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When integrating data from autonomous sources, exact matches of data items that represent the
same real world object often fail due to a lack of common keys. Yet in many cases structural
information is available and can be used to match such data. Typically the matching must be

approximate since the representations in the sources differ.
We propose pq-grams to approximately match hierarchical data from autonomous sources and

define the pq-gram distance between ordered labeled trees as an effective and efficient approxi-
mation of the fanout weighted tree edit distance. We prove that the pq-gram distance is a lower

bound of the fanout weighted tree edit distance and give a normalization of the pq-gram distance
for which the triangle inequality holds. Experiments on synthetic and real world data (residen-
tial addresses and XML) confirm the scalability of our approach and show the effectiveness of

pq-grams.
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1. INTRODUCTION

When integrating data from different sources exact matches of data items that
represent the same real world object often fail due to missing global keys and
different data representations. Approximate matching techniques must be applied
instead.

Often the data items that need to be matched are part of a hierarchical structure
that can be represented as ordered labeled trees. Thus, the approximate matching
of data items can exploit the similarity of trees. A well-known but computationally
expensive measure for comparing trees is the tree edit distance, which is defined as
the minimum cost sequence of edit operations (node insertion, node deletion, and
rename) that transforms one tree into another [Tai 1979]. Zhang and Shasha [Zhang
and Shasha 1989] present an algorithm to compute the tree edit distance with a
worst case complexity of O(n4), where n is the number of nodes. Later improve-
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ments of their algorithm [Klein 1998; Demaine et al. 2007] still need at least O(n3)
time and O(n2) space and do not scale to large trees.

In this paper we propose a new distance measure, the pq-gram distance, to ap-
proximately match ordered labeled trees. Intuitively, the pq-grams of a tree are all
its subtrees of a specific shape. Two trees are similar if they have many pq-grams
in common. By adjusting the two parameters p and q, which specify the shape of
the pq-grams, the new distance measure allows to control the relevance of the tree
structure.

For two trees of size n, the pq-gram distance can be computed in O(n log n)
time and O(n) space. We show that the new distance is an effective and efficient
approximation of the fanout weighted tree edit distance, which assigns to each edit
operation a cost proportional to the fanout of the modified nodes. Thus, an edit
operation on a node with few children, e.g., a leaf, is cheaper than an edit operation
on a node with many children. We prove that the pq-gram distance provides a lower
bound for the fanout weighted tree edit distance.

To summarize, the main constributions of this paper are the following:

—We present the pq-gram distance as a new approximation of the fanout weighted
tree edit distance and give a lower bound guarantee for the approximation. We
show that our normalization of the pq-gram distance satisfies the triangle in-
equality.

—We present an algorithm and its relational implementation to compute the pq-
gram distance in O(n log n) time and O(n) space, where n is the number of tree
nodes.

—We report extensive experimental studies with various real-world data sets (ad-
dress data from our local municipality, DBLP, SwissProt, and Treebank), which
confirm the analytical results: the pq-gram distance is competitive both in terms
of quality and efficiency with other tree edit distance approximations, and the
pq-gram distance is scalable to large data sets.

The rest of the paper is organized as follows. In Section 2 we describe an ap-
plication scenario at our local municipality. In Section 3 we discuss related work.
Section 4 gives preliminaries, and Section 5 defines the fanout weighted tree edit
distance. We define the pq-gram distance in Section 6 and show that it provides a
lower bound for the fanout weighted tree edit distance in Section 7. In Section 8
we give an algorithm for the computation of the pq-grams, analyze the complexity
of this algorithm, and discuss its implementation in a relational database. In Sec-
tion 9 we evaluate the efficiency and effectiveness of our method on synthetic and
real world data and compare it to other approximations. We draw conclusions and
point to future work in Section 10.

2. APPLICATION SCENARIO

Many public administrations own or have access to multiple autonomous databases
with geographical data, i.e., data associated with address information. Com-
mon examples of geographical data include databases with residential information,
databases with property information, and databases with tax information. An in-
creasingly important need for public administrations is to automate the linking and
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merging of geographical data from autonomous databases. Below we describe two
applications from the Municipality of Bozen-Bolzano. Both applications need to
match residential addresses from different databases.

2.1 Street Matching

To link geographical data from autonomous databases we first establish a match-
ing between streets. If a central registry for streets is being used this is simple.
Without a central registry the street names can be compared lexicographically.
For autonomous databases the comparison of street names yields poor results since
street names differ due to the use of multiple languages, spelling mistakes, different
naming conventions, and renamed streets that are not updated in all databases.
Figure 1 illustrates the problem in terms of two example tables with street names
and addresses from the municipality.

Ownr

s1 n1 e1 a1 resident

Cimitero 4 - - Rose

Cimitero 6 - - Lara

Friedensplatz 2 A 1 Igor

Friedensplatz 2 A 2 Sarah

Friedensplatz 3 - - Sue

Mariengasse 1 A - Linas

Rentscherstr 1 - - Pia

Rentscherstr 2 - - Tony

Trienterstr 1 A 1 Tom

Trienterstr 1 A 2 Tom

Trienterstr 1 A 3 Pam

Via Bivio 1 - 1 Peter

Via Bivio 1 - 3 John

Via Bivio 2 A - Marc

...

Rsdt

s2 n2 e2 a2 owner

Friedhofplatz 4 - - Dario

Friedhofplatz 6 A - Luigi

Friedhofplatz 6 B - Marc

Kaiserau 1 - 1 Peter

Kaiserau 1 - 2 Lena

Kaiserau 1 - 3 Lena

Kaiserau 2 A - Anita

Mariengasse 1 - - Adam

Reschenstr 1 A 1 Tony

Triesterstr 1 - - Ron

Siegesplatz 2 A 1 Martin

Siegesplatz 3 - 1 Leo

Siegesplatz 3 - 2 Maria

Siegesplatz 3 - 3 Rosa

...

Fig. 1. Tables with Owner (Ownr) and Resident (Rsdt) Information.

The Ownr table stores the owner and the Rsdt table the resident of each prop-
erty. Clearly, matching streets from Ownr and Rsdt is non-trivial. For example,
Cimitero and Friedhofsplatz, Via Bivio and Kaiserau, and Friedensplatz

and Siegesplatz are matching pairs of streets. In all cases string comparison
performs poorly. Besides streets that match there are also streets that are indeed
different and may not be matched. For example, Trienterstr and Triesterstr

are different streets as are Rentscherstrasse and Reschenstrasse. In both cases
the street names are similar and a string comparison might wrongly match these
street pairs.

To reliably match streets it is necessary to exploit the information about the
structure of streets. Towards this end the addresses of single streets can be orga-
nized hierarchically and represented as address trees [Augsten et al. 2004]. Figure 2
shows the address trees for streets Via Bivio and Kaiserau in Figure 1. The root
of the tree is the street name, the children of the street name are the house num-
bers, the children of house numbers are the entrance numbers, and the children
of entrance numbers are the apartment numbers. We omit empty values (“-”) in
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the leaves of address trees. A complete address is the path from the root to any
leaf node. For example, the tuple (Via Bivio, 2, A, -) of table Ownr represents the
address Via Bivio 2A and corresponds to the shaded path in Figure 2.

Via Bivio

1

-

1 3

2

A B

1 2 3 4

C

3 4

A

1 2 3

B C

6

Kaiserau

1

-

1 2 3

2

A B

1 2 3 4

D

3 4

A B C

6

Fig. 2. Address Trees of Streets Via Bivio from Ownr and Kaiserau from Rsdt.

To match streets from different databases we compare the structure of their
address trees. Intuitively, two streets match if they have (almost) the same address
tree. We use this idea to replace the match on the street names by an approximate
match on the structure of a street.

Below, we use the street matching to solve two concrete problems in the context
of geographic databases. Our solution is expressed as a sequence of algebraic ex-
pressions. The aggregation operator Γ[G,A] takes two arguments: a list of grouping
attributes G and a list of aggregates A. T(s, n, e, a) is an aggregate that constructs
an address tree with street name s as root, the street number n at level one, the
entry number e at the second level, and the apartment number a at the third level
(cf. Figure 2). dist(T1,T2) is the distance between trees T1 and T2. τ is a distance
threshold. We write e→a to rename attribute e to a.

2.2 Application 1: Matching Owners and Residents

As a first application, suppose we need to match up owners and residents to check
the property taxes. Clearly, there exists a relationship between owners and resi-
dents. However, if no explicit information about this relationship is stored the only
connection between owners and residents is the location: the owner is the person
who owns the property with the address at which the resident lives.

In order to match owners and residents we first establish a matching between
the streets. This is done by constructing the address trees for the streets in both
databases followed by an approximate address tree join. The final step is to join
owners and residents using the street matching. For this step we must take into
consideration that owner and resident information may not be stored at the same
granularity. For instance an owner might own an entire house but let the apartments
in the house to different residents. The following algebraic expression uses the tables
Ownr and Rsdt of Figure 1 and implements this approach:

O = Γ[s1,T(s1, n1, e1, a1)→T1]Ownr

R = Γ[s2,T(s2, n2, e2, a2)→T2]Rsdt

Y = π[s1→u, s2→v](O 1dist(T1,T2)<τ R)

X = σ[n1∼n2 ∧ e1∼e2 ∧ a1∼a2](Ownr 1s1=u Y 1v=s2 Rsdt)
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The first two statements construct the address trees by aggregating the addresses
within a street. The third statement is the approximate tree join that pairs streets
with a similar structure. The final statement uses the street matching to match
addresses within streets. Two addresses match if house, entrance, and apartment
numbers are pairwise identical. Numbers are also considered identical if one is
empty. Thus, in SQL terminology n1∼ n2 is expressed as n1=n2 OR n1 IS NULL

OR n2 IS NULL.

2.3 Application 2: Master Address Table

As a second application, consider the generation of a master address table that
contains all addresses. Producing a master address table is subtle and most public
administrations are not able to provide a consolidated master address table. In
order to produce a master address table they must merge addresses from different
sources, recognize addresses that refer to the same location, and retain exactly one
of these addresses.

In order to construct a master address table with all addresses two key problems
must be solved. First, we must detect duplicates. We identify two streets as
duplicates if their address trees are very similar. Second, we must decide which
address tree to retain. We assume that we want the street with data at the most
detailed level. Thus, if two streets are similar we keep the larger one, i.e., the
one with more addresses. This solution is implemented by the following algebraic
expressions:

O = Γ[s1→s,T(s1, n1, e1, a1)→T ]Ownr

R = Γ[s2→s,T(s2, n2, e2, a2)→T ]Rsdt

Adr = O ∪R

Y = π[A.s→u,B.s→v,A.T→C,B.T→D](Adr→A 1dist(A.T,B.T )<τ Adr→B)

Dupl = π[u]σ[size(C) < size(D) ∨ size(C) = size(D) ∧ u < v]Y

X = π[u]Adr \Dupl

The first two statements construct the address trees. The third statement collects
all addresses. The fourth statement is a self join, which determines all pairs of
streets with similar address trees. The fifth statement selects all streets that have
a larger street that is very similar (streets of the same size are distinguished by
their name). These are the duplicated streets we are not interested in. The last
statement uses a set difference to return all streets except the duplicated ones. We
assume a duplicate eliminating projection (SELECT DISTINCT in SQL terms).

2.4 Lessons Learned and Generalization

Besides the key aspects of our solution described above we summarize additional
observations and lessons learned from deploying our system.

—In autonomous databases with hierarchical data different levels of detail can (and
should!) exist. For instance an owner who owns a house might let apartments to
many residents (e.g., the owner of Cimitero 6 has let apartments to residents
in Friedhofsplatz 6A and Friedhofsplatz 6B).
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—The matching of addresses can be refined according to the semantics of the ap-
plication. Permitting null values when comparing house, entry, and apartment
numbers works well for a relational representation of addresses where different
levels of details exist and null values are used for non-existing levels of detail.

—Structural information is used to encourage and discourage matching, respec-
tively. For instance Via Bivio and Kaiserau should be matched although
the street names are very different. On the other hand, Trienterstr and
Triesterstr may not be matched although the street names are very similar.

—We assume that the street names in different databases are disjoint. This prevents
that streets are merged when, e.g., doing a union of the addresses of residents
and owners. If this is not the case the street name can be concatenated with a
database identifier.

—The tables in Figure 1 are denormalized. With normalized tables the street
name would be stored in a separate table and an additional join must be used to
construct Ownr and Rsdt tables.

In this section we have discussed two applications of the Municipality of Bozen-
Bolzano that are based on addresses. Note though that instead of addresses we
can easily use article trees from DBLP, proteins from Swissprot, etc. All this data
can be represented as trees. In many cases the tree representation is, in fact, the
default one, e.g., the XML representation of DBLP. Apart from the discussion in
this section our solutions and descriptions are kept general and apply to ordered
labeled trees in general. No application specific assumptions are made. In the
experimental evaluation we evaluate our solution on various hierarchical data sets:
address data, DBLP, Swissprot and Treebank.

3. RELATED WORK

A well known distance function for trees is the tree edit distance, which is de-
fined as the minimum cost sequence of edit operations (node insertion, node dele-
tion, and rename) that transforms one tree into another [Tai 1979]. Zhang and
Shasha [Zhang and Shasha 1989] present an algorithm to compute the tree edit
distance in O(n2 min2(l, h)) time and O(n2) space for trees with n nodes, l leaves,
and height h. Since in a tree both l and h may be of size O(n), the worst case
complexity of this algorithm is O(n4). Later works have improved the worst case
complexity of the tree edit distance algorithm [Klein 1998; Chen 2001; Demaine
et al. 2007], but all of them use at least O(n3) time and O(n2) space and do not
scale to large trees.

By imposing restrictions on the edit operations that can be applied to transform
a tree, suboptimal solutions with better runtime complexities can be found: the
alignment distance [Jiang et al. 1995], the constrained edit distance [Zhang 1995;
Guha et al. 2002], and the top-down distance [Selkow 1977; Yang 1991] all need at
least O(n2) time. The bottom-up distance [Valiente 2001] can be computed in O(n)
time. It tries to find the largest possible common subtrees of two trees, starting
with the leaf nodes. This renders the distance sensitive to differences of leaf nodes:
if the leaf nodes are different the inner nodes are never compared.
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Chawathe et al. [Chawathe et al. 1996] use a variant of the tree edit distance for
change detection in hierarchical data. Lee et al. [Lee et al. 2004] tune the algorithm
presented by Chawathe et al. to XML documents that are represented as ordered
labeled trees. Both algorithms first compute a match between the nodes of the trees,
and based on the match the distance is computed in O(ne) time, where e is the
edit distance between the trees. In a change detection scenario typically trees with
small differences are compared, but for approximate joins the distances between all
pairs of trees must be computed. For trees that are very different the edit distance
e is O(n), which yields O(n2) runtime for both algorithms. The change detection
algorithm by Cobéna et al. [Cobéna et al. 2002] takes advantage of existing element
IDs, which can not be assumed for data from different sources.

Guha et al. [Guha et al. 2002] present a framework for approximate joins between
XML documents based on a distance metric, for example, the tree edit distance.
They use reference sets to take advantage of the triangle inequality of a metric,
thus reducing the actual number of distance computations in a join. They give
upper and lower bounds for the tree edit distance that can be computed in O(n2)
time. The pq-gram distance provides a lower bound for the fanout weighted tree
edit distance and can be computed in O(n log n) time.

Garofalakis and Kumar [Garofalakis and Kumar 2005] investigate an algorithm
for embedding the tree edit distance with subtree move as an additional edit opera-
tion into a numeric vector space equipped with the standard L1 distance norm. The
algorithm runs in O(n×log∗n) time and O(n) space and computes an approximation
of the tree edit distance with subtree move to within an O(log2n× log∗n) factor.1

No lower bound guarantee is given. We implement this approximation and empir-
ically compare it to the pq-gram distance. The tree embedding distance assumes
a unit cost model for edit operations and typically gives less weight to structural
changes than the fanout weighted tree edit distance [Augsten et al. 2005].

The binary branch distance [Yang et al. 2005] was introduced as a lower bound for
the tree edit distance with a unit cost model. The trees are split into small subtrees,
the binary branches. Two trees are similar if they have many binary branches in
common. Each tree node produces exactly one binary branch that consist of the
node itself, its right sibling, and its first child. The edges to the other children are
not stored. These edges are essential to distinguish trees with different structure
that have similar sibling sequences. An example are the address trees introduced
in Section 2, where the sibling sequence (1, 2, 3, 4) frequently appears. Depending
on the parent node the sequence represents either house numbers or apartment
numbers of different houses. pq-Grams explicitly store both parent-child edges and
sibling relationships. We implement the binary branch distance and evaluate its
effectiveness for approximate joins.

pq-Grams were introduced by Augsten et al. [Augsten et al. 2005] to compute
the distance between ordered labeled trees. Their empirical results suggest that
pq-grams are a good approximation of the tree edit distance. We extend this work
with real world experiments on XML data and we prove that the pq-gram distance
provides a lower bound for the fanout weighted tree edit distance. Moreover, the
normalization used by Augsten et al. is not a metric, in particular, it does not

1log∗ n denotes the number of log applications required to reduce n to a quantity that is ≤ 1.
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satisfy the triangle inequality. We provide a normalization that satisfies the triangle
inequality. Windowed pq-grams [Augsten et al. 2008] approximate the tree edit
distance between unordered trees where the sibling order is not relevant. We assume
ordered trees where the sibling order matters. Ribeiro and Härder [Ribeiro and
Härder 2008] introduce extended pq-grams. Extended pq-grams consider in addition
to the structural similarity between trees also the string similarity between leaf
nodes.

Ohkura et al. [Ohkura et al. 2005] propose q-grams for ordered unlabeled trees.
A q-gram is a subtree with q nodes that either is a vertical node chain or has a root
node with fanout two and two leaves. There are q − 1 different q-gram shapes. A
tree is represented by a q-gram vector with q−1 dimensions, where each dimension
counts the q-grams of a specific shape. The q-gram distance between two trees is
the L1 distance between their q-gram vectors. The authors propose a linear time
algorithm to compute the q-grams. No experimental results are given. We propose
pq-grams for ordered labeled trees and evaluate pq-grams on real world datasets.

Weis and Naumann [Weis and Naumann 2005] propose an XML similarity mea-
sure for a duplicate detection framework. In the worst case, all pairs of elements
must be compared. Puhlmann et al. [Puhlmann et al. 2006] improve the efficiency
by applying the Sorted Neighborhood method to nested objects. Both approaches
assume a known, common schema of the matched documents and require a config-
uration step. Sanz et al. [Sanz et al. 2008] develop a similarity-based inverted index
to identify regions of XML documents that are similar to a given pattern. Adjacent
regions are merged into new regions if the new region better matches the pattern
than each of the merged regions. Their solution is designed for highly heteroge-
neous XML collections where both hierarchy and sibling order may differ between
pattern and matched region.

A core operation in XML query processing is to find all occurrences of a twig
pattern [Bruno et al. 2002; Jiang et al. 2003]. The goal of our work is not to
find occurrences of a pattern to answer queries. We split the tree into subtrees in
order to calculate the distance between trees. Polyzotis et al. [Polyzotis et al. 2004]
build synopsis of an XML tree optimized for approximate query answering. They
introduce the element simulation distance to capture the difference between the
original tree and the synopsis with respect to twig queries. This distance is tailored
to measure the quality of a synopsis and is not suitable as an approximation for the
tree edit distance. Several papers deal with the related, but different problem of
detecting the structural similarity between XML documents [Nierman and Jagadish
2002; Flesca et al. 2005; Dalamagas et al. 2006; Helmer 2007]. Two documents are
considered structurally similar if they are valid for a similar DTD. The text content
of the elements and the values of the attributes are ignored.

Navarro [Navarro 2001] gives a good overview of the edit distance for strings and
its variants. Ukkonen [Ukkonen 1992] introduces the q-gram distance as a lower
bound for the string edit distance. The q-gram distance between two strings is based
on the number of common substrings of length q. Gravano et al. [Gravano et al.
2001] present algorithms for approximate string joins based on the edit distance
and use q-grams as a filtering algorithm. Approximate string matching techniques
are successful if the distance between corresponding strings is smaller than that
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of other strings in the join set. This is typically the case for spelling mistakes,
where only a few characters change. The distance between corresponding street
names, however, is often larger than the length of the shorter string. If streets are
renamed or the street names are spelled in different languages, string matching fails
completely.

4. PRELIMINARIES

A tree T is a directed, acyclic, connected, non-empty graph with nodes N(T) and
edges E(T). An edge is an ordered pair (p, c), where p, c ∈ N(T) are nodes, and p is
the parent of c. A node can have at most one parent, and nodes with the same parent
are siblings. A total order < is defined on each group of sibling nodes. Two siblings
s1, s2 are contiguous iff s1 < s2 and they have no sibling x such that s1 < x < s2. A
node c is the i-th child of p iff i = |{x ∈ N(T)|(p, x) ∈ E(T), x ≤ c}|. The number
of children of p is its fanout fp. The node with no parent is the root node, root(T),
and a node without children is a leaf. Each node v has a label, λ(v) ∈ Σ, where Σ

is a finite alphabet. In the sequel, such trees are called ordered labeled trees.
The empty node, ǫ, does not appear in trees and its label is different from the

labels of all other nodes. Nǫ(T) = N(T) ∪ {ǫ} denotes the set of all nodes of T

including the empty node. A node o with the label λ(o) = * is a dummy node.
Each node a in the path from the root node to a node v is called an ancestor of v.

If there is a path of length k > 0 from a to v, then a is the ancestor of v at distance
k. The parent of a node is its ancestor at distance 1. Node d is a descendant of v if
v is an ancestor of d. The level of a node is the length of the path from the root to
v. The height of a tree is the length of the longest path from the root to any one of
the leaves.

A subtree S of T is a tree with N(S) ⊆ N(T) and E(S) ⊆ E(T), retaining the
sibling order. A preorder traversal of a tree visits a node before its children (if any)
and after its left siblings and their descendants (if any), and each node is visited
exactly once. Node v is the i-th node of T in preorder if v is visited as the i-th
node in the preorder traversal.

Each node has a unique identifier, and the identifiers of different trees are disjoint.
We use v to refer to both the node as well as its identifier. In our graphical
representation of trees we represent nodes as (identifier, label)-pairs, the edges are
lines between the nodes, and siblings are ordered from left to right. Whenever
possible we omit the identifiers of nodes to avoid clutter (e.g., in Figure 2).

Example 4.1. Figure 3 shows two example trees, T1 and T2. The nodes of
T1 are N(T1) = {v1, v2, v3, v4, v5, v6}, the edges are E(T1) = {(v1, v2), (v1, v5),
(v1, v6), (v2, v3), (v2, v4)}, and the sibling orders are v2 < v5 < v6 and v3 < v4.
Node v1 has three children: v2 is the first, v5 the second, and v6 the third child.
The root node is root(T) = v1, and it is the ancestor of all other nodes. v3, v4, v5

and v6 are leaf nodes. The node labels in T1 are λ(v1) = a, λ(v2) = a, λ(v3) = e,
λ(v4) = b, λ(v5) = b, and λ(v6) = c. Tree S1 with nodes N(S1) = {v2, v3, v4},
edges E(S1) = {(v2, v3), (v2, v4)} and sibling order v3 < v4 is a subtree of T1. The
preorder traversal of T1 visits the nodes in the following order: v1, v2, v3, v4, v5, v6.
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T1 v1,a

v2,a

v3,e v4,b

v5,b v6,c

T2 w5,a

w1,a

w7,e w9,b

w3,b w6,d

Fig. 3. Two Example Trees T1 and T2.

5. THE TREE EDIT DISTANCE

The tree edit distance has emerged as the most widely used distance measure to
capture the difference between two ordered labeled trees. Together with a cost
model, it sums up the cost of the cheapest sequence of edit operations that transform
one tree into the other. In this section we provide a formal definition of the tree
edit distance together with a cost model that is sensitive to structural changes.

An edit operation transforms a tree T into a tree T′. We use the following
three standard edit operations on trees: delete a node and connect its children to
its parent maintaining the sibling order; insert a new node between an existing
node, p, and a subsequence of consecutive children of p; and rename (the label of)
a node. Following previous work on the tree edit distance [Tai 1979; Zhang and
Shasha 1989] we formally define the edit operations in terms of edit mappings.

Definition 5.1 Edit Mapping and Node Alignment. Let T and T′ be ordered la-
beled trees. M ⊆ Nǫ(T)×Nǫ(T

′) is an edit mapping between T and T′ iff

(1) each node is mapped:
(a) ∀v[v ∈ N(T)⇔ ∃v′((v, v′) ∈M)]
(b) ∀v′[v′ ∈ N(T′)⇔ ∃v((v, v′) ∈M)]
(c) (ǫ, ǫ) 6∈M

(2) all pairs of non-empty nodes (v, v′), (w,w′) ∈M satisfy the following conditions:
(a) v = w⇔ v′ = w′ (one-to-one condition)
(b) v is an ancestor of w⇔ v′ is an ancestor of w′ (ancestor condition)
(c) v is to the left2 of w⇔ v′ is to the left of w′ (order condition)

A pair (v, v′) ∈M is called a node alignment.

Non-empty nodes that are mapped to other non-empty nodes are either renamed
or not modified when T is transformed into T′. Nodes of T that are mapped to
the empty node are deleted from T, and nodes of T′ that are mapped to the empty
node are inserted into T′.

Definition 5.2 Deletions, Insertions, and Renames defined by an Edit Mapping.
Let M ⊆ Nǫ(T) × Nǫ(T

′) be an edit mapping between trees T and T′. Then M
defines the following sets of alignments:

—D(M) = {(v, ǫ) | (v, ǫ) ∈M} are the deletions,

—I(M) = {(ǫ, v′) | (ǫ, v′) ∈M} are the insertions,

—R(M) = {(v, v′) | (v, v′) ∈M ∧ λ(v) 6= λ(v′) ∧ v 6= ǫ ∧ v′ 6= ǫ} are the renames.

2A node v is to the left of a node w iff v precedes w in the preorder traversal of the tree and v is

not an ancestor of w.
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Definition 5.3 Edit Operation. e(T, v, v′) = T′ is an edit operation that trans-
forms tree T into tree T′ by either renaming v to v′, deleting v, or inserting v′

iff there exists an edit mapping M between T and T′ that satisfies the following
condition:

Rename: e(T, v, v′) = T′ ⇔ R(M) = {(v, v′)},D(M) = I(M) = {}

Delete: e(T, v, ǫ) = T′ ⇔ D(M) = {(v, ǫ)}, I(M) = R(M) = {}

Insert: ep,i,m(T, ǫ, v′) = T′ ⇔ I(M) = {(ǫ, v′)},D(M) = R(M) = {}

The insert operation inserts v′ as the i-th child of p, and children i to i + m− 1 of
p become children of v′. Formally, p 6= ǫ ∧ i + m− 1 ≤ fp ⇔ fv′ = m ∧ ∃p′[(p, p′) ∈
M ∧ v′ is i-th child of p′], and p = ǫ⇔ v′ = root(T′).

Example 5.1. Consider Figure 4, which illustrates two consecutive edit oper-
ations. Renaming node v6 transforms T1 into T2. The edit mapping between
T1 and T2 is {(v1,w5), (v2,w1), (v5,w3), (v6,w6), (v3,w7), (v4,w9)}. λ(v6) = c and
λ(w6) = d. Deleting node w1 in T2 yields tree T3. The edit mapping between
T2 and T3 is given as {(w5, x1), (w7, x2), (w9, x3), (w3, x4), (w6, x5), (w1, ǫ)}. T3 is
transformed to T2 by an insert, T2 is transformed to T1 by a rename.

T1
e(T1, v6, w6)
−→←−

e(T2, w6, v6)

T2
e(T2, w1, ǫ)
−→←−

ex1,1,2(T3, ǫ, w1)

T3

v1,a

v2,a

v3,e v4,b

v5,b v6,c

w5,a

w1,a

w7,e w9,b

w3,b w6,d

x1,a

x2,e x3,b x4,b x5,d

Fig. 4. Two Edit Operations that Transform T1 into T3.

In order to determine the distance between trees a cost model must be defined.
We assign a cost to each node alignment of an edit mapping. This cost is propor-
tional to the fanout of the aligned nodes.

Definition 5.4 Cost of a Node Alignment. Let T and T′ be ordered labeled
trees, let c > 0 be a constant, v ∈ Nǫ(T), v′ ∈ Nǫ(T

′). The cost of a node
alignment, γ(v, v′), is defined as:

γ(v, v′) =











fv + c if v 6= ǫ ∧ v′ = ǫ (delete)

fv′ + c if v = ǫ ∧ v′ 6= ǫ (insert)
fv + fv′

2 + c if v 6= ǫ ∧ v′ 6= ǫ ∧ λ(v) 6= λ(v′) (rename)

(1)

Thus, the cost of aligning leaf nodes is a constant c for all edit operations. For
the other nodes the cost of deletion and insertion is proportional to the node’s
fanout. The choice of the rename cost should depend on the costs of deletion and
insertion. The maximum meaningful cost of rename is below the cost of deletion
plus insertion. If the rename cost is larger, then rename can always be substituted
by deletion and insertion at lower cost, and rename is never used in the cheapest
edit sequence. If the rename cost is small compared to the costs of insertion and
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deletion, then the cheapest edit sequence optimizes on aligning the structure and
ignores the labels. We choose the cost of rename to be the average between the
costs of deletion and insertion.

Definition 5.5 Cost of Edit Mapping. Let T and T′ be two ordered labeled trees,
M ⊆ Nǫ(T) × Nǫ(T

′) be an edit mapping between T and T′, and γ(v, v′) be the
cost of a node alignment. The cost of the edit mapping M is defined as

γ∗(M) =
∑

(v,v′)∈M,λ(v) 6=λ(v′)

γ(v, v′).

The cost of an edit mapping is the sum of the cost of all node alignments in the
mapping. The node alignments (v, v′) ∈ M with λ(v) = λ(v′) represent the nodes
that have not been modified and thus are not considered in the cost formula. The
cost of an edit operation, e(T, v, v′), on a tree T is the cost of aligning v and v′.

The tree edit distance between two trees T and T′ is the cost of the cheap-
est sequence of edit operations that transforms T into T′ [Tai 1979]. Zhang and
Shasha [Zhang and Shasha 1989] show that the cost of the cheapest edit sequence
is equivalent to the cost of the cheapest edit mapping. We adopt the cost model of
Definition 5.4 and define the fanout weighted tree edit distance.

Definition 5.6 Fanout Weighted Tree Edit Distance. Let T and T′ be two or-
dered labeled trees. The fanout weighted tree edit distance, disted(T,T′), between
T and T′ is the cost of the cheapest edit mapping, M ⊆ Nǫ(T)×Nǫ(T

′), between
the two trees, i.e.,

disted(T,T′) = min{γ∗(M) |M ⊆ Nǫ(T)×Nǫ(T
′) is an edit mapping}.

Previous work often adopts a unit cost model, which defines the cost of all node
alignments to be 1. This reduces the tree edit distance to the minimum number of
edit operations that transforms one tree into the other. The unit cost model does
not distinguish between nodes with small and large fanout. This behavior leads to
non-intuitive results, as illustrated in Figure 5. Tree T′ is the result of deleting the
leaves with labels g and k from T, whereas T′′ is obtained from T by deleting the
nodes labeled c and e. Intuitively, T′ and T are much more similar (in structure)
than T′′ and T, but the unit cost tree edit distance distunit is 2 in both cases. The
fanout weighted tree edit distance weights leaf and non-leaf changes differently.

The computation of the tree edit distance is expensive. The fastest algorithms
use a dynamic programming approach that recursively decomposes the trees into
subforests and computes the distance between all pairs of subforests. The decompo-
sition of a single tree can result in O(n2) subforests, but not all of them are required
to compute the tree edit distance. The optimal decomposition strategy results in
an algorithm that uses O(n3) time and O(n2) space [Demaine et al. 2007]. The
base algorithm by Zhang and Shasha [Zhang and Shasha 1989] uses O(n2 log2 n)
time for trees with height O(log n), and O(n2) space.

6. THE PQ-GRAM DISTANCE

In this section we define pq-grams and a tree distance based on pq-grams. We
show that, different from the tree edit distance, the pq-gram distance can be com-
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T
′

← distunit (T
′,T) = 2→

disted (T′,T) = 2
T

← distunit (T,T′′) = 2→

disted (T,T′′) = 9
T

′′

a

b c

d e

h i

f

a

b c

d e

h i k

f g

a

b d h i k f g

Fig. 5. Tree Edit Distance with Unit Cost (distunit ) and Fanout Weighted (disted ) Cost Model.

puted efficiently in O(n log n) time and linear space, and that the pq-gram distance
provides a lower bound for the fanout weighted tree edit distance.

Intuitively, the pq-grams of a tree are all subtrees of a specific shape. To ensure
that each node of the tree appears in at least one pq-gram, we extend the tree with
dummy nodes. The pq-grams are defined as subtrees of the extended tree.

Definition 6.1 pq-Extended Tree. Let T be a tree, and p > 0 and q > 0 be two
integers. The pq-extended tree, Tp,q, is constructed from T by adding p−1 ancestors
to the root node, inserting q−1 children before the first and after the last child of
each non-leaf node, and adding q children to each leaf of T. All newly inserted
nodes are dummy nodes that do not occur in T.

Example 6.1. Figure 6 shows the graphical representation of T
2,3
1 , the 2, 3-

extended tree of our example tree T1.

o1,*

v1,a

o2,* o3,* v2,a

o4,* o5,* v3,e

o6,* o7,* o8,*

v4,b

o9,* o10,* o11,*

o12,* o13,*

v5,b

o14,* o15,* o16,*

v6,c

o17,* o18,* o19,*

o20,* o21,*

Fig. 6. The Extended Tree T
2,3
1 .

Definition 6.2 pq-Gram. Let T be a tree, Tp,q the respective extended tree,
p > 0, q > 0. A subtree of Tp,q is a pq-gram G of T iff

(1) G has q leaf nodes and p non-leaf nodes,

(2) all leaf nodes of G are children of a single node a ∈ N(G) with fanout q, called
the anchor node,

(3) the leaf nodes of G are consecutive siblings in Tp,q.
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Example 6.2. Figure 7 shows some of the 2, 3-grams of the example tree T1.

o1,*

v1,a

o2,* o3,* v2,a

q = 3

p = 2

anchor node

v1,a

v2,a

o4,* o5,* v3,e

v2,a

v3,e

o6,* o7,* o8,*

v1,a

v2,a

o5,* v3,e v4,b

. . .

Fig. 7. Some of the 2, 3-Grams of T1.

Definition 6.3 Label Tuple. Let G be a pq-gram with the nodes N(G) =
{v1, . . . , vp, vp+1, . . . , vp+q}, where vi is the i-th node in preorder. The tuple
λ*(G) = (λ(v1), . . . , λ(vp), λ(vp+1), . . . , λ(vp+q)) is called the label tuple of G.

Subsequently, if the distinction is clear from the context, we use the term pq-gram
for both, the pq-gram itself and its representation as a label tuple.

Definition 6.4 pq-Gram Index. Let P be the set of all pq-grams of a tree T,
p > 0, q > 0. The pq-gram index, Ip,q(T), of T is defined as the bag of label tuples
of all pq-grams of T, i.e., Ip,q(T) = ⊎G∈P λ*(G).

The tables in Figure 8 show the 2, 3-gram index of T1 and T2, respectively. Note
that pq-grams might appear more than once in a pq-gram index, e.g., (a, b, *, *, *)
appears twice in the index of T1.

I2,3(T1)

labels

(*, a, *, *, a)
(a, a, *, *, e)
(a, e, *, *, *)

(a, a, *, e, b)

(a, b, *, *, *)

(a, a, e, b, *)
(a, a, b, *, *)

(*, a, *, a, b)

(a, b, *, *, *)
(*, a, a, b, c)

(a, c, *, *, *)

(*, a, b, c, *)

(*, a, c, *, *)

I2,3(T2)

labels

(*, a, *, *, a)
(a, a, *, *, e)
(a, e, *, *, *)

(a, a, *, e, b)

(a, b, *, *, *)

(a, a, e, b, *)
(a, a, b, *, *)

(*, a, *, a, b)

(a, b, *, *, *)
(*, a, a, b, d)

(a, d, *, *, *)

(*, a, b, d, *)

(*, a, d, *, *)

Fig. 8. 2, 3-Gram Indexes of T1 and T2.

The pq-gram distance is a measure for the similarity of two trees. It is based on
the number of pq-grams that differ between the indexes of two trees.
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Definition 6.5 pq-Gram Distance. Let T1 and T2 be trees, I1 = Ip,q(T1), I2 =
Ip,q(T2), p > 0, q > 0. The pq-gram distance, distp,q(T1,T2), between the trees
T1 and T2 is defined as the symmetric difference between the respective indexes:

distp,q(T1,T2) = |I1 ⊎ I2| − 2|I1 C I2|

= |I1∆I2|
(2)

The pq-gram distance is a pseudo-metric, i.e., it is non-negative, it is zero for
identical trees, it is symmetric, and the triangle inequality holds. The pseudo-
metric properties are essential for many similarity search algorithms since they
allow to efficiently prune the search space [Zezula et al. 2006]. Different from a
metric, in a pseudo-metric non-identical trees may be at distance zero. An example
of two different trees with the same pq-gram index is shown in Figure 9(a). The
children of the root nodes are swapped. The pq-grams responsible for detecting
the swapped children are those anchored in the root nodes of T and T′ (the four
leftmost pq-grams in Figure 9(b)). However, as the swapped children have the same
label, these pq-grams are not affected by the swap and the pq-gram distance is zero.

T a

b

c

b

T′

a

b b

c

*

a

* * b

*

a

* b b

*

a

b b *

*

a

b * *

a

b

* * c

a

b

* c *

a

b

c * *

b

c

* * *

a

b

* * *

(a) The Trees T and T′. (b) The 2, 3-Grams of T and T′.

Fig. 9. Different Trees with the Same pq-Gram Index.

The pq-gram distance is the number of pq-grams that differ between two trees.
The same number of different pq-grams may be considered a small change if the
two trees are large, but a big change if the trees are small. We therefore define
the normalized pq-gram distance that accounts for the tree size. The normalized
pq-gram distance is 1 if two trees share no pq-grams and 0 for identical trees.

Definition 6.6 Normalized pq-Gram Distance. Let T1 and T2 be trees, I1 =
Ip,q(T1), I2 = Ip,q(T2), p > 0, q > 0. The normalized pq-gram distance,
distp,q

norm(T1,T2), between the trees T1 and T2 is defined as follows:

distp,q
norm(T1,T2) =

distp,q(T1,T2)

|I1 ⊎ I2| − |I1 C I2|
(3)

Example 6.3. Consider the normalized 2, 3-gram distance between the trees
T1 and T2. The corresponding 2, 3-gram indexes are shown in Figure 8. The
bag-intersection of the two indexes is {(*, a, *, *, a), (a, a, *, *, e), (a, e, *, *, *),
(a, a, *, e, b), (a, b, *, *, *), (a, a, e, b, *), (a, a, b, *, *), (*, a, *, a, b), (a, b, *, *, *)},
which yields |I2,3(T1) C I2,3(T2)| = 9. For the cardinality of the bag-union we
get |I2,3(T1) ⊎ I

2,3(T2)| = |I
2,3(T1)|+ |I

2,3(T2)| = 26. The normalized pq-gram
distance is

dist2,3
norm(T1,T2) =

26− 2× 9

26− 9
= 0.47.
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I1

I2 I3

a

b

c
d

e

f
g

Fig. 10. Disjoint Subsets of I1, I2, and I3.

It is not obvious that the normalization maintains the pseudo-metric properties of
the pq-gram distance. For example, if we normalize by |I1⊎I2| instead of |I1⊎I2|−
|I1 C I2|, the triangle inequality is not satisfied. We show that our normalization of
the pq-gram distance is a pseudo-metric.

Theorem 6.7 Pseudo-Metric. The normalized pq-gram distance is a pseudo-
metric, i.e., for any trees T1, T2, and T3, the following holds:

(1 ) non-negativity: distp,q
norm(T1,T2) ≥ 0

(2 ) reflexivity: T1 = T2 ⇒ distp,q
norm(T1,T2) = 0

(3 ) symmetry: distp,q
norm(T1,T2) = distp,q

norm(T2,T1)

(4 ) triangle inequality: distp,q
norm(T1,T2) + distp,q

norm(T2,T3) ≥ distp,q
norm(T1,T3)

Proof. We follow a proof by Yianilos [Yianilos 2002], who introduces a metric
normalization for the symmetric difference between sets. The pq-gram distance is
the symmetric difference between pq-gram indexes which are bags.
Let I1, I2, I3 be the pq-gram indexes of T1, T2, and T3, respectively. The non-
negativity of the normalized pq-gram distance follows from |I1 ⊎ I2| ≥ 2|I1 C I2|,
the reflexivity follows from T1 = T2 ⇒ I1 = I2, the symmetry follows from the
symmetry of bag union and bag intersection. Triangle inequality : We use

|I1 ⊎ I2| − 2|I1 C I2|

|I1 ⊎ I2| − |I1 C I2|
= 1−

|I1 C I2|

|I1|+ |I2| − |I1 C I1|

to rewrite the triangle inequality as

1−
|I1 C I2|

|I1|+ |I2| − |I1 C I2|
+1−

|I2 C I3|

|I2|+ |I3| − |I2 C I3|
≥ 1−

|I1 C I3|

|I1|+ |I3| − |I1 C I3|
. (4)

We partition the indexes into disjoint subsets as shown in Figure 10. The lowercase
letters in the figure are the cardinalities of the respective subsets. We further define
h := b + d + f + g, substitute the cardinalities in (4) and simplify:

1−
b + g

a + c + h
+ 1−

d + g

c + e + h
≥ 1−

f + g

a + e + h
b + g

a + c + h
+

d + g

c + e + h
≤

f + g

a + e + h
+ 1. (5)

Removing c from the denominator of the left-hand side can not decrease the
left-hand side, thus (5) holds if the following is true:

b + g

a + h
+

d + g

e + h
≤

f + g

a + e + h
+ 1.
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We substitute 1 by h/h and add the fractions on each side:

(e + h)(b + g) + (a + h)(d + g)

(a + h)(e + h)
≤

h(f + g) + h(a + e + h)

h(a + e + h)
. (6)

As (a+h)(e+h) = ae+h(a+e+h) ≥ h(a+e+h), we can remove the denominators,
and (6) holds if the resulting inequality is true:

(e + h)(b + g) + (a + h)(d + g) ≤ h(f + g) + h(a + e + h) (7)

As h = b + d + f + g, the following inequalities hold: (α) h ≥ b + g, (β) h ≥ d + g,
and (γ) h2 + hg ≥ h(b + d + 2g). We show (7):

(e + h)(b + g) + (a + h)(d + g)
(α),(β)

≤ eh + h(b + g) + ah + h(d + g)
= eh + h(b + d + 2g) + ah
(γ)

≤ eh + h2 + hg + ah
= hg + h(a + e + h)
≤ h(f + g) + h(a + e + h)

Below we state and prove important properties of pq-grams. Theorem 6.8 states
that the size of the pq-gram index is linear in the number of tree nodes. Lemma 6.9
gives a bound for the number of pq-grams in which a node appears.

Theorem 6.8 Linear Size of the pq-Gram Index. Let T be a tree with
n = |N(T)| nodes, p > 0, q > 0. The size of the pq-gram index of T is linear
in the number of tree nodes: |Ip,q(T)| = O(n).

Proof. Let l and i be the number of leaf and non-leaf nodes of T, respectively.
We show |Ip,q(T)| = 2l + qi − 1 and conclude |Ip,q(T)| = O(n). First we count
all pq-grams whose leftmost leaf is a dummy node: Each leaf is the anchor node
of exactly one pq-gram whose leftmost leaf is a dummy node, giving l pq-grams.
Each non-leaf node is the anchor of q− 1 pq-grams whose leftmost leaf is a dummy
node, giving i(q − 1) pq-grams. Second we count all pq-grams whose leftmost leaf
is not a dummy node: Each node of the tree except the root is the leftmost leaf of
exactly one pq-gram, giving l + i− 1 pq-grams. The overall number of pq-grams is
l + i(q − 1) + (l + i− 1) = 2l + qi− 1.

The next lemma is used in the lower bound proof in Section 7 and determines
the number of pq-grams in which a node v appears. This number is small for leaves
and increases with the fanout of a node.

Lemma 6.9. Let T be a balanced tree with all leaf nodes at the same distance
h from the root node and a fixed fanout f > 1 for all non-leaf nodes. Further, let
v ∈ N(T) be a node at level l, 0 ≤ l ≤ h. The number of pq-grams (p > 0, q > 0)
that contain node v is as follows:

cntpq(T, v) =



























fh−1
f−1 (f + q − 1) + fh l = 0, h < p (1)

fp−1
f−1 (f + q − 1) l = 0, h ≥ p (2)

q + fh−l−1
f−1 (f + q − 1) + fh−l l > 0, h < l + p (3)

q + fp−1
f−1 (f + q − 1) l > 0, h ≥ l + p (4)
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Proof. For the proof we systematically consider all positions in a pq-gram where
node v can appear. We begin with the most general case (4). In this case node v

is located in the “middle” of the tree such that v may appear in all positions of a
pq-gram without touching the top or bottom of the tree. First, v appears as leaf
in exactly q pq-grams (with v’s parent being the anchor node). Next, v appears
in the p non-leaf nodes of a pq-gram. When v is the anchor node, we get exactly
(f+q−1) pq-grams. Next, each of the f children of v becomes the anchor node,
yielding f(f+q−1) pq-grams. Repeating this step until v appears as root in the

pq-grams, which is the case after p−1 steps, yields a total of (f + q− 1)
∑p−1

i=0 f i =
fp−1
f−1 (f + q + 1) pq-grams, where v appears as non-leaf.

The other three cases cover special cases, where v, due to its level l in the tree
and the definition of pq-grams, cannot appear in all positions of a pq-gram. In case
(3), v is non-root but close enough to the leaf level such that each of the fh−l leaf
nodes that are descendants of v appear as anchor node in exactly one pq-gram.
Note that, if p > h − l + 1, v does not appear in all p non-leaf positions of the
pq-grams. Cases (1) and (2) are analogous to cases (3) and (4), except that v is the
root of the tree. Therefore, by definition of the pq-grams, v does not appear in any
of the q leaf positions of a pq-gram.

Lemma 6.9 assumes a completely balanced tree with a fixed fanout. If f is the
maximum fanout of v and its descendants within distance p− 1, then cntpq(T, v) is
an upper bound for the number of pq-grams that contain v. The cost for changing a
leaf node (h = l) is q+1, thus depends only on q. For non-leaf nodes the impact of p
is prevalent, and we can control the sensitivity of pq-grams to structural changes by
choosing the value for p. The difference between non-leaf and leaf nodes is relevant
for hierarchical data where values higher up in the hierarchy are more significant.

7. LOWER BOUND FOR THE TREE EDIT DISTANCE

In this section we show that the pq-gram distance, which can be computed in
O(n log n) time and O(n) space, provides a lower bound approximation for the
fanout weighted tree edit distance. The lower bound guarantee allows to safely
use pq-grams for pruning, for example, in a distance join. With the lower bound
guarantee the pruning produces no false negatives, i.e., the pruning increases the
efficiency without changing the join result.

The lower bound proof proceeds in three steps:

(1) Unchanged pq-Grams : Assume trees, T and T′, with indexes I and I′, respec-
tively, an edit mapping, M ⊆ Nǫ(T) × Nǫ(T

′), and the inverse edit mapping,
M−1, of M . We define the unchanged pq-grams of T, U(T,M,T′), and show

|I C I′| ≥ |U(T,M,T′)| = |U(T′,M−1,T)|.

(2) Upper Bound for the pq-Gram Distance: Using the above result, we prove the
following upper bound for the pq-gram distance:

distp,q(T,T′) = |I|+ |I′| − 2|I C I′|
≤

∑

(v,v′)∈D(M) max(2q + 2, 2 fv +4q − 2) +
∑

(v,v′)∈I(M) max(2q + 2, 2 fv′ +4q − 2) +
∑

(v,v′)∈R(M) max(2q + 2, fv + fv′ +4q − 2)
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(3) Lower Bound for the Tree Edit Distance: Finally we show that the upper bound
for the pq-gram distance (divided by 2) is a lower bound for the fanout weighted
tree edit distance and conclude:

distp,q(T,T′)

2
≤ disted(T,T′)

The lower bound holds for the minimal pq-gram pattern (p = 1). For larger
patterns (p > 1) the pq-gram distance is more sensitive to structure changes than
the fanout weighted tree edit distance and can grow beyond the fanout weighted
tree edit distance.

The pq-gram distance also provides a lower bound for normalized tree edit dis-
tances: distp,q(T,T′)/2x ≤ disted(T,T′)/x. Note though that not all normal-
izations yield a pseudo-metric. We proved the pseudo-metric properties for the
normalization of Definition 6.6, which normalizes the pq-gram distance to values
between 0 and 1.

7.1 Step 1: Unchanged pq-Grams

Definition 7.1 Unchanged pq-Grams. Let T and T′ be two trees, M ⊆ Nǫ(T)×
Nǫ(T

′) be an edit mapping, and P′ be the set of all pq-grams of T′. A pq-gram G

of T is unchanged iff there is a pq-gram G′ of T′ such that M maps all non-dummy
nodes of G to nodes of G′ with the same label, and vice versa. The set of all
unchanged pq-grams of T is denoted as U(T,M,T′):

G ∈ U(T,M,T′)⇔∃G′ ∈ P′ :
∀ v ∈ N(G) ∩N(T)∃v′ ∈ N(G′)[(v, v′) ∈M ∧ λ(v) = λ(v′)] ∧
∀ v′ ∈ N(G′) ∩N(T′)∃v ∈ N(G)[(v, v′) ∈M ∧ λ(v) = λ(v′)]

For each unchanged pq-gram of one tree there is at least one pq-gram in the other
tree with the same label tuple. Therefore the cardinality of the index intersection
of two trees is at least the cardinality of the unchanged pq-grams.

Lemma 7.2. Given an edit mapping M between the nodes of two trees, T and T′,
the respective pq-gram indexes, I and I′, and the inverse mapping M−1 = {(v′, v) |
(v, v′) ∈M}, then

|I C I′| ≥ |U(T,M,T′)| = |U(T′,M−1,T)|. (8)

Proof. |U(T,M,T′)| = |U(T′,M−1,T)| follows from the symmetry of Defini-
tion 7.1. We show that each unchanged pq-gram, G ∈ U(T,M,T′), adds a label
tuple to the index intersection: According to Definition 7.1 there is exactly one
pq-gram G′ of T′ such that all non-dummy nodes of G are mapped to nodes of G′

with the same label, and vice versa. Thus G adds the label tuple λ*(G) = λ*(G′)
to the intersection.

7.2 Step 2: Upper Bound for the pq-Gram Distance

In the following we prove an upper bound for the pq-gram distance that is a function
of the deletions, insertions, and renames defined by M . Intuitively, the proof counts
the non-matching pq-grams between two trees T and T′ to derive an upper bound
for their pq-gram distance. Part A of the proof counts the pq-grams that exist in
T but not in T′. This can be either due to a deletion or a rename (set V in the
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proof) or due to an insertion (set W in the proof). Part B of the proof equivalently
counts the pq-grams that are present in T′ but not in T.

Lemma 7.3. Let M be an edit mapping between two trees, T and T′, p = 1,
q > 0, then

distp,q(T,T′) ≤
∑

(v,v′)∈D(M) max(2q + 2, 2 fv +4q − 2)+
∑

(v,v′)∈I(M) max(2q + 2, 2 fv′ +4q − 2)+
∑

(v,v′)∈R(M) max(2q + 2, fv + fv′ +4q − 2).
(9)

Proof. Given distp,q(T,T′)
Def. 6.5

= |I|+|I′|−2|ICI′|
(8)

≤ |I|−|U(T,M,T′)|+|I′|−
|U(T′,M−1,T)|, we first derive an upper bound for |I| − |U(T,M,T′)| (Part A),
then we derive an upper bound for |I′|− |U(T′,M−1,T)| (Part B). The sum of the
two upper bounds is an upper bound for the pq-gram distance, distp,q(T,T′).

A) Upper bound for |I| − |U(T,M,T′)|: We denote the set of all pq-grams of T

with P and the set of all pq-grams of T′ with P′. As |I| = |P| and U(T,M,T′) ⊆ P,
|I| − |U(T,M,T′)| = |P \U(T,M,T′)|. We derive an upper bound for the number
of pq-grams that change, |P \ U(T,M,T′)|, by partitioning P \ U(T,M,T′) into
two disjoint sets, V and W, and by adding the upper bounds for |V | and |W |.
P \ U(T,M,T′) is partitioned as follows:

(1) G ∈ V iff G contains a deleted or a renamed node, i.e., ∃(v, v′) : v ∈ N(G) ∧
(v, v′) ∈ D(M) ∪R(M),

(2) G ∈W otherwise.

Upper bound for |V |: V is the set of all pq-grams, G ∈ P, that contain a renamed
or a deleted node. The number of pq-grams that contain a node, v ∈ N(T), depends
on the position of node v in the tree (root vs. non-root, leaf vs. non-leaf) and is
shown in Table I. We get

|V | ≤
∑

(v,v′)∈D(M),fv=0

(q + 1) +
∑

(v,v′)∈D(M),fv>0

(fv +2q − 1)+

∑

(v,v′)∈R(M),fv=0

(q + 1) +
∑

(v,v′)∈R(M),fv>0

(fv +2q − 1). (10)

Position of v |{G ∈ P | v ∈ N(G)}|

v is a root and leaf 1
v is root and non-leaf fv +q − 1

v is non-root and leaf q + 1
v is non-root and non-leaf fv +2q − 1

Table I. Number of pq-Grams (p = 1) that Contain a Node v.

Upper bound for |W |: Let G ∈ W be a pq-gram, (v0, v1, . . . , vk), k ≤ q, be the
sequences of non-dummy nodes of G in preorder, and {v′0, v

′
1, . . . , v

′
k} ⊆ N(T′) be

the nodes of N(T′) such that (vi, v
′
i) ∈ M for 0 ≤ i ≤ k. As G does not contain

renamed or deleted nodes (G /∈ V ), all non-dummy nodes of G are mapped to
a node of N(T′) with the same label. Further, as G /∈ U(T,M,T′), there is no
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T T′

v0

v1 v2 w

v′0

v′1 v′

v′2 w′

T T′

v0

v1 v2 w

v′0

v′1 v′ v′2 w′

T T′

v0

o v1 w

v′0

o v′ v′1 w

(a) v′ Is a Descendant of v′0
and an Ancestor of v′2.

(b) v′ Is a Sibling of v′1 and v′2,

v′1 < v′ < v′2.

(c) v′ Is the Immediate

Left Sibling of v′1.

Fig. 11. Illustration for Proof 7.3: The Nodes of the 1, 2-Gram, G, and their Mappings in T′ are
Circled. Mapped Nodes are Connected with a Line, the Lines for Deleted and Inserted Nodes are
Not Shown.

pq-gram, G′ ∈ P′, such that there is a one-to-one mapping M ′ ⊆ M between the
non-dummy nodes of G and G′. Since M is an edit mapping, ancestor/descendant
relation and node order can not change between the nodes mapped by M ′ (see
Definition 5.1). This implies that there is a node v′ ∈ N(T′) \ {v′0, v

′
1, . . . , v

′
k} that

appears “between” the mapped nodes {v′0, v
′
1, . . . , v

′
k} in T′. There are two distinct

cases:

(1) v′ is a descendant of v′0 and an ancestor of some nodes {v′1, . . . , v
′
k} (see Fig-

ure 11(a)),

(2) v′ is a sibling of some nodes {v′1, . . . , v
′
k}, v′ has no descendant in {v′1, . . . , v

′
k},

and v′ appears either between two nodes v′1 ≤ v′i < v′j ≤ v′k, (see Figure 11(b))
or is the immediate left (right) sibling of v′1 (v′k) (see Figure 11(c)).

We count the number of pq-grams that may be affected by a single node v′.
Case (1): We need to count the pq-grams G ∈ P with a node {v1, . . . , vk} ∈ N(G)
that is mapped to a child of v′. For a node v′ with fanout fv′ this can be at
most fv′ +q − 1 pq-grams. Case (2): There are at most k + 1 ≤ q + 1 positions
between/before/after the nodes {v′1, . . . , v

′
k} where v′ can be inserted, thus the

number of pq-grams that are affected by v′ is at most q + 1.
We identify the nodes v′ ∈ N(T′) that qualify for one of the above cases. Case (1):

v′ is a non-leaf (by definition). Further v′ is an inserted node, i.e., (ǫ, v′) ∈ I(M),
otherwise there would be a node v ∈ N(T) \ N(G) such that (v, v′) ∈ M, which
violates the ancestor condition of Definition 5.1. Case (2): v′ is an inserted node,
i.e., (ǫ, v′) ∈ I(M), otherwise there would be a node v ∈ N(T) \ N(G) such that
(v, v′) ∈ M, which violates the order condition of Definition 5.1. For the same
reason, also all descendants of v′ are inserted nodes. None of the descendants of v′

qualifies for Case (2) (v′ has, by definition, no descendants in {v′1, . . . , v
′
k}, thus no

descendant of v′ can be a sibling of such a node). v′ is either a leaf or a non-leaf;
if v′ is a non-leaf, then it has at least one leaf descendant that does not qualify for
Case (2), and we consider its leaf descendants instead of v′ itself. By adding for
each node v′ the pq-grams G ∈ P that v′ may affect in the Cases (1) and (2) we
get

|W | ≤
∑

(v,v′)∈I(M),fv′=0

(q + 1) +
∑

(v,v′)∈I(M),fv′>0

(fv′ +q − 1) (11)
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The upper bound of |I| − |U(T,M,T′)| = |V | + |W | is the sum of the upper
bounds for |V | (10) and |W | (11).

B) Upper bound for |I′| − |U(T′,M−1,T)|: The upper bound for |I′| −
|U(T′,M−1,T)| = V ′ + W ′ is derived by symmetric considerations,

|V ′| ≤
∑

(v,v′)∈I(M),fv′=0

(q + 1) +
∑

(v,v′)∈I(M),fv′>0

(fv′ +2q − 1)+

∑

(v,v′)∈R(M),fv′=0

(q + 1) +
∑

(v,v′)∈R(M),fv′>0

(fv′ +2q − 1) (12)

|W ′| ≤
∑

(v,v′)∈D(M),fv=0

(q + 1) +
∑

(v,v′)∈D(M),fv>0

(fv +q − 1) (13)

We get the upper bound for distp,q(T,T′) = |I1∆I2| = V +W +V ′ +W ′ by adding
the upper bounds for V (10), W (11), V ′ (12), and W ′ (13). For the sets D(M)
and I(M) the different sums for leaves and non-leaves are expressed in a single sum
that is equal or larger, for example:

∑

(v,v′)∈D(M),fv=0

2(q + 1) +
∑

(v,v′)∈D(M),fv>0

(fv +2q − 1) + (fv +q − 1) ≤

∑

(v,v′)∈D(M)

max(2q + 2, 2 fv +4q − 2)

For the set R(M) we need to consider the fanout of both v and v′. Considering
all possible cases (fv = 0 ∧ fv′ = 0, fv > 0 ∧ fv′ = 0, fv = 0 ∧ fv′ > 0, fv >
0 ∧ fv′ > 0) we find that a single pair (v, v′) ∈ R(M) can contribute at most with
max(2q + 2, fv + fv′ +4q − 2) to the overall sum.

7.3 Step 3: Lower Bound for the Tree Edit Distance

Theorem 7.4 Lower Bound. Let p = 1 and c ≥ max(2q − 1, 2) be the cost
of aligning leaf nodes. The pq-gram distance provides a lower bound for the fanout
weighted tree edit distance, i.e., for any two trees, T and T′,

distp,q(T,T′)

2
≤ disted(T,T′).

Proof. Let M be a minimum cost edit mapping between the trees T and T′.
We define a(x, y) := max(2q + 2, fx + fy +4q − 2), b(x, y) :=

fx + fy

2 + c,

A :=
∑

(v,v′)∈D(M) a(v, v) +
∑

(v,v′)∈I(M) a(v′, v′) +
∑

(v,v′)∈R(M) a(v, v′)

B :=
∑

(v,v′)∈D(M) b(v, v) +
∑

(v,v′)∈I(M) b(v′, v′) +
∑

(v,v′)∈R(M) b(v, v′).

As distp,q(T,T′)
Def. 6.5

= |I∆I′|
(9)

≤ A and B
Def. 5.6

= disted(T,T′), it is sufficient to
show A ≤ 2B. We show:

(1)
∑

(v,v′)∈D(M) a(v, v) ≤ 2
∑

(v,v′)∈D(M) b(v, v): follows from ∀(v, v′) ∈ D(M) :

a(v, v) ≤ 2b(v, v). If q = 1 and fv = 0 then a(v, v) = 2q + 2 and a(v, v) ≤
2b(v, v) ⇔ 2q + 2 ≤ 2 fv +2c ⇔ 2 ≤ c; otherwise a(v, v) = 2 fv +4q − 2 and
a(v, v) ≤ 2b(v, v)⇔ 2 fv +4q − 2 ≤ 2 fv +2c⇔ 2q − 1 ≤ c.
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(2)
∑

(v,v′)∈I(M) a(v′, v′) ≤ 2
∑

(v,v′)∈I(M) b(v′, v′): analog rationale.

(3)
∑

(v,v′)∈R(M) a(v, v′) ≤ 2
∑

(v,v′)∈R(M) b(v, v′): follows from ∀(v, v′) ∈ R(M) :

a(v, v′) ≤ 2b(v, v′). If q = 1 and the pair (fv, fv′) ∈ {(0, 0), (0, 1), (1, 0)} then
a(v, v′) = 2q + 2 and a(v, v′) ≤ 2b(v, v′) ⇔ 2q + 2 ≤ fv + fv′ +2c which holds
for c ≥ 2; otherwise a(v′, v′) = fv + fv′ +4q − 2 and a(v′, v′) ≤ 2b(v′, v′) ⇔
fv + f ′v +4q − 2 ≤ fv + fv′ +2c⇔ 2q − 1 ≤ c.

8. ALGORITHMS

The core of the pq-gram distance computation is the computation of the indexes.
In this section we present an algorithm for computing the pq-gram index and we
show its linear complexity. A feature of this algorithm is that it can be efficiently
implemented for trees, for example, XML data, stored in a relational database. We
present an implementation that requires only a single scan over the relation that
stores the trees.

8.1 An Algorithm for the pq-Gram-Index

The basic idea of the pq-Gram-Index algorithm (see Algorithms 8.1 and 8.2) is to
move a pq-gram pattern vertically and horizontally over the tree as illustrated in
Figure 12. After each move the nodes covered by the pattern form a pq-gram.

Algorithm 8.1: pq-Gram-Index(T, p, q)

I : empty relation with schema (labels);1

stem: shift register of size p (filled with *);2

I← index(T, p, q, I, root(T), stem);3

return I;4

Algorithm 8.2: index(T, p, q, I, a, stem)

base: shift register of size q (filled with *);5

stem ← shift(stem, λ(a));6

if a is a leaf then7

I← I ∪ {stem ◦ base};8

else9

foreach child c (from left to right) of a do10

base ← shift(base, λ(c));11

I← I ∪ {stem ◦ base};12

I←index(T, p, q, I, c, stem);13

for k ← 1 to q − 1 do14

base ← shift(base, *);15

I← I ∪ {stem ◦ base};16

return I;17

We use two shift registers, stem of size p and base of size q to represent the labels
of a pq-gram; stem stores the labels of the anchor node and its ancestors, base the
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(a) Moving the pq-Gram
Pattern in the Tree.

(b) Shift Registers
stem and base.

(c) Resulting
Index I.

Fig. 12. Illustration of the pq-Gram Index Calculation.

labels of the children of the anchor node. A shift register reg supports a single
operation shift(reg , el), which returns reg with the oldest element dequeued and
el enqueued. For example, shift((a, b, c), x) returns (b, c, x). The concatenation
of the two registers, stem ◦ base, is a label tuple in the pq-gram index, i.e., for
stem = (l1, . . . , lp) and base = (lp+1, . . . , lp+q) the label tuple in the pq-gram index
is (l1, . . . , lp, lp+1, . . . , lp+q).

pq-Gram-Index takes as input a tree T, p, and q, and returns a relation that
contains the pq-gram index of T. After the initialization, index calculates the
pq-grams recursively, starting from the root node of T. Intuitively, index shifts
a pq-gram shaped pattern vertically and horizontally over the tree, and the nodes
covered by the pattern form a pq-gram. First, the label of the anchor node a is
shifted into register stem, which corresponds to moving the pq-gram pattern one
step down. Now stem contains the labels of a and its p− 1 ancestors. The loop at
line 10 moves the register base from left to right over the children of a in order to
produce all the pq-grams with anchor node a and calls index recursively for each
child of a. Overall, index adds fa +q−1 label tuples to I if a is a non-leaf, otherwise
1 label tuple is added. The pq-extended tree is calculated on the fly by an adequate
initialization of the shift registers (lines 2, 5, 14–16).

Example 8.1. Assume p = 2, q = 3, and the tree T1 from Figure 3. The
main data structures of the index algorithm are visualized in Figure 12. After
the initialization, index(T1, 2, 3, {}, v1, (*, *)) is called. Line 5 initializes base =
(*, *, *), and line 6 shifts the label of v1 into the register stem, yielding stem = (*, a).
Since v1 is not a leaf, we enter the loop at line 10 and process all children of v1.
The label of the first child, v2, is shifted into register base, yielding base = (*, *, a),
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and the first label tuple (*, a, *, *, a) is added to the result set I. Figure 12(b) shows
the values of stem and base each time a label tuple is added to I. The indentation
illustrates the recursion. The table in Figure 12(c) shows the result relation I with
the label tuples in the order in which they are produced by the algorithm.

pq-Gram-Index has runtime complexity O(n) for a tree T, where n = |N(T)|:
Each recursive call of index processes one node, and each node is processed exactly
once. For the distance computation between two trees the index intersection is
computed in O(n log n) time and O(n) space using a standard sort-merge approach.
Thus, the overall complexity of computing the pq-gram distance between two trees
T and T′ is O(n log n) time and O(n) space, where n = max(|N(T)|, |N(T′)|) is
the number of nodes of the larger tree.

8.2 Relational Implementation

The algorithms given above are not optimized for a particular encoding of trees.
In this section we present a scalable pq-gram index algorithm for tree sets that are
stored in a relational database. The algorithm works for all encodings of ordered
labeled trees that support efficient implementations of the following functions: (a)
sort the tree nodes in preorder, (b) decide whether a node is a leaf, and (c) decide
the ancestor-descendant relationship between nodes. Examples of encodings that
satisfy these criteria are the interval encoding [Celko 1994; 2004] and the Dewey
encoding [Tatarinov et al. 2002; O’Neil et al. 2004]. The presentation of our algo-
rithms assumes the interval encoding.

The interval encoding has been used to store and query XML data [Zhang et al.
2001; Grust 2002; Al-Khalifa et al. 2002; DeHaan et al. 2003]. It stores the structure
information of a node as a pair of integers (interval). We associate a unique index
number with each tree in the set. A node of a tree is represented as a quadruple of
tree index, node label, and left and right endpoint of the node’s interval.

Definition 8.1 Interval Encoding. An interval encoding of a tree T is a relation
R that for each node v ∈ T contains a tuple (id(T), λ(v), lft , rgt); id(T) is a unique
identifier of the tree T, λ(v) is the label of v, lft and rgt are the endpoints of the
interval representing the node. lft and rgt are constrained as follows:

—lft < rgt for all (id , lbl , lft , rgt) ∈ R,

—lfta < lftd and rgta > rgtd if node a is an ancestor of node d, and
(id(T), λ(a), lfta, rgta) ∈ R, and (id(T), λ(d), lftd, rgtd) ∈ R,

—rgtv < lftw if node v is a left sibling of node w, and (id(T), λ(v), lftv, rgtv) ∈ R,
and (id(T), λ(w), lftw, rgtw) ∈ R,

—rgt = lft + 1 if node v is a leaf node, and (id(T), λ(v), lft , rgt) ∈ R.

We get an interval encoding for a tree by traversing the tree in preorder, using
an incremental counter that assigns the left interval value lft to each node when it
is visited first, and the right value rgt when it is visited last. Figure 13 shows an
address tree of our application, where each node is annotated with the endpoints
of the interval.

The interval encoding of a tree allows a scalable implementation of the al-
gorithm pq-Gram-Index for a set of trees stored in a relation F with schema
(treeID , label , lft , rgt). We define the following cursor:
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Fig. 13. Address Tree with Interval Encoding.

cur = SELECT * FROM F ORDER BY treeID,lft

Then with a single scan all trees can be processed, and each tree is processed node-
by-node in preorder. Our experiments in Section 9.1 confirm the scalability of this
approach to large trees.

The Algorithms 8.3 and 8.4 are adapted for the interval encoding and the changes
are highlighted. Instead of a tree, pq-Gram-Index gets a cursor as an argument.
Algorithm index processes all nodes of the tree in preorder, and when it terminates
the cursor points to the root node of the next tree in the set.

Algorithm 8.3: pq-Gram-Index(cur , p, q)

I : empty relation with schema (labels);1

stem: shift register of size p (filled with *);2

I← index(cur , p, q, I, fetch(cur), stem);3

return I;4

Algorithm 8.4: index(cur , p, q, I, a, stem)

base: shift register of size q (filled with *);5

stem ← shift(stem, λ(a));6

cur ← next(cur);7

if isLeaf(a) then8

I← I ∪ {stem ◦ base};9

else10

c← fetch(cur);11

while isDescendant(c, a) do12

base ← shift(base, λ(c));13

I← I ∪ {stem ◦ base};14

I← index(cur , p, q, I, c, stem);15

c← fetch(cur);16

for k ← 1 to q − 1 do17

base ← shift(base, *);18

I← I ∪ {stem ◦ base};19

return I;20
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Algorithm index calls the following two functions:

—isLeaf(v): Returns true iff v is a leaf node, i.e., lft(v) + 1 = rgt(v).

—isDescendant(d, a): Returns true iff d is a descendant of a, i.e., lft(a) < lft(d)
and rgt(a) > rgt(d) and treeID(a) = treeID(d) and d 6= null.

Checking the ancestor-descendant relationship between nodes is a constant time
operation for the interval encoding, while checking the parent-child relationship is
more complex. In our algorithm this amounts to the same thing: When the loop
on line 12 is entered the first time, c is the next node after a in preorder (or null).
Thus, if c is a descendant of a, it must be a child. The recursive call in line 15
will process c and all its descendants, and set the cursor on the next node after the
processed nodes. Again, if this is a descendant of a, then it is a child. Thus, the
while-loop of Algorithm 8.4 is equivalent to the for-loop of Algorithm 8.2.

9. EXPERIMENTS

We evaluate the efficiency and the effectiveness of the pq-gram distance. The pq-
gram distance can be computed efficiently even between very large trees for which
the tree edit distance is not feasible. The sensitivity of pq-grams is controlled by
the parameters p and q; we test deletions for leaf and non-leaf nodes with different
pairs of parameters and confirm our analytic results. The effectiveness of pq-grams
is evaluated in two experiments on real world data. In the first experiment pq-grams
are tested for the street matching task introduced in Section 2 and their effectiveness
is compared to other approximations in the literature that we have implemented.
In the second experiment we approximately join XML documents that contain
spelling mistakes and missing elements. Both experiments show that pq-grams are
a good approximation of the tree edit distance. The other approximations are
clearly outperformed in terms of precision and recall.

All algorithms were implemented in Java 1.6 and run on a 2.6GHz processor.
Unless otherwise mentioned, the main memory was limited to 1GB.

9.1 Scalability

We evaluate the scalability of our algorithm by comparing it with the tree edit
distance by Zhang and Shasha [Zhang and Shasha 1989] and the tree embedding
distance [Garofalakis and Kumar 2005], and we investigate the influence of the
parameters p and q on the scalability of the pq-gram distance.

As a test set we produce pairs of trees (T1,T2) of size |N(T1)| = |N(T2)| = n
with up to 5× 105 nodes. The height of the trees is logarithmic, and the labels for
each tree are randomly chosen from a set of n different labels.

Figure 14(a) shows the runtimes for the tree edit distance and the 2, 3-gram
distance computation for different tree sizes. For the tree edit distance we use our
own implementation which for large trees runs almost three orders of magnitude
faster than the implementation provided by Zhang and Shasha3. For the pq-gram
distance we use the relational implementation presented in Section 8.2. For large
trees the computation time of the tree edit distance grows very fast. The largest

3http://www.cs.nyu.edu/cs/faculty/shasha/papers/tree.html
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tree in our test set that we were able to compute has 16383 nodes. For larger trees
the tree edit distance runs out of main memory, even if we allow the maximum
available memory of 12GB. The runtime of the pq-gram distance is almost linear in
the tree size.

Figure 14(b) compares the pq-gram distance for varying parameters with the tree
embedding distance. The tree embedding distance was implemented according to
the algorithm of Garofalakis and Kumar [Garofalakis and Kumar 2005]. For the
comparison both algorithms run in main memory. The pq-gram distance algorithm
is slightly faster, and varying values for p and q have little impact on the scalability
of the pq-gram distance computation.
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Fig. 14. Scalability Results.

9.2 Sensitivity to Structural Changes

In Section 6 we point out that the pq-gram distance weights deletions of non-leaf
nodes more than deletions of leaves, and the sensitivity to structural changes is
controlled by the parameters p and q. We show this property in an experiment,
where only non-leaf nodes or only leaf nodes are deleted for varying parameters,
and calculate the pq-gram distance for both cases.

We create an artificial tree T with 144 nodes, 102 leaves, and height 6. The
fanout of the non-leaf nodes is between 2 and 5. We randomly delete leaf or non-
leaf nodes from T. Figure 15 shows the normalized pq-gram distance for different
numbers of deletions. Each value in Figure 15 is an average over 100 runs.

For leaf node deletions only q has an influence (see Figure 15(a)). For the deletion
of non-leaf nodes q has a small impact compared to p (see Figure 15(b)). This
confirms our analytical results. The sensitivity to leaf changes depends only on q,
structural sensitivity is emphasized with higher values of p. For non-leaf deletions
the pq-gram distance is larger than for leaf deletions.

9.3 Real World Data: Street Matching

9.3.1 Evaluation of a Matching Algorithm. In a tree matching scenario two sets
of trees, F and F′, are given and a mapping Mx ⊆ F × F′ is computed. A match
is a pair of trees in the mapping. The quality of the computed mapping, Mx, is
evaluated with respect to a correct mapping Mc ⊆ F× F′ that contains all pairs of
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Fig. 15. Properties of the pq-Gram Distance.

trees that should match. We measure precision, p = |Mx∩Mc|
|Mx|

, (correctly computed

matches to total number of computed matches) and recall, r = |Mx∩Mc|
|Mc|

, (correctly

computed matches to total number of correct matches). The precision is high if
the returned matches are correct, the recall is high if the algorithm does not miss
correct matches. The F -measure, F = 2pr

p+r
, is a well-known performance measure

[van Rijsbergen 1979] that considers both recall and precision.

9.3.2 Street Matching. We test the effectiveness of pq-grams for the street
matching task introduced in Section 2. We build the address trees for all streets
of two address tables, Ownr and Rsdt. Each tree T represents a street with all the
addresses in that street. The tree set produced from table Ownr consists of 299
trees with 52,509 nodes in total, reflecting 44,427 addresses, the set produced from
Rsdt consists of 302 trees with 52,509 nodes and 43,187 addresses.

The matching is done as follows. For each distance function distx we compute a
mapping Mx ⊆ F× F′. Two trees T ∈ F and T′ ∈ F′ match, i.e., (T,T′) ∈ Mx, iff
T has only one nearest neighbor in F′, namely T′, and vice versa. We compute a
mapping for the fanout weighted and the unit cost tree edit distance (see Section 5),
the pq-gram distance (see Section 6), the tree embedding distance [Garofalakis
and Kumar 2005], the binary branch distance [Yang et al. 2005], the bottom-up
distance [Valiente 2001], and the node intersection distance. The node intersection
distance is a simple algorithm that completely ignores the structure of the tree. It
is computed in the same way as the pq-gram distance, the only difference being that
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the index of a tree consists of the bag of all its node labels. The correct mapping,
Mc, contains all pairs of trees that represent the same street in the real world and
is computed by hand. There are three streets in Rsdt that do not exist in Ownr,
thus |Mc| = 299 for the computation of precision and recall.

The results for the address tables Rsdt and Ownr are shown in Table II. In terms
of overall effectiveness (F -measure) the fanout weighted edit distance outperforms
both the unit cost edit distances and the approximations. The efficiency of the
approximations is clearly greater than that of the tree edit distances: All of them
can be computed within seconds, whereas the tree edit distance takes more than
half an hour.

Distance Correct Recall Precision F-Measure Runtime

fanout weighted edit distance 259 86.6% 98.5% 0.922 ca. 19 min

unit cost edit distance 247 82.6% 96.5% 0.890 ca. 14 min

node intersection 197 65.9% 93.8% 0.774 4.3s

pq-grams (p = 3, q = 3) 236 78.9% 98.7% 0.877 8.1s

pq-grams (p = 1, q = 2) 234 78.3% 97.9% 0.870 9.7s

pq-grams (p = 2, q = 3) 231 77.3% 98.3% 0.865 9.6s

tree-embedding 206 68.9% 96.3% 0.803 7.1s

binary branch 193 64.5% 93.2% 0.763 7.4s

bottom-up 148 49.5% 92.5% 0.645 67.0s

Table II. Effectiveness of the Tree Edit Distance and its Approximations.

The precision of the pq-gram distance is higher than the precision of the unit cost
tree edit distance. For some values of p and q it is even higher than the precision of
the fanout weighted tree edit distance. The pq-gram distance outperforms the other
approximations with respect to both recall and precision for all tested parameters.

9.4 Real World Data: Matching XML Data

In this experiment we study the effectiveness of the normalized pq-gram distance
for XML data. We use real world XML data sets, add noise (spelling mistakes and
missing elements), and we approximately join the original and the noisy set.

The Data Sets. We use the DBLP4 (bibliography), the SwissProt5 (protein se-
quence database), and the Treebank6 (parts of speech tagged English sentences)
XML databases. We split each database into a set of (sub)documents by deleting
the root node, and we randomly choose 200 of the resulting documents for our
experiments (requiring a minimum document size of 15 nodes). We represent the
XML documents as ordered, labeled trees. A node label is a pair (tag, val), where
tag is the name of an element/attribute and val is its text content. If an element
contains only sub-elements and no content, then val is the empty string.

The resulting document sets are structurally very different: the DBLP subset
contains small and flat documents (21 nodes and 2.1 levels on average) with a total
of 4253 nodes, 3686 leaves, and 27 different tag names, the SwissProt documents

4http://dblp.uni-trier.de
5http://us.expasy.org/sprot/
6http://www.cis.upenn.edu/~treebank/

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.



The pq-Gram Distance between Ordered Labeled Trees · 31

are larger and deeper (98 nodes and 3.7 levels on average) with a total of 19529
nodes, 15975 leaves, and 84 different tag names, the Treebank documents have deep
recursive structure (45 nodes and 10.9 levels on average, with a maximum of 22
levels) with a total of 8962 nodes, 5104 leaves, and 67 different tag names.

Adding Noise. We modify the original documents by deleting and renaming
random nodes. Node deletions simulate missing elements or attributes and modify
the document structure. Renamed nodes represent different tag names or spelling
mistakes in the text values. The resulting noisy document is the match of the
original document, all other noisy documents are non-matches. In our figures we
show the noise as the percentage of changed nodes.
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Fig. 16. (a-c) Distance between Matches and Non-Matches. (d) 1:1 Matches for
SwissProt.

Distance between Matches and Non-Matches. Each original document has exactly
one match. Figures 16(a)–16(c) show the average normalized pq-gram distance
(p = 2, q = 3) of the original documents to their match and to the closest non-
match. The noise is increased in steps of 5%. The SwissProt documents are more
similar to each other than the DBLP and Treebank documents. The normalized pq-
gram distance to the matches is almost linear to the percentage of modified nodes.
It effectively approximates the tree edit distance. All documents are modified, thus
also the distance to the non-matches increases with the number of changed nodes.

Effectiveness. Figure 17 shows precision and recall for different distance thresh-
olds τ . Moving up the threshold decreases the precision and increases the recall.
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Fig. 17. Matching with Different Thresholds.

For DBLP and Treebank the precision is high, thus the threshold can be increased
to τ = 0.7 to get recall values of more than 90% for 15% noise.

For SwissProt the precision drops as we increase the threshold. The SwissProt
documents are clustered into groups of similar documents (protein variants). The
clustering of the data is evident from the precision values in Figure 17(b) for 0%
noise (approximate self join): Already for τ = 0.3 some documents match other
documents than themselves. We improve the result for SwissProt using a variable
threshold. Each document is matched to its nearest neighbor. If a document has
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more than one nearest neighbor, no match is returned. Figure 16(d) shows the
results for the SwissProt database. The algorithm returns precise matches, and
even for 25% noise we miss only about 10% of the matches.

10. CONCLUSION

We presented a new distance measure, the pq-gram distance, for ordered labeled
trees as an effective and efficient approximation for the fanout weighted tree edit
distance. The pq-gram distance provides a lower bound for the fanout weighted tree
edit distance. We proposed a normalization that preserves the triangle inequality
and makes the pq-gram distance a pseudo-metric, and we provided an algorithm for
the computation of pq-grams in O(n) time, where n is the number of tree nodes.
The pq-gram distance can be computed in O(n log n) time. We discussed a scalable
implementation using an interval representation of trees in a relational database.

Detailed experiments on real and synthetic data confirmed that the pq-gram
distance is orders of magnitude faster than the tree edit distance for large trees.
The accuracy of the pq-gram distance for real world data was clearly better than
other approximations of the tree edit distance.

In the future it would be interesting to extend the pq-gram technique to non-
hierarchical data, such as graphs that represent social networks. It would also be
interesting to apply approximate matching to labels as well and combine approxi-
mate structure and label matching.
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