
Computing Cylindrical Algebraic Decomposition via
Triangular Decomposition

Changbo Chen
ORCCA, University of Western Ontario (UWO)

London, Ontario, Canada
cchen252@csd.uwo.ca

Marc Moreno Maza
ORCCA, University of Western Ontario (UWO)

London, Ontario, Canada
moreno@csd.uwo.ca

Bican Xia
School of Mathematical Sciences
Peking University, Beijing, China

xbc@math.pku.edu.cn

Lu Yang
Shanghai Key Laboratory of Trustworthy

Computing
East China Normal University, Shanghai, China

lyang@sei.ecnu.edu.cn

ABSTRACT
Cylindrical algebraic decomposition is one of the most im-
portant tools for computing with semi-algebraic sets, while
triangular decomposition is among the most important ap-
proaches for manipulating constructible sets. In this paper,
for an arbitrary finite set F ⊂ R[y1, . . . , yn] we apply com-
prehensive triangular decomposition in order to obtain an
F -invariant cylindrical decomposition of the n-dimensional
complex space, from which we extract an F -invariant cylin-
drical algebraic decomposition of the n-dimensional real spa-
ce. We report on an implementation of this new approach
for constructing cylindrical algebraic decompositions.

Categories and Subject Descriptors
G.4 [Mathematics of Computing]: Mathematical Soft-
ware—Algorithm design and analysis

General Terms
Algorithms, Theory

Keywords
CAD, regular chain, triangular decomposition

1. INTRODUCTION
Cylindrical algebraic decomposition (CAD) is a fundamen-

tal and powerful tool in real algebraic geometry. The orig-
inal algorithm introduced by Collins in 1973 [11] has been
followed by many substantial ameliorations, including im-
proved projection methods [23, 17, 8, 5], partially built
CADs [12, 24, 26], improved stack construction [13], and ef-
ficient projection orders [15].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’09, July 28–31, 2009, Seoul, Republic of Korea.
Copyright 2009 ACM 978-1-60558-609-0/09/07 ...$10.00.

The main application of CAD is quantifier elimination (QE)
for which other approaches are available. Some of those have
more attractive complexity results [3] than CAD. However,
as pointed out by Brown and Davenport in [7], “there is the
issue of whether the asymptotic cross-over points between
CAD and those other QE algorithms occur in the range of
problems that are even close to accessible with current ma-
chines”. It is also observed in [7] that CAD helps solving QE

problems [6, 18] that other QE algorithms cannot.
For a finite set Fn ⊂ R[y1, . . . , yn] the CAD algorithm [11]

decomposes the real n-dimensional space into disjoint cells
C1, . . . , Ce and produces one sample point Si ∈ Ci, for all
1 ≤ i ≤ e, such that the sign of each f ∈ Fn does not change
in Ci and can be determined at Si. Besides, this decompo-
sition is cylindrical in the following sense: For all 1 ≤ j < n
the projections on the first j coordinates (y1, . . . , yj) of any
two cells are either disjoint or equal. We will make use of
this notion of “cylindrical” decomposition in Cn.

The algorithm of Collins is based on a projection and lift-

ing procedure which computes from Fn a finite set Fn−1 ⊂
R[y1, . . . , yn−1] such that an Fn-invariant CAD of Rn can be
constructed from an Fn−1-invariant CAD of Rn−1. This con-
struction and the base case n = 1 rely on real root isolation
of univariate polynomials.

In this paper, we propose a different approach which pro-
ceeds by transforming successive partitions of the complex n-
dimensional space Cn. Our algorithm has three main steps:

InitialPartition: we decompose Cn into disjoint constructible
sets C1, . . . , Ce such that for all i every f ∈ Fn is either
identically zero in Ci or vanishes at no points of Ci.

MakeCylindrical: we refine the initial partition and obtain
another decomposition of Cn (again into disjoint con-
structible sets) which is cylindrical in the above sense.

MakeSemiAlgebraic: from the previous decomposition we pro-
duce an Fn-invariant CAD of Rn.

Our first motivation is to understand the relation and pos-
sible interaction between cylindrical algebraic decomposi-
tions and triangular decompositions of polynomial systems.
This latter kind of decompositions have been intensively
studied since the work of Wu [28]. The papers [2, 4] and

monograph [27] contain surveys of the subject. The primary
goal of triangular decompositions is to provide unmixed de-
compositions of algebraic varieties. However, the third and
fourth authors have initiated the use of triangular decom-
positions in real algebraic geometry [31]. Moreover, real
root isolation of zero-dimensional polynomial systems can
be achieved via triangular decompositions [29, 30, 10].

Our future goal is to investigate whether fast polynomial
arithmetic and modular methods available for triangular de-
composition [14, 22, 20] could improve the practical effi-
ciency of CAD implementation. Indeed, each of the three
steps of the algorithm proposed in this paper relies on sub-
algorithms for triangular decompositions taken from [25, 9,
30] and for which efficient implementation in the Regular-

Chains library [19] is work in progress based on the highly
optimized low-level routines of the Modpn library [21].

Another future objective is to extend to real algebraic
geometry the concept of Comprehensive Triangular Decom-

position (CTD) introduced in [9]. The relation between CAD

and parametric polynomial system solving is natural as poin-
ted in [16] and the presentation therein of Weispfenning’s
approach [8] for QE based on comprehensive Gröbner bases.
This suggests that the algorithm proposed in this paper
could support a similar QE method.

This paper is organized as follows. A summary of the the-
ory of triangular decomposition is given in Section 2. Sec-
tion 3 and Section 4 are dedicated to the first two steps
of our algorithm whereas Sections 5 presents the last one.
In Section 6 we report on a preliminary experimentation of
our new algorithm. No modular methods or fast polynomial
arithmetic are being used yet and our code is just high-level
Maple interpreted code. However our code can already pro-
cess well-known examples from the literature. We also ana-
lyze the performances of the different steps and subroutines
of our algorithm and implementation. This suggests that
there is a large potential for improvement by means of mod-
ular methods, for instance for computing GCDs, resultants,
discriminants of polynomials modulo regular chains.

2. TRIANGULAR DECOMPOSITION
Throughout this paper let k be a field of characteristic

zero and K be its algebraic closure. Let k[y] be the polyno-
mial ring over k and with ordered variables y = y1 < · · · <
yn. Let p ∈ k[y] be a non-constant polynomial. The greatest
variable appearing in p is called the main variable, denoted
by mvar(p). The integer k such that yk = mvar(p) is called
the level of p. The separant sep(p) of p is ∂p/∂mvar(p).
The leading coefficient and the leading monomial of p re-
garded as a univariate polynomial in mvar(p) are called the
initial and the rank of p; they are denoted by init(p) and
rank(p) respectively. Let q be another polynomial of k[y],
we say rank(p) is less than rank(q) if mvar(p) < mvar(q), or
mdeg(p) < mdeg(q) when mvar(p) = mvar(q).

Let F ⊂ k[y]. Denote by 〈F 〉 the ideal it generates in
k[y]. A polynomial is regular modulo 〈F 〉 if it is neither
zero, nor a zerodivisor modulo 〈F 〉. Denote by V (F) the
zero set (or algebraic variety) of F in Kn. Let h ∈ k[y].
The saturated ideal of 〈F 〉 w.r.t h, denoted by 〈F 〉 : h∞, is
the ideal {q ∈ k[y] | ∃m ∈ N s.t. hmq ∈ 〈F 〉} of k[y].

Let T ⊂ k[y] be a triangular set, that is, a set of non-
constant polynomials with pairwise distinct main variables.
We denote by mvar(T) the set of the main variables of the
polynomials in T . A variable in y is called algebraic w.r.t.

T if it belongs to mvar(T), otherwise it is said free w.r.t. T .
For v ∈ y, we denote by T<v the set of the polynomials t ∈ T
such that mvar(t) < v holds. Let hT be the product of the
initials of the polynomials in T . We denote by sat(T) the
saturated ideal of T : if T is empty then sat(T) is defined as
the trivial ideal 〈0〉, otherwise it is the ideal 〈T 〉 : h∞

T . The
quasi-component W (T) of T is defined as V (T)\V (hT). For
h ∈ k[y] we define Z(T, h) := W (T) \ V (h).

Let h ∈ k[y]. The iterated resultant of h w.r.t. T , denoted
by ires(h, T), is defined as follows: (1) if h ∈ k or all variables
in h are free w.r.t. T , then ires(h, T) = h; (2) otherwise, if
v is the largest variable of h which is algebraic w.r.t. T ,
then ires(h, T) = ires(r, T<v) where r is the resultant w.r.t.
v of h and the polynomial in T whose main variable is v.
Iterated resultants have the following important property:
the polynomial h is regular modulo sat(T) if and only if we
have ires(h, T) 6= 0.

A triangular set T is called a regular chain if either T = ∅

or ires(hT , T) 6= 0. The pair [T, h] is called a regular system

if T is a regular chain, and ires(h, T) 6= 0. Denote by sep(T)
the product of all sep(p), for p ∈ T . Then T is said to be
squarefree if ires(sep(T), T) 6= 0. A regular system rs =
[T, h] is said to be squarefree if T is squarefree.

For a regular system rs = [T, h], the rank of rs, denoted
by rank(rs), is defined as the set of all rank(p) for p ∈ T .
Given another regular system rs′ = [T ′, h′] with rank(rs) 6=
rank(rs′), we say rank(rs) is less than rank(rs′) whenever
the minimal element of the symmetric difference (rank(rs)\
rank(rs′)) ∪ (rank(rs′) \ rank(rs)) belongs to rank(rs).

A constructible set of Kn is any finite union ∪e
i=1(Ai \Bi),

where Ai, Bi are algebraic varieties in Kn. Any constructible
set of Kn is a finite union of zero sets of regular systems.

Example 1. In k[y1 < y2 < y3] consider the polynomials
p1 = y2

2 + y1 − 1 and p2 = y1y
2
3 − 1. We have mvar(p1) = y2,

sep(p1) = 2y2, init(p1) = 1, rank(p1) = y2
2 , mvar(p2) = y3,

sep(p2) = 2y1y3, init(p2) = y1, rank(p2) = y1y
2
3 . The initial

y1 of p2 is regular modulo 〈p1〉. The set T = {p1, p2} is a
triangular set. The iterated resultant of y1 and T is y1, so T
is a regular chain. The pair [T, y2] is a regular system, since
ires(y2, T) = y1 − 1. The quasi-component of T is the set of
points in K3 such that p1 = 0, p2 = 0 and y1 6= 0.

We review three important operations MakePairwiseDisjoint

(MPD), SymmetricallyMakePairwiseDisjoint (SMPD) and In-

tersect proposed in [9]. Let rs∗ = [T∗, h∗] be a squarefree
regular system of k[y] and let p ∈ k[y] such that p is reg-
ular w.r.t sat(T∗). The operation Intersect(p, rs∗) computes
a family of squarefree regular systems R of k[y] such that

V (p) ∩ Z(rs∗) = ∪rs∈RZ(rs),

and the rank of each rs ∈ R is less than that of rs∗.
For squarefree regular systems [T1, h1], . . . , [Te, he] in k[y],

the function MPD returns another family of squarefree reg-
ular systems [S1, g1], . . . , [Sf , gf] in k[y] s.t.

Z(T1, h1) ∪ · · · ∪ Z(Te, he) = Z(S1, g1) ∪ · · · ∪ Z(Sf , gf),

and for all 1 ≤ i < j ≤ f we have Z(Si, gi) ∩ Z(Sj , gj) = ∅.
Given a family C = {C1, . . . , Cr} of constructible sets of

Kn, the function SMPD returns a family D = {D1, . . . , Ds}
of constructible sets of Kn such that Di ∩ Dj = ∅ for all
1 ≤ i < j ≤ n, each Dj is a subset of some Ci, and each Ci

can be written as a finite union of some of the Dj ’s. Such a
family D is called an intersection-free basis of C.

3. ZERO SEPARATION
In this section, we assume n ≥ 2 and regard the variables

y1 < · · · < yn−1 as parameters, denoted by u. Let πu be
the projection function which sends a point (ū, ȳn) of Kn to
the point ū of the parameter space Kn−1. Let ū ∈ Kn−1.
We write π−1

u
(ū) for the set of all points (ū, ȳn) in Kn such

that πu(ū, ȳn) = ū.
Let p ∈ k[u, yn] be a polynomial of level n. In broad

terms, the goal of this section is to decompose the parameter
space Kn−1 into finitely many cells such that above each cell
the “root structure” of p (number of roots, their multiplic-
ity, . . .) does not change. After some notations, we define
in Definition 1 the object to be computed by the algorithm
devised in this section. It can be seen as a specialization of
the comprehensive triangular decomposition (CTD) to the
case where the input system is a regular system and all vari-
ables but one are regarded as parameters. This algorithm is
stated in Section 3.1 after two lemmas.

Notations. Let rs = [T, h] be a regular system of k[u, yn].
If yn does not appear in rs, we denote by Zu(rs) the zero set
of rs in Kn−1. If yn does not appear in T , we write Wu(T)
for the quasi-component of T in Kn−1. If mvar(h) = yn

holds, we denote by coeff(h) the set of coefficients of h when
h is regarded as a polynomial in yn with coefficients in k[u]
and by Vu(coeff(h)) the variety of coeff(h) in Kn−1. Finally,
if yn is algebraic in T , letting tn be the polynomial in T with
main variable yn, we write Tu = T \ {tn} and rsu = [Tu, r],
where r = res(h · sep(tn), tn) is the resultant of h · sep(tn)
and tn w.r.t yn.

Definition 1. Let C be a constructible set of Kn−1. A
finite set of level n polynomials P ⊂ k[u, yn] separates above

C if for each α ∈ C: (1) the initial of any p ∈ P does not
vanish at α; (2) the polynomials p(α, yn) ∈ K[yn], p ∈ P,
are squarefree and coprime.

Let C be a finite collection of pairwise disjoint constructible
sets of Kn−1, and, for each C ∈ C, let PC ⊂ k[u, yn] be a
finite set of level n polynomials. Let rs∗ = [T∗, h∗] be a
regular system of k[u, yn], where n ≥ 2 and yn is algebraic
w.r.t T . We say that the family {(C,PC) | C ∈ C} separates

Z(rs∗) if the following conditions hold:

(1) C is a partition of πu(Z(rs∗)),

(2) for each C ∈ C, PC separates above C,

(3) Z(rs∗) =
S

C∈C

S

p∈PC
V (p) ∩ π−1

u
(C).

More generally, let cs be a constructible set of Kn such that
there exist regular systems rs1, . . . , rsr of k[u, yn] whose
zero sets form a partition of cs and such that yn is algebraic
w.r.t. the regular chain of rsi, for all 1 ≤ i ≤ r. Then, we
say that the family {(C,PC) | C ∈ C} separates cs if C is a
partition of πu(cs) and if for all 1 ≤ i ≤ r there exists a non-
empty subset Ci of C and for each C ∈ Ci a non-empty subset
PC,i ⊆ PC such that {(C,PC,i) | C ∈ Ci} separates Z(rsi).
In this case, we have: cs =

S

C∈C

S

p∈PC
V (p) ∩ π−1

u
(C).

Example 2. Consider the polynomials in k[x > b > a]

p1 = ax2 − b and p2 = ax2 + 2x + b,

and the constructible set C = {(a, b) ∈ K2 | ab(ab − 1) 6=
0}. For any point (a, b) of C, the two polynomials p1(a, b)
and p2(a, b) of K[x] are squarefree and coprime. So the
polynomial set {p1, p2} separates above C.

Consider the regular system rs∗ = [{p1}, 1] and the con-
structible sets

C1 = {(a, b) ∈ K2 | ab 6= 0},
C2 = {(a, b) ∈ K2 | a 6= 0 & b = 0}.

Note that the zero set of rs∗ is {p1 = 0 & a 6= 0}. So the
family { (C1, {p1}), (C2, {ax}) } separates Z(rs∗).

Consider now the regular systems rs1 = [{p1}, b], rs2 =
[{p2, b}, 1], and the constructible set

cs = Z(rs1)∪Z(rs2) = (V (p1) \ V (ab))∪ (V (p2, b) \ V (a)) .

The family { (C1, {p1}), (C2, {p2}) } separates cs.

Lemma 1. Let p ∈ k[u, yn] be a level n polynomial. Let

r = res(sep(p), p) be the resultant of sep(p) and p w.r.t yn.

Then, the polynomial p(ū) of K[yn] is squarefree and init(p)
does not vanish at ū ∈ Kn−1, if and only if, r(ū) 6= 0 holds.

Observe that init(p) is a factor of r. So the conclusion follows
directly from the specialization property of subresultants.

Lemma 2. We have the following properties:

(1) If yn does not appear in rs, then πu(Z(rs)) = Zu(rs).

(2) If yn does not appear in T and if mvar(h) = yn holds,

then we have πu(Z(rs)) = Wu(T) \ Vu(coeff(h)).

(3) If yn is algebraic w.r.t T and if the regular system rs
is squarefree, then rsu is a squarefree regular system

of k[u]; moreover there exists a family R′ of squarefree

regular systems of k[u, yn] such that:

(a) the rank of each rs′ ∈ R′ is less than that of rs,

(b) for each [T ′, h′] ∈ R′, yn is algebraic w.r.t T ′,

(b) the zero sets Z(rs′), rs′ ∈ R′ and the zero set

V (tn)∩Z(rsu) are pairwise disjoint, and we have

(d) Z(rs) = V (tn) ∩ Z(rsu) ∪
S

rs′∈R′ Z(rs′).

Proof. Property (1) is clear and proving (2) is routine.
We prove (3). Since rs is squarefree, using the above nota-
tions, we have

ires(r, T) = ires(r, Tu) = ires(h · sep(tn), T) 6= 0.

This implies that r is regular w.r.t sat(T) and that rsu =
[Tu, r] is a squarefree regular system of k[u]. Observe now
that the zero set of rs decomposes in two disjoint parts:

Z(rs) = (Z(rs) \ V (r)) ∪ (Z(rs) ∩ V (r)) .

For the first part, we have

Z(rs) \ V (r) = V (tn) ∩ Z(rsu).

For the second part, since r is regular w.r.t sat(T), by means
of the operation Intersect, we obtain a family R of squarefree
regular systems of k[u, yn] such that

Z(rs) ∩ V (r) =
[

rs′∈R

Z(rs′),

where the rank of each rs′ ∈ R is less than that of rs.
Finally, applying the operation MPD to R we obtain a family
R′ satisfying the properties (a), (b), (c) and (d).

3.1 The Algorithm SeparateZeros

We present now an algorithm“solving”a regular system in
the sense of Definition 1. Precise specifications and pseudo-
code follow.
Calling sequence. SeparateZeros(rs∗,u, n)
Input. A squarefree regular system rs∗ = [T∗, h∗] of k[u, yn],
where n ≥ 2 and yn is algebraic w.r.t T∗.
Output. A finite family {(C,PC) | C ∈ C}, where C is a
finite collection of constructible sets of Kn−1, and for each
C ∈ C, PC ⊂ k[y1, . . . , yn] is a finite set of level n polyno-
mials, such that {(C,PC) | C ∈ C} separates the zero set of
rs∗. (See Definition 1.)
Step (1). Initialize R = {rs∗} and P = ∅.
Step (2). If R = ∅, go to Step (3). Otherwise arbitrarily
choose one regular system rs = [T, h] from R and let R =
R\{rs}. Using the above notations, let R′ be as in Property
(3) of Lemma 2. Set P = P ∪ {(rsu, tn)}, set R = R ∪ R′

and repeat Step (2).

Comment. Observe that Step (2) will finally terminate since
each newly added regular system into R has a rank less than
that of the one removed from R. When Step (2) terminates,
we obtain a family P of pairs such that

Z(rs∗) =
[

(rsu,tn)∈P

V (tn) ∩ π−1
u (Zu(rsu)),

and the union is disjoint. Next, observe that for each pair
(rsu, tn) ∈ P, the polynomial init(tn) does not vanish at
any point of Zu(rsu), by virtue of Lemma 1. Therefore, the
union of all Zu(rsu) is equal to πu(Z(rs∗)).
Step (3). By means of the operation SMPD we compute an
intersection-free basis of all Zu(rsu). Hence we obtain a par-
tition C of πu(Z(rs∗)). Then, for each C ∈ C we define PC

as the set of the polynomials tn such that there exists a reg-
ular system rsu satisfying (rsu, tn) ∈ P and C ⊆ Zu(rsu).
Clearly {(C,PC) | C ∈ C} is a valid output.

Finally, we generalize this algorithm in order to apply it
to a constructible set represented by regular systems.
Calling sequence. SeparateZeros({rs1, . . . , rsr},u, n)
Input. Squarefree regular systems rs1, . . . , rsr of k[u, yn],
n ≥ 2, whose zero sets are pairwise disjoint and such that yn

is algebraic w.r.t. the regular chain of rsi, for all 1 ≤ i ≤ r;
let cs be the constructible set represented by rs1, . . . , rsr.
Output. A finite family {(C,PC) | C ∈ C}, where C is a
finite collection of constructible sets of Kn−1, and for each
C ∈ C, PC ⊂ k[y1, . . . , yn] is a finite set of level n poly-
nomials, such that {(C,PC) | C ∈ C} separates cs. (See
Definition 1.)
Step (1). For each 1 ≤ i ≤ r, call SeparateZeros(rsi,u, n)
obtaining {(C,PC) | C ∈ Ci} where Ci is a partition of
πu(Z(rsi)).
Step (2). By means of the operation SMPD, compute an
intersection-free basis D of the union of the Ci, for 1 ≤ i ≤ r.
Step (3). For each D ∈ D, let PD be the union of the PC

such that D ⊆ C holds. Return {(D,PD) | D ∈ D}.

4. CYLINDRICAL DECOMPOSITION
In this section, we propose the notion of an F -invariant

cylindrical decomposition of Kn, generalizing ideas that are
well-known in the case of real fields. The main algorithm
and its subroutines for computing such a decomposition are
stated in three subsections.

Definition 2. We state the definition by induction on n.
For n = 1, a cylindrical decomposition of K is a finite collec-
tion of sets {D1, . . . , Dr+1}, where either r = 0 and D1 = K,
or r > 0 and there exists r nonconstant coprime squarefree
polynomials p1, . . . , pr of k[y1] such that

Di = {y1 ∈ K | pi(y1) = 0}, 1 ≤ i ≤ r,

and Dr+1 = {y1 ∈ K | p1(y1) · · · pr(y1) 6= 0}. Note that all
Di, 1 ≤ i ≤ r + 1 form a partition of K. Now let n > 1, and
let D′ = {D1, . . . , Ds} be any cylindrical decomposition of
Kn−1. For each Di, let {pi,1, . . . , pi,ri}, ri ≥ 0, be a set of
polynomials which separates above Di. (See Definition 1.)
If ri = 0, set Di,1 = Di × K. If ri > 0, set

Di,j = {(α, yn) ∈ K
n | α ∈ Di & pi,j(α, yn) = 0},

for 1 ≤ j ≤ ri and set

Di,ri+1 = {(α, yn) ∈ K
n | α ∈ Di &

ri
Y

j=1

pi,j(α, yn) 6= 0}.

The collection D = {Di,j | 1 ≤ i ≤ s, 1 ≤ j ≤ ri + 1} is
called a cylindrical decomposition of Kn. Moreover, we say
that D induces D′.

Let F = {f1, . . . , fs} be a finite set of polynomials of
k[y1 < · · · < yn]. A cylindrical decomposition D of Kn is
called F -invariant if D is an intersection-free basis of the
s + 1 constructible sets V (fi), 1 ≤ i ≤ s and {y ∈ Kn |
f1(y) · · · fs(y) 6= 0}.

Lemma 3. Let rs1, . . . , rsr+1, with r ≥ 1, be regular sys-

tems of k[y1] such that their zero sets form a partition of K1.

Then, up to renumbering, there exist polynomials p1, . . . , pr,

h1, . . . , hr, hr+1 ∈ k[y1] such that rsi = [{pi}, hi] for 1 ≤ i ≤
r and rsr+1 = [∅, hr+1]. Moreover, setting Di = V (pi) for

1 ≤ i ≤ r and Dr+1 = {y1 ∈ K | p1(y1) · · · pr(y1) 6= 0}, the

sets D1, . . . , Dr+1 form a cylindrical decomposition of K.

Proof. Observe that for 1 ≤ i ≤ r we have Z(rsi) =
V (pi), as hi and pi have no common roots. Since the zero
sets Z(rs1), . . . , Z(rsr+1) form a partition of K1, we must
have V (hr+1) = V (p1 · · · pr). The conclusion follows.

4.1 The Algorithm MakeCylindrical

Calling sequence. MakeCylindrical(R, n)
Input. R, a finite family of squarefree regular systems such
that the zero sets Z(rs), rs ∈ R, form a partition of Kn.
Output. D, a cylindrical decomposition of Kn such that the
zero set of each regular system in R is a union of some cells
in D.
Step (1): Base case. If n > 1, go to (2). If R has only
one element, return D = K otherwise use the construction
of Lemma 3 to return a cylindrical decomposition D.
Step (2): Initialization. Set to R1,R2,R3 the subset of
R consisting of regular systems rs = [T, h] such that, yn is
algebraic w.r.t T , yn appears in h but not in T , yn does not
appear in T nor in h, respectively.
Step (3): Processing R1. Call SeparateZeros(R1,u, n) (see
Section 3) obtaining {(C,PC) | C ∈ C1} where C1 is a parti-
tion of πu(cs1), where cs1 is the constructible set represented
by R1. By adding a “1” in each pair, we obtain a collection
of triples T1 = {(C,PC , 1) | C ∈ C1}.
Step (4): Processing R2. For each rs ∈ R2, compute the
projection πu(Z(rs)) by Property (2) of Lemma 2. Set C2 =
{πu(Z(rs)) | rs ∈ R2} and T2 = {(C, ∅, 2) | C ∈ C2}.

Step (5): Processing R3. For each rs ∈ R3, compute the
projection πu(Z(rs)) by Property (1) of Lemma 2. Set C3 =
{πu(Z(rs)) | rs ∈ R3} and T3 = {(C, ∅, 3) | C ∈ C3}.
Comment. Since the zero sets of regular systems in R are
pairwise disjoint, after step (3), (4), (5), we know that the
element in C3 has no intersection with any element in C1 or
C2. Note that it is possible that an element in C1 has inter-
section with some element of C2. So we need the following
step to remove the common part between them.
Step (6): Merging. Set C = C1∪C2∪C3 and T = T1∪T2∪T3.
Note that each element in T is a triple (C,PC , IC), with
C ∈ C and where IC is an integer of value 1, 2 or 3. By
means of the operation SMPD, compute an intersection-free
basis C′ of C. For each C′ ∈ C′, compute QC′ (resp. JC′)
the union of the PC (resp. IC) such that C′ ⊆ C holds. Set
T ′ = {(C,QC ,JC) | C ∈ C′}.
Step (7): Refinement. To each C ∈ C′, apply operation
MPD to the family of regular systems representing C, so as to
obtain another family RC of regular systems representing C
and whose zero sets are pairwise disjoint. For each rs ∈ RC ,
set Prs = QC and Irs = JC . Let R′ be the union of the
RC , for all C ∈ C′. Set T ′′ = {(Z(rs),Prs, Irs) | rs ∈ R′}.
Comment. Recall that the union of zero sets of the Z(rs),
for all rs ∈ R equals Kn. Therefore, it follows from Steps
(6) and (7), that {Z(rs) | rs ∈ R′} is a partition of Kn−1.
Step (8): Recursive call. Call MakeCylindrical(R′, n− 1) to
compute a cylindrical decomposition D′ of Kn−1 such that
Z(rs), for each rs ∈ R′, is a union of some cells of D′. For
each D′ ∈ D′, observe that there exists a unique rs ∈ R′

such that D′ ⊆ Z(rs), so set PD′ = Prs and ID′ = Irs.
Then, set T ′′′ = {(D′,PD′ , ID′) | D′ ∈ D′}.
Comment. By the comment below Step (5), we know that
for each triple (D′,PD′ , ID′) of T ′′′, the values of ID′ can
only be {1, 2}, {2} or {3}. Next, observe that for each D′ ∈
D′ such that ID′ = {2} or ID′ = {3} holds, we have PD′ =
∅, whereas for each D′ ∈ D′ such that ID′ = {1, 2} the set
PD′ is a nonempty finite family of level n polynomials in
k[y1, . . . , yn] such that PD′ separates above D′. In Step (9)
below, we lift the cylindrical decomposition D′ of Kn−1 to
a cylindrical decomposition D of Kn.
Step (9): Lifting. Initialize D to the empty set. For each
D′ ∈ D′ such that ID′ = {2} or ID′ = {3} holds, let D :=
D ∪ {D′ × K}. For each D′ ∈ D′ such that ID′ = {1, 2}
holds, let D = D ∪ {Dp}, where

Dp = {(α, yn) ∈ K
n | α ∈ D′ and p(α, yn) = 0},

for each p ∈ PD′ and let D = D ∪ {D∗}, where

D∗ = {(α, yn) ∈ K
n | α ∈ D′ &

Y

p∈PD′

p(α, yn) 6= 0},

Finally, return D. The correctness of the algorithm follows
from all the comments and Definition 2.

4.2 The Algorithm InitialPartition

Calling sequence. InitialPartition(F, n)
Input. F = {f1, . . . , fs}, a finite subset of k[y1 < · · · < yn].
Output. A family R of squarefree regular systems, whose
zero sets form an intersection-free basis of the constructible
sets V (f1), . . . , V (fs) and {y ∈ Kn |

`
Qs

i=1 fi(y)
´

6= 0}.
Step (1): Let B = SMPD(V (f1), . . . , V (fs)) be an intersec-
tion free basis of the s constructible sets V (f1), . . . , V (fs).
For each element B of B, we apply operation MPD to the
family of regular systems representing B to compute an-

other family RB of squarefree regular systems such that the
zero sets of regular systems in RB are pairwise disjoint and
their union is B. Let R be the union of all RB , B ∈ B.
Clearly the set {Z(rs) | rs ∈ R} is an intersection-free basis
of the s constructible sets V (f1), . . . , V (fs).
Step (2): Let f =

Q

fi∈F
fi and rs∗ = [∅, f]. Set R =

R∪ {rs∗}. Obviously R is the valid output.

4.3 The Algorithm CylindricalDecompose

Calling sequence. CylindricalDecompose(F, n)
Input. F , a finite subset of k[y1 < · · · < yn].
Output. an F -invariant cylindrical decomposition of Kn.
Step (1): If n > 1, go to step (2). Otherwise let {p1, . . . , pr},
r ≥ 0, be the set of irreducible divisors of non-constant
elements of F . If r = 0, set D = K and exit. Otherwise set

Di = {y1 ∈ K | pi(y1) = 0}, 1 ≤ i ≤ r,

and Dr+1 = {y1 ∈ K | p1(y1) · · · pr(y1) 6= 0}. Clearly
D = {Di | 1 ≤ i ≤ r + 1} is an F -invariant cylindrical
decomposition of K.
Step (2): Let R be the output of InitialPartition(F, n).
Step (3): Call algorithm MakeCylindrical(R, n), to compute
a cylindrical decomposition D of Kn such that the zero
set of each regular system in R is a union of some cells
in D. Clearly, D is an intersection-free basis of the set
{Z(rs) | rs ∈ R}, which implies D is an intersection-free
basis of the s + 1 constructible sets V (f1), . . . , V (fs) and
{y ∈ Kn |

`
Qs

i=1 fi(y)
´

6= 0}. Therefore, D is an F -invariant
cylindrical decomposition of Kn.

5. CYLINDRICAL ALGEBRAIC DECOM-
POSITION

In this section, we show how to compute a CAD of Rn

from a cylindrical decomposition on Cn. We start by re-
viewing basic notions for CAD [1]. We recall a theorem of
Collins [11] establishing relations between the complex and
real roots of a polynomial with real coefficients, see Theo-
rem 1. The bridge from cylindrical decomposition to CAD

is built in Corollary 1, which can be directly obtained from
Collins’ theorem. The main algorithm CAD and its subrou-
tines are stated in four dedicated subsections.

A semi-algebraic set [3] of Rn is a subset of Rn which can
be written as a finite union of sets of the form:

{y ∈ R
n | ∀f ∈ F, f(y) = 0 and ∀g ∈ G, g(y) > 0},

where both F and G are finite subsets of R[y1, . . . , yn]. A
nonempty connected subset of the n-dimensional real space
Rn is called a region. For any subset S of Rn, a decomposi-

tion of S is a finite collection of disjoint regions whose union
is S. For a region R, the cylinder over R, written Z(R), is
R × R1. Let f1 < · · · < fr, r ≥ 0 be continuous, real-valued
functions defined on R. Let f0 = −∞ and fr+1 = +∞. For
any fi, 1 ≤ i ≤ r, the set of points {(a, fi(a)) | a ∈ R} is
called the fi-section of Z(R). For any two functions fi, fi+1,
0 ≤ i ≤ r, the set of points (a, b), where a ranges over R and
fi(a) < b < fi+1(a), is called the (fi, fi+1)-sector of Z(R).
All the sections and sectors of Z(R) can be ordered as

(f0, f1) < f1 < · · · < fr < (fr, fr+1).

Clearly they form a decomposition of Z(R), which is called
a stack over R.

A decomposition E of Rn is cylindrical if either (1) n = 1
and E is a stack over R0, or (2) n > 1, and there is a cylin-
drical decomposition E ′ of Rn−1 such that for each region
R in E ′, some subset of E is a stack over R; moreover, we
say that E induces E ′. A decomposition is algebraic if each
of its regions is a semi-algebraic set. A cylindrical algebraic

decomposition of Rn is a decomposition which is both cylin-
drical and algebraic.

Let p be a polynomial of R[y1, . . . , yn] and let S be a
subset of Rn. The polynomial p is invariant on S (and S
is p-invariant), if the sign of p(α) does not change when α
ranges over S. Let F ⊂ R[y1, . . . , yn] be a finite polynomial
set. We say that S is F -invariant if each p ∈ F is invariant
on S. A cylindrical algebraic decomposition E is F -invariant
if F is invariant on each region of E .

Let R be a region in Rn−1. The polynomial p ∈ R[y1, . . . , yn]
is delineable on R if the real zeros of p define continuous real-
valued functions θ1, . . . , θs such that, for all α ∈ R we have
θ1(α) < · · · < θs(α). Note that if s = 0, then V (p) has no
intersection with Z(R). Clearly when p is delineable on R,
its real zeros naturally determine a stack over R.

Let E be a CAD of Rn. As suggested in [1], each region
e ∈ E can be represented by a pair (I, S), where I is the
index of e and S is a sample point for e. The index I and
the sample point S of e are defined as follows. If n = 1, let

e1 < e2 < · · · < e2m < e2m+1, m ≥ 0

be the elements of E . For each ei, the index of ei is defined
as (i). For each ei, its sample point is any algebraic point
belonging to ei. Let E ′ be the CAD of Rn−1 induced by E .
Suppose that region indices and sample points have been
defined for E ′. Let

ei,1 < ei,2 < · · · < ei,2mi < ei,2mi+1, mi ≥ 0

be the elements of E which form a stack over the region ei of
E ′. Let (i1, . . . , in−1) be the index of ei. Then the index of
ei,j is defined as (i1, . . . , in−1, j). Let S′ be a sample point
of ei. Then the sample point of ei,j is an algebraic point
belonging to ei,j such that its first n− 1 coordinates are the
same as that of S′.

Theorem 1 (Collins). Let p ∈ R[y1 < · · · < yn] be

non-constant with lelvel n and let R be a region of Rn−1. If

init(p) 6= 0 on R and the number of distinct complex roots

of p is invariant on R, then p is delineable on R.

Corollary 1. Let F = {p1, . . . , pr} be a finite set of

polynomials in R[y1 < · · · < yn] of level n. Let R be a

region of Rn−1. Assume that for every α ∈ R, the initial of

each pi does not vanish at α, and all pi(α, yn), for 1 ≤ i ≤ r,
are squarefree and coprime as polynomials of R[yn]. Then

each pi is delineable on R and the sections of Z(R) belonging

to different pi and pj are disjoint.

Let R and F be defined as in the above corollary. Then
clearly the real roots of all p ∈ F are continuous functions
on R and they together determine a stack over R. The
algorithm GenerateStack, described in Section 5.2, is a direct
application of the above corollary.

5.1 Real Root Isolation
Let α = (α1, . . . , αn) be an algebraic point of Rn. Each

αi as an algebraic number is a zero of a nonconstant square-
free polynomial ti(yi) of Q[yi]. Let T be the set of all ti(yi).

Clearly T is a zero dimensional squarefree regular chain of
Q[y]. On the other hand, if T is a zero-dimensional square-
free regular chain of Q[y], any real zero of T is an algebraic
point of Rn. Therefore any algebraic point α of Rn can be
represented by a pair (T, L), where T is a zero-dimensional
squarefree regular chain of Q[y] such that T (α) = 0 and L
is an isolating cube containing α and no other real roots of
T . The pair (T, L) is called a regular chain representation

of α, which will be used to represent a sample point of CAD.
Next we provide the specification of an algorithm called

IsolateZeros for isolating real zeros of univariate polynomials
with real algebraic number coefficients. It is a subroutine of
the algorithm NREALZERO proposed in [30] for isolating the
real roots of a zero-dimensional regular chain.
Calling sequence. IsolateZeros(α(n−1), F, n)

Input. α(n−1) is a point of Rn−1, n ≥ 1, with a regular
chain representation (T ′, L′). If n = 1, T ′ = ∅ and L′ = ∅.
F = {p1, . . . , pr} is a list of non-constant polynomials of
Q[y1, · · · , yn] of level n satisfying that (1) for all pi ∈ F , the
set T ′∪{pi} is a squarefree regular chain of Q[y1, . . . , yn]; (2)

all pi(α
(n−1), yn), for 1 ≤ i ≤ r, are squarefree and coprime,

as polynomials of R[yn].
Output. A pair (N, ν). Let p =

Qr

i=1 pi. Then N =
(N1, . . . , Nm) is a list of intervals with rational endpoints
with N1 < · · · < Nm such that each Nj contains exactly one
real zero of p(α(n−1), yn). ν = (ν1, . . . , νm) is list of integers,

where 1 ≤ νi ≤ r, such that the zero of p(α(n−1), yn) in Nj

is a zero of pνj (α
(n−1), yn).

5.2 The Algorithm GenerateStack

Calling sequence. GenerateStack(e′, F, n)

Input. e′ is a region of a CAD E ′ of Rn−1, n ≥ 1, and e′

is represented by its index I ′ and its sample point S′. Let
(T ′, L′) be the regular chain representation of S′. (If n = 1,
then I ′, T ′, L′ = ∅.) F is a finite set of polynomials in
Q[y1, . . . , yn] of level n. The region e′ and the polynomial
set F satisfy the conditions specified in Corollary 1.
Output. A stack S over e′.
Step (1). If F = ∅, go to step (2). Otherwise call algorithm
IsolateZeros(S′, F, n) to isolate the real roots of polynomials
in F w.r.t yn at the sample point S′ of e′. Let (N, ν) be the
output. If N 6= ∅, go to step (3).
Step (2). Let I = (I ′, 1). Let T = T ′ ∪{yn}, L = L′ × [0, 0],
S = (T, L) and return S = ((I, S)).
Step (3). Let N1 = [a1, b1], . . . , Nm = [am, bm], m > 0 be
the elements of N . For 1 ≤ i ≤ 2m + 1, set Ii = (I ′, i).
Let s1 be the greatest integer less than a1. Let s2m+1 be
the smallest integer greater than bm. For 1 ≤ i ≤ m − 1,

let s2i+1 =
bi+ai+1

2
. For 0 ≤ i ≤ m, Let T2i+1 = T ′ ∪

{yn − s2i+1}, L2i+1 = L′ × [s2i+1, s2i+1] and set S2i+1 =
(T2i+1, L2i+1). For 1 ≤ i ≤ m, let T2i = T ′ ∪ pνi , L2i =
L′ ×Ni and set S2i = (T2i, L2i). Finally, set S be the list of
all (Ii, Si), 1 ≤ i ≤ 2m + 1. Then S is the stack over e′.

5.3 The Algorithm MakeSemiAlgebraic

Calling sequence. MakeSemiAlgebraic(D, n)
Input. D is a cylindrical decomposition of Cn, n ≥ 1.
Output. A CAD E of Rn such that, for each element D of
D, the set D ∩ Rn is a union of some regions in E .
Step (1). If n > 1 go to (2). Otherwise let D1, . . . , Dr, Dr+1,
r ≥ 0 be the elements of D. For each 1 ≤ i ≤ r, let pi be
the polynomial such that Di = {y1 | pi(y1) = 0}. Let E be

the output of GenerateStack(∅, {p1, . . . , pr}, 1). Clearly E is
a CAD of R1.
Step (2). Let D′ be the cylindrical decomposition of Cn−1

induced by D. Call MakeSemiAlgebraic recursively to com-
pute a CAD E ′ of Rn−1.
Step (3). In this step we lift the CAD E ′ of Rn−1 to E .
Initialize E = (). For each region e′ of E ′, let D′ be the
cell of D′ such that e′ ⊂ D′ ∩ Rn. Let D1, . . . , Dr, Dr+1,
r ≥ 0 be the cells of D such that D′ × C = ∪r+1

j=1Dj . For
each 1 ≤ j ≤ r, let pj be the polynomial such that Dj =
{(α, yn) | α ∈ D′ & pj(α, yn) = 0}. Add the output of
GenerateStack(e′, {p1, . . . , pr}, n) into E . Clearly E is a CAD

of Rn and for each D ∈ D, the set D∩Rn is a union of some
regions in E .

5.4 The Algorithm CAD

Calling sequence. CAD(F, n)
Input. F = {f1, . . . , fs} a subset of Q[y1 < · · · < yn], n ≥ 1.
Output. An F -invariant CAD E of Rn.
Step (1). Let D = CylindricalDecompose(F, n) be an F -
invariant cylindrical decomposition of Cn.
Step (2). Call algorithm MakeSemiAlgebraic to compute a
CAD E of Rn such that, for each element D of D, the set D∩
Rn is a union of some regions in E . Since D is an intersection-
free basis of the s + 1 constructible sets VC(f1), . . . , VC(fs)
and {y ∈ Cn |

`
Qs

i=1 fi(y)
´

6= 0}, E is an intersection-free
basis of the s + 1 semi-algebraic sets VR(f1), . . . , VR(fs) and
{y ∈ Rn |

`
Qs

i=1 fi(y)
´

6= 0}. Note that each element in
E is connected. Therefore E is an F -invariant cylindrical
algebraic decomposition of Rn.

6. EXAMPLES AND EXPERIMENTATION

6.1 An Example
Let us illustrate our method by a simple and classical ex-

ample. Consider the parametric parabola p = ax2 + bx + c.
Set the variable order as x > c > b > a. The first step Ini-

tialPartition generates four regular systems, whose zero sets
form a partition of C4.

r1 :=

8

<

:

c = 0
b = 0
a = 0

, r2 :=

8

<

:

bx + c = 0
b 6= 0
a = 0

,

r3 :=



ax2 + bx + c = 0
a 6= 0

, r4 :=
˘

ax2 + bx + c 6= 0 .

Next we trace the algorithm MakeCylindrical. Initialize the
sets R1 := {r2, r3}, R2 := {r4} and R3 := {r1}. Since x
appears in the equations of r2 and r3, SeparateZeros(R1) is
called to obtain a family of pairs

{(C1, {t}), (C2, {p}), (C3, {q})},

defined as follows and which separates Z(r2) ∪ Z(r3).

C1 : {a = 0, b 6= 0} → {t} : {bx + c}
C2 : {a(4ac − b2) 6= 0} → {p} : {ax2 + bx + c}
C3 : {4ac − b2 = 0, a 6= 0} → {q} : {2ax + b}

The projection of Z(r4) is the locus of values at which a, b, c
do not vanish simultaneously, denoted by C4. The projection
of Z(r1) is the set {a = b = c = 0}, denoted by C5.

Note that C1, C2, C3 are all subsets of C4. In the Merging

step, when calling SMPD, we get another set C6 := {a =

b = 0, c 6= 0} such that C1, C2, C3, C5 and C6 are pairwise
disjoint and their union is C3. Moreover, for each Ci, there
is a family of polynomials and indices associated to it.

C1 C2 C3 C5 C6

{t} {p} {q} ∅ ∅

{1, 2} {1, 2} {1, 2} {3} {2}

Since each Ci is already the zero set of some regular system,

MakeCylindrical({C1, C2, C3, C5, C6}, 3)

is called recursively to compute a cylindrical decomposition
of C3. By the Lifting step, we finally obtain a p-invariant
cylindrical decomposition of C4. Let r = 4ac − b2, the de-
composition can be described by the following tree.

�
�

�+
Q

Q
Qs

a = 0 a 6= 0
�

�
�+ ?
b = 0 b 6= 0

�
�

�+ ? ?
c = 0 c 6= 0 C

? ?

�JĴ
C C t = 0 t 6= 0

?
C

�

@
@R

r = 0 r 6= 0

� @@R
q = 0 q 6= 0

?
HHHj

p = 0 p 6= 0

From the above tree, the algorithm MakeSemiAlgebraic fi-
nally produces a CAD of R4 with 27 cells. As pointed out
in [5], by Collins-Hong or McCallum projection operator,
one computes the following polynomials during the projec-
tion phase: ax2 + bx+ c, b2 −4ac, c, b, a. In the lifting phase,
one then obtains a CAD of R4 with 115 cells! A CAD with 27
cells is obtained by McCallum-Brown projection operator.
However, this latter operator fails in some (rare) cases.

6.2 Experimental Results
In this section, we present experimental results obtained

with an implementation of the algorithms presented in this
paper. Our code is in Maple 12 running on a computer with
Intel Core 2 Quad CPU (2.40GHz) and 3.0GB total memory.
The test examples are available at www.csd.uwo.ca/People/
gradstudents/cchen252/CMXY09/examples.pdf. They are
taken from diverse papers [15, 1, 12, 23, 5, 13, 8] on CAD.
The time-out for a test run is set to 2 hours.

In Table 1, we show the total computation time of CAD

and the time spent on three main phases of it, which are
InitialPartition (Partition for short), MakeCylindrical (M.C. for
short) and MakeSemiAlgebraic (M.S.A. for short). We also
report the number of elements (NR) in the CAD. Aborted
computations due to time-out are marked with “-”. From
the table, one can see that, except for Examples 14 and 16,
the steps of the algorithm dedicated to computations over
the complex space dominate the step taking place in the real
space.

In Table 2, we show the total computation time of the al-
gorithm CylindricalDecompose (C.D. for short) and the time
spent on three main operations of it, which are respectively
SeparateZeros (Separate for short), MPD and SMPD. We can
see that the cost of algorithm CylindricalDecompose is domi-
nated by SMPD. The number of elements (NC) in the cylin-
drical decomposition of Cn is also reported.

The data reported in two tables shows that SMPD is the
dominant operation, which computes intensively GCDs of

Sys Partition M.C. M.S.A. Total NR

1 0.024 0.096 0.024 0.144 27
2 1.184 2.856 1.048 5.088 895
3 0.004 7.512 0.704 8.220 233
4 0.264 1.368 1.080 2.716 421
5 0.016 0.052 0.116 0.184 55
6 0.108 0.156 0.120 0.384 41
7 2.704 3.600 1.360 7.664 893
8 0.380 1.608 1.196 3.184 365
9 0.288 0.532 0.264 1.084 209
10 5.668 48.079 18.833 72.640 3677
11 0.252 1.192 0.620 2.068 563
12 2.664 135.028 88.142 225.862 20143
13 10.576 35.846 6.905 53.335 4949
14 5.728 71.760 2520.354 2597.878 27547
15 690.731 2513.817 299.250 3503.954 66675
16 895.435 2064.469 - - -
17 0.052 - - - -
18 - - - - -

Table 1 Timing (s) and number of cells for CAD

Sys Separate MPD SMPD Total NC

1 0.020 0.012 0.084 0.156 8
2 0.508 0.252 2.268 4.052 63
3 3.856 0.836 2.460 7.880 24
4 0.280 0.088 1.036 1.648 65
5 0.032 0.008 0.012 0.064 7
6 0.036 0.012 0.092 0.268 13
7 1.100 0.652 2.416 6.320 58
8 0.536 0.144 1.040 2.008 55
9 0.120 0.032 0.384 0.816 26
10 3.204 0.756 49.031 54.119 594
11 0.128 0.032 0.960 1.416 49
12 8.508 2.024 125.104 138.188 856
13 2.040 1.784 42.578 47.002 407
14 5.741 2.092 64.875 76.956 983
15 83.469 62.736 3066.071 3232.073 2974
16 66.516 377.664 2501.947 2959.904 5877

Table 2 Timing (s) and number of cells for C.D.

polynomials modulo regular chains. This suggests that the
modular methods and efficient implementation techniques
in [14, 22, 20] (use of FFT-based polynomial arithmetic, . . .)
have a large potential for improving the implementation of
our CAD algorithm.

7. CONCLUSION
We have presented a new approach for computing cylin-

drical algebraic decompositions. Our main motivation is to
understand the relations between CADs and triangular de-
compositions, studying how the efficient techniques devel-
oped for the latter ones can benefit to the former ones.

Our method can be applied for solving QE problems di-
rectly. However, to solve practical problems efficiently, our
method needs to be equipped with existing techniques, like
partially built CADs, for utilizing the specific feature of input
problems. Such issues will be addressed in a future paper.

8. REFERENCES
[1] D. S. Arnon, G. E. Collins, and S. McCallum. Cylindrical

algebraic decomposition I: the basic algorithm. SIAM J.
Comput., 13(4):865–877, 1984.

[2] P. Aubry, D. Lazard, and M. Moreno Maza. On the theories of
triangular sets. J. Symb. Comp., 28(1-2):105–124, 1999.

[3] S. Basu, R. Pollack, and M. F. Roy. Algorithms in real
algebraic geometry, volume 10 of Algorithms and
Computations in Mathematics. Springer-Verlag, 2006.

[4] F. Boulier, F. Lemaire, and M. Moreno Maza. Well known
theorems on triangular systems and the D5 principle. In Proc.
of Transgressive Computing 2006, Granada, Spain, 2006.

[5] C. W. Brown. Improved projection for cylindrical algebraic
decomposition. J. Symb. Comput., 32(5):447–465, 2001.

[6] C. W. Brown. Simple cad construction and its applications. J.
Symb. Comput., 31(5):521–547, 2001.

[7] C. W. Brown and J. H. Davenport. The complexity of
quantifier elimination and cylinrical algebraic decomposition. In
Proc. ISSAC’07, pages 54–60, 2007.

[8] B. Caviness and J. Johnson, editors. Quantifier Elimination
and Cylindical Algebraic Decomposition, Texts and
Mongraphs in Symbolic Computation. Springer, 1998.

[9] C. Chen, O. Golubitsky, F. Lemaire, M. Moreno Maza, and
W. Pan. Comprehensive Triangular Decomposition, volume
4770 of LNCS, pages 73–101. Springer, 2007.

[10] J. S. Cheng, X. S. Gao, and C. K. Yap. Complete numerical
isolation of real zeros in zero-dimensional triangular systems. In
Proc. ISSAC’07, pages 92–99, 2007.

[11] G. E. Collins. Quantifier elimination for real closed fields by
cylindrical algebraic decomposition. Springer Lecture Notes in
Computer Science, 33:515–532, 1975.

[12] G. E. Collins and H. Hong. Partial cylindrical algebraic
decomposition. Journal of Symbolic Computation,
12(3):299–328, 1991.

[13] G. E. Collins, J. R. Johnson, and W. Krandick. Interval
arithmetic in cylindrical algebraic decomposition. J. Symb.
Comput., 34(2):145–157, 2002.

[14] X. Dahan, M. Moreno Maza, É. Schost, W. Wu, and Y. Xie.
Lifting techniques for triangular decompositions. In ISSAC’05,
pages 108–115, 2005.

[15] A. Dolzmann, A. Seidl, and T. Sturm. Efficient projection
orders for cad. In Proc. ISSAC ’04, pages 111–118. ACM, 2004.

[16] A. Dolzmann, T. Sturm, and V. Weispfenning. Real quantifier
elimination in practice. In Algorithmic Algebra and Number
Theory, pages 221–247, 1998.

[17] H. Hong. An improvement of the projection operator in
cylindrical algebraic decomposition. In Proc. ISSAC ’90, pages
261–264. ACM, 1990.

[18] H. Hong. Simple solution formula construction in cylindrical
algebraic decomposition based quantifier elimination. In ISSAC
’92, pages 177–188. ACM, 1992.

[19] F. Lemaire, M. Moreno Maza, and Y. Xie. The RegularChains

library. In Ilias S. Kotsireas, editor, Maple Conference 2005,
pages 355–368, 2005.

[20] X. Li, M. Moreno Maza, and W. Pan. Computations modulo
regular chains. In Proc. ISSAC’09, ACM, 2009.

[21] X. Li, M. Moreno Maza, R. Rasheed, and É. Schost. The
Modpn library: Bringing fast polynomial arithmetic into
Maple. In Proc. MICA’08, 2008.

[22] X. Li, M. Moreno Maza, and É. Schost. Fast arithmetic for
triangular sets: From theory to practice. In Proc. ISSAC’07,
pages 269–276. ACM, 2007.

[23] S. McCallum. An improved projection operation for cylindrical
algebraic decomposition of 3-dimensional space. J. Symb.

Comput., 5(1-2):141âĂŞ-161, 1988.

[24] S. McCallum. Solving polynomial strict inequalities using
cylindrical algebraic decomposition. The Computer Journal,
36(5):432–438, 1993.

[25] M. Moreno Maza. On triangular decompositions of algebraic
varieties. Technical Report TR 4/99, NAG Ltd, Oxford, UK,
1999. Presented at the MEGA-2000 Conference, Bath, England.

[26] A. Strzeboński. Solving systems of strict polynomial
inequalities. J. Symb. Comput., 29(3):471–480, 2000.

[27] D. M. Wang. Elimination Methods. Springer, New York, 2000.

[28] W. T. Wu. A zero structure theorem for polynomial equations
solving. MM Research Preprints, 1:2–12, 1987.

[29] B. Xia and L. Yang. An algorithm for isolating the real
solutions of semi-algebraic systems. J. Symb. Comput.,
34(5):461–477, 2002.

[30] B. Xia and T. Zhang. Real solution isolation using interval
arithmetic. Comput. Math. Appl., 52(6-7):853–860, 2006.

[31] L. Yang, X. Hou, and B. Xia. A complete algorithm for
automated discovering of a class of inequality-type theorems.
Science in China, Series F, 44(6):33–49, 2001.

