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Abstract

Consider the following simple communication problem. Fix a universe U and a family Ω of
subsets of U . Players I and II receive, respectively, an element a ∈ U and a subset A ∈ Ω. Their
task is to find a subset B of U such that |A∩B| is even and a ∈ B. With every Boolean function
f we associate a collection Ωf of subsets of U = f−1(0), and prove that its (one round) com-
munication complexity completely determines the size of the smallest nondeterministic circuit
for f .

We propose a linear algebraic variant to the general approximation method of Razborov,
which has exponentially smaller description. We use it to derive four different combinatorial
problems (like the one above) that characterize NP . These are tight, in the sense that they can
be used to prove super-linear circuit size lower bounds. Combined with Razborov’s method,
they present a purely combinatorial framework in which to study the P vs. NP vs. co − NP
question.
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Introduction

Implicit in the concept of computation, both parallel and sequential, hides a notion of evolution, of
time. Each operation processes the outcome of previous computations. This idea of computation
suggests two approaches to proving lower bounds: a Bottom-up approach in which progress is
measured as the computation progresses from the inputs towards the output, and a Top-down
approach in which progress is measured as the computation reverses itself from the output down
to the inputs. Both approaches require, in one form or another, measuring progress as it is made
node by node.

Both approaches are present in almost every lower bound proof known to date, with some
exceptions. The approximation method (see Andreev [3] , Razborov [14, 15] or Alon & Boppana [2])
can be regarded as a Bottom-up approach. Similarly, proofs which use random restrictions are
Bottom-up (see Ajtai [1], Furst, et.al. [5], Yao [20] or Hastad [7]). Depth lower bounds which
use communication complexity are Top-down (see Karchmer & Wigderson [10] or Goldmann &
Hastad [6]). Two exceptions, both of which use communication complexity though in a more
“global” manner, are the lower bounds of Raz & Wigderson [13] and of Razborov [16] for monotone
circuit depth .

It is our opinion (as well as that of others) that neither of these approaches works for proving
lower bounds for general circuits. In fact, it may be that our failure in proving non-trivial general
lower bounds stems from the fact that it is hard to depart from these very intuitive approaches.
Alas, one crucial matter remains: What substitute?

One idea that is starting to emerge is the following: Locally, computations for zeroes and ones
of a hard function f look alike. Hence, to show that a “small” circuit does not compute f correctly
one can combine rejecting computations for the zeroes of f to get a rejecting computation for a one
of f .

This idea is implicit in Sipser [19] where a new proof is given for the fact that analytic sets
are not closed under complement. It is also implicit in Razborov [17] where a generalized version
of the approximation method is given which, in principle, provides tight lower bounds for circuit
size. Karchmer [9] elicits the idea of Razborov [17] and, in particular, the idea of combining zeroes
is made explicit. In addition, Karchmer [9] presents Razborov’s monotone lower bound for clique
within this framework. Again, Razborov [18] implicitly uses this idea to give a super-linear lower
bound for the complexity of majority on non-deterministic branching programs.

All of these papers look at a circuit as a collection of gates stripped away from any explicit
structure connecting them to one another. In particular, they don’t study the circuit in either a
Bottom-up nor a Top-down fashion.

In this paper we explore the possibility of combining computations using addition modulo 2
(this may be considered a concrete implementation of Sipser’s notion of a “finite limit”). The main
ideas is as follows: Assume that C is a small circuit which allegedly computes a hard function f
and such that it rejects all zeroes of f . Pick a subset S of the zeroes of f . To each node g of C,
assign the parity of the values that the vectors in S assign to g. Show that for some subset S,
suitably chosen, the assigned values define the correct rejecting computation of a one of f .

As it turns out, this approach can be used not only to prove lower bounds for circuit size, but
also to lower bound non-deterministic circuit size. In fact, this approach can be used to characterize
non-deterministic circuit size.
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We present 4 variations on this theme and get 4 characterizations of NP . The first char-
acterization uses a covering problem in much the same way as Razborov’s generalization of the
approximation method [17]. The second characterization uses the notion of hypergraph embed-
dings and is reminiscent of a similar characterization of NC1 in terms of graph embeddings (see
Razborov [16] and Pudlák & Rödl [12]). The third characterization uses the communication com-
plexity of relations in the spirit of Karchmer & Wigderson [10] where a characterization of circuit
depth is given. Finally, the fourth characterization provides an algebraic representation of NP
languages using matrices over GF (2).

It is important to stress that all four characterizations are tight. Hence, we can use any of them
to get super-linear lower bounds for non-deterministic circuit size. For example, if one uses the
third characterization in terms of Communication Complexity (mentioned in the abstract), then
it is enough to prove a Communication Complexity lower bound of the form log n+ ω(1) to get a
super-linear size lower bound for the function in question.

Our first characterization of NP in terms of a covering problem closely follows Razborov’s gen-
eralized approximation method. By way of comparison a few words are in order. The generalized
approximation method entails the introduction of a system consisting of a setM of objects (Mono-
tone Functionals over f−1(0)) and a family of subsets ofM such that the circuit complexity of f is
polynomialy related to the minimum cover number of the system. We proceed in a similar manner
with the set L of Linear Functionals over f−1(0) as our basic objects. One important difference is
the fact that the cardinality of L is exponentially smaller than the cardinality of M making our
system much simpler. A second difference and perhaps more important is the algebraic nature of
our system which suggests the use of algebraic techniques to study its cover number.

It is interesting to note here that although the approach of Razborov which is based on monotone
functionals captures deterministic circuit size, our approach captures non-deterministic circuit size.
In fact, the authors observed (see Karchmer [9]) that an approach based on self-dual monotone
functionals 1 captures non-deterministic circuit size as well. We do not have a clear understanding
of why some classes of functionals capture deterministic size while others capture non-deterministic
size. In fact, one could study the P versus NP question in this light. Not only do these approaches
provide us with ways of bounding deterministic and non-deterministic circuit size, but they provide
us with a framework to compare deterministic and non-deterministic computation.

Our basic idea of combining rejecting computations using addition modulo 2 can be carried out
in other models of computation as well. In particular, we use this idea in [11] to study Branching
Programs which count the number of accepting paths modulo 2. We use an analog of the first
characterization to prove that any such program for Majority requires super-linear size. This is
similar to a result of Razborov [18] who uses Monotone functionals to prove that non-deterministic
Branching Programs for Majority require super-linear size.

We choose to characterize co − NP instead of NP . We do so to be consistent with other
authors. Of course, all of our characterizations have their respective duals and, hence, can be used
to characterize NP as well.

1A monotone function f is self-dual if for every vector x, f(¬x1, · · · ,¬xn) = ¬f(x1, · · · , xn).
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1 Background

We refer the reader to the excellent survey of Circuit Complexity written by Boppana & Sipser [4].
Here, we will concentrate on the definitions that we use.

Let Bn denote the set of all boolean functions f : {0, 1}n 7→ {0, 1}. A Boolean Circuit over
{∧,⊕, 1} is a directed acyclic graph with n + 1 sources, one sink and all nodes with indegree 2.
Sources are labeled by literals from {x1, · · · , xn} ∪ {1} and nodes are labeled by one of the two
boolean operations (gates) {⊕,∧}. A boolean circuit computes a function in Bn in a natural way.
In the same way, any inner node of C computes a function in Bn. In what follows, an ∧-gate will
be viewed as the unordered pair of functions from Bn computed at the nodes feeding the gate.

The size of a circuit C, denoted s(C), is defined as the number of gates of C. Similarly, we
write s∧(C) for the number of ∧-gates of C. For a function f ∈ Bn let s(f) and s∧(f) denote the
size and number of ∧-gates of an optimal circuit that computes f .

A non-deterministic circuit with m non-deterministic variables is a circuit with n+m+1 sources
labeled by {x1, · · · , xn}∪{y1, · · · ym}∪{1}. A non-deterministic circuit computes a function f ∈ Bn
as follows: For x ∈ {0, 1}n, f(x) = 1 iff there exist a setting of the non-deterministic variables
{y1, · · · ym} which makes the circuit output 1. For a function f , denote by ns(f) and ns∧(f) the
size and number of ∧-gates of an optimal non-deterministic circuit for f .

A co-non-deterministic circuit is a non-deterministic circuit with the following accepting criteria:
For x ∈ {0, 1}n, f(x) = 0 iff there exist a setting of the non-deterministic variables {y1, · · · ym}
which makes the circuit output 0. For a function f , denote by n̄s(f) and n̄s∧(f) the size and
number of ∧-gates of an optimal co-non-deterministic circuit for f .

The reason for studying Boolean Circuits is well known. If one could prove that a function
in NP requires super-polynomial size then one would get that P 6= NP . Similarly, if one could
prove that a function in NP requires super-polynomial co-non-deterministic circuit size then one
would conclude that NP 6= co −NP . It is also well known that, although most functions require
exponential non-deterministic circuit size, there is no function in NP known to require super-linear
circuit size.

In the sequel, we will present a method to bound n̄s∧(f). The proof of the following lemma
goes along the lines of a similar lemma proved by Alon & Boppana [2]. It says that n̄s∧(f) cannot
be much smaller than n̄s(f).

Lemma 1 For any function f , n̄s(f) = O(n̄s∧(f)2).

2 A covering problem

Fix f ∈ Bn and let U = f−1(0) and let U = {u1, · · · , um} be an arbitrary ordering of U . In what
follows, a subset A ⊆ U would be associated with its characteristic vector in GF (2)m. Furthermore,
we will abuse notation and write A for both the subset and its characteristic vector. Given two
distinct vectors A,B ∈ GF (2)m we will denote by H(A,B) the set of all vectors S such that
< S ·A > = < S ·B > = 0. Obviously, H(A,B) is a subspace of co-dimension 2. We say that a
subspace V of GF (2)m is spanning if for every i ∈ {1, ...,m} there exists a vector v in the dual of
V such that vi = 1. Equivalently, a subspace is spanning if it does not contain any of the vectors
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ei for i ∈ {1, ...,m}. For example, the subspace H(A,B) is spanning iff A ∪B = U .

A valuation of the nodes of a circuit C is a Boolean mapping whose domain is the set of all
sub-functions of C, including the input variables and the constant 1. In particular, the computation
of C on a given vector is a valuation.

We are now ready to present the main idea. Fix a co-non-deterministic circuit C such that
s∧(C) < s∧(f). How can we show that C does not compute f correctly? One idea is to assume
that C rejects U and show that it also rejects a vector not in U . We will do so by combining
rejecting computations for vectors in U to form a rejecting computation for a vector not in U .

Fix one rejecting witness wu for each u ∈ U (remember that C rejects U). Having done this,
we can associate with any node in C computing a function g the set [|g|] ⇀↽ {u ∈ U | g(u,wu) = 1}.
A subset S ⊆ U defines a valuation of the nodes of C by φS(g) = < S · [|g|] >. In other words, we
can combine the computations of the vectors in S to form a valuation of C as follows: For a node
g of C, assign to g the parity of the values that vectors in S assign to g.

Note that for any S ⊆ U , φS(C) = 0 so that any such valuation is “rejecting”. Also, if |S| ≡2 1
then φS(1) = 1 so that the constant 1 is assigned the correct value. Finally, it is easy to see that
for any g, h in C we have φS(g ⊕ h) = φS(g) ⊕ φS(h). Therefore, if |S| ≡2 1 then the only source
of mistakes will be the ∧-gates of C.

¿From now on we will work only with sets S of odd cardinality. Any such set defines a vector
z ∈ {0, 1}n by zi = φS(xi). We will denote the defined vector by ⊕S. Alternatively, one can define
⊕S as follows: Consider the n×m matrix M whose columns are all the vectors from U . It is easy
to verify that ⊕S = MS.

Assume now that ⊕S 6∈ U . Then, if C computes f then there has to be an ∧-gate (g, h) in C
where φS “makes a mistake”, that is, where φS(g ∧ h) 6= φS(g)∧ φS(h). We say that the valuation
φS preserves the ∧-gate (g, h) if φS(g ∧ h) = φS(g) ∧ φS(h). Also, we say that the valuation φS
makes a mistake on an ∧-gate if it does not preserve it.

Proposition 1 The valuation φS makes a mistake on the ∧-gate (g, h) iff the set S intersects exactly
3 of the sets [|g ∧ h|], [|g ∧ ¬h|], [|¬g ∧ h|], [|¬g ∧ ¬h|] in an odd number of places.

Proof: By inspection.

Conversely, the valuation φS preserves the ∧-gate if and only if S intersects exactly one of the
sets in an odd number of places. The following proposition further simplifies the conditions:

Proposition 2 Let U be partitioned into the 4 sets Ai for i = 1, ..., 4. Let B1 = A1 ∪ A2 and
B2 = A2 ∪A3 ∪A4. Also, let C1 = A3 ∪A4 and C2 = A1 ∪A2 ∪A3. Let S ⊆ U be of odd cardinality.
Then S intersects exactly 3 of the A′s in an odd number of places iff S ∈ H(B1, B2) ∪ H(C1, C2).
Note that both H(B1, B2) and H(C1, C2) are spanning.

Therefore, any ∧-gate of C defines two spanning subspaces of co-dimension 2. Any subset S
of odd cardinality defines a valuation which preserves the ∧-gate iff S is not in any of the two
subspaces. This motivates the following covering problem:

Definition 1 For f ∈ Bn, let Ωf ⇀↽ {S ⊆ f−1(0) | |S| ≡2 1 and ⊕ S ∈ f−1(1)}.
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Definition 2 For a subset Ω ⊆ GF (2)m let ρ(Ω) be the minimum number of spanning subspaces
of GF (2)m of co-dimension 2 whose union contains Ω.

Theorem 1 For any f ∈ Bn, ρ(Ωf ) ≤ 2n̄s∧(f).

Proof: Let C be a co-non-deterministic circuit which allegedly computes f using s = s∧(f) ∧-
gates and assume that s < ρ(Ωf )/2. Each ∧-gate of C defines 2 spanning subspaces according to
propositions 1 and 2. In total, we get strictly fewer than ρ(Ωf ) many spanning subspaces. By
the definition of ρ(Ωf ), there is a subset S ⊆ f−1(0) of odd cardinality which defines a vector
⊕S ∈ f−1(1) and which is not covered by any of the subspaces. Therefore, by propositions 1 and 2,
the valuation φS preserves every ∧-gate of C. This means that φS defines the correct rejecting
computation of the vector ⊕S and, thus, C does not compute f correctly.

Therefore, to prove lower bounds for the size of non-deterministic circuits it is enough to prove
lower bounds for the more combinatorial quantity ρ(Ωf ). Our next theorem provides a converse to
theorem 1.

Theorem 2 For any f ∈ Bn, n̄s∧(f) = O(ρ(Ωf ) + n).

Proof: Let t = ρ(Ωf ) and let {H(Ai, Bi)} for i = 1, ..., t be a cover of Ωf by spanning subspaces
of co-dimension 2.

Claim 1 For any z ∈ {0, 1}n, f(z) = 0 iff there exists a subset S ⊆ U of odd cardinality such that
⊕S = z and for every i ≤ t, S 6∈ H(Ai, Bi).

Proof:[of claim] i) If f(z) = 0 then the subset {z} satisfies the requirements of the claim.
ii) If f(z) = 1 then any subset S ⊆ U of odd cardinality and such that ⊕S = z is in Ωf and
therefore it is covered by one of the subspaces.

Therefore, to show that f(z) = 0 we have to ‘guess’ a good S. Clearly, we do not have enough
time to guess such a long vector. Instead, we will guess a (2t + n + 1)-dimensional vector Y
whose entries are Yxi = < S · [|xi|] > for i = 1, ..., n, YU = < S · U > and YAi = < S ·Ai > and
YBi = < S ·Bi > for i = 1, ..., t. Given these guesses, the conditions of the claim can be quickly
verified. Hence, it is enough to verify that the vector Y is consistent in that its entries are the
right values for some S. In fact, the vector Y will be guessed in a way that guarantees that it is
consistent.

Let N be the (2t + n + 1) ×m matrix whose rows correspond to the characteristic vectors of
the sets [|xi|] for i = 1, ..., n, U and Ai, Bi for i = 1, ..., t. Clearly, NS = Y . Therefore, to guess a
consistent Y it is enough to guess a vector in the column space of the matrix N . Let N ′ consist of
a maximal set of linearly independent columns of N . Clearly, N ′ has at most 2t+ n+ 1 columns.
To guess a consistent vector Y it is enough to guess a linear combination of the columns of N ′.

A co-nondeterministic circuit C for f can be built as follows. Hard-wire the columns of N ′ into
the circuit C. Note that the definition of N ′ did not depend on the vector z. Use 2t + n + 1 bits
to guess a consistent Y and check, using O(t + n) ∧-gates, that the conditions of the claim are
satisfied.
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Note that we have used non-uniformity in several places in the construction of C. First, the
covering of Ωf may be non-uniform. Second, it is not clear how to construct the maximal set of
linearly independent columns of N efficiently. As far as we know, this is the only characterization
of co−NP where non-uniformity is exploited.

Corollary 1 For most functions f ∈ Bn, ρ(Ωf ) ≥ 2n/2.

Characterization 1. A function f is in co − NP iff there exists a polynomial p(n) such that for
every n, ρ(Ωf ) ≤ p(n).

Remark. When proving lower bounds to ρ(Ωf ), it may be useful to consider a sub-family Ω ⊆ Ωf

and show that ρ(Ω) is large. However, a random spanning subspace of co-dimension 2 covers a
fourth of the elements of any family Ω ⊆ GF (2)m. Therefore, an easy calculation shows that
ρ(Ω) = O(log |Ω|). This means that to prove super-polynomial lower bounds for n̄s∧(f) one needs
to work with sub-families with more than 2n

ω(1)
members.

Remark. The proof of theorem 2 implies that in order to prove that ρ(Ωf ) ≥ s, it is enough to
work with subsets S ⊆ U of cardinality 2s+n+1. For example, to prove super-linear lower bounds
it is enough to work with subsets of cardinality Θ(n2).

We can generalize our covering problem to allow for spanning subspaces of arbitrary dimension.

Definition 3 For a subset Ω ⊆ GF (2)m let ρ∞(Ω) be the minimum number of spanning subspaces
of GF (2)m whose union contains Ω.

Clearly, for every Ω we have ρ∞(Ω) ≤ ρ(Ω). Hence, for any f , n̄s∧(f) ≥ ρ∞(Ωf ). Note however
that, in principle, ρ∞ can be much smaller than ρ.

We finish this section by defining a universal collection which can be used to “try out” lower
bound arguments. Let Ωm consists off all odd vectors in GF (2)m other than the vectors e1, · · · , em.
The following theorem provides tight bounds to the complexity of Ωm.

Theorem 3 ρ(Ωm) = Θ(m).

Proof: The upper bound follows by a probabilistic argument. The lower bound follows by noticing
that any polynomial over GF (2) which takes value 1 in Ωm and 0 in e1, · · · , em has degree at least
m−2 while the union of t spanning subspaces of co-dimension 2 can be represented by a polynomial
of degree 2t.

As stated before, ρ∞(Ωf ) may be much smaller than ρ(Ωf ). We finish this section by suggesting
the following problem: Show that there exists some function f ∈ Bn with ρ∞(Ωf ) = nω(1). It might
be interesting to prove even that ρ∞(Ωm) = ω(logm).

3 A universal hypergraph

Our second variation involves hypergraph embeddings. This characterization is reminiscent of a
characterization of NC1 in terms of graph embeddings [16, 12].
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Definition 4 Given two hypergraphs H1 = (V1, E1) and H2 = (V2, E2). An embedding of H1 in
H2 is a mapping ϕ : V1 7→ V2 such that if {v1, · · · , vk} ∈ E1 then {ϕ(v1), · · · , ϕ(vk)} ∈ E2.

In what follows we are going to view GF (4)t as the set {0, 1, x, 1 + x}t. We are also going to
identify the sets {0, 1}n and GF (2)n. We are going to write

∑
for addition in GF (4)t and ⊕ for

addition in GF (2)n.

Definition 5 A Universal Hypergraph. Let H be the family of Hypergraphs {Ht = (Vt, Et) | t ∈
N}, where Vt = {1, x, 1 + x}t ⊆ GF (4)t and {v1, · · · , vk} ∈ Et iff k is odd and

∑
i vi 6∈ Vt.

Note that {v1, · · · , vk} ∈ Et iff the vector
∑
i vi contains a zero entry. A universal hypergraph

can be used to define a notion of hypergraph complexity.

Definition 6 For a hypergraph H, define %(H) as the minimum t such that H can be embedded in
Ht.

Remark. It is easy to see that for every hypergraph H, %(H) is finite. This can be shown by
allowing t to be much bigger than log |E| and choosing ϕ randomly.

Definition 7 For a function f ∈ Bn let Hf = (U,Ωf ) where U = f−1(0) and Ωf is as before.

Theorem 4 For any function f ∈ Bn, %(Hf ) = ρ(Ωf ).

Proof: i) %(Hf ) ≤ ρ(Ωf ). Let t = ρ(Ωf ) and let {H(Ai, Bi)} for i = 1, ..., t be a cover of
Ωf . We define an embedding ϕ : U 7→ Vt by ϕ(u)i = 1, x, or 1 + x according to whether u ∈
Ai \ Bi, Bi \ Ai, or Ai ∩ Bi. Note that these three possibilities are exhaustive as the subspace
H(Ai, Bi) is spanning so that u ∈ Ai ∪ Bi. We claim that ϕ is a good embedding. Otherwise,
for some S ∈ Ωf ,

∑
u∈S ϕ(u) 6∈ Vt. It is easy to see that such an S is not covered by any of the

subspaces.

ii)ρ(Ωf ) ≤ %(Hf ). Let ϕ be an embedding of Hf in Ht. Define the subspaces {H(Ai, Bi)} for
i = 1, ..., t by u ∈ Ai iff ϕ(u)i ∈ {1, 1 + x} and u ∈ Bi iff ϕ(u)i ∈ {x, 1 + x}. It is clear that the
subspaces are spanning. We claim that they cover Ωf . Otherwise, it is easy to see that any set
S ∈ Ωf which is not covered is not mapped to an edge in Et.

Characterization 2. A function f is in co − NP iff there exists a polynomial p(n) such that for
every n, %(Hf ) ≤ p(n).

When working with hypergraph embeddings, it is helpful to understand when the embedding
must be 1-1. The following claim gives a sufficient condition.

Claim 2 If for every x 6= 0 there exists a u ∈ U such that x⊕ u 6∈ U then any embedding ϕ is 1-1.

Proof: Assume that for some u1 6= u2 we have that ϕ(u1) = ϕ(u2). Consider the vector x = u1⊕u2.
By the conditions of the claim, there is a u ∈ U such that x⊕ u 6∈ U . Clearly, {u, u1, u2} ∈ Ef but
ϕ(u) + ϕ(u1) + ϕ(u2) = ϕ(u) ∈ Vt.
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For example, it is easy to check that the problem clique(n, k) that checks whether a graph
with n nodes contains a k-clique satisfies the conditions of the lemma, thus any embedding of its
corresponding hypergraph must be 1-1.

Claim 2 can be generalized as follows: Let Zt be the set of all even linear dependencies on Vt.
That is, {v1, · · · , vk} ∈ Zt iff k is even and

∑
i vi = 0.

Claim 3 If for every x 6= 0 there exists a u ∈ U such that x⊕ u 6∈ U then any embedding ϕ of Hf

is such that ϕ(U) does not contain any of the subsets in Zt.

4 A communication problem

Our third variation involves communication complexity. Our goal is to define, for a function
f , a communication problem Pf whose communication complexity is a function of the co-non-
deterministic circuit complexity of f . This characterization is similar to the equivalence between
the circuit depth of a function and the communication complexity of a related problem [10]. For
more information on Communication Complexity and its relationship to circuit depth the reader
is referred to [8].

For a communication problem P , we write C(P ) for the communication complexity of P . Also,
we write CII1 (P ) for the number of bits that player II has to communicate in one round in order to
make sure that player I knows the answer to the problem P .

Definition 8 For a function f ∈ Bn define the problem Pf as follows: Player I gets a vector u ∈ U
while player II gets a subset S ∈ Ωf . Their goal is to agree on a subset A ⊆ U such that u ∈ A and
|A ∩ S| is even.

Theorem 5 For every f ∈ Bn, CII1 (Pf ) ≤ log ρ∞(Ωf ).

Proof: Let t = ρ∞(Ωf ) and let {Hi} for i = 1, ..., t be a cover of Ωf by spanning subspaces. Given
S ∈ Ωf , player II sends the first i such that S ∈ Hi. As the subspace is spanning, there exists some
vector A in the dual of Hi such that u ∈ A. This subset satisfies the requirements of the problem.

Note that after the protocol for Pf , player I may need many bits to communicate the answer
to player II. In fact, in the proof of theorem 5, player II may use a covering of Ωf by spanning
subspaces of co-dimension 2 and guarantee that player I can respond with the answer using only 1
bit. Our next theorem provides a converse to theorem 5. Together with theorem 1 it implies that
C(Pf ) = Θ(log ρ(Ωf )).

Theorem 6 For any f ∈ Bn, n̄s(f) = 2O(C(Pf )).

Proof: Follows along the lines of the proof of theorem 2 plus some ideas from the proof of the
relationship between circuit depth and communication complexity [10].

Characterization 3. A function f is in co −NP iff C(Pf ) = O(log n). In fact, it is enough that
Pf can be solved by a 2-round protocol in which player II sends O(log n) bits and player I responds with
1 bit.
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Remark. It is interesting to note that for any Pf , its 2-round communication complexity where
player II sends O(log n) bits and player I responds with 1 bit is within a constant factor of its
2-way unrestricted communication complexity. It could be interesting to study this phenomenon.
In particular, if one wants to use reductions to prove lower bounds for Pf , one would have to use
other problems with the same characteristic.

5 A representation for co−NP languages

Our fourth and last variation provides a compact algebraic representation of languages in co−NP
in terms of two matrices over GF (2).

We start our discussion with some definitions. Let σt be the 2-CNF formula on 2t+1 variables
defined by y1 ∧ (y2 ∨ y3) ∧ (y3 ∨ y4) ∧ · · · ∧ (y2t ∨ y2t+1). Let St = σ−1

t (1). For two subsets
A,B ⊆ GF (2)m define A⊕ B ⇀↽ {a⊕ b | a ∈ A and b ∈ B}. Equivalently, a vector c ∈ GF (2)m is
in A⊕B iff there exists a vector b ∈ B such that c⊕ b ∈ A.

Definition 9 A function f ∈ Bn affords a linear representation of dimension 2t+ 1 if there exists
a linear mapping P : GF (2)n 7→ GF (2)2t+1 and a subspace Q of GF (2)2t+1 such that for every
z ∈ GF (2)n, f(z) = 0 iff P (z) ∈ Q⊕ S.

Clearly, if a function f affords a linear representation of dimension 2t+ 1 then we can construct
a co-non-deterministic circuit for f with O(t) many ∧-gates. We now prove the converse.

Theorem 7 Any f ∈ Bn affords a linear representation of dimension 2t + 1 where t = ρ(Ωf ) ≤
2n̄s∧(f).

Proof: Consider the (2t+n+ 1)×m matrix N defined in the proof of theorem 2 where t = ρ(Ωf ).
Note that the first n rows of N correspond to the matrix M used in the definition of ⊕S. In the
proof of theorem 2 we were concerned with vectors in the column space of N . Therefore, we are
free to manipulate the columns of N as long as we do not change its column space. We will do this
in order to make the relationship between S and ⊕S more explicit.

Pick a set B of n columns of N whose first n entries span the column space of the matrix M .
To make things simpler, we will assume that the vectors e1, · · · , en are in U and we are going to
pick the columns of N associated with these vectors. Clearly we could use any other set of vectors,
but this collection makes things nicer. Next, to every column not in B we add a suitable linear
combination of the columns in B so as to put zeroes in its first n entries.

Note that the relationship between S and ⊕S has been made explicit since ⊕S can now be read
from the first n entries of S. We let N1 be the (2t+ 1)× n matrix corresponding to the last 2t+ 1
rows of the columns in B and let N2 be the (2t + 1) × (m − n) matrix corresponding to the last
2t+ 1 rows of the columns not in B.

Let P : GF (2)n 7→ GF (2)2t+1 be the linear transformation defined by the transpose of N1.
Also, let Q be the column space of N2 in GF (2)2t+1. Then for a vector z ∈ GF (2)n, f(z) = 0 iff
there exist a vector q ∈ Q such that P (z)⊕ q ∈ σ−1

t (1) iff P (z) ∈ Q⊕ St, as required.

We have argued that if a function f is in co − NP then it affords a linear representation of
polynomial dimension. Note that the transformation P and the subspace Q can be represented by

9



an n× (2t+ 1) matrix and a (2t+ 1)× (2t+ 1) matrix respectively. Also note that the definition
of σ does not depend in any way on the function f . Therefore, any two matrices of the above
dimensions define a co−NP function and, vice versa, any co−NP function can be represented by
two such matrices.

Characterization 4. A function f is in co − NP iff there exists a polynomial p(n) such that for
every n, f affords a linear representation of dimension at most p(n).

Remark. Note that as a corollary to theorem 7 we get that the problem of deciding whether a
given subspace contains a satisfying assignment to a given 2-CNF is NP -complete.

6 Conclusion

We have given 4 algebraic characterizations of NP , all of which have as a common ancestor the
idea of combining rejecting computations of zeroes of a hard function in order to get a rejecting
computation for a one of the function.

These characterizations provide us with combinatorial and algebraic frameworks in which to
prove lower bounds for non-deterministic circuit size. It would be interesting to study these frame-
works in a more general setting. In particular, it would be interesting to study ρ(Ω) for different
subsets Ω ⊆ GF (2)m and try to get necessary conditions which guarantee that ρ(Ω) is large.

Also, by comparing the present characterizations to others of a similar flavor but which capture
other complexity classes one could get a better understanding of the differences among the different
complexity classes. In particular, one should try to compare either the covering problem suggested
here based on Linear functionals, or the covering problem suggested in Karchmer [9] based on Self-
dual monotone functionals, both of which characterize NP , with that suggested by Razborov [17]
based on Monotone functionals and which characterizes P .

Acknowledgments We are grateful to Drew Sutherland for helping us improve the readability
of a previous draft.
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