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Abstract
In this paper, we study parallelization of multiplayer games
using software Transactional Memory (STM) support. We
show that the STM provides not only ease of programming,
but also better performance than that achievable with state-
of-the-art lock-based programming, for this realistic high
impact application.

For this purpose, we use a game benchmark, SynQuake,
that extracts the main data structures and the essential fea-
tures of the popular game Quake. SynQuake can be driven
with a synthetic workload generator that flexibly emulates
client game actions and various hot-spot scenarios in the
game world.

We implement, evaluate and compare the STM version
of SynQuake with a state-of-the-art lock-based paralleliza-
tion of Quake, which we ported to SynQuake. While in
STM-SynQuake support for maintaining the consistency of
each complex game action is automatic, conservative lock-
ing of surrounding objects within a bounding box, for the
duration of the game action is inherently needed in lock-
based SynQuake. This leads to higher scalability of STM-
SynQuake versus lock-based SynQuake, due to a higher
degree of false sharing in the latter. Task assignment to
threads has a second-order effect on the scalability of STM-
SynQuake, due to its impact on the application’s true sharing
patterns. We show that a dynamic locality-aware task assign-
ment to threads provides the best trade-off between load bal-
ancing and conflict reduction.
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1. Introduction
Transactional Memory (TM) is an emerging paradigm for
parallel programming of generic applications, with a goal
to facilitate programmer-friendly use of the plentiful paral-
lelism available in chip multiprocessors. The main idea is to
simplify application programming in parallel environments
through the use of transactions.

Many commercial and research prototypes for support-
ing TM in software have been introduced recently, includ-
ing Intel’s freely available STM compiler [Intel Corpora-
tion. 2008], RSTM [Marathe et al. 2006], TL2 [Dice et al.
2006], etc. However, STM uptake from the wider program-
ming community has been slow for two main reasons. First,
demonstrable efforts from the research or commercial com-
munities towards parallelizing realistic applications using
STM have been scarce. This is at odds with the claim that
TM makes parallelization easy. Second, existing STM-based
parallelizations typically perform substantially worse than
simple single-mutex based implementations.

In this paper, we introduce the first case study of a real-
istic high impact application where STM support provides
both ease of programming and better performance than that
achievable with state-of-the-art lock-based programming.
Specifically, we study parallelizing multiplayer online game
server code on a game benchmark modeled after Quake 3.
Towards this, we leverage an existing software TM library,
libTM [Lupei et al. 2009], that can be used in conjunction
with generic C, or C++ programs.

Parallelization of multi-player game code for the pur-
poses of scaling the game server is inherently difficult. Game
code is typically complex, and can include use of spatial data



structures for collision detection, as well as other dynamic
artifacts that require conservative synchronization. The na-
ture of the code may thus induce substantial contention due
to false sharing, as well as true sharing between threads, in a
parallel lock-based game implementation.

Substantial false sharing can occur in a parallel imple-
mentation of the popular first person shooter game Quake [Ab-
delkhalek and Bilas 2004], as follows. Each Quake player
action usually includes dynamically evolving sub-actions;
a person may move while shifting items in their backpack,
throwing an object at a distance, grabbing a nearby object,
and/or shooting, which together constitute a single player
action. Since the terrain within the potentially affected area
may contain mutable objects, all sub-actions need to be pro-
cessed together as an atomic, consistent unit for the purposes
of collision detection with other player actions.

In Quake 3, each player action is thus processed based
on a bounding box estimate, e.g., given as a sphere, around
the initial player position, for the possible range of their in-
tended action, as shown in Figure 1. In a parallel lock-based
server code implementation [Abdelkhalek and Bilas 2004],
this translates into eagerly acquiring ownership of all poten-
tially affected objects of the game map within this bounding
box, before processing the action. On the other hand, as we
can see from Figure 1, the actual player trajectory can af-
fect a very restricted area of the game map, due to collisions.
Thus, conservative locking induces unnecessary conflicts, by
locking more objects than necessary, and holding these locks
for longer periods than needed.

In contrast, with Transactional Memory support, a player
action can be split into segments, or its constituent sub-
actions. Collision detection can be performed dynamically,
for each segment, hence more accurately, as the avatar en-
counters various obstacles, which potentially change its di-
rection of movement; this is shown by the intermediate steps
in Figure 1. The atomicity and consistency of the whole
player action is automatically provided by the underlying
transactional support. STM support thus results in reduced
false sharing overall, in terms of both number of conflicts
and duration of conflicts.

Aside from false sharing, game code scalability is also
orthogonally affected by the true sharing induced by player
actions on objects located at the boundary between parti-
tions of the game world assigned to different threads. Con-
sequently, task to thread assignment for load balancing pur-
poses needs to be done in a locality-aware fashion in the
game world; this reduces the number of boundaries, hence
the potential conflicts on boundary objects.

In order to facilitate experimentation, and to study a range
of game genres and in-game scenarios, we have developed
an in-house game benchmark, called SynQuake. SynQuake
is a 2D version of the Quake 3 game. We use the same
game data structures as Quake 3, and a similar server frame
structure. Specifically, we use the Quake 3 area node tree as a

Figure 1. Processing player move: Radius-based locking
around player position

standard game code spatial data structure facilitating storing
and retrieval of the location and attributes of game objects on
the game map. The main reason why SynQuake is a 2D game
is that Quake 3 comes with inadequate test cases, due to the
small game map available, which does not allow for scaling
to large numbers of players. Previous work on Quake code
parallelization was forced to run either with a hyper-crowded
map [Abdelkhalek and Bilas 2004], or with a maximum of
8 players [Zyulkyarov et al. 2009]. We synthetically create
a variety of meaningful game scenarios and associated test
cases on a simpler 2D game map. SynQuake can be driven
by either human players, or robot players, and can emulate
synthetically generated quest scenarios, i.e., hot-spots in the
game world to facilitate experimental evaluation.

With SynQuake’s default settings, where we model only
2D collisions with obstacles, we showcase the worst case
scenario for the performance of an STM-based paralleliza-
tion of any realistic multiplayer game. Any commercial
game would have substantial additional physics computa-
tion in 3D e.g., gravity, 3D explosions, etc. As in Quake, this
additional computation would likely occur only on non-TM
data, and would almost completely hide the TM overhead
that we currently have. Hence, intuitively, our favourable
performance comparison for STM is very likely valid for
many other multiplayer games. Furthermore, with Syn-
Quake’s synthetic workload generator, and adjustable game
code settings, we can cover a larger range of games, not just
Quake.

Our detailed comparative performance evaluation shows
that the main factor affecting overall scaling is the effect
of the false sharing inherent in the parallelization scheme.
Since the STM substantially reduces the degree of false shar-
ing, we experimentally show that the scaling of STM-based
SynQuake is better than that of lock-based SynQuake. More
importantly, the STM also achieves better overall perfor-
mance by a factor of 1.34x on average at eight server threads,
in all scenarios involving a minimum of physics computa-
tion.



 

Figure 2. Screen shot of SynQuake. Blocks represent
“walls”/“obstacles”, while resources are represented by ap-
ples.

The degree of spatial false sharing in the STM is a
function of the consistency unit granularity. Our evalua-
tion shows that increasing the consistency granularity for
STM reduces its inherent access tracking overhead signifi-
cantly. There is, however, a trade-off between reducing this
overhead and increased false sharing for STM in high con-
tention scenarios. Overall, an object-based consistency unit
performs best by avoiding false sharing, while providing sig-
nificant overhead reduction compared to using word-level
granularity.

We explored several load balancing techniques, which
range from a policy that fully focuses on equally distribut-
ing tasks among threads, while sacrificing locality, to an
approach that minimizes true sharing but offers no guaran-
tee with respect to load distribution. We observed that hav-
ing a locality-aware thread assignment policy is critical for
minimizing true sharing. The load balancing scheme allows
for significant improvements in scalability only for STM-
SynQuake, and has little effect for a lock-based paralleliza-
tion, due to the dominant impact of false sharing in the latter.

The rest of the paper is organized as follows. In Section 2
we outline the design of our game benchmark, SynQuake,
as well as the architectural features and relevant data struc-
tures. We then examine the synchronization and load bal-
ancing related challenges of parallelizing SynQuake in Sec-
tion 3. Section 4 presents the experimental results comparing
the performance of the lock-based and STM-based versions
of SynQuake, followed by a discussion of related work in
Section 5. Section 6 concludes our paper.

2. Environment: SynQuake game
Multiplayer Online Games (MOGs) are not only difficult to
build, but also very expensive to maintain and administer.
Except in isolated cases, such as, the well-known first per-
son shooter game Quake, popular MOGs do not share their
server code. Furthermore, only a few game scenarios are

available with Quake 3, and the game map used in a previ-
ous study on Quake parallelization [Abdelkhalek and Bilas
2004] is too small; this results in excessive player crowding
when scaling the player population to drive a larger number
of server threads.

To solve these problems, we have built a 2D version of
Quake, called SynQuake. The simplified 2D object repre-
sentation facilitates generation of game maps, manually or
synthetically. This representation results in reduced game
physics computation compared to the 3D Quake. However,
physics computation either i) consists of complex mathemat-
ical formulas, such as, physical laws for gravity, explosions,
or ii) is performed on immutable objects, like obstacles.
Quake game physics computation does not involve shared
transactional data, and is not interesting for the purposes of
game parallelization.

SynQuake models three types of game entities: players,
resources (represented by apples) and walls. A typical game
map for SynQuake is presented in Figure 2. Each game
entity is defined by its position on the game map and by a
set of attributes specific to its type. For example, besides its
position on the game map, a player is described by its life or
health level, its speed and direction. Resources are similar to
Quake 3 powerups, such as, weapons and health packs. An
attack decreases a player’s life, while consuming a resource
increases it.

As part of game play, as in Quake 3, players perform short
range actions, like moving and consuming resources, fight-
ing with other players, or long range actions, such as, simul-
taneously moving and shooting. Each of these actions can
cause conflicts between different threads processing player
actions concurrently. For example, conflicts occur when two
players try to move to the same spot, or one player gets at-
tacked while consuming a resource.

To simulate areas of high interest in the game, and the as-
sociated pattern of players flocking to a particular area of
the map, we have added quests, which attract players to-
wards that area with a high probability. These correspond
to standard areas attracting players existing in Quake 3, and
also in strategy games, such as a camp site, hidden treasure,
weaponry location, and health areas. Complex game scenar-
ios can be created in SynQuake by varying the distribution
of quests in time and space.

We use the same data structures as in Quake 3, and a
similar server frame structure. Furthermore, SynQuake ac-
curately represents network and system features of a game
server. In order to create synthetic workload scenarios, play-
ers can be driven by a simple AI algorithm that has play-
ers moving with high probability towards a quest, if one is
present, eating if hungry, fighting with other players, or flee-
ing if being chased by a stronger opponent.

In summary, aside from almost identical data structures
and server processing frame, our game accurately models
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Figure 3. Areanode tree structure. Each node maintains a list of game entities fully contained in its corresponding game region.

Quake 3 player behavior, although the object representations
are different.

2.1 Game architecture and data structures
Our server stores a representation of the game world, and
all the game entities, as in Quake 3. We further copied
the Quake 3 areanode tree (see Figure 3b), a spatial data
structure that facilitates an efficient search for all entities that
a player interacts with in any given action. We use the same
way of storing information about game objects within the
tree nodes.

The areanode tree is a binary space partitioning tree,
where each node represents a specific region of the game
map. Similar representations using a form of binary space
partitioning, i.e., BSP-trees, quad-trees, are present in other
games. The tree is constructed by recursively dividing the
map into sub-units, starting with the root node, correspond-
ing to the entire game world. Nodes on subsequent levels
of the tree are created by splitting the region corresponding
to the parent node along its median segment. The splits are
performed alternately along the x and y axes, until a prede-
fined tree depth (or the maximum split granularity possible)
is reached. The leaves in the areanode tree form a grid of
equal-sized regions located on the game map. For the rest
of this paper, we will use the terms grid unit and tree leaf
interchangeably.

Each entity on the map is maintained inside the finest-
grain tree-node whose corresponding region completely
overlaps it. This translates into leaf nodes maintaining ob-
jects that are fully contained inside grid units, while placing
the rest of the entities in the common ancestor of all the grid
units they overlap.

Figure 3 shows a map for which game objects are indexed
using a two-level areanode tree. In Figure 3a, we have the re-
sulting grid units corresponding to each leaf, while Figure 3b
presents the entire tree structure resulting from splitting the
root node vertically and its children horizontally. The map is
populated with three objects: one completely situated inside
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Figure 4. SynQuake: server frame structure and component
stages.

leaf B2 and correspondingly placed in B2’s list inside the
tree; a second one found on the border between grid units A1
and A2 and as a result maintained in A’s list; the last entity
is located on the border between A1 and B1 and kept inside
the root node, since its corresponding region is the smallest
one that completely overlaps it.

Since entities migrate during game play (e.g., players
move, apples get respawned after being consumed), the en-
tity lists maintained in the areanode tree must be updated
accordingly, in order to reflect the new positions of game
entities. This accounts for the most significant source of
contention among processing threads when parallelizing the
game server.

2.2 Game server structure
In the Quake 3 server code, server processing consists of
three stages: world physics update, request processing and
reply processing. Following the same design, the SynQuake
server loops through three stages which form a server frame
or iteration. These stages are: request processing, admin-
istrative tasks and reply processing (see Figure 4). In the
first stage, the server receives requests from clients (play-
ers). A client request gets processed by the worker thread



who is responsible for handling that particular client. The
thread assignments are established according to a load bal-
ancing policy and updated in the administrative stage. The
administrative stage involves rebalancing the load according
to a specific policy. The original Quake game was single-
threaded and thus didn’t need any load balancing, while the
parallelization of Abdelkhalek et al. [Abdelkhalek and Bi-
las 2004] used a naive round-robin assignment of players
to threads. In contrast, we use a set of policies which are
aimed at reducing synchronization costs and thus improving
performance, which we discuss in Section 3.5. Finally, the
server threads send updates to their assigned clients in the
reply phase.

3. Parallelization of SynQuake
Similar to an existing parallel implementation of Quake [Ab-
delkhalek and Bilas 2004], in SynQuake, parallelization is
performed at the granularity of individual stages, while en-
forcing serial execution of consecutive stages through syn-
chronization barriers (Figure 4).

As in Quake, synchronization is not necessary during the
read-only reply stage, since its execution does not overlap
with any of the other stages. This is also true for the ad-
ministration phase, since its tasks, e.g., load balancing, are
executed by a single thread. Consequently, the stage han-
dling client requests is the only stage requiring protection
against concurrent accesses to shared data. We describe the
parallelization of this stage in detail, including our appli-
cation programming environment, the parallelization chal-
lenges and our strategy for both a lock based implementation
and a transactional memory implementation, in the follow-
ing sections.

3.1 Programming environment
We use an existing Software Transactional Memory library,
libTM [Lupei et al. 2009], for STM parallelization of Syn-
Quake. We use a low overhead implementation of test-and-
set locks with exponential backoff, instead of the standard
pthreads interface, for both our lock-based SynQuake paral-
lelization and within our STM.

The STM allows transactions on different processors to
manipulate shared in-memory data structures concurrently
in a data-race-free manner.

We chose libTM over commercially available STM sup-
port, such as Intel’s STM compiler, or other research pro-
totypes, for two reasons. First, we needed access to, and
understanding of, the STM source code in order to under-
stand the STM game performance better. More importantly,
libTM offers us high flexibility, and versatility in terms of
choices of STM protocol, because it implements all possi-
ble combinations of eager, and lazy conflict detection poli-
cies; libTM also implements hybrids based on partial roll-
back techniques [Lupei et al. 2009], which make these pro-
tocol choices relatively workload independent.

Recent studies on STM performance [Spear et al. 2006]
on an implementation of RSTM [Marathe et al. 2006] sug-
gest that none of the eager, lazy or mixed approaches to con-
flict detection in RSTM work best across all workloads.

Other STM environments also implement a variety of
conflict detection strategies: pessimistic, such as in TinySTM [Fel-
ber et al. 2008, Riegel et al. 2006, 2007], optimistic as
in TL2 [Dice et al. 2006], or hybrid such as in Swis-
sTM [Dragojevic et al. 2009]. However, since none of them
implement all conflict detections exhaustively, it was un-
clear to us which of these existing libraries would perform
best for our workload. Finally, some STM’s, such as, Mcrt-
STM [Saha et al. 2006] have been shown to perform poorly
under high contention scenarios [Dice and Shavit 2007].

While a comprehensive description of libTM is beyond
the scope of this paper, in the following sections we briefly
describe some of its features.

3.1.1 libTM library interface
In an STM program supported by the libTM library, trans-
actions need to be delineated with begin transaction and
commit transaction statements. Furthermore, shared data
needs to be distinguished from private per-thread data ac-
cessed inside transactions. For this purpose, transactional
shared and private variables should be declared using the
meta-types tm shared and tm private, respectively. For
example, a shared variable, int x in the original program,
needs to be declared as tm shared<int>x. The definition
of each of these meta-types in our library is a C++ template
using the original type of the variable as a parameter, (e.g.,
tm shared<original type>).

Declarations for tm types are used in libTM for run-time
access tracking through operator overloading.

3.1.2 Access tracking, conflict detection and resolution
in libTM

Any read or write accesses on shared and private transac-
tional variables are tracked inside the implementation of
the overloaded conversion or assignment operators. Further-
more, libTM maintains recovery data for both tm shared

and tm private variables updated in transactions, while
performing conflict detection and resolution only for tm shared

variables.
Access tracking: Meta-data information encapsulated in

each tm shared variable allows for access tracking to take
place at word-level granularity. libTM also provides the ca-
pability of varying the granularity of access tracking dynam-
ically, at runtime. This is achieved through a mechanism
of redirection that can remap a tm shared variable to any
meta-data object indicated by the programmer. By remap-
ping several semantically-linked tm shared variables to the
same meta-data item, we can effectively increase the granu-
larity of the access tracking on the fly. Meta-data remapping
can factor in semantic aspects that may vary in time. This
can handle dynamic data structures, as well as variables that



are not adjacent in memory, whereas application-level ob-
jects are statically declared at compile time.

Conflict Detection: libTM implements a variety of proto-
cols in terms of the timing of conflict detection from eager
to lazy, and hybrids. All our STM versions provide reduc-
tions in number of conflicts and conflict duration compared
to lock-based parallelization for our game application. In this
paper, we use a fully optimistic, but blocking approach to
conflict detection, which optimizes conflict duration, as fol-
lows. Multiple readers and multiple writers can access a lo-
cation concurrently. At commit time, each writer obtains ex-
clusive locks for all locations in its write set and resolves any
existing conflicts with other transactions.

Conflict Resolution: libTM solves write-write conflicts
by maintaining multiple private copies of a shared object,
and applying the concurrent writes to shared memory in
the order of committing transactions. Any read-write con-
flicts detected at commit time are resolved by aborting
the conflicting reader transactions. For this purpose, our
libTM library uses an invalidation strategy that relies on
visible-readers. Specifically, every reader records its
access of a memory location in the visible-readers set
associated with that memory location. Consequently, per-
forming a read also involves a write with this policy. An up-
dating transaction sets the abort status of all reading transac-
tions for the updated locations before committing. To avoid
any inconsistent executions, a transaction checks its abort
status at every operation on shared state.

In the following, we describe the parallelization chal-
lenges for the game when using these programming envi-
ronments.

3.2 Synchronization issues for player actions: false
sharing

For processing a player action, the server needs to perform
collision detection against all game objects intersecting the
player’s trajectory. Since the avatar’s direction can be altered
by collision with entities situated in its path, the avatar’s
trajectory and its final position are impossible to predict from
the beginning of the action. However, the whole action and
its effects on the game world need to appear as a consistent,
atomic unit to the players.

Therefore, processing a client request in Quake consists
of: i) computing the potential area of the game map impacted
by the action, which we will call area of interest of the action
and then ii) performing the game action, by determining its
effects upon game entities. This request processing scheme
leads to a potentially significant reduction in the degree of
false sharing for a TM-based versus a lock-based game par-
allelization scheme in terms of both i) the number of objects
involved in collision detection (false sharing in space) and ii)
the duration of the potential conflicts for these objects (false
sharing in time) as we explain in the following.

In a lock-based implementation, the entire area of inter-
est of the action needs to be conservatively locked for the

Figure 5. Areas of interest for a move followed by an attack

duration of all processing related to the action. For example,
let’s consider the scenario in Figure 5, where the player exe-
cutes a shoot-after-move compound action. Since the player
may stop short of its intended destination, or change direc-
tion during the move e.g., due to encountering an obstacle,
the long-range (shooting) interaction may occur at any point
in time during the move itself. Hence, the lock-based im-
plementation needs to compute an area of interest, and con-
servatively lock all objects corresponding to the long range
interaction at all possible points of the player’s trajectory.
This could incur substantial false sharing between threads in
both space and time.

In contrast, an STM-based implementation implicitly ac-
quires access to objects gradually, as the server progresses
through the execution of the action. The move can thus be
decomposed into sub-actions, and collision detection can be
performed for each sub-action as it dynamically happens, re-
sulting in a substantially smaller bounding box for the over-
all action, as shown in Figure 5, as well as shorter total time
of protected access to the objects involved.

3.3 Synchronization algorithms for request processing
In the following, we describe the synchronization protocol
used in the processing stage of the server. We present our
two designs for maintaining consistency of the game map:
lock-based and STM-based. The algorithms in pseudocode
for both versions are included in Figure 6.

In the lock-based version, Figure 6a, we first compute
the area of interest corresponding to the currently executing
action. Then, ownership of this entire area of interest is
acquired by locking all the areanode tree leaves overlapping
it, in a predefined order, such that deadlocks are avoided.
For simplicity, this ordering is provided by the depth-first
traversal of the tree.

Next, we need to apply the effects of the action on all
entities overlapping the area of interest. We first process
all previously locked leaves, and their associated entities.
Then, we process the common ancestor nodes of the locked
leaves searching for entities that might intersect multiple
grid units. Note that since the tree leaves covering our whole



/*Algorithm: Action processing in SynQuake using locks*/
function processAction( actionPlan, player )
{

//Compute expanded area of interest for the entire action plan
expanded_range = computeExpandedAreaOfInterest( actionPlan, player );

/*Lock expanded area of interest*/
//Get areanode leaves overlapping the expanded area of interest
expandedLeavesSet = getOverlappingLeaves( area_tree, expanded_range );
foreach leaf in expandedLeavesSet Lock( leaf );

foreach sub-action in actionPlan
{

//Get areanode leaves overlapping sub-action’s area of interest
range = computeAreaOfInterest( sub-action, player );
leavesSet = getOverlappingLeaves( area_tree, range );

/*Processing sub-action in leaf nodes*/
foreach leaf in leavesSet

foreach entity in leaf.entitySet
perform( sub-action, entity );

/*Processing sub-action in parent nodes*/
//Get areanode parents overlapping the area of interest
parentsSet = getOverlappingParents( area_tree, range );
foreach parent in parentsSet
{

//Temporarily lock parent
Lock( parent );
foreach entity in parent.entitySet

perform( sub-action, entity );
Unlock( parent );

}
}
/*Unlock expanded area of interest*/
foreach leaf in expandedLeavesSet Unlock( leaf );

}

(a) Lock-based version

/*Algorithm: Action processing in SynQuake using TM*/
function processAction( actionPlan, player )
{

BEGIN_TRANSACTION();

foreach sub-action in actionPlan
{

//Compute area of interest for the current sub-action
range = computeAreaOfInterest( sub-action, player );

/*Processing sub-action in leaf nodes*/

//Get areanode leaves overlapping the area of interest
leavesSet = getOverlappingLeaves( area_tree, range );

foreach leaf in leavesSet
foreach entity in leaf.entitySet

perform( sub-action, entity );

/*Processing sub-action in parent nodes*/

//Get areanode parents overlapping the area of interest
parentsSet = getOverlappingParents( area_tree, range );

foreach parent in parentsSet
foreach entity in parent.entitySet

perform( sub-action, entity );

}

END_TRANSACTION();

}

(b) STM-based version

Figure 6. Pseudo-code for processing actions in SynQuake

area of interest have already been locked, the only purpose
of locking these additional parent nodes is to protect the
integrity of the entity lists they manage. Indeed, these entity
lists may be modified concurrently by other player actions
accessing objects co-located in that same parent node, but
outside our area of interest. Since parent nodes are sensitive
to contention, the locks on parent nodes are released as soon
as the processing of their entities is complete. Finally, we
relinquish ownership of the area of interest by releasing the
locked leaves.

In the transactional version of SynQuake, we first tag all
mutable data structures, or parts of them, with tm shared

annotations. Players are mutable game entities that can have
both their position and attributes modified as a result of game
interactions. Resources are partly mutable, e.g., apples can
have their attributes affected by game play, but not their po-
sition, while walls and the area node tree structure are im-
mutable. As a result, player entities as a whole, the attribute
fields of resources, and the entity lists maintained within area
nodes are declared as tm shared, with everything else left
as private.

Figure 6b presents our pseudocode. We mark the action
transaction with a begin and commit construct. For each
sub-action in the action plan, we compute the area of inter-
est associated with the sub-action. We then process all enti-
ties located within both leaves and parent nodes overlapping
the area of interest, with consistency for the whole action
being seamlessly ensured by the underlying STM library. In
contrast to the lock-based version, with STM, we thus did

not need to worry about: i) the order of accesses for dead-
lock prevention ii) locking granularity and interplay of dif-
ferent granularity locks, and iii) optimal placement of lock
and unlock operations. The lock-based version of SynQuake
took us many months of analytical understanding, code re-
structuring, and fine-tuning for performance, the availabil-
ity of the previously parallelized Quake code [Abdelkhalek
and Bilas 2004] notwithstanding. In contrast, the STM Syn-
Quake version was completed in less than one month.

3.4 Load balancing issues: true sharing
While concurrency in multiplayer game servers can be
severely limited as a result of false sharing, true sharing
patterns can also degrade application performance.

Since two different threads may handle players perform-
ing actions affecting the same game entities, or interacting
directly with one another, true sharing may occur on entities
located at the boundary of thread assignments. Therefore,
to reduce synchronization costs resulting from true sharing,
the load balancing policy should take into consideration the
spatial locality of players in the game.

True sharing can thus be mitigated by locality-aware task-
assignment policies that allocate the processing of nearby
entities in the game to the same thread. However, using lo-
cality as a sole criteria in assigning tasks can cause over-
loading in threads processing highly populated areas. Thread
overload results in increased response times and degraded
user experience. Moreover, load imbalance results in idle
time at barriers for underloaded threads. Consequently, the
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Figure 7. Load Balancing Policies

load balancing policy should achieve a good compromise
between balanced load, and reduced synchronization.

3.5 Load balancing in SynQuake
We analyzed the trade-off between load balancing, and min-
imizing synchronization among server threads across three
policies. A round-robin policy optimizes for an equal distri-
bution of the workload to processing threads. However, since
it offers very poor spatial locality for task assignment, play-
ers situated next to one another could be handled by different
threads (see Figure 7a); this potentially causes high levels of
true sharing.

Our spread policy is a simple policy, which leverages the
spatial locality of players, to perform load balancing at the
coarser granularity of grid units. This type of assignment en-
sures that players located in a given grid unit are handled by
the same thread (see Figure 7b), thereby reducing synchro-
nization overheads.

Nevertheless, the grid unit size is static and players may
engage in dynamic actions causing conflicts across grid
units. To reduce synchronization costs, we developed a dy-
namic locality-aware load balancing policy. Our locality-
aware algorithm detects player agglomerations on the fly,
and assigns each heavily contended area to a separate thread.
The algorithm involves a graph representation of the game
map, G = (V, E), where V is the set of nodes representing
a subset of grid units, which have at least one incident edge,
and E is the set of edges. Node u has a connecting edge
to node v if: a) u and v are neighbour grid units and b) the
number of possible conflicts on the common border exceeds
a given threshold.

After constructing the graph, we calculate the connected
components, using a union-find with path compression algo-
rithm. Finally, we distribute the connected components uni-
formly to threads, possibly splitting some connected com-
ponents across threads, if they are too few, or too large, pre-
serving locality as much as possible.

This ensures that a highly contended area would be pro-
cessed by a single thread, hence optimizing for the best spa-

tial locality. In Figure 7c, we show a scenario with four
quests located in the middle of the four quadrants of the
game map, respectively. As we can see, our dynamic load
balancing algorithm assigns players to threads roughly by
quadrant in this case.

4. Experimental Results
In our experimental evaluation, we first explore the scalabil-
ity and performance of STM versus lock-based SynQuake
in a default game scenario, and with locality-aware load bal-
ancing. We show that STM-Quake outperforms lock-based
SynQuake at 2, 4, and 8 threads. We then extend the com-
parison to a wide range of scenarios with different parameter
settings for the game, and the STM. Specifically, we vary the
amount of physics computation, load balancing algorithm,
quest location, and range of in-game actions in SynQuake.
We also vary the consistency granularity of the STM.

4.1 Experimental setup
Our experimental testbed is an 8-core machine, consisting
of 2 Intel(R) Xeon(R) Quad-Core E5472 @ 3.00GHz CPUs,
6MB cache, 3GB RAM, running a Debian Linux kernel
2.6.24 and gcc version 4.2.4.

The experiments on SynQuake have been conducted with
a configuration of 600 to 2000 players, running for 1000
server frames on a 1024 by 1024 map, with an areanode tree
depth of 8 (resulting in 256 tree leaves).

4.2 Performance Comparison: STM versus
Lock-based SynQuake

In this section, we compare the performance of the two ver-
sions of SynQuake, using the default SynQuake settings.
Specifically, as previously described, game physics compu-
tation consists of collisions with immutable obstacles/walls
on the 2D game map. We use a locality-aware load balancing
algorithm, and an entity-level consistency granularity in the
STM. We run the game with a medium contention workload
scenario with four simultaneous quests positioned around
the center of the map (Figure 8b).
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Figure 8. Quest scenarios offering different levels of contention
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Figure 9. Comparison between STM-based vs. Lock-based versions of SynQuake in different quest scenarios.

Figure 10 shows that the performance of STM-SynQuake
is worse than that of lock-based SynQuake when running
with a single thread, but STM-based SynQuake scales better.
Thus, the STM version outperforms the lock-based version
in terms of absolute processing time when running with 2, 4
and 8 threads.

4.3 STM versus Lock-based SynQuake: varying
in-game contention

We compare the scalability of STM-SynQuake versus lock-
based SynQuake in a variety of workload scenarios. We
also show the associated performance comparison. In or-
der to stress the STM to the maximum, we run with a

game map where all immutable obstacles/walls have been
removed. Since walls are non-TM data structures, the asso-
ciated physics computation for collison detection with walls
involves no STM overheads.

We use a no quest, low contention scenario and two other
quest scenarios depicted in Figure 8, i.e., a high contention
single quest scenario, and a medium contention four quest
scenario. We can see that, in all scenarios, STM-SynQuake
scales significantly better than its lock-based counterpart.

First, in the low contention scenario, both STM and lock-
based synchronization achieve high scaling factors. Next, the
single quest scenario, shown in Figure 8a, allows us to ob-



serve the behavior of each synchronization scheme under the
highest level of contention possible. As shown in Figure 9a,
lock-based synchronization fails to achieve any scaling in
this case, while the STM version delivers a scaling factor of
2.05x scaling at 4 threads. By acquiring ownership of entities
gradually, as opposed to all at once, the STM allows for more
parallelism between threads processing nearby players with
overlapping areas of interest. Finally, in the third, medium
contention scenario, the false sharing induced by conserva-
tive locking significantly affects performance for lock-based
SynQuake, whereas the STM achieves almost identical scal-
ing to the one obtained in the first scenario, where contention
was at its lowest level.

While the STM achieves superior scaling in all scenar-
ios considered, it suffers from high overheads, hence higher
processing times, as seen in Figure 9b. To summarize the
trend presented in the last two sections, the STM is ex-
pected to scale regardless of the complexity of the non-TM
physics computation. A case with no physics computation
in the game whatsoever, as presented in this section, would
be unrealistic for any game. The more complex the game
physics computation, e.g., due to wind, gravitation, 3D ex-
plosions, the more such computation is expected to hide the
STM overheads, the higher the performance advantage of
the STM over Locks.
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Figure 10. Performance comparison between STM and
Locks in default SynQuake setting

4.4 The effect of load balancing on scaling
In the next series of experiments, we study the impact of
load balancing for short range, as well as long range actions,
under medium contention, when players are guided towards
4 quests, located around the center of the map (Figure 8b). In
Figures 11a and 11b, we show the scaling factors obtained by
Locks and STM under three load balancing schemes: round-
robin, spread and locality-aware.

Figure 11a presents scaling results for all the load bal-
ancing policies, under both STM and Locks, when players

are performing short range actions. The benefits of maximiz-
ing locality with the locality-aware policy are illustrated by
its significantly higher scaling factors under either Locks or
STM. The spread policy outperforms round-robin also due
to its better locality, hence reduced true sharing.

Figure 11b presents the scaling of the different load bal-
ancing policies when players perform long range actions. We
see a dramatic drop in the performance of Locks compared
to the short range action scenario. This is due to the substan-
tial increase in false sharing within conservatively locked,
larger areas of interest for long range actions. In the pres-
ence of high degrees of false sharing, we can see that the
different load balancing policies have no significant impact
on the overall scaling performance of Locks.

Conversely, in the case of the STM, where the false shar-
ing degree is substantially lower, the load balancing policy
has an observable effect by reducing true sharing. Overall,
we notice that the STM benefits from locality-awareness to
the same degree as in the case of short range actions.

4.5 STM detailed statistics
In this section, we present statistics, in terms of abort rates,
and the write ratio in the game, when varying the level of
contention, and the load balancing algorithm for the STM.
We also study how the STM overhead varies with the con-
sistency granularity.

4.5.1 Abort rates
Table 1 shows the abort rates and write ratios in the STM,
under several levels of contention: low, medium and high.
We use the default game and STM settings from section 4.2.

Collision detection involves reads, while updating the
player’s position involves a write. The number of reads in
each transaction grows with a higher number of players sit-
uated in each player’s area of interest. If the player’s move-
ment is blocked by an obstacle, or another player, no update
of the player position i.e., no write, takes place. Therefore,
a low write ratio is more likely in high contention scenar-
ios, where players are very crowded. For lock-based syn-
chronization, player overcrowding scenarios result in much
longer critical sections, hence longer conflict durations, and
waiting times, even with a low write ratio. For the STM,
the main problem with high contention scenarios is repeated
reads of the same data by different processors. This causes
high cache-coherence invalidation traffic in the underlying
hardware due to the libTM update to the visible-readers
set upon each read.

Experiments with other game settings show higher abort
rates. For example, a round robin load balancing policy
produces 14% and 6% abort rates at low contention, and
high contention, respectively, for the STM, at 8 threads.
These results correspond to the same in-game scenarios as
above, for the same write ratios as in Table 1. Moreover, if
we execute a write in the game even when the move does
not change the player position, the maximum abort rates in
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Figure 11. The effect of load balancing on scaling in STM vs. Locks, for short and long range actions.
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Figure 12. STM vs. Locks - overhead comparison for different consistency granularities

the STM reach 59% for the high contention scenario, at 8
threads, when using a round robin policy. For all of these
game settings and scenarios, the STM scales the same, or
better than the lock-based version of the game.

4.5.2 STM overheads when varying the access
tracking granularity

We compare the performance of STM SynQuake under dif-
ferent consistency granularities with that of the Lock-based
version. The evaluation was performed by running Syn-
Quake in single threaded mode, under different quest sce-

narios. The normalized slowdown factors of different STM
versions relative to Locks are plotted in Figure 12a.

In the first, no quest scenario, players tend to spread
out evenly throughout the map, leading to a low player
density. We thus spend much more time traversing the area
node tree to search for leaves within the area of interest
(non-TM computation) versus accessing the mutable entities
themselves (which incurs STM tracking overheads).

Consequently, even without physics computation, in this
scenario, the STM experiences a relative slowdown of only
3x. We also notice that, in this case, varying the granularity



Contention
Level

No. threads Abort rate Write ratio

Low 1 0% 22.74%
2 1% 22.70%
4 2% 22.65%
8 6% 22.56%

Medium 1 0% 4.65%
2 1% 4.80%
4 2% 4.76%
8 3% 4.77%

High 1 0% 0.62%
2 1% 0.62%
4 2% 0.63%
8 2% 0.63%

Table 1. STM statistics for locality-aware load balancing,
over 2 million transactions

of access tracking in the STM does not provide significant
benefits.

In the second scenario, where we have a single quest in
the center of the map (Figure 8a), players tend to cluster
in the region of the quest. Player crowding thus results in
a low ratio of non-TM computation to STM tracking over-
heads. Consequently, the STM performance shows a signifi-
cant slowdown. However, when increasing the granularity of
access tracking in the STM, from word-level to entity-level
or grid-unit level, the overheads associated with bookkeep-
ing inside the STM library are substantially reduced, result-
ing in better overall performance.

Finally, the third, medium contention quest scenario re-
sults in an intermediate ratio of non-TM computation to
STM tracking overhead during the processing of player ac-
tions. As a result, the STM experiences intermediate lev-
els of slowdown, while also benefiting from coarser access
tracking granularity.

When, in addition, physics computation is part of the
processing phase of each action, thus increasing the weight
of non-TM computation, we notice that the relative slow-
downs between STM and Locks range from 1.07x to 1.72x,
as illustrated by Figure 12b. These slowdowns are signifi-
cantly smaller, compared to the corresponding cases without
physics computation.

4.5.3 STM access tracking granularity trade-offs
We evaluate the trade-offs between false sharing reduction
and overhead reduction in the STM, by varying its access
tracking granularity, in Figure 13. Specifically, we exam-
ine the trade-off between entity and grid-unit access track-
ing granularity in a scenario with one quest in the center of
the map (Figure 8a). We can see that the version of STM
with grid-unit level granularity incurs lower overheads, cor-
responding to the results obtained previously when running
with a single thread. However, as we increase the number of
threads, we notice that the finer granularity of entity-level

access tracking, which has the advantage of incurring no
false sharing, allows for better scalability, and eventually for
better overall performance in spite of its higher initial over-
heads.
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Figure 13. STM - entity vs. grid-unit granularity

5. Related Work
Many recent research efforts focus on parallelizing realis-
tic applications with STM. However, all previous results are
either: i) negative in terms of performance, instability, poor
programmability, crashes or ii) do not use a real STM, sim-
ulating abstract STM primitives instead, as follows.

Kulkarni et al. [Kulkarni et al. 2006] discuss using trans-
actional memory for parallelizing sequential applications,
where compiler analysis is unable to detect opportunities for
concurrency, due to input-driven dependencies. They argue
that, when using STM, conflicts can be discovered dynami-
cally at run-time and enforced only when necessary. Their
discussion is centered around an algorithm for Delaunay
mesh generation. However they do not provide an imple-
mentation, experimental evaluation or comparison between
lock-based and STM-based versions.

Scott et al. [Scott et al. 2007] experiment with an im-
plementation of Delaunay triangulation, in which most of
the work is privatized. Since this application exhibits very
little contention, the results show that the fine-grain and
the coarse-grain locking-versions of the application achieve
similar results, with the STM version performing 2x worse
because of indirection overheads (specific to the RSTM li-
brary used). Consequently, this study does not provide a
good example of an application that might benefit from us-
ing STM.

Kang and Bader [Kang and Bader 2009] analyze the
benefits that STM might bring when designing algorithms
with irregular access patterns, such as graph algorithms.
More specifically, they suggest that STM facilitates scalable
and easy to develop versions of such algorithms, as long



as the probability of conflict between transactions remains
low. They exemplify their approach with an algorithm for
computing a minimum spanning forest of sparse graphs.
Even though their STM-based implementation demonstrates
remarkable scalability, the high overhead of the STM system
completely offsets the speedup due to scalability.

Dragojevic et al. [Dragojevic et al. 2008] use a large
scale benchmark, called STMBench7, to expose some of the
weaknesses of the current STM implementations: crashes
caused by memory management limitations, lack of support
for external libraries, and only partial support for object
oriented features. They conclude that these issues prove to
be a major limitation when adapting STMs for production
use.

Multiplayer games have emerged as an important applica-
tion domain area, as well as an important driver of the market
for multi-core processors. Previous studies of game server
behavior and performance [Abdelkhalek et al. 2001] have
also concluded that game servers have very different access
patterns compared to scientific workloads, and point to game
parallelization as a largely unexplored research area.

Previous research work in the area of parallelizing game
server code [Abdelkhalek and Bilas 2004, Zyulkyarov et al.
2009] has focused on the publicly available game code for
Quake, and either lock-based [Abdelkhalek and Bilas 2004],
or transactional memory programming paradigms [Zyulk-
yarov et al. 2009, Gajinov et al. 2009].

Abdelkhalek et al. [Abdelkhalek and Bilas 2004] investi-
gate the parallelization and performance of a multithreaded
version of the Quake server with lock based synchronization.
This study concludes that games are highly dynamic applica-
tions that exhibit fine-grain interactions and achieving good
scaling for such applications is a challenging task. They also
provide an in-depth analysis of the performance bottlenecks,
which are primarily due to lock contention during the pro-
cessing stages, and load imbalance at global synchronization
points.

Zyulkyarov et al. [Zyulkyarov et al. 2009] study an STM-
based parallelization of the Quake server using the prototype
edition of the Intel C++ STM Compiler [Ni et al. 2008]. The
paper is an experience paper, where the authors reveal the
difficulties they had and the manual modifications needed
to get the code to compile and run, such as getting printf’s
manually out of transactions. The authors also reveal the
high number of aborts they obtain when they run the parallel
version of Quake, and the poor scalability, likely due to the
inadequate test cases that come with Quake itself i.e., the
small map which may have forced the authors to run with a
maximum of 8 players. Finally, in contrast to our work, the
authors use a simple static load balancing technique, and do
not discuss the impact of load balancing on true sharing.

A follow-up paper by the same authors [Gajinov et al.
2009] presenting a different version of parallel STM Quake,
called QuakeTM, is also a negative result in terms of per-

formance. The authors use coarse-grained transactions and
rely on the Intel C++ STM Compiler. The focus is on sim-
plifying programming rather than performance. Their results
show reasonable scaling, but very high STM overheads and
abort rates, caused by the coarse-grained transactions.

In contrast to the above papers, our work presents a sys-
tematic comparison of the design and implementation issues
of each of the two approaches to parallelizing multiplayer
games, as well as a comprehensive experimental evaluation.
We furthermore show that an STM implementation can pro-
vide better performance than a lock-based implementation,
due to inherent game code artifacts. This, to our knowledge,
is the first application parallelization effort providing a posi-
tive outlook for the use of STM in realistic applications with
highly dynamic access patterns, such as multiplayer games.

Our load balancing algorithms build on ideas from earlier
work in the area of scaling distributed game servers. Specif-
ically, Ng et al. [Ng et al. 2002], Cronin et al. [Cronin et al.
2004], and Chen et al. [Chen et al. 2005] study the effects
of load balancing in distributed multi-server environments.
Their work focuses on network bottleneck aspects, as the pri-
mary source of contention, as opposed to synchronization ar-
tifacts. Chen et al. [Chen et al. 2005] find that dynamic game
world partitioning based on locality awareness improves av-
erage response time by effectively aggregating game regions
and thus minimizing inter-server communication.

6. Conclusions
In this paper, we show the first case study of a high impact
application where leveraging software Transactional Mem-
ory (STM) support for parallelization provides better per-
formance than state-of-the-art lock-based parallelization.

Specifically, we study parallelization of multiplayer game
server code, through developing a game benchmark, Syn-
Quake, that extracts the main data structures and the essen-
tial features of the popular game Quake. Our results show
higher scalability for STM-SynQuake versus lock-based
SynQuake, due to a higher degree of false sharing in the
latter. Overall performance is better at 4 and 8 threads for
STM-SynQuake versus lock-based SynQuake for all real-
istic game scenarios we studied. The superior performance
comes from a reduction of false sharing in the game appli-
cation. The STM supports decomposing a player action into
sub-actions, and performing collision detection on the fly.
Thus, STM support substantially reduces the number of con-
flicts, and the duration of conflicts in the game application.
The consistency of the action as a whole is automatically
provided by the STM. In contrast, in the lock-based imple-
mentation, conservative locking for the entire player action
becomes unavoidable.

Finally, in the context of the STM, we explore the effect
of the consistency unit granularity on the STM overhead. We
also explore, as an orthogonal but important factor, the effect
of task assignment on the true sharing patterns between



threads. These design choices have a second-order impact on
performance, once false sharing has been reduced; an object-
level consistency granularity and a dynamic locality-aware
task assignment provide the best performance.
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