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Abstract

We investigate the power of randomness in the context of ddmental Bayesian optimal mecha-
nism design problem—a single seller aims to maximize exggervenue by allocating multiple kinds
of resources to “unit-demand” agents with preferences drieam a known distribution. When the
agents’ preferences are single-dimensional Myerson'sregwork [14] shows that randomness offers
no benefit—the optimal mechanism is always deterministidthé multi-dimensional case, where each
agent’s preferences are given by different values for e&theoavailable services, Briest et all [7] re-
cently showed that the gap between the expected revenua@dtay an optimal randomized mechanism
and an optimal deterministic mechanism can be unboundetwhien a single agent is offered only
services. However, this large gap is attained through wmakinstances where values of the agent for
different services are correlated in a specific way. We shwt when the agent’s values involve no
correlation or a specific kind of positive correlation, thenbfit of randomness is only a small constant
factor (4 and8 respectively). Our model of positively correlated valuias{ we call additive values) is a
natural model for unit-demand agents and items that ardigutes. Our results extend to multiple agent
settings as well.

1 Introduction

A fundamental objective in the design of mechanisms is toimiae the seller’s revenue. In the absence
of any information about buyers’ preferences, i.e. in pfiee settings, randomization is a frequently used
algorithmic technique (see, e.d., [11] and referencesihgrin a spirit similar to randomness in online al-
gorithm design, it allows the seller to hedge against adviisvalues. While randomization unsurprisingly
turns out to be essential for any guarantees on revenuetaircerior-free settings, it appears to be not so
in Bayesian settings where the designer has distributiom@amation about the agents’ types and the goal
is to maximize revenue in expectation over the distributibor example, for a single item auction in the
Bayesian setting, Myerson’s seminal wdrk|[14] shows thatdptimal mechanism is always a deterministic
one.

In this work we investigate the power of randomness in thdéexdrof the following archetypical multi-
parameter optimal mechanism design problem — a singlersafiers multiple kinds of service, and a
number of “unit-demand” agents are each interested in lpugmmy one of the services. Whereas in Myerson’s
work each agent has a single-dimensional type (namely & ¥ahithe item under sale), in our setting each
agent has a multi-dimensional type characterized by aef@ifit) value for each of the services offered by
the seller. An example of such a setting is an online travehag selling airline tickets, hotel rooms, etc.
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Figure 1. An example froni[18] contrasting the optimal iteriting and the optimal lottery pricing. The
regions Ry, R, and R o denote the sets of valuations at which the agent buys iteitem 2, and the
(1/2,1/2) lottery respectively.

Customers have different preferences over different abvkgdlservices, but are only interested in buying one.
We study the Bayesian version of this problem: the distrdoufrom which the buyers’ preferences are
drawn is known to the seller. Given Myerson’s observationutsingle-dimensional settings, one might
expect that in the multi-dimensional case the optimal meisha (ignoring computational issues) is once
again deterministic. Thanassoulis [18] and Manelli andc¥int [12] independently discovered that this is
not the case. This raises the following natural questigmat quantitative benefit do randomized mechanisms
offer over deterministic ones in Bayesian optimal mechardesign?

To answer this question we must first understand the steiaifirandomized mechanisms in multi-
dimensional settings. In the context of a single unit-dednagent and a seller offering multiple items,
any deterministic mechanism is simply a pricing for eachhef items with the agent picking the one that
maximizes her utility (her value for the item minus its pjicéikewise, randomized mechanisms can be
thought of as pricings for distributions or convex combiimag over items. These convex combinations are
calledlotteries A risk-neutral buyer with a quasiconcave utility functibays the lottery that maximizes
his expected value minus the price of the lottery.

The following example due to Thanassoulis explains hovet@s work. Suppose that a seller offers two
items for sale to a single buyer, and that the buyer’s valoedch of the items is independently uniformly
distributed in the intervals, 6]. The optimal deterministic mechanism for the seller is oy price each
of the items ap* = $5.097 (see Figuréll). In a randomized mechanism, the seller magditian price a
(1/2,1/2) distribution over the two items at a slightly lower price8f= $5.057. If the buyer buys this
lottery, the seller tosses a coin and allocates the first iteher with probabilityl /2 and the second with
probability 1/2. A buyer that is nearly indifferent between the two items ldagorefer to buy the lottery
because of its lower cost, than either one of the items. Whéeseller loses some revenue by selling the
lower priced lottery with some probability, he gains by isglto a larger segment of the market (those that
cannot afford either of the individual items but can affdnd tower priced lottery). In this example the gain
is more than the loss, so that introducing the lottery impsahe seller’s revenue. As this example indicates,
lotteries help in optimal mechanism design by giving théesehore latitude to price discriminate among
buyers with different preferences.

In general, a randomized mechanism can offer to the buyena ofgrices for arbitrarily many lotteries.
We call such a menulattery pricing and likewise a deterministic pricing &em pricing While in multiple
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Figure 2: An example of a product distribution for valuasarontrasted against an example of an additive
distribution.

agent settings randomized mechanisms can be more coreplicae show that any such mechanism can
be interpreted as offering to each agent simultaneousliteryopricing that is a function of values of other
agents.

The question of whether and to what extent randomizatiopshelBayesian optimal mechanism design
is not merely a pedantic one. Mechanisms similar to lotteigings are seen in practice. For example,
the website priceline.com routinely sells airline tickeiscustomers without disclosing at the time of sale
crucial details such as the time of travel, carrier, etc. [d/biistomers are unaware of the distribution from
which the final service is picked, the tradeoffs for cust@rame similar—the uncertainty in the quality of
the final item against the cheaper price. Travel agenciesiodf vacation packages use similar devices.

Until recently, the largest gap known between item priciagd lottery pricings for a single agent was
a gap of3/2 due to Pavlov[[15]; For the special case where values foemifft items are independent,
Thanassoulis gave the best gap example with a gdplofRecently Briest et all [7] showed that in single-
agent settings in fact the gap between lottery pricings &md pricings can be unbounded even with ofly
items. However the value distributions for which such gapsaghieved are quite unnatural with the values
of different items being highly correlated. In this paper st®w that the gap between lottery pricings and
item pricings is small for distributions involving limitecbrrelation between items.

We further extend these results to the multiple-agentrgetiiith the seller facing a general feasibility
constraint, obtaining the first results of this kind. Medsamdesign in the multiple-agent multi-parameter
setting is poorly understood [19]. Until recently there e general characterizations for optimal or
approximately optimal mechanisms similar to Myerson’stfee single-parameter case. Chawla et[al. [9]
recently developed constant-factor approximations taragtdeterministicmechanisms in this setting for
a certain class of feasibility constraints (namely masadd related set systems). We extend their results
to show that their (deterministic) mechanisms achieve atemi factor approximation with respect to the
optimal randomized mechanism as well, again implying a kgaad between randomized and deterministic
mechanisms.

Our results and techniques

We follow a technique introduced inl[8] for relating mulés@mmeter mechanisms to mechanisms for a
related single-parameter problem. Chawla, Hartline amdrilerg [8] relate a single unit-demand agent
item mechanism design problem to anagent single-item auction setting, by “splitting” the sdemand
agent intom independent “copies”. They argue that the increased cotgpeamong copies benefits the
seller and leads to higher revenue. Formally, given an itéging p they construct a truthful mechanism



AP that allocates the item to ageintvheneverp allocates item to the multi-parameter agent (that i¥?

has the “same” allocation rule ag. They then argue that the price thdP charges is no less than the
price thatp charges for any instantiation of values. Therefdhe expected revenue of the optimal multi-
parameter mechanism is bounded above by the expected eevémlyerson’s mechanism for the related
single-parameter problem with copieShawla et al. use this upper bound to design an item pri@nghe
multi-parameter problem with revenue within a factoBaff the expected revenue of Myerson’s mechanism
for the instance with copies, thereby obtainin@-approximation to the optimal deterministic mechanism
for the single-agent problem.

Unfortunately the upper bound of the expected revenue ofrdéyes mechanism does not hold for
randomized mechanisms. The appendix gives an example wierevenue of Myerson’s mechanism for
the instance with copies is a factor bfil3 smaller than that of the optimal lottery pricing for the niult
parameter problem. In fact, the mechanigr with the “same” allocation rule as a lottery pricidgmay
obtain zero revenue even when the lottery pricing obtaimszewo revenue. Our main result is that this gap
between Myerson’s mechanism and the optimal lottery pgicsnno larger than a factor @ Specifically,
given a lottery pricing, we can construct two mechanisms, lmeing A~ and the other a Vickrey auction,
such that the sum of the revenues of the two mechanisms isg@aT bpund on the revenue of the lottery
pricing. Combining this with the result of Chawla, Hartlinad Kleinberg (and an improvement over it in
[Q]), we get that for a single unit-demand agent multi-pagtan problem, the gap between lottery pricings
and item pricings is at mogt

Chawla et al.s result as well as our factor4fyap holds for instances where the values of the agent
for different items are independent. For a unit-demand tagkis independence assumption is unrealistic.
However, on the other end of the spectrum, Briest et al. shatwtith arbitrary correlations between item
values, the gap can be unbounded. We therefore examinellibwify natural model for values involving
limited correlation. The type of the unit-demand agentis- 1 dimensional —{t¢, t1,- - ,t,,); the agent’s
value for itemi is v; = to + t;. Herety can be thought of as the buyer’s “base” value for obtaining an
of the items, and the¢’s represent the buyer’s perceived quality of the diffeiiggrns. This additive value
distribution introduces a positive correlation betweelues of different itents Figure[2 shows an example
of one such discrete distribution contrasted against ayatadistribution.

In this additive distribution setting we show that the gapusen randomized and deterministic mech-
anisms is at most a factor 8f Once again our approach is to start with an optimal lotteiging for the
multi-parameter instance, construct an ensemble of mesrharbased on it for the related single-parameter
instance, and then construct a pricing for the multi-patamiastance based on the mechanisms.

Our results extend to multi-agent settings as well. The Estpnulti-agent setting we consider involves
n agents andn items (with copies), where the seller faces a supply canstfar each of the items. A
feasible allocation is a matching between agents and itbatgéspects multiplicities of items. More gen-
erally, we consider settings where the seller faces a naateaisibility constraint—any feasible allocation
must be an independent set in a given matroid in additionlazating at most one item per agent (see
Sectior 5.1 for the definition of a matroid). In both theseesase show that the gap between the expected
revenue of the optimal randomized and the optimal detestiinmechanisms is a small constant factor.
Once again we rely on the approach of relating the multitpatar instance to a single-parameter instance
where each unit-demand agent is split into multiple selfjsgetido-agents”. This approach was first devel-
oped in [9]. In particular we showed inl[9] that for the segBndescribed above, there exist deterministic
mechanisms that obtain revenue within a constant factonefdévenue of Myerson’s mechanism for the
related single-parameter instance. In Sedtion 5 we shavitteaevenue of any randomized mechanism for

1This model is similar to “multiplicative” value distributns that have been studied previously in the context of leupdting
problems (see, e.gL.l[2]).



these settings can be bounded from abové kiynes the revenue of Myerson’s mechanism for the single-
parameter instance. The challenge in these settings istoesthat the mechanisms that we construct satisfy
the non-trivial feasibility constraint that the seller ézc

Related work

As mentioned earlier, randomness is used extensively or-piee mechanism design (see, e.g./ [11] and
references therein). While symmetric deterministic madras provably cannot obtain any guarantees on
revenue in that setting, Aggarwal et all [1] show that by eiplg asymmetry prior-free mechanisms can
be derandomized at a constant factor loss in revenue.

Our mechanism design setting with unit-demand agentsselyloelated to the standard setting for envy-
free pricing problems considered in literature![10,5,/48]6,Those works study the single-agent problem
with a correlated value distribution and aim to approximiie optimal deterministic mechanism (item
pricing). Our single-agent setting is most closely relatethe work of Chawla, Hartline and Kleinberd [8]
who gave & approximation to the optimal deterministic mechanism fogke-agent product-distribution
instances, and builds upon techniques developed in th&t wor

In economics literature, the study of Bayesian optimal rme@ms has focused on deterministic mecha-
nisms. It is well-known that for single-parameter instanttee optimal mechanism is deterministicl[14], 16].
Following Myerson’s result [14] for single-parameter magtsms, there were a number of attempts to ob-
tain simple characterizations of optimal mechanisms inntldti-parameter setting [13, 17, 119], however
no general-purpose characterization of such mechaniskrsoisn [19]. Recently Chawla et al.|[9] gave
the first approximations to optimal deterministic mecharsgor a large class of multi-parameter problems.
This paper extends techniques developed in that work anabtie implications of our work is that the
mechanisms developed inl [9] are approximately-optimah wétspect to the optimal randomized mecha-
nisms as well.

The study of the benefit of randomness in multi-parameteriar@em design was initiated by Thanas-
soulis [18] who presented single-parameter instances vathations drawn from product distributions
where randomness helps increase the revenue by abtj%. Manelli and Vincent[[12] and PavloVy [15]
presented other examples with small gaps. Briest €tlal. §fguwhe first to uncover the extent of the benefit
of randomization. They showed that lottery pricings can tbr@rily better than item pricings in terms of
revenue even for the case bitems offered to a single agent.

2 Definitions and problem set-up

2.1 Bayesian optimal mechanism design

We study the following mechanism design problem. There &ss®iler and: buyers (agents) indexed by
the setl. The seller offersn different services indexed by the sét Agents are risk-neutral and are each
interested in buying any one of the services. Agent has valuev;; for service;j which is a random
variable. We use& _; to denote the vector of values of all agents except agertie seller faces no costs for
providing service, but must satisfy certain feasibilitynstraints (e.g. supply constraints in a limited supply
setting). We represent these feasibility constraints ast aystem7 over pairs(i, j), that is,7 C 2/%7.
Each subset of x J in 7 is a feasible allocation of services to agents.

The seller's goal is to maximize her revenue in expectatiger the buyers’ valuations. We call this
problem theBayesian multi-parameter unit-demand (optimal) mechanigsignproblem (BMUMD). A
deterministic mechanism for this problem maps any set of bitb an allocationV/ (b) € 7 and a pricing



m(b) with a pricer; to be paid by agent A randomized mechanism maps a set of bids to a distribution
over J; we useM (b) to denote this distribution ovdrx .J.

We focus on the class of incentive compatible mechanismsaéhtereafter assume thdi = v. We
useR™ (v) to denote the revenue of a mechaniaat valuation vectox: RM (v) = >._; mi(v) where
7 is the pricing rule ford/. To aid disambiguation, we sometimes &g (v) to denoter;(v) for M. The
expected revenue of a mechanisnRi¥ = E, [RM (v)].

We consider the following special cases of the BMUMD:

Setting 1: Single agent with independent valuesThe agent values itematv;, which is an independent
random variable with distributio’; and densityf;.

Setting 2: Single agent with additive values There aren items, and the agent's typéto, - - , ¢}, IS
m + 1 dimensional.t; is distributed independently according&p. The agent’s value for item

jiSUj =to +t;.

Setting 3: Multiple agents and multiple items with independnt values There are: agents anan items.
Agenti’s value for itemj, v;;, is distributed independently according £9;. Any matching
between items and agents is feasible.

Setting 4: Multiple unit-demand agents with matroid feasilility constraint. There aren agents andn
services. Agent’s value for itemy, v;;, is distributed independently according ;. The set
system.7 is an intersection of a matroid with the unit-demand coivstsefor the agents and is
thus a generalization of the previous matching settinge (Sectiorl 5J1 for the definition of a
matroid.)

Single-parameter mechanism design

The single-parameter version of the Bayesian optimal nréstradesign problem (abbreviated BSMD) is
stated as follows. There aresingle-parameter agents and a single seller providingtaineservice. Agent
i's valuew; for getting served is a random variable. We wsg to denote the vector of values of all agents
except agent. The seller faces a feasibility constraint specified by sgstem7 C 2["), and is allowed to
serve any set of agents ii. As in the multi parameter case, a mechanisfrior this problem is a function
that maps a vector of valuasto anallocation M (v) € J and apricing w(v). Myerson’s seminal work
describes the revenue maximizing mechanism for BSMD; thigr@al mechanism is deterministic.

2.2 Relating multi-parameter MD to single-parameter MD

In previous work[[9] we presented a general reduction froenttulti-parameter optimal mechanism design
problem to the single-parameter setting. This approacmbegjth defining an instancg*°Pesof the BSMD
given an instancg of the BMUMD. Our previous work then shows that for severaidd of feasibility
constraints there exists a deterministic mechanisnT fatith revenue at least a constant fraction of that of
the optimal mechanism faEc°PeS We state these results below without proof.

We begin by describing the instan&°¢S Let 7 be an instance of the BMUMD with agents and a
single seller providingn different services, and with feasibility constrajfit We define a new instance of
the BSMD in the following manner. We split each agerifimto m distinct agents (hereafter called “copies”
or “pseudo-agents”). Each pseudo-agent is interested imgéestem; € [m] and behaves independently
of (and potentially to the detriment of) other pseudo-ageRbrmally, the instance hasn distinct pseudo-
agents each interested in a single service; pseudo-gggnt value for getting served;;;, is distributed
according toF;;. The mechanism again faces a feasibility constraint giyetiné set systeny .

6



TCoPies s similar toZ except that it involves more competition (among differeseydo-agents corre-
sponding to the same multi-parameter agent). Therefosenidfiural to expect that a seller can obtain more
revenue in the instanc&°Pesthan inZ. The following results show that in Settings 1 and 3 it caroixain
too much more.

Theorem 1 (Theorem 4 and 10 ir [9]) Given an instanZeof the single agent BMUMD (Setting 1), there
exists a truthful deterministic mechanism forwhose revenue is at least 1/2 of the revenue of any truthful
mechanism for the instan@&°P'es

Theorem 2 (Theorem 14 in[[9]) Given an instancgé of the BMUMD with multiple agents and multiple
items (Setting 3), there exists a truthful deterministichamism forZ, whose revenue is at least27th of
the revenue of any truthful mechanism for the instabfg'es

In Setting 4, [9] obtain a somewhat weaker result compatmggrevenue of an incentive-compatible
mechanism foZ c°P€sto that of a deterministic mechanism fbthat is not truthful but is aimplementation
in undominated strategig8]. Formally, for an agent, a strategys; is said to be dominated by a strategy
s, if for all strategiess_; of other agents, the utility thatobtains from usings; is no better than that from
using s, and for some strategy._;, it is strictly worse. A mechanism is an algorithmic implemtegion of
an a-approximation in undominated strategies if for every onte of the mechanism where every agent
plays an undominated strategy, the objective functionevalithe mechanism is within a factor afof the
optimal, and every agent can easily compute for any dondrettategy a strategy that dominates it.

Theorem 3 (Theorem 17 in[9]) Given an instan@eof the BMUMD with unit-demand agents and a general
matroid constraint (Setting 4), there exists a deterministechanism foZ implemented in undominated
strategies, whose revenue is at ledg8th of the revenue of any truthful mechanism for the instaff€@°s

3 Lotteries and randomized mechanisms

We now define a class of mechanisms for the BMUMD that will befuisin our analysis. The following
subsection shows that this class encompasses arbitratgmared mechanisms.

3.1 Lotteries or random allocations

An m-dimensionalotteryis a vector = (q1,- - - , qm, p) Wherep is the price of the lottery an@1, - - - , ¢,,)
is a probability distribution ovem items,zje[m} ¢; < 1. Alottery pricing £ = {¢1, /s, --- } is a random-
ized selling mechanism for items targeted towards a single unit-demand buyer whereuyer is offered
a collection of (an arbitrary number of) lotteries. The bugan select any one or no lottery from the col-
lection, and is then allocated an item drawn from the prditaldistribution defined by the lottery and
charged the price of the lottery. A rational risk-neutrayéuselects the lottery that maximizes her utility:
> jeim) 4V — -

A lottery-based mechanisi © for m services targeted towardsagents is a randomized selling mech-
anism defined through an ensemble of lottery pricidggd/~ and L satisfy the following properties:

1. For every instantiation of values of the agentsC containsn lottery pricings,£q(v), - , L,(v),
where£;(v) is anm-dimensional lottery pricing targeted toward agént

2. L;(v) is afunction ofv_;, the values of all agents other than agent



3. The mechanismd/* is implemented as follows. It first elicits bids from agents, and then offers
to agenti (simultaneously with other agents) the lottery priciigb). Let ¢;(b) denote the lottery
picked by agent and letg;;(b) denote the probability with which lotter;(b) offers servicej to
agenti. Agenti is allocated iteny with probability g, (b) 4

4. The probabilitieg;;;(v) satisfy the following feasibility constraint:

37 Gii(v) <7(8), ¥S CIx J, v
(4,7)€S

wherer(S) is the cardinality of some maximum sized feasible subsetff

3.2 Randomized mechanisms as lotteries

We now show that every truthful randomized mechanism foBREJMD can be interpreted as a truthful
lottery-based mechanism.

Lemma 4 Every incentive-compatible randomized mechanism for di+agént BMUMD problem is equiv-
alent to a lottery-based mechanism.

Proof: Given a mechanismi/ with randomized allocation rul@/(v) and pricing ruler(v) we define a
lottery-based mechanism as follows. Consider an agant a fixed instantiation of _;,. Then for every
instantiation ofv;, consider the probabilities with whicll allocates servicg to agenti, as well as the prices
that M/ charges. Each such probability vector along with the cpoeding price forms a lottery if;(v_;)
in the new mechanism. Formal%(v_i) = {(qi,pi) | Jv; with q; = Mi(V_Z', Vi) andpi = 7TZ'(V_Z‘, Vz)}

We now claim that the allocation rule and pricing rule of teemechanism is precisely the same as the
old mechanism. Suppose not. Then at some valuation veetod for some agetit (q;(v_;, v;), pi(v_i, vi)) #
(M;(v_i,v;),mi(v_i,v;)), where the former is the allocation and price rule for théelytbased mecha-
nism and the latter the allocation and price rule for theinagmechanism\/. But, given our construction,
(di(v_iy vi),pi(Vvoiyvi)) = (M (v_;, v}), m(v_;,v})) for some other value vectar, for agent:. But this
implies that in)M agenti can benefit from lying and reporting; when the true value vector #. This
contradicts the incentive compatibility af. [ |

3.3 A mechanism forZc°Peshased on lotteries

As noted earlier, our main technique is to relate the reverflettery-based mechanisms for an instafice
of the BMUMD to the optimal mechanism for a related instafié®s of the BSMD. We now describe a
mechanism fo¢°P€Shased on a given lottery-based mechanisniZfor

Consider an instanc& of the BMUMD. Given a lottery-based mechaniskfi“ for Z that uses the
ensemble of lottery pricing§, we define a mechanism” for the instance coPes

Based onZ, the mechanism4 forms a one dimensional lottery pricing for each of the pseudo-
agents. The lottery pricing offered to pseudo-aggny), which we denotel;;, is a function ofv_;;

Note that these allocations to agents are not necessariyiddependently; The feasibility constraint may requingelations
between items allocated to different agents. However thetsls do not affect our analysis, so we ignore them.
3This condition is weaker than may be necessary for certaidskof set systems, but suffices for our purpose.



and is derived from the lottery pricing; < £ as follows. Given a valuation vecter_;;, for each? =
(Qih qi2, - .- ,qim,p) S Ei(V_Z'), AL adds a |0ttel’)€j = (q/,p/) to £ij defined by

¢’ = qij; and
p=p- Z GikVik + Wi (V—ij),
=y

where the termy;;(v_;;) > 0 is chosen to be the least value ensuring that the lottergpeef by pseudo-
agent(, j) whenwv;; = 0 (if any) has a non-negative price.
We note the following properties of~:

1. (truthfulness) Thati* is truthful follows immediately from the fact that the onerginsional lottery
pricing £;; offered to pseudo-ageit, j) does not depend on};, and the pseudo-agent may choose
any lottery fromZ;;.

2. (allocation rule) Suppose first that for, j) and somev_;;, u;;(v—;;) = 0. Then for anyv;;, the
utility of pseudo-agenti, j) from lottery/; € L;; is the same as utility of agenfrom lottery? € £;.
Therefore withu;;(v_;;) = 0, in MP* agenti purchases lottery € £; if and only if, in A* the
pseudo-agent:, j) purchases lottery; € L;;. Moreover, since the price shifig;(v_;;) we apply
are the same for every lottery offered(to;), the only manner in which preferences can change is if
the pseudo-agent obtains negative utility from his prefitottery, in which case he chooses to buy
no lottery at all. However, our choice af;(v_;;) ensures that the agent obtains non-negative utility
atv;; = 0 and thus also at arbitrary;, and so the allocation rule of* is identical to that of\/~.

3. (feasibility) Feasibility follows immediately from tHact that)/~ satisfies feasibility and the alloca-
tion rules of the two mechanisms are identical.

4. (nonnegative revenue) Our choicewgf(v_;;) ensures that the revenu” receives from each agent
is always nonnegative; this is critical in later argumestace it allows us to claim that the revenue
that A* obtains from any subset of the pseudo-agents is boundeddbmve by the total expected
revenue ofA~.

We now relate the revenues 8~ and A*. Leta be any function carrying valuation vectors to sets
of pseudo-agents which respects the unit-demand cortstrainfor any valuation vectov, for eachi € 1
there exists at most onge J such that(i, j) € a(v). We call such a function a unit-demand allocation
function. Then we get the following lemma.

Lemma 5 For any valuation vectox and any unit-demand allocation functiativ), we have

L L
R ()< > Ry W+ D a(v)vy
(i,9)€a(v) (4.9)¢a(v)
<RYEW)+ Y g,
(i.4)¢a(v)

wherel;(v) = (¢i1(v), ..., qim(V), pi(v)) is the lottery purchased by agehat valuationv in the mecha-
nismM~.



Proof: The revenueR* (v) of the lottery-based mechanisii* atv can be written as the sum of the
revenues from the constituent lottery pricings:

RMC(V) = Z RZMC(V).
i=1

If we definel;(v) = (¢gn(v),...,qm(v),pi(v)) € L; to be the lottery chosen by agehtt v, then
RZML (v), which is just the price;(v), can be written as

R (v) = (pz(V) -3 Qik(V)Uz'k> + > qik(V)vik

oy oy (1)
L
<SRG (V) 4D an(v)vir,
oy

for anyj, whereR;‘j‘.L (v) is the revenue of mechanisat” from the pseudo-ageit, j). Furthermore, since
agent; would never elect to purchase a lottery yielding negativéytwe also have that

RME (v) < Z Qi (V) Vik- (2)
k:

Note that we designedl” such it receives nonnegative revenue from every pseudaageda contains
at most one pseudo-agefit j) for anyi; so by applying one of {1) of2) for eaghaccording to which
pseudo-agents(v) contains, we get that

L L
RM(v)< > Ry W+ > a(v)vy
(4,9)€a(v) (4.9)¢a(v)
<RYEW)+ Y g,
(i.4)¢a(v)

the claimed bound. [ ]

4 Single-agent setting

In this section we focus on instances of the BMUMD involvingiagle agent andr items. In the single
agent setting, randomized and deterministic mechaniseente simply lotteries and pricings, respectively.
Briest et al. [[7] demonstrated that when values for diffeitams are arbitrarily correlated, it is possible
to construct examples where the ratio between the optinpEagd revenues from lotteries and pricings is
unbounded. We show that in the absence of such correlatismatio is small. Specifically, when values
are distributed independently, the ratio is no more thg®ection[4.1l). Moreover, when values have a
certain kind of positive correlation (additive values;t®ef 2 described in Sectidn 2.1), the ratio is at most
8 (Sectior 4.R).

4.1 Independent values (Setting 1)

We first analyze Setting 1, that is where the value of the afggritem ¢, v;, is independently distributed
according to c.d.fF;. Given an instancg of the single agent BMUMD, consider the form of the assodiate
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instanceZPies Note that while each pseudo-agent desires a different iteerfact that only one item may
be sold means they are effectively competing for the sanng tithe privilege of being served. Thag?Pr'es
can be thought of as being in a single-item auction settifgs dbservation leads to the following lemma.

Lemma 6 For any instanceZ of the BMUMD in Setting 1, the revenue of the optimal deteistimmecha-
nism is at least one-fourth the revenue of the optimal raridedhmechanism.

Proof: As previously observed, any randomized mechanism in tlggesagent setting is precisely a lottery
pricing £. Let the mechanisrd” be as described in Sectibn B.3. Applying Lenima 5 with) = i* =
argmax;(v;) yields

RE(v) < RA (v) + Z qi(v)v;
i
< RA (v) + max v,
i
since theg;(v)’s sum to at most one. The key observation is that the secondiseprecisely the revenue
that the Vickrey auctio’ would achieve in the instan&*°P'*sgiven bidsv; so we get that in expectation

RE < RAS L RY,

and need only apply Theordm 1 to prove the lemma. [ |

4.2 Additive values (Setting 2)

We demonstrate that a result similar to that of the previ@mgi@n holds even in the presence of certain
types of correlation. Consider again the single agentrggttiince the agent is unit demand, it makes sense
to think of the services being offered as perfect subsstute natural form of correlation, then, would be
for the agent to have some “base” value for being served r@gss of which service is received), plus an
additive value specific to the particular service received.

The setting we consider modifies the single-agent settinghaking agent types consist 0f, + 1)
independently distributed valuésy, t1, . .., t.,, }; now, the agent’s value for iteinrbecomes); = t; + to.

Let £ be a lottery system over items in the additive setting described. We have the folhgwemma.

Lemma 7 Given an instanc& of the BMUMD in Setting 2, the revenue of any lottery systefior 7
satisfiesR~ < 8RP, for some pricingp for Z.

Proof: We begin by demonstrating a bound with a weaker multipheatactor of9 and then show how to
improve it to a factor oB. Our main technique is to consider an uncorrelated seftirgrived fromZ. We
defineZ’ to be a single agent setting withm + 1) items, and interpret the valué¢s,, . . . , t,, } making up an
agent's type irZ as being the values of the agent in settifidor the (m + 1) items. In keeping witlZ, the
feasibility constraint we associate wiffi is that we may sell itend, and at most one additional item from

among itemd, ..., m. Note that the agent i’ is not a unit-demand agent.
We now construct a lottery systefil for instanceZ’ from £. Let? = (q1,...,qm,p) be a lottery in
L. Definegy = >, ¢;, and construct’ = (qo, ..., qmn,p). Note that?’ does not necessarily satisfy the

requirement that the;’s sum to at most one; it does, however, satisfy the feasihstcaint indicated for
Z'. We may thus still apply the same technique as in the prookafind 6, albeit with a worsened constant.

11



Let £’ be the system oven + 1 services consisting of all of thé defined as above based 6rE L.
Now, for any setting oty, . .., t,,, note that the the utility an agent #ireceives from a particular lottery

teLis
m m m
qu —p= ZQi(ti+t0) —p= ZQiti -
i=1 i=1 =0

precisely the utility a corresponding agentdhwould receive from the correspondirfg e £’. We thus
haveR‘ = RE.

Consider applying the proof of Lemriih 6£6. Due to the less restrictive feasibility constraiht (* ) ¢; <
2) we get

RME < RAC 4 2RV
< 3RM',

where the mechanism4Z’ and)’ are interpreted as being in the copies setﬂﬁ@f"eg associated with’,
and M’ is the optimal mechanism in this setting. In order to provearidl of the form desired, however,
we need to relate a mechanism in the setﬂﬁ?j’ieé to a deterministic one (a pricing) in.

The key observation is that our feasibility constrainZ fries (carried over fronZ’) means that\’ may
make decisions about allocations and prices for pseudotdgseparately from those for pseudo-agents
1,...,m; as such,M effectively consists of two mechanisms, one serving pseggmt0 and another
serving pseudo-agents...,m, both under a unit-demand constraint. Now, the optimal raecm for
serving the lone single-parameter pseudo-agent is a grieind Theoreri]1 gives us that a mechanism
serving pseudo-agents. .., m is within a factor of2 of a pricing onm items; so recalling that an agent in
settingZ has a value of; = t; + tg for item¢, we can see that

RE < 3RM < 9RP,

wherep is the optimal pricing for the setting.

In order to improve the factor frorfl to 8, we need to consider the revenue a mechanignin the
setting Z°°Pe¢ obtains from pseudo-ageftand from pseudo-agents ..., m; at a particular valuation
vectort denote these quantities & (t) and R (t), respectively. Now, as previously noted, the optimal

mechanismM in Z¢oPies may treat pseudo-ageftindependently from pseudo-agerits . . ,m; thus, we
have that any mechanisi in this setting must satisfy botR} (t) < R{)‘/‘ (t) andRM, (t) < Rﬁ’(‘)(t).
Since we know tha} ;" | ¢; < 1, whent is the maximum among all thg, Lemmé&5 implies

RE(t) <R3 (1) + R (b);
On the other hand, when oneigf . . . , ¢, takes on the maximum value, we end up with, for same
RE(t) < R (1) + 2RY (1),
Combining these two gives us a pointwise guarantee of
RE(t) <R3V () + RY(6) + R4 (t) + 2RY o (t)
< 2R (1) 4+ 3RM ().
Therefore,
RE < 2RIM + 3RM < 2RP 4 6RP
implying the claimed bound d. [ |
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5 Multi-agent setting

In this section we study multi-agent versions of the BMUMDI@mce again bound the gap between deter-
ministic and randomized mechanisms with respect to exgeeteenue for this setting. The starting point

for our bounds is the observation in Section 3.2 that randedhimechanisms for this problem can be inter-
preted as lottery-based mechanisms. We first discuss &8&ttimamely instances with multiple agents and
multiple items and a “matching” feasibility constraint. & Following subsection contains a more general
version with a matroid intersection feasibility constiai@etting 4).

5.1 The multi-item auction setting (Setting 3)

We consider instances of the BMUMD where the seller hadifferent items, withk; copies of itemy,
and each of thex unit-demand buyers have independently distributed valoesach item. The seller's
constraint is to allocate itemto no more thark; agents, and to allocate at most one item to each agent.

We note that the set system defined by this feasibility camgtis a matroid intersection. A set system
(E,F) whereE is the ground set of element& (= I x J in our setting) is a matroid if it satisfies the
following properties.

1. (heredity) For everyA € F, B C AimpliesB € F.
2. (augmentation)For everyA, B € F with |A| > |B|, there exists an € A\ B suchthatBU{e} € F.

The sets in a matroid set system are called independent sets.

A matroid intersection set systeffi is an intersection of two matroidsF = F; N F» whereF; and
JF are matroids. The unit-demand constraint and the supplgtnts for each item are each instances
of a partition matroid. Thus the systemin this setting can be seen to be an intersection of two artit
matroids. We usg/; and /7, to denote the two constituent matroids, and the term magdioimefer to any
allocation or set in7.

We will need the following facts about matroids.

Proposition 8 Let B; and B be any two independent sets of equal size in some matroigistetr®. Then
there is a bijective functiog : B; \ Ba — Bs \ B; such that for alle € By \ Be, By \ {e} U {g(e)} is
independent irf.

Corollary 9 Let By and B, be arbitrary independent sets in some matroid set systefirhen there exists
asetB) C B, and a one to one function : B, — B such that for alle € B}, By \ {g(e)} U {e} is
independent irf, and for alle € By \ B, By U {e} is independent iig.

Proof: In order to apply Propositionl 8 we need independent setsudlesize. So we begin by repeatedly
applying the augmentation property to whicheveixfand B, is smaller in order to end up with two sets
B1 D By and By D By such that By | = | By|. Now, Propositioi 8 guarantees us a bijectionB; \ By —
B1 \ By suchthatve € By \ By, By \ {g(e)} U {e} is independent.

SetBy = By \ By C By \ By, note that sinceB;CB; U By, we haveB; \ By C B;. Thus, we
may viewg as a one to one function : By’ — Bj. It retains the first specified property, since for any
e € By, By \ {g(e)} U{e} C B\ {g(e)} U {e} isindependent. Furthermores B, \ By’ C B; implies
By U {e} C B isindependent, and so the second specified property holdelas [ |

Our proof consists of three steps:
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1. From Lemma}, we note that any randomized mechanism f®ptioblem can be seen as a lottery-
based mechanism.

2. We bound the revenue of any lottery-based mechanism fimstanceZ of the BMUMD by those of a
collection of three truthful deterministic mechanismstfue corresponding single-parameter instance
with copies, Z¢oP'€s

3. We use the result in [9] (Theorem 2) to construct a trutiteerministic mechanism faf whose
revenue is within a factor of /27 of the optimal revenue faf°P'es

Lemma 10 Consider an instancg of the BMUMD in Setting 3. The revenue from any lottery-basedh-
anismM ¥~ for Z is at most five times the expected revenue of Myerson’s misaohéor the instanc&ceries

Proof: We define three truthful deterministic mechanisids, M,, Ms for ZC°P€s gl facing the same
feasibility constraint7 as the set of lottery pricing§, such that

RM (v) < RM (v) + 2 (RM2 (v) + RM3(v)) (3)
< 5RM(v),

The second inequality follows from the optimality of Myens® mechanism for single parameter settings
(Myerson’s mechanism also faces the feasibility constrain

Consider theZPes setting and fix an instantiation of values Let A;(v) denote the set of pseudo-
agents that belong to the maximum-valued matching (we d@ptgument wherever it is obvious). Among
the remaining 7 x J) \ A; pseudo-agents, again ldt denote the set of pseudo-agents that belong to the
maximum-valued matching i.e.

Ay (v) = argmax  v(S).
SClmn],SNA1(v)=0
S is a matching

We may assume without loss of generality tHatand A, are defined uniquely.
Note thatA; (v) is a unit-demand allocation function. Therefore, Leniinha plies that

RML (V) < R'AL (V) + Z qij (V)’Uij . (4)
Termy (Zvj)iAl(v)
Termp

We now define the three mechanisis, M, and M5 for Z¢°P€S MechanismM/; is AL and soR™M! is
exactly Term. Mechanisms\/, and M3 are defined in such a way thagRM2 + RM3) is at least Term
This would provel[(B).

Now, Corollany[® implies the existence of two one to one péftinctions with the following properties.

g1: Ay — Ay s.t.Ve € Ay :
g1(e) is undefined andl; U {e} € 71, or
g1(e) is defined andd; \ {g1(e)} U {e} € Th
go i Ay — A s.t.Ve € Ay :
g2(e) is undefined andl; U {e} € 7, or
g2(e) is defined andd; \ {gz2(e)} U {e} € Jo
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Note that the maximality ofi; implies that every element of, has an image under either or g, or both.
We define the mechanisndd; and M3 by specifying their allocation rules. Given a valuationteess, the
mechanism\/, serves only those pseudo-agefits/) that belong ta4; and for whichv;; > Vgt j)/2 (if

g7 ! is defined at that point). Likewise, mechanidry serves only those pseudo-agefitg) € A, that have
;> Vg (i /2 (if defined). We note thad/, and M3 have monotone allocation rules, and are therefore
truthful Truthful payments can be defined appropriatelyeylalso satisfy the feasibility constraift

We now prove the revenue guarantee féy and M3 through the following two claims.

Claim 1 Twice the combined revenue of mechanigmisand M3 is no less than the sum of values of all
pseudo-agents ids, i.e.,

2 (R]\/fz( ) R]V13 Z Vij.

(7‘7])6*42

Proof:Consider any pseudo-agefitj) € A,, and the pseudo-agens(i, j) andgx(i,j) € A; if defined.
Note thatA} = A; U (4,5) \ {91(i,4),92(i,7)} is feasible. Suppose both, (; ;) and vy, ;) are less
thanv;;/2; then the matchingl] is a valid matching and(A}) > v(A;) which is a contradiction to the
optimality of A;. Thus one oby,, ; ;) Or vy, (; ;) Must be at least;;/2 and we get this amount if> or M;
respectively. [ |

Claim 2 The sum of values of all pseudo-agentsiinis no less than Term

doowi= Y gV

(6,5)€A2(v) (6,5)¢A1(v)

Proof:Consider the: x m matrix of all probabilitiesy;;(v). This matrix arose from a feasible randomized
mechanism; it therefore represents a probability distigipuover matchings and can be represented as a
convex combination of matchings. In this probability matrieplace with zeros all the entri¢s j) € A;.

The newly obtained matrix can be represented as a convexicatian of matchings all of which have a
zero entry for everyi, j) € A;. Then the claim follows by the definition ofs. [ |

Claims1 and together with Equations$ (3) and (4) completeotbof. [ |

Theorem 11 The revenue of any randomized mechanism for an instance &NUMD in Setting 3 is at
most33.75 times the revenue of the optimal truthful deterministic Ina@ésm for the instance.

Proof: The proof follows from Lemmads 4 and]10, and Theotém 2. [ ]

5.2 The general matroid setting (Setting 4)

We now show that Theorem1l1 extends to the general matradsettion version of the BMUMD as well.
While Lemmd_I0 extends to this more general setting almaattx the counterpart of Theordrh 2 for this
setting is somewhat weaker. So we can only bound the gap esttixe revenue of an optimal random-
ized incentive-compatible mechanism and that of an optoletérministic implementation in undominated
strategies (see Theorérh 3) for this setting.

As defined earlier, in Setting 4, the seller faces a feagjlgbnstraint specified by the set systemC
21xJ “wherel is the set of agents andl is the set of services7 is the intersection of a general matroid
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constraint (given by7;) and the unit demand constraint (that we denote usi)g.7 = J1 N J2. Note that
Jo is also a matroid.

We use the same three step approach as for the matchingn/gr&iound the revenue of the randomized
mechanism

Lemma 12 Consider an instancg of the BMUMD in Setting 4. The revenue from any lottery-basedh-
anismM* for instanceZ is at most five times the expected revenue of Myerson’s mieohéar the single
parameter instance with copigg°©r'es

Proof: We will prove this Lemma along the lines of our proof for Lemii@ We define three truthful
deterministic mechanism¥/;, M, M; for Z¢°P'Sso that
RM (v) < RMi(v) 42 (RM2 (v) + RM3 (v)) (5)
< 5RM(v).
As before, given an instantiation of valueslet A;(v) denote the set of pseudo-agents that belong to

the maximum valued feasible set. Among the remaining psegeaots, letds(v) denote the set of pseudo-
agents that belong to the maximum valued feasible set i.e.

Ay(v) = argmax v(S)
SeT—A1(v)

Lemmd5 implies
RME ) <RY W)+ Y qii(v)vys

Termy (Zvj)iAl(v)

Termp

Therefore, once again we definé to be A and definel/, and M5 in such a way that twice their revenue
combined is no less than Tesm
As before we can define partial one to one functions febjrio A, satisfying

g1: Ay — Ay s.t.Ve € Ay :
g1(e) is undefined andl; U {e} € 7, or
g1(e) is defined andd; \ {g1(e)} U {e} €
go i Ay — A s.t.Ve € Ay :
g2(e) is undefined andl; U {e} € 7, or
g2(e) is defined andd; \ {g2(e)} U {e} € T
The mechanisma/, and M3 are also defined as befor@/, serves only those pseudo-agefits;) in
Ay for which v;; > vgfl(i,j)/2 (if defined), andM35 serves only those pseudo-agefits/) € A; that have
vij > vggl(ivj)/2 (if defined). We note that every element.y gets mapped to at least one and at most

two elements under the partial functions defined above. €fber, we can extract a revenue of at least
1/237 j)ea, vij from M, and M together. Claimi2 now implies the resullt. |

Theorem 13 The revenue of any incentive compatible randomized mesmmafor an instance& of the
BMUMD in Setting 4 is at most0 times the revenue of the optimal deterministic mechanisri fmple-
mented in undominated strategies.

Proof: The proof follows from Lemmads 4 and]12, and Theotém 3. [ ]
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6 Discussion and open problems

We show that in multi-parameter Bayesian optimal mechamssign the benefit of randomness is only
a small constant factor when agents are unit-demand andwhieies for different items have little or no
correlation. We believe that this result should extend &ainces involving arbitrary positive correlation
between values of a single agent for items that are sulesti{the unit-demand constraint). For example, it
would be interesting to extend our result to the multipli@values model of Armstron@|[2]. Another open
problem is to extend our techniques beyond the unit-demeitidg. This may lead to a better understanding
of and approximations to optimal mechanism design in theiings, for which nothing is known as yet.
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Gap between lottery pricings and Myerson’s mechanism

We give an example where the revenue of a lottery pricing feingle agent BMUMD instancg is 1.13
times the revenue of Myerson’s mechanism for the instaff€&es The instance is defined as follows.
There is a single agent with i. i. d. valuations for two iterdsstributed according to thequal-revenue
distribution, bounded at. Formally, the valuations; andv, for items 1 and 2 have cdfs; and F; such
that

Fi(z) = Fy(x) {1 1/x 1§w<n.
1 r=n

For the single parameter settifi§°"®S an upper bound on the expected revenue of any mechanism can
be obtained by removing the feasibility constraint of aitimg to a single agent at a time. Then, the optimal
revenue with the feasibility constraint is no more than entice optimal revenue that can be obtained by a
single agent alone. The latter, for the equal revenue biigton, is1 regardless of the price charged to the
agent. Therefore, the optimal revenue I6PP€sis bounded above b3. The same bound also applies to the
revenue of any item pricing fdf.

Now let us consider the following lottery pricing for Z.

3n 3n
£ =1{(0.5,0.5,2.5),(1,0,2 + §)’ (0,1,2 + g)}

The first two coordinates in every lottery denote the proiiss with which items 1 and 2 are offered by
that lottery and the third coordinate is the price.

Figure[3 shows the allocation function of this lottery pmigi In particular,R; for i € [3] is the set of
valuations where lotteryis bought. The probability mass of regioRs and R3 together can be computed to
be2(4/3n + O(log n/n?)). The probability mass of regioR; is 0.4 + 0.08In 4 — o(1) ~ 0.51. Therefore,
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the revenue of can be computed to dg/'2 - 0.51 + 3n/8 - 8/3n + o(1) = 2.275 + o(1). This is a factor
of 1.13 higher than the optimal revenue f6f°P'®S, or the revenue of any item pricing far.

V2
A

............

1 4 3n/4 n

Figure 3: The allocation function for the lottery pricidg
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