configuration
knowledge binds the first two parameters of the bindParam-
eter function, contributing as a mapping between parameter
ids and feature configurations. Such a mapping reduces the
coupling between SPL use case models and feature models.

c5 = Configuration (“ShippingMethod ′′,

bindParameter (“SM ′′, “ShippingMethod ′′))

Table 4 represents the model of Variability in Data. Since
this weaver solves parameters in scenario specifications, its
output language is a list of product specific scenarios.

Table 4: Model of Bind Parameters Weaver

Element Description

o Scenarios with resolved parameters
ojp Each resolved parameter
L {UCM, CK, PC}
UCMID Parameterized steps
CKID Mapping of parameters to features
PCID Selected features related to a parameter
UCMEF F Declares parameterized scenarios
CKEF F Relates parameters to features
PCEF F Defines the domain value of parameters
UCMMOD Use case scenarios
CKMOD Each configuration item
PCMOD Each selected feature

The use case model (UCM) defines the list of scenarios that
might be parameterized (UCMEF F). Each step of a sce-
nario (UCMID), indeed, contributes to the definition of one
join point in this weaver. The other contributions come
from the product configuration (PC), in the sense that the
domain values of a parameter is defined (PCEF F) in the
product specific features; and from the configuration knowl-
edge (CK), which is used for relating parameters to features
(CKEF F).

4.3 Variability in control flow
This source of variability occurs when a particular pattern
of interaction (a use case scenario) varies from one prod-
uct to another. Differently from PLUSS and PLUC, in our
approach we use the notion of advices to modularize the
variant behavior of a scenario. An advice customizes the
specification of a feature, by means of extending the com-
mon behavior of existing scenarios with additional steps.
The flow of events of an advice can be inserted before or af-
ter the steps referenced by its pointcut clause, which can be
either the step id or annotations assigned to different steps.

The function evaluateAdvice is the reference implementation
of this weaver. Basically, this mechanism takes as input the
name of an advice to be evaluated; the SPL use case model
(spl), which defines both use cases and advices; and the
product being generated. Then, it evaluates the advice, re-
trieving the steps in product that match the pointcut clause.
Finally, the function introduces the advice’s flow of events
before or after the matched steps.

evaluateAdvice name spl product =
evaluateAdvice ′ product advice
where

advice = head [a | a ← advices spl , (id a) == name]

evaluateAdvice ′ product advice =
if (isBefore advice)

then composeBefore product matchedSteps flow
else composeAfter product matchedSteps flow

where

matchedSteps = match (product (pointCut advice))
flow = scenarioOfAdvice (advice)

Below we show a concrete instantiation of the second line of
the eShop configuration knowledge (Table 1). Notice that
the configuration knowledge binds the first parameter of the
evaluateAdvice function, being responsible for relating fea-
tures expressions to advices.

c3 = Configuration (“ShoppingCart ′′ ’And’“Bonus ′′,
evaluateAdvice (“ADV02 ′′))

The model of this weaver is in Table 5. The output is a new
configuration of the product specific use case model, whose
scenarios were extended by alternative (or optional) flows of
events. The extensions occur before or after the steps that
match (OJP) the pointcut clause (UCMID) of the advice,
declared in the SPL use case model (UCM). The effect of
evaluating advices in the composition process is to extend
product specific scenarios that may not define a concrete
flow of events.

Table 5: Model of Scenario Composition Weaver

Element Description

o Specific scenarios with extensions
ojp Scenarios and steps of scenarios
L {UCM, CK, PC}
UCMID Pointcuts of declared advices
CKID Mapping of features to advices
PCID Selected features related to advices
UCMEF F Provides declaration of advices
CKEF F Relates features to advices
PCEF F Triggers advice selection
UCMMOD Advices
CKMOD Each configuration item
PCMOD Each selected feature

5. EVALUATION
We have applied our approach to four SPLs: the eShop
Product Line, as partially shown in Section 3; the Pedagog-
ical Product Line (PPL) [1], which was proposed for learn-
ing about and experimenting with software product lines,
and focuses on the arcade game domain; the Smart Home
Product Line, based on different specifications [23, 3], and
the Multimedia Message Product Line (MMS), a case study
conducted with one of our industrial partners. In this pa-
per we focused our comparisons with the PLUSS approach,
mainly because in a previous work we have identified that
PLUC specifications are not maintainable at all [8].

It is important to note that each case study was conducted
with different settings. For instance, groups of students were
assigned to specify the behavior of the Smart Home product
line in both PLUSS and MSVCM techniques. Differently,
we compared our approach to an available PLUSS specifi-
cation of the PPL. The input data and the tasks performed
in each case study were also different. For example, some
of the case studies (Smart Home and MMS) started from
the specification of different products of a family. On the
other hand, both eShop and PPL case studies started from
existing product line specifications. Next, we first present
this new metric suite, and then describe the assessment of
the Smart Home, MMS, and PPL case studies.

5.1 Metric suite
In order to evaluate our approach, we customized the metric
suite proposed by Eaddy et al. [12], considering the degree
of scattering of features and the degree of focus of scenar-
ios. We also customized their prune dependency analysis,
as a guide to assign features to scenario steps. Actually, we
consider that a step s depends on a feature f iff the con-
figuration of f effects the selection or the configuration of
the step s. Therefore, we name our assignment approach
configuration dependency analysis. The degree of scattering
of a feature f is calculated by normalizing its concentration
with respect to each scenario s ∈ S (the set of all scenarios).

DOS(f) = 1−
|S|

PS
s (CONC(f,s)− 1

|S|
)2

|S|−1
, where:

CONC(f, s) = number of steps in s assigned to f

total number of steps assigned to f

Likewise, the degree of focus of a scenario s is calculated
by normalizing its dedication with respect to each feature
f ∈ F (the set of all features).

DOF (s) =
|F |

PF
f (DEDI(s,f)− 1

|F |
)2

|F |−1
, where:

DEDI(s, f) = number of steps in s assigned to f

total number of steps in s

These metrics inherit the same properties of the original
ones [12]: (a) the degree of scattering (DoS) is normalized
between 0 (completely localized) and 1 (completely unlo-
calized); and (b) the degree of focus (DoF) is also normal-
ized between 0 (completely unfocused) and 1 (completely
focused).

For instance, consider the scenarios shown in Figure 12,
which represents the assignment of a few Smart Home fea-
tures to both PLUSS and MSVCM specifications. The left
hand side of Figure 12(a) depicts that the PLUSS specifica-
tion of Register Inhabitant scenario has seven steps. Two
of these steps were assigned only to the Register Inhabitant
(RI) feature; other two steps were assigned to the interac-
tions between Register Inhabitant and Password features;
and other three steps were assigned to the interactions be-
tween Register Inhabitant and Fingerprint features. Notice
that the Password and Fingerprint features, which are mu-
tually exclusive, also change the behavior of the Request Ac-
cess to Home feature (Figure 12(b)).

Similarly, Figure 13 shows some feature assignments for the
MMS product line. In this case, we want to emphasize that
the behavior related to the Store an Embedded Number and
Send a Message to Embedded Email features change the be-
havior of the Receive a MMS and Select a MMS for Display-
ing features in a similar way. For this reason, we classify the
behavior of the Store an Embedded Number and Send a Mes-
sage to Embedded Email features as homogeneous. On the
other hand, we say that the Password optional feature of
the Smart Home case study has a heterogeneous crosscut-
ting behavior [5], since it requires one advice for each join
point (Figure 12(a) and (b)). The same occurred with the
Fingerprint feature.

PLUSS

A5. RI and Fingerprint
A6. RI and Fingerprint

A1. RI

A3. RI and Fingerprint

A7. RI

(a) Register Inhabitant

(b) Request Access to Home

Advice 01: After (A1)

A4. RI and Password
A2. RI and Password

A1. RI
A7. RIA2. RI and Password

A4. RI and Password

B3. RA and Password
B4. RA and Password
B5. RA and Fingerprint

B1. RA and Password
B2. RA and Fingerprint

B6. RA
B7. RA
B8. RA

B6. RA
B7. RA
B8. RA

B1. RA and Password
B3. RA and Password
B4. RA and Password

Scenario 01

Scenario 02

Scenario 01

Scenario 02

Advice 03: Before (B6)

Advice 02: After (A1)
A3. RI and Fingerprint
A5. RI and Fingerprint
A6. RI and Fingerprint

Advice 04: Before (B6)
2. RA and Fingerprint
5. RA and Fingerprint

MSVCM

MSVCMPLUSS

Figure 12: Sample of Smart Home assignments.

We have observed that the crosscutting nature of a feature,
which here we consider as being homogeneous or heteroge-
neous [5], has a great influence in our results. For instance,
Table 6 shows the DoS of the assets depicted in Figures 12
and 13. Notice that, in MSVCM, modularizing the behav-
ior of Password and Fingerprint as advices had increased
the DoS of both Register Inhabitant and Request Access to
Home features. A similar problem does not occur with ho-
mogeneous crosscutting features— modularizing the Store
an Embedded Number and Send Message to Embedded Email
as advices does not change the DoS of the Receive a MMS
and Select a MMS for Displaying features.

Table 6: DoS of the presented features
SPL Feature PLUSS MSVCM

Register Inhabitant 0.00 0.57
Smart Request Access to Home 0.00 0.57
Home Password 0.96 0.78

Fingerprint 0.96 0.78

MMS

Receive a MMS 0.00 0.00
Select a MSS for Displaying 0.00 0.00
Store an Embedded Number 1.00 0.00
Send a Message to Email 1.00 0.00

Besides that, independently of the crosscutting nature of a
feature, the MSVCM approach eliminates the tangling of
the base scenarios (Table 7), quantified by the DoF metric.
In what follows, we present summaries of the data collected
from the different case studies. All specifications and col-
lected data are available [2].

Table 7: DoF of the presented scenarios
SPL Scenario PLUSS MSVCM

Smart Home
Scenario 01 0.24 1.00
Scenario 02 0.27 1.00

MMS
Scenario 01 0.12 1.00
Scenario 02 0.20 1.00

B5. Select a MMS for Displaying

Scenario 01 − Receive a MMS

A2. Receive a MMS

M1. Send Message to Embedded Email
M2. Send Message to Embedded Email

N2. Store an Embedded Number

A1. Receive a MMS

N1. Store an Embedded Number

A3. Receive a MMS

A3. Receive a MMS

Scenario 01 − Receive a MMS

A1. Receive a MMS
A2. Receive a MMS

(a) Structured data operations (PLUSS)

(b) Structured data operations (MSVCM)

Scenario 02 − Select a MMS for displaying

Advice 01: After (A2, B4)
N1. Store an Embedded Number
N2. Store an Embedded Number

B5. Select a MMS for Displaying

M1. Send Message to Embedded Email
M2. Send Message to Embedded Email

N1. Store an Embedded Number
N2. Store an Embedded Number

B1. Select a MMS for Displaying
B2. Select a MMS for Displaying
B3. Select a MMS for Displaying
B4. Select a MMS for Displaying

M2. Send Message to Embedded Email
M1. Send Message to Embedded Email

Advice 02: After (A2, B4)Scenario 02 − Select a MMs for displaying

B1. Select a MMS for Displaying
B2. Select a MMS for Displaying
B3. Select a MMS for Displaying
B4. Select a MMS for Displaying

Figure 13: Sample of MMS assignments.

5.2 Smart Home assessment
This study aimed at comparing feature modularity of PLUSS
and MSVCM specifications. Initially, three different prod-
ucts of the security module of a Smart Home family [23]
were specified. Almost six use cases and fifteen scenarios
are present in each product, with a significant number of
duplicated steps among them. These specifications, avail-
able on-line, were used as input data. Then, two groups
of students were assigned to restructure the input specifica-
tions, using either PLUSS or MSVCM approaches.

Table 8 summarizes the resulting degree of scattering of
the Smart Home features, computed from the PLUSS and
MSVCM specifications. Although the MSVCM approach
achieved a central tendency (median) closer to zero, for some
features (3 features in a total of 17) the DoS for the MSVCM
approach presented a greater value than the corresponding
ones in PLUSS.

Table 8: Smart Home degree of scattering
Min Median Mean Max St. Deviation

PLUSS 0.00 0.26 0.28 0.70 0.08
MSVCM 0.00 0.00 0.26 0.82 0.10

As discussed in the previous section, modularizing the vari-
ant behavior of Register Inhabitant and Request Access to
Home in advices produced the side effect of increasing the
DoS, at the same time that it reduced the tangling of the
related scenarios. On the other hand, the feature Turn On
Internal and External Lights presents a lower DoS in the
MSVCM approach (0.00) when compared to the PLUSS
(0.54) notation. This feature requires a behavior that cross-
cuts, in a homogeneous way, the different scenarios related
to the Intrusion Detection use case.

Considering the degree of focus (data summarized in Ta-
ble 9), we have evidences of a significant improvement of
the MSVCM approach (p-value=0.06). Notice that the cen-
tral tendency (median) of DoF in the MSVCM approach
(1.00) is closer to one than the corresponding value (0.63)
in the PLUSS notation.

Table 9: Smart Home degree of focus
Min Median Mean Max St. Deviation

PLUSS 0.33 0.63 0.68 1.00 0.07
MSVCM 0.35 1.00 0.82 1.00 0.05

5.3 MMS assessment
As explained earlier, the MMS product line, which was adapted
from an industrial partner, enables the customization of mul-
timedia message applications. The primary goal of each one
of these applications is to create and send messages with
embedded multimedia content (image, audio, video) [8]. We
have specified the MMS product line using both Crosscut-
ting and PLUSS techniques. The results of this case study
are summarized in Tables 10 and 11.

Table 10: MMS degree of scattering
Min Median Mean Max St. Deviation

PLUSS 0.00 0.60 0.46 0.80 0.11
MSVCM 0.00 0.41 0.34 0.79 0.10

This case study, differently from the Smart Home, gives ev-
idence of improvements of the MSVCM approach with re-
spect to the feature’s degree of scattering (p-value=0.01).
This result was mainly achieved because several of the fea-
tures of the MMS product line require a homogeneous cross-
cutting behavior. For example, there are some policies re-
lated to DRM2 content that crosscut, in a uniform manner,
the behavior related to sending and forwarding messages.

On the other hand, the MMS case study didn’t reveal signifi-
cant improvements with respect to the degree of focus metric
(Table 11). The main reason for such a result is that just a
few scenarios of the MMS case study are effected by alter-
native features. Thus, the benefits achieved from extracting
varying behavior to aspectual scenarios were minimized in
this case study.

Table 11: MMS degree of focus
Min Median Mean Max St. Deviation

PLUSS 0.34 0.59 0.70 1.00 0.07
MSVCM 0.46 0.59 0.71 1.00 0.06

5.4 PPL assessment
We compared our approach to a PPL specification that was
sent to us by the authors of the PLUSS technique. Similarly
to the Smart Home product line, the PPL has been used in
several case studies in the area. The original specification
of PPL [1] is already well modularized, since its features,
in general, do not crosscut different use cases. Moreover,
another characteristic of the PPL is that several features are
related to qualities that do not effect scenario specifications.

2Digital Rights Management

Even in this context, our approach achieves some improve-
ments in the resulting degree of scattering (Table 12). Mod-
ularizing the error handling feature was the main reason
for the aforementioned improvement. By applying our ap-
proach, all behavior related to the error handling concern
was modularized in a single advice.

Table 12: PPL degree of scattering
Min Median Mean Max St. Deviation

PLUSS 0.00 0.48 0.32 0.71 0.08
MSVCM 0.00 0.00 0.07 0.64 0.05

Similarly to the MMS case study, we didn’t get significant
improvements in the degree of focus metric (Table 13). Again,
this result was primarily motivated by the reason that just
a few scenarios of PPL are effected by alternative features.

Table 13: PPL degree of focus
Min Median Mean Max St. Deviation

PLUSS 0.44 1.00 0.78 1.00 0.07
MSVCM 0.44 1.00 0.83 1.00 0.07

5.5 Discussion
After running the different case studies, we concluded that
the greater is the number of homogeneous crosscutting fea-
tures and the number of variants for a scenario, the greater
is the benefits of applying our approach. In that cases, the
MSVCM improvements on both feature modularity and sce-
nario cohesion become more evident.

In fact, the expected benefit of our approach is to reduce the
impact of evolving a SPL. The metric suite presented here
tries to quantify such an impact, since (a) if a scenario has a
lower DoF, introducing a new alternative to its variant be-
havior requires more changes in the base specification; and
(b) evolving features with high DoS requires changes in dif-
ferent scenarios. Although the significance level varies from
one case study to another, in most of the cases we could im-
prove both scenario cohesion and feature scattering. There-
fore, the modularity supported by our approach reduces the
number of changes in the base scenarios of a SPL; in such a
way that it can evolve by means of the introduction of new
scenarios and/or advices.

It is important to note that SPL development, independently
of the approach, requires a mapping between the domain and
solution spaces [11, 18]. As a consequence, in this paper we
did not introduce new kinds of concerns to the SPL devel-
opment. Actually, our approach mainly presents a better
separation for mapping those SPL concerns.

6. RELATED WORK
Several approaches have been proposed for representing sce-
nario variability [17, 13, 7]. However, in this paper we fo-
cused on PLUC and PLUSS techniques because they en-
compass a broad range of SoC between variability manage-
ment and scenario specifications. PLUC presents the lowest
level of modularity, since almost all information related to
variability is tangled within use cases. Although PLUSS
partially reduces such a tangling, by considering the impor-
tance of feature modeling, some dependencies from scenarios
to features are still present.

There are works proposed to represent weaving mechanisms
for textual requirements [9, 25]. However, these approaches
offer a narrow support to the control flow source of vari-
ability, requiring enhancements to integrate their weaving
mechanisms to variability management. Besides, generic ap-
proaches for aspect-oriented modeling (AOM) have been ap-
plied for variability management [18, 22, 16]. For instance,
Jayaraman and others proposed an approach for modeling
variability in UML diagrams [18]. Based on their approach,
SPL members are generated by means of graph transforma-
tions specified in MATA (Modeling Aspects using a Trans-
formation Approach). Differently, we proposed a framework
for modeling variability as crosscutting mechanisms; and in-
stantiated such a framework for designing variability mech-
anisms for textual scenarios. Moreover, instead of graph
transformations, we use an interpreter based approach for
SPL member generation— actually, each reference imple-
mentation provided for the weaving process is an interpreter.

Finally, we could have used absolute values for quantifying
scattering and tangling, as in a previous work [8]. How-
ever, absolute values, such as proposed by Figueiredo and
others [14], just reveal if a feature is scattered or not—
without any information about the degree of its scattering.
In fact, this limitation hinders the comparison of modular-
ity between different specifications. As a consequence, we
adopted a suite of metrics for quantifying degree of scatter-
ing and degree of focus [12].

7. CONCLUSIONS
In this paper we formally described variability management
as crosscutting mechanisms, considering the contribution of
different input languages that crosscut each other for de-
riving specific members of a product line. We applied this
notion of variability management in the context of use case
scenarios, achieving a clear separation of concerns between
variability and scenario specifications and allowing both rep-
resentations to evolve independently. Moreover, for different
case studies our approach improved both feature modularity
and scenario cohesion.

8. ACKNOWLEDGMENTS
We gratefully acknowledge Mehmet Aksit and the anony-
mous referees for useful suggestions to improve the paper.
This research was partially sponsored by CNPq (grant CT-
INFO 17/2007).

9. REFERENCES
[1] Arcade game maker pedagogical product line.

http://www.sei.cmu.edu/productlines/ppl/.

[2] Software productivity group. online:
http://www.cin.ufpe.br/spg.

[3] M. Alferez et al. A model-driven approach for software
product lines requirements engineering. In SEKE’
2008, pages 779–784, San Francisco, USA, 2008.

[4] M. Antkiewicz and K. Czarnecki. Feature plugin:
feature modeling plug-in for eclipse. In OOPSLA
workshop on eclipse technology eXchange, pages 67–72,
New York, NY, USA, 2004.

[5] S. Apel, T. Leich, and G. Saake. Aspectual mixin
layers: aspects and features in concert. In ICSE’ 2006,
pages 122–131, New York, NY, USA, 2006.

[6] F. Bachmann and L. Bass. Managing variability in
software architectures. SIGSOFT Softw. Eng. Notes,
26(3):126–132, 2001.

[7] A. Bertolino and S. Gnesi. Use case-based testing of
product lines. In ESEC/FSE’ 2003, pages 355–358,
Helsinki, Finland, 2003.

[8] R. Bonifácio, P. Borba, and S. Soares. On the benefits
of variability management as crosscutting. In Early
Aspects Workshop at AOSD, Brussels, Belgium, 2008.

[9] R. Chitchyan, A. Rashid, P. Rayson, and R. Waters.
Semantics-based composition for aspect-oriented
requirements engineering. In AOSD’ 2007, pages
36–48, New York, NY, USA, 2007.

[10] P. Clements and L. Northrop. Software Product Lines:
Practices and Patterns. Addison-Wesley, 2001.

[11] K. Czarnecki and U. Eisenecker. Generative
programming: methods, tools, and applications. ACM
Press/Addison-Wesley Publishing Co, 2000.

[12] M. Eaddy, A. Aho, and G. Murphy. Identifying,
assigning, and quantifying crosscutting concerns. In
First Workshop on Assessment of Contemporary
Modularization Techniques (ACOM), Minneapolis,
USA, May 2007.

[13] M. Eriksson, J. Borstler, and K. Borg. The PLUSS
approach - domain modeling with features, use cases
and use case realizations. In SPLC’ 2005, pages 33–44,
Rennes, France, 2005.

[14] E. Figueiredo et al. Evolving software product lines
with aspects: an empirical study on design stability. In
ICSE’ 2008, pages 261–270, Leipzig, Germany, 2008.

[15] R. Gheyi, T. Massoni, and P. Borba. A theory for
feature models in alloy. In First Alloy Workshop,
pages 71–80, Portland, United States, nov 2006.

[16] I. Groher and M. Voelter. Using aspects to model
product line variability. In Early Aspects Workshop at
SPLC, 2008.

[17] I. Jacobson, M. Griss, and P. Jonsson. Software reuse:
architecture, process and organization for business
success. Addison-Wesley Publishing Co., 1997.

[18] P. Jayaraman et al. Model Composition in Product
Lines and Feature Interaction Detection Using Critical
Pair Analysis. LNCS, 4735:151–165, 2007.

[19] C. W. Krueger. New methods in software product line
practice. Commun. ACM, 49(12):37–40, 2006.

[20] H. Masuhara and G. Kiczales. Modeling crosscutting
in aspect-oriented mechanisms. In ECOOP’ 2003,
pages 2–28, 2003.

[21] A. M. D. Moreira and J. Araújo. Handling
unanticipated requirements change with aspects. In
SEKE’ 2004, pages 411–415, Alberta, Canada, 2004.

[22] B. Morin et al. A generic weaver for supporting
product lines. In Early Aspects Workshop at ICSE,
pages 11–18, Leipzig, Germany, 2008.

[23] K. Pohl, G. Böckle, and F. J. van der Linden.
Software Product Line Engineering : Foundations,
Principles and Techniques. Springer, 2005.

[24] K. Pohl and A. Metzger. The eshop product line.
online: http://www.sei.cmu.edu/splc2006/eShop.pdf.

[25] J. Sillito et al. Use case level pointcuts. In ECOOP’
2004, pages 244–266, Oslo, Norway, 2004.

