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The power of randomness
in Bayesian optimal mechanism design

Shuchi Chawla∗ David Malec† Balasubramanian Sivan‡

Abstract

We investigate the power of randomness in the context of a fundamental Bayesian optimal mecha-
nism design problem—a single seller aims to maximize expected revenue by allocating multiple kinds
of resources to “unit-demand” agents with preferences drawn from a known distribution. When the
agents’ preferences are single-dimensional Myerson’s seminal work [14] shows that randomness offers
no benefit—the optimal mechanism is always deterministic. In the multi-dimensional case, where each
agent’s preferences are given by different values for each of the available services, Briest et al. [7] re-
cently showed that the gap between the expected revenue obtained by an optimal randomized mechanism
and an optimal deterministic mechanism can be unbounded even when a single agent is offered only4
services. However, this large gap is attained through unnatural instances where values of the agent for
different services are correlated in a specific way. We show that when the agent’s values involve no
correlation or a specific kind of positive correlation, the benefit of randomness is only a small constant
factor (4 and8 respectively). Our model of positively correlated values (that we call additive values) is a
natural model for unit-demand agents and items that are substitutes. Our results extend to multiple agent
settings as well.

1 Introduction

A fundamental objective in the design of mechanisms is to maximize the seller’s revenue. In the absence
of any information about buyers’ preferences, i.e. in prior-free settings, randomization is a frequently used
algorithmic technique (see, e.g., [11] and references therein); In a spirit similar to randomness in online al-
gorithm design, it allows the seller to hedge against adversarial values. While randomization unsurprisingly
turns out to be essential for any guarantees on revenue in certain prior-free settings, it appears to be not so
in Bayesian settings where the designer has distributionalinformation about the agents’ types and the goal
is to maximize revenue in expectation over the distribution. For example, for a single item auction in the
Bayesian setting, Myerson’s seminal work [14] shows that the optimal mechanism is always a deterministic
one.

In this work we investigate the power of randomness in the context of the following archetypical multi-
parameter optimal mechanism design problem — a single seller offers multiple kinds of service, and a
number of “unit-demand” agents are each interested in buying any one of the services. Whereas in Myerson’s
work each agent has a single-dimensional type (namely a value for the item under sale), in our setting each
agent has a multi-dimensional type characterized by a (different) value for each of the services offered by
the seller. An example of such a setting is an online travel agency selling airline tickets, hotel rooms, etc.
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Figure 1: An example from [18] contrasting the optimal item pricing and the optimal lottery pricing. The
regionsR1, R2, andRLot denote the sets of valuations at which the agent buys item1, item 2, and the
(1/2, 1/2) lottery respectively.

Customers have different preferences over different available services, but are only interested in buying one.
We study the Bayesian version of this problem: the distribution from which the buyers’ preferences are
drawn is known to the seller. Given Myerson’s observation about single-dimensional settings, one might
expect that in the multi-dimensional case the optimal mechanism (ignoring computational issues) is once
again deterministic. Thanassoulis [18] and Manelli and Vincent [12] independently discovered that this is
not the case. This raises the following natural question:what quantitative benefit do randomized mechanisms
offer over deterministic ones in Bayesian optimal mechanism design?

To answer this question we must first understand the structure of randomized mechanisms in multi-
dimensional settings. In the context of a single unit-demand agent and a seller offering multiple items,
any deterministic mechanism is simply a pricing for each of the items with the agent picking the one that
maximizes her utility (her value for the item minus its price). Likewise, randomized mechanisms can be
thought of as pricings for distributions or convex combinations over items. These convex combinations are
called lotteries. A risk-neutral buyer with a quasiconcave utility functionbuys the lottery that maximizes
his expected value minus the price of the lottery.

The following example due to Thanassoulis explains how lotteries work. Suppose that a seller offers two
items for sale to a single buyer, and that the buyer’s value for each of the items is independently uniformly
distributed in the interval[5, 6]. The optimal deterministic mechanism for the seller is to simply price each
of the items atp∗ = $5.097 (see Figure 1). In a randomized mechanism, the seller may in addition price a
(1/2, 1/2) distribution over the two items at a slightly lower price ofp′ = $5.057. If the buyer buys this
lottery, the seller tosses a coin and allocates the first itemto her with probability1/2 and the second with
probability 1/2. A buyer that is nearly indifferent between the two items would prefer to buy the lottery
because of its lower cost, than either one of the items. Whilethe seller loses some revenue by selling the
lower priced lottery with some probability, he gains by selling to a larger segment of the market (those that
cannot afford either of the individual items but can afford the lower priced lottery). In this example the gain
is more than the loss, so that introducing the lottery improves the seller’s revenue. As this example indicates,
lotteries help in optimal mechanism design by giving the seller more latitude to price discriminate among
buyers with different preferences.

In general, a randomized mechanism can offer to the buyer a menu of prices for arbitrarily many lotteries.
We call such a menu alottery pricing, and likewise a deterministic pricing anitem pricing. While in multiple
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Figure 2: An example of a product distribution for valuations contrasted against an example of an additive
distribution.

agent settings randomized mechanisms can be more complicated, we show that any such mechanism can
be interpreted as offering to each agent simultaneously a lottery pricing that is a function of values of other
agents.

The question of whether and to what extent randomization helps in Bayesian optimal mechanism design
is not merely a pedantic one. Mechanisms similar to lottery pricings are seen in practice. For example,
the website priceline.com routinely sells airline ticketsto customers without disclosing at the time of sale
crucial details such as the time of travel, carrier, etc. While customers are unaware of the distribution from
which the final service is picked, the tradeoffs for customers are similar—the uncertainty in the quality of
the final item against the cheaper price. Travel agencies offering vacation packages use similar devices.

Until recently, the largest gap known between item pricingsand lottery pricings for a single agent was
a gap of3/2 due to Pavlov [15]; For the special case where values for different items are independent,
Thanassoulis gave the best gap example with a gap of1.1. Recently Briest et al. [7] showed that in single-
agent settings in fact the gap between lottery pricings and item pricings can be unbounded even with only4
items. However the value distributions for which such gaps are achieved are quite unnatural with the values
of different items being highly correlated. In this paper weshow that the gap between lottery pricings and
item pricings is small for distributions involving limitedcorrelation between items.

We further extend these results to the multiple-agent setting with the seller facing a general feasibility
constraint, obtaining the first results of this kind. Mechanism design in the multiple-agent multi-parameter
setting is poorly understood [19]. Until recently there were no general characterizations for optimal or
approximately optimal mechanisms similar to Myerson’s forthe single-parameter case. Chawla et al. [9]
recently developed constant-factor approximations to optimal deterministicmechanisms in this setting for
a certain class of feasibility constraints (namely matroids and related set systems). We extend their results
to show that their (deterministic) mechanisms achieve a constant factor approximation with respect to the
optimal randomized mechanism as well, again implying a small gap between randomized and deterministic
mechanisms.

Our results and techniques

We follow a technique introduced in [8] for relating multi-parameter mechanisms to mechanisms for a
related single-parameter problem. Chawla, Hartline and Kleinberg [8] relate a single unit-demand agentm-
item mechanism design problem to anm-agent single-item auction setting, by “splitting” the unit-demand
agent intom independent “copies”. They argue that the increased competition among copies benefits the
seller and leads to higher revenue. Formally, given an item pricing p they construct a truthful mechanism
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Ap that allocates the item to agenti wheneverp allocates itemi to the multi-parameter agent (that is,Ap

has the “same” allocation rule asp). They then argue that the price thatAp charges is no less than the
price thatp charges for any instantiation of values. Therefore,the expected revenue of the optimal multi-
parameter mechanism is bounded above by the expected revenue of Myerson’s mechanism for the related
single-parameter problem with copies. Chawla et al. use this upper bound to design an item pricing for the
multi-parameter problem with revenue within a factor of3 of the expected revenue of Myerson’s mechanism
for the instance with copies, thereby obtaining a3-approximation to the optimal deterministic mechanism
for the single-agent problem.

Unfortunately the upper bound of the expected revenue of Myerson’s mechanism does not hold for
randomized mechanisms. The appendix gives an example wherethe revenue of Myerson’s mechanism for
the instance with copies is a factor of1.13 smaller than that of the optimal lottery pricing for the multi-
parameter problem. In fact, the mechanismAL with the “same” allocation rule as a lottery pricingL may
obtain zero revenue even when the lottery pricing obtains non-zero revenue. Our main result is that this gap
between Myerson’s mechanism and the optimal lottery pricing is no larger than a factor of2. Specifically,
given a lottery pricing, we can construct two mechanisms, one beingAL and the other a Vickrey auction,
such that the sum of the revenues of the two mechanisms is an upper bound on the revenue of the lottery
pricing. Combining this with the result of Chawla, Hartlineand Kleinberg (and an improvement over it in
[9]), we get that for a single unit-demand agent multi-parameter problem, the gap between lottery pricings
and item pricings is at most4.

Chawla et al.’s result as well as our factor-of-4 gap holds for instances where the values of the agent
for different items are independent. For a unit-demand agent, this independence assumption is unrealistic.
However, on the other end of the spectrum, Briest et al. show that with arbitrary correlations between item
values, the gap can be unbounded. We therefore examine the following natural model for values involving
limited correlation. The type of the unit-demand agent ism+1 dimensional —(t0, t1, · · · , tm); the agent’s
value for itemi is vi = t0 + ti. Heret0 can be thought of as the buyer’s “base” value for obtaining any
of the items, and theti’s represent the buyer’s perceived quality of the differentitems. This additive value
distribution introduces a positive correlation between values of different items1. Figure 2 shows an example
of one such discrete distribution contrasted against a product distribution.

In this additive distribution setting we show that the gap between randomized and deterministic mech-
anisms is at most a factor of8. Once again our approach is to start with an optimal lottery pricing for the
multi-parameter instance, construct an ensemble of mechanisms based on it for the related single-parameter
instance, and then construct a pricing for the multi-parameter instance based on the mechanisms.

Our results extend to multi-agent settings as well. The simplest multi-agent setting we consider involves
n agents andm items (with copies), where the seller faces a supply constraint for each of the items. A
feasible allocation is a matching between agents and items that respects multiplicities of items. More gen-
erally, we consider settings where the seller faces a matroid feasibility constraint—any feasible allocation
must be an independent set in a given matroid in addition to allocating at most one item per agent (see
Section 5.1 for the definition of a matroid). In both these cases we show that the gap between the expected
revenue of the optimal randomized and the optimal deterministic mechanisms is a small constant factor.
Once again we rely on the approach of relating the multi-parameter instance to a single-parameter instance
where each unit-demand agent is split into multiple selfish “pseudo-agents”. This approach was first devel-
oped in [9]. In particular we showed in [9] that for the settings described above, there exist deterministic
mechanisms that obtain revenue within a constant factor of the revenue of Myerson’s mechanism for the
related single-parameter instance. In Section 5 we show that the revenue of any randomized mechanism for

1This model is similar to “multiplicative” value distributions that have been studied previously in the context of bundle pricing
problems (see, e.g., [2]).
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these settings can be bounded from above by5 times the revenue of Myerson’s mechanism for the single-
parameter instance. The challenge in these settings is to ensure that the mechanisms that we construct satisfy
the non-trivial feasibility constraint that the seller faces.

Related work

As mentioned earlier, randomness is used extensively in prior-free mechanism design (see, e.g., [11] and
references therein). While symmetric deterministic mechanisms provably cannot obtain any guarantees on
revenue in that setting, Aggarwal et al. [1] show that by exploiting asymmetry prior-free mechanisms can
be derandomized at a constant factor loss in revenue.

Our mechanism design setting with unit-demand agents is closely related to the standard setting for envy-
free pricing problems considered in literature [10, 5, 4, 6,8]; Those works study the single-agent problem
with a correlated value distribution and aim to approximatethe optimal deterministic mechanism (item
pricing). Our single-agent setting is most closely relatedto the work of Chawla, Hartline and Kleinberg [8]
who gave a3 approximation to the optimal deterministic mechanism for single-agent product-distribution
instances, and builds upon techniques developed in that work.

In economics literature, the study of Bayesian optimal mechanisms has focused on deterministic mecha-
nisms. It is well-known that for single-parameter instances the optimal mechanism is deterministic [14, 16].
Following Myerson’s result [14] for single-parameter mechanisms, there were a number of attempts to ob-
tain simple characterizations of optimal mechanisms in themulti-parameter setting [13, 17, 19], however
no general-purpose characterization of such mechanisms isknown [19]. Recently Chawla et al. [9] gave
the first approximations to optimal deterministic mechanisms for a large class of multi-parameter problems.
This paper extends techniques developed in that work and oneof the implications of our work is that the
mechanisms developed in [9] are approximately-optimal with respect to the optimal randomized mecha-
nisms as well.

The study of the benefit of randomness in multi-parameter mechanism design was initiated by Thanas-
soulis [18] who presented single-parameter instances withvaluations drawn from product distributions
where randomness helps increase the revenue by about8-10%. Manelli and Vincent [12] and Pavlov [15]
presented other examples with small gaps. Briest et al. [7] were the first to uncover the extent of the benefit
of randomization. They showed that lottery pricings can be arbitrarily better than item pricings in terms of
revenue even for the case of4 items offered to a single agent.

2 Definitions and problem set-up

2.1 Bayesian optimal mechanism design

We study the following mechanism design problem. There is one seller andn buyers (agents) indexed by
the setI. The seller offersm different services indexed by the setJ . Agents are risk-neutral and are each
interested in buying any one of them services. Agenti has valuevij for servicej which is a random
variable. We usev−i to denote the vector of values of all agents except agenti. The seller faces no costs for
providing service, but must satisfy certain feasibility constraints (e.g. supply constraints in a limited supply
setting). We represent these feasibility constraints as a set systemJ over pairs(i, j), that is,J ⊆ 2I×J .
Each subset ofI × J in J is a feasible allocation of services to agents.

The seller’s goal is to maximize her revenue in expectation over the buyers’ valuations. We call this
problem theBayesian multi-parameter unit-demand (optimal) mechanism designproblem (BMUMD). A
deterministic mechanism for this problem maps any set of bidsb to an allocationM(b) ∈ J and a pricing
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π(b) with a priceπi to be paid by agenti. A randomized mechanism maps a set of bids to a distribution
overJ ; we useM(b) to denote this distribution overI × J .

We focus on the class of incentive compatible mechanisms andwill hereafter assume thatb = v. We
useRM (v) to denote the revenue of a mechanismM at valuation vectorv: RM (v) =

∑

i∈I πi(v) where
π is the pricing rule forM . To aid disambiguation, we sometimes useRM

i (v) to denoteπi(v) for M . The
expected revenue of a mechanism isRM = Ev[R

M (v)].
We consider the following special cases of the BMUMD:

Setting 1: Single agent with independent values. The agent values itemj at vj , which is an independent
random variable with distributionFj and densityfj.

Setting 2: Single agent with additive values. There arem items, and the agent’s type,{t0, · · · , tm}, is
m + 1 dimensional.tj is distributed independently according toFj . The agent’s value for item
j is vj = t0 + tj.

Setting 3: Multiple agents and multiple items with independent values. There aren agents andm items.
Agent i’s value for itemj, vij , is distributed independently according toFij . Any matching
between items and agents is feasible.

Setting 4: Multiple unit-demand agents with matroid feasibility constraint . There aren agents andm
services. Agenti’s value for itemj, vij, is distributed independently according toFij . The set
systemJ is an intersection of a matroid with the unit-demand constraints for the agents and is
thus a generalization of the previous matching setting. (See Section 5.1 for the definition of a
matroid.)

Single-parameter mechanism design

The single-parameter version of the Bayesian optimal mechanism design problem (abbreviated BSMD) is
stated as follows. There aren single-parameter agents and a single seller providing a certain service. Agent
i’s valuevi for getting served is a random variable. We usev−i to denote the vector of values of all agents
except agenti. The seller faces a feasibility constraint specified by a setsystemJ ⊆ 2[n], and is allowed to
serve any set of agents inJ . As in the multi parameter case, a mechanismM for this problem is a function
that maps a vector of valuesv to anallocationM(v) ∈ J and apricing π(v). Myerson’s seminal work
describes the revenue maximizing mechanism for BSMD; this optimal mechanism is deterministic.

2.2 Relating multi-parameter MD to single-parameter MD

In previous work [9] we presented a general reduction from the multi-parameter optimal mechanism design
problem to the single-parameter setting. This approach begins with defining an instanceIcopiesof the BSMD
given an instanceI of the BMUMD. Our previous work then shows that for several kinds of feasibility
constraints there exists a deterministic mechanism forI with revenue at least a constant fraction of that of
the optimal mechanism forIcopies. We state these results below without proof.

We begin by describing the instanceIcopies. Let I be an instance of the BMUMD withn agents and a
single seller providingm different services, and with feasibility constraintJ . We define a new instance of
the BSMD in the following manner. We split each agent inI intom distinct agents (hereafter called “copies”
or “pseudo-agents”). Each pseudo-agent is interested in a single itemj ∈ [m] and behaves independently
of (and potentially to the detriment of) other pseudo-agents. Formally, the instance hasmn distinct pseudo-
agents each interested in a single service; pseudo-agent(i, j)’s value for getting served,vij , is distributed
according toFij . The mechanism again faces a feasibility constraint given by the set systemJ .

6



Icopies is similar toI except that it involves more competition (among different pseudo-agents corre-
sponding to the same multi-parameter agent). Therefore it is natural to expect that a seller can obtain more
revenue in the instanceIcopiesthan inI. The following results show that in Settings 1 and 3 it cannotobtain
too much more.

Theorem 1 (Theorem 4 and 10 in [9]) Given an instanceI of the single agent BMUMD (Setting 1), there
exists a truthful deterministic mechanism forI, whose revenue is at least 1/2 of the revenue of any truthful
mechanism for the instanceIcopies.

Theorem 2 (Theorem 14 in [9]) Given an instanceI of the BMUMD with multiple agents and multiple
items (Setting 3), there exists a truthful deterministic mechanism forI, whose revenue is at least4/27th of
the revenue of any truthful mechanism for the instanceIcopies.

In Setting 4, [9] obtain a somewhat weaker result comparing the revenue of an incentive-compatible
mechanism forIcopiesto that of a deterministic mechanism forI that is not truthful but is animplementation
in undominated strategies[3]. Formally, for an agenti, a strategysi is said to be dominated by a strategy
s′i if for all strategiess−i of other agents, the utility thati obtains from usingsi is no better than that from
usings′i, and for some strategys−i, it is strictly worse. A mechanism is an algorithmic implementation of
anα-approximation in undominated strategies if for every outcome of the mechanism where every agent
plays an undominated strategy, the objective function value of the mechanism is within a factor ofα of the
optimal, and every agent can easily compute for any dominated strategy a strategy that dominates it.

Theorem 3 (Theorem 17 in [9]) Given an instanceI of the BMUMD with unit-demand agents and a general
matroid constraint (Setting 4), there exists a deterministic mechanism forI implemented in undominated
strategies, whose revenue is at least1/8th of the revenue of any truthful mechanism for the instanceIcopies.

3 Lotteries and randomized mechanisms

We now define a class of mechanisms for the BMUMD that will be useful in our analysis. The following
subsection shows that this class encompasses arbitrary randomized mechanisms.

3.1 Lotteries or random allocations

An m-dimensionallottery is a vectorℓ = (q1, · · · , qm, p) wherep is the price of the lottery and(q1, · · · , qm)
is a probability distribution overm items,

∑

j∈[m] qj ≤ 1. A lottery pricingL = {ℓ1, ℓ2, · · · } is a random-
ized selling mechanism form items targeted towards a single unit-demand buyer where thebuyer is offered
a collection of (an arbitrary number of) lotteries. The buyer can select any one or no lottery from the col-
lection, and is then allocated an item drawn from the probability distribution defined by the lottery and
charged the price of the lottery. A rational risk-neutral buyer selects the lottery that maximizes her utility:
∑

j∈[m] qjvj − p.

A lottery-based mechanismML for m services targeted towardsn agents is a randomized selling mech-
anism defined through an ensemble of lottery pricingsL. ML andL satisfy the following properties:

1. For every instantiation of values of the agentsv, L containsn lottery pricings,L1(v), · · · ,Ln(v),
whereLi(v) is anm-dimensional lottery pricing targeted toward agenti.

2. Li(v) is a function ofv−i, the values of all agents other than agenti.
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3. The mechanismML is implemented as follows. It first elicits bidsb from agents, and then offers
to agenti (simultaneously with other agents) the lottery pricingLi(b). Let ℓi(b) denote the lottery
picked by agenti and letqij(b) denote the probability with which lotteryℓi(b) offers servicej to
agenti. Agenti is allocated itemj with probabilityqij(b).2

4. The probabilitiesqij(v) satisfy the following feasibility constraint:

∑

(i,j)∈S

qij(v) ≤ r(S), ∀S ⊆ I × J, ∀v

wherer(S) is the cardinality of some maximum sized feasible subset ofS.3

3.2 Randomized mechanisms as lotteries

We now show that every truthful randomized mechanism for theBMUMD can be interpreted as a truthful
lottery-based mechanism.

Lemma 4 Every incentive-compatible randomized mechanism for a multi-agent BMUMD problem is equiv-
alent to a lottery-based mechanism.

Proof: Given a mechanismM with randomized allocation ruleM(v) and pricing ruleπ(v) we define a
lottery-based mechanism as follows. Consider an agenti and a fixed instantiation ofv−i. Then for every
instantiation ofvi, consider the probabilities with whichM allocates servicej to agenti, as well as the prices
thatM charges. Each such probability vector along with the corresponding price forms a lottery inLi(v−i)
in the new mechanism. Formally,Li(v−i) = {(qi, pi) | ∃vi with qi = Mi(v−i,vi) andpi = πi(v−i,vi)}.

We now claim that the allocation rule and pricing rule of the new mechanism is precisely the same as the
old mechanism. Suppose not. Then at some valuation vectorv and for some agenti, (qi(v−i,vi), pi(v−i,vi)) 6=
(Mi(v−i,vi), πi(v−i,vi)), where the former is the allocation and price rule for the lottery-based mecha-
nism and the latter the allocation and price rule for the original mechanismM . But, given our construction,
(qi(v−i,vi), pi(v−i,vi)) = (M(v−i,v

′
i), πi(v−i,v

′
i)) for some other value vectorv′

i for agenti. But this
implies that inM agenti can benefit from lying and reportingv′

i when the true value vector isv. This
contradicts the incentive compatibility ofM .

3.3 A mechanism forIcopies based on lotteries

As noted earlier, our main technique is to relate the revenueof lottery-based mechanisms for an instanceI
of the BMUMD to the optimal mechanism for a related instanceIcopiesof the BSMD. We now describe a
mechanism forIcopiesbased on a given lottery-based mechanism forI.

Consider an instanceI of the BMUMD. Given a lottery-based mechanismML for I that uses the
ensemble of lottery pricingsL, we define a mechanismAL for the instanceIcopies.

Based onL, the mechanismAL forms a one dimensional lottery pricing for each of themn pseudo-
agents. The lottery pricing offered to pseudo-agent(i, j), which we denoteLij , is a function ofv−ij

2Note that these allocations to agents are not necessarily done independently; The feasibility constraint may require correlations
between items allocated to different agents. However thesedetails do not affect our analysis, so we ignore them.

3This condition is weaker than may be necessary for certain kinds of set systems, but suffices for our purpose.
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and is derived from the lottery pricingLi ∈ L as follows. Given a valuation vectorv−ij, for eachℓ =
(qi1, qi2, . . . , qim, p) ∈ Li(v−i), AL adds a lotteryℓj = (q′, p′) to Lij defined by

q′ = qij; and

p′ = p−
∑

k 6=j

qikvik + uij(v−ij),

where the termuij(v−ij) ≥ 0 is chosen to be the least value ensuring that the lottery preferred by pseudo-
agent(i, j) whenvij = 0 (if any) has a non-negative price.

We note the following properties ofAL:

1. (truthfulness) ThatAL is truthful follows immediately from the fact that the one dimensional lottery
pricing Lij offered to pseudo-agent(i, j) does not depend onvij, and the pseudo-agent may choose
any lottery fromLij .

2. (allocation rule) Suppose first that for(i, j) and somev−ij, uij(v−ij) = 0. Then for anyvij , the
utility of pseudo-agent(i, j) from lotteryℓj ∈ Lij is the same as utility of agenti from lotteryℓ ∈ Li.
Therefore withuij(v−ij) = 0, in ML agenti purchases lotteryℓ ∈ Li if and only if, in AL the
pseudo-agent(i, j) purchases lotteryℓj ∈ Lij . Moreover, since the price shiftsuij(v−ij) we apply
are the same for every lottery offered to(i, j), the only manner in which preferences can change is if
the pseudo-agent obtains negative utility from his preferred lottery, in which case he chooses to buy
no lottery at all. However, our choice ofuij(v−ij) ensures that the agent obtains non-negative utility
at vij = 0 and thus also at arbitraryvij , and so the allocation rule ofAL is identical to that ofML.

3. (feasibility) Feasibility follows immediately from thefact thatML satisfies feasibility and the alloca-
tion rules of the two mechanisms are identical.

4. (nonnegative revenue) Our choice ofuij(v−ij) ensures that the revenueAL receives from each agent
is always nonnegative; this is critical in later arguments,since it allows us to claim that the revenue
thatAL obtains from any subset of the pseudo-agents is bounded fromabove by the total expected
revenue ofAL.

We now relate the revenues ofML andAL. Let a be any function carrying valuation vectors to sets
of pseudo-agents which respects the unit-demand constraint, i.e. for any valuation vectorv, for eachi ∈ I
there exists at most onej ∈ J such that(i, j) ∈ a(v). We call such a function a unit-demand allocation
function. Then we get the following lemma.

Lemma 5 For any valuation vectorv and any unit-demand allocation functiona(v), we have

RML

(v) ≤
∑

(i,j)∈a(v)

RAL

ij (v) +
∑

(i,j)/∈a(v)

qij(v)vij

≤ RAL

(v) +
∑

(i,j)/∈a(v)

qij(v)vij ,

whereℓi(v) = (qi1(v), . . . , qim(v), pi(v)) is the lottery purchased by agenti at valuationv in the mecha-
nismML.

9



Proof: The revenueRML
(v) of the lottery-based mechanismML at v can be written as the sum of the

revenues from the constituent lottery pricings:

RML

(v) =

n∑

i=1

RML

i (v).

If we define ℓi(v) = (qi1(v), . . . , qim(v), pi(v)) ∈ Li to be the lottery chosen by agenti at v, then
RML

i (v), which is just the pricepi(v), can be written as

RML

i (v) =



pi(v)−
∑

k 6=j

qik(v)vik



+
∑

k 6=j

qik(v)vik

≤ RAL

ij (v) +
∑

k 6=j

qik(v)vik,

(1)

for anyj, whereRAL

ij (v) is the revenue of mechanismAL from the pseudo-agent(i, j). Furthermore, since
agenti would never elect to purchase a lottery yielding negative utility, we also have that

RML

i (v) ≤
∑

k

qik(v)vik. (2)

Note that we designedAL such it receives nonnegative revenue from every pseudo-agent, anda contains
at most one pseudo-agent(i, j) for any i; so by applying one of (1) or (2) for eachi according to which
pseudo-agentsa(v) contains, we get that

RML

(v) ≤
∑

(i,j)∈a(v)

RAL

ij (v) +
∑

(i,j)/∈a(v)

qij(v)vij

≤ RAL

(v) +
∑

(i,j)/∈a(v)

qij(v)vij ,

the claimed bound.

4 Single-agent setting

In this section we focus on instances of the BMUMD involving asingle agent andm items. In the single
agent setting, randomized and deterministic mechanisms become simply lotteries and pricings, respectively.
Briest et al. [7] demonstrated that when values for different items are arbitrarily correlated, it is possible
to construct examples where the ratio between the optimal expected revenues from lotteries and pricings is
unbounded. We show that in the absence of such correlation this ratio is small. Specifically, when values
are distributed independently, the ratio is no more than4 (Section 4.1). Moreover, when values have a
certain kind of positive correlation (additive values; Setting 2 described in Section 2.1), the ratio is at most
8 (Section 4.2).

4.1 Independent values (Setting 1)

We first analyze Setting 1, that is where the value of the agentfor item i, vi, is independently distributed
according to c.d.f.Fi. Given an instanceI of the single agent BMUMD, consider the form of the associated
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instanceIcopies. Note that while each pseudo-agent desires a different item, the fact that only one item may
be sold means they are effectively competing for the same thing, the privilege of being served. Thus,Icopies

can be thought of as being in a single-item auction setting. This observation leads to the following lemma.

Lemma 6 For any instanceI of the BMUMD in Setting 1, the revenue of the optimal deterministic mecha-
nism is at least one-fourth the revenue of the optimal randomized mechanism.

Proof: As previously observed, any randomized mechanism in the single-agent setting is precisely a lottery
pricing L. Let the mechanismAL be as described in Section 3.3. Applying Lemma 5 witha(v) = i∗ =
argmaxi(vi) yields

RL(v) ≤ RAL

(v) +
∑

i 6=i∗

qi(v)vi

≤ RAL

(v) + max
i 6=i∗

vi,

since theqi(v)’s sum to at most one. The key observation is that the second term is precisely the revenue
that the Vickrey auctionV would achieve in the instanceIcopiesgiven bidsv; so we get that in expectation

RL ≤ RAL

+RV ,

and need only apply Theorem 1 to prove the lemma.

4.2 Additive values (Setting 2)

We demonstrate that a result similar to that of the previous section holds even in the presence of certain
types of correlation. Consider again the single agent setting; since the agent is unit demand, it makes sense
to think of the services being offered as perfect substitutes. A natural form of correlation, then, would be
for the agent to have some “base” value for being served (regardless of which service is received), plus an
additive value specific to the particular service received.

The setting we consider modifies the single-agent setting bymaking agent types consist of(m + 1)
independently distributed values{t0, t1, . . . , tm}; now, the agent’s value for itemi becomesvi = ti + t0.

LetL be a lottery system overm items in the additive setting described. We have the following lemma.

Lemma 7 Given an instanceI of the BMUMD in Setting 2, the revenue of any lottery systemL for I
satisfiesRL ≤ 8Rp, for some pricingp for I.

Proof: We begin by demonstrating a bound with a weaker multiplicative factor of9 and then show how to
improve it to a factor of8. Our main technique is to consider an uncorrelated settingI ′ derived fromI. We
defineI ′ to be a single agent setting with(m+1) items, and interpret the values{t0, . . . , tm} making up an
agent’s type inI as being the values of the agent in settingI ′ for the(m+ 1) items. In keeping withI, the
feasibility constraint we associate withI ′ is that we may sell item0, and at most one additional item from
among items1, . . . ,m. Note that the agent inI ′ is not a unit-demand agent.

We now construct a lottery systemL′ for instanceI ′ from L. Let ℓ = (q1, . . . , qm, p) be a lottery in
L. Defineq0 =

∑m
i=1 qi, and constructℓ′ = (q0, . . . , qm, p). Note thatℓ′ does not necessarily satisfy the

requirement that theqi’s sum to at most one; it does, however, satisfy the feasible constraint indicated for
I ′. We may thus still apply the same technique as in the proof of Lemma 6, albeit with a worsened constant.

11



Let L′ be the system overm + 1 services consisting of all of theℓ′ defined as above based onℓ ∈ L.
Now, for any setting oft0, . . . , tm, note that the the utility an agent inI receives from a particular lottery
ℓ ∈ L is

m∑

i=1

qivi − p =
m∑

i=1

qi(ti + t0)− p =
m∑

i=0

qiti − p,

precisely the utility a corresponding agent inI ′ would receive from the correspondingℓ′ ∈ L′. We thus
haveRL = RL′

.
Consider applying the proof of Lemma 6 toL′. Due to the less restrictive feasibility constraint (

∑m
i=0 qi ≤

2) we get

RML′

≤ RAL′

+ 2RV ′

≤ 3RM′

,

where the mechanismsAL′
andV ′ are interpreted as being in the copies settingIcopies′ associated withI ′,

andM′ is the optimal mechanism in this setting. In order to prove a bound of the form desired, however,
we need to relate a mechanism in the settingIcopies′ to a deterministic one (a pricing) inI.

The key observation is that our feasibility constraint inIcopies′ (carried over fromI ′) means thatM′ may
make decisions about allocations and prices for pseudo-agent 0 separately from those for pseudo-agents
1, . . . ,m; as such,M effectively consists of two mechanisms, one serving pseudo-agent0 and another
serving pseudo-agents1, . . . ,m, both under a unit-demand constraint. Now, the optimal mechanism for
serving the lone single-parameter pseudo-agent is a pricing, and Theorem 1 gives us that a mechanism
serving pseudo-agents1, . . . ,m is within a factor of2 of a pricing onm items; so recalling that an agent in
settingI has a value ofvi = ti + t0 for item i, we can see that

RL ≤ 3RM ≤ 9Rp,

wherep is the optimal pricing for the settingI.
In order to improve the factor from9 to 8, we need to consider the revenue a mechanismM in the

settingIcopies′ obtains from pseudo-agent0 and from pseudo-agents1, . . . ,m; at a particular valuation
vectort denote these quantities asRM

0 (t) andRM
−0(t), respectively. Now, as previously noted, the optimal

mechanismM in Icopies′ may treat pseudo-agent0 independently from pseudo-agents1, . . . ,m; thus, we
have that any mechanismM in this setting must satisfy bothRM

0 (t) ≤ RM
0 (t) andRM

−0(t) ≤ RM
−0(t).

Since we know that
∑m

i=1 qi ≤ 1, whent0 is the maximum among all theti, Lemma 5 implies

RL(t) ≤ RAL

0 (t) +RV
0 (t);

On the other hand, when one oft1, . . . , tm takes on the maximum value, we end up with, for somei,

RL(t) ≤ RAL

i (t) + 2RV
i (t),

Combining these two gives us a pointwise guarantee of

RL(t) ≤ RAL

0 (t) +RV
0 (t) +RAL

−0 (t) + 2RV
−0(t)

≤ 2RM
0 (t) + 3RM

−0(t).

Therefore,

RL ≤ 2RM
0 + 3RM

−0 ≤ 2Rp + 6Rp

implying the claimed bound of8.
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5 Multi-agent setting

In this section we study multi-agent versions of the BMUMD and once again bound the gap between deter-
ministic and randomized mechanisms with respect to expected revenue for this setting. The starting point
for our bounds is the observation in Section 3.2 that randomized mechanisms for this problem can be inter-
preted as lottery-based mechanisms. We first discuss Setting 3, namely instances with multiple agents and
multiple items and a “matching” feasibility constraint. The following subsection contains a more general
version with a matroid intersection feasibility constraint (Setting 4).

5.1 The multi-item auction setting (Setting 3)

We consider instances of the BMUMD where the seller hasm different items, withkj copies of itemj,
and each of then unit-demand buyers have independently distributed valuesfor each item. The seller’s
constraint is to allocate itemj to no more thankj agents, and to allocate at most one item to each agent.

We note that the set system defined by this feasibility constraint is a matroid intersection. A set system
(E,F) whereE is the ground set of elements (E = I × J in our setting) is a matroid if it satisfies the
following properties.

1. (heredity) For everyA ∈ F , B ⊂ A impliesB ∈ F .

2. (augmentation)For everyA,B ∈ F with |A| > |B|, there exists ane ∈ A\B such thatB∪{e} ∈ F .

The sets in a matroid set system are called independent sets.
A matroid intersection set systemF is an intersection of two matroids:F = F1 ∩ F2 whereF1 and

F2 are matroids. The unit-demand constraint and the supply constraints for each item are each instances
of a partition matroid. Thus the systemJ in this setting can be seen to be an intersection of two partition
matroids. We useJ1 andJ2 to denote the two constituent matroids, and the term matching to refer to any
allocation or set inJ .

We will need the following facts about matroids.

Proposition 8 LetB1 andB2 be any two independent sets of equal size in some matroid set systemE . Then
there is a bijective functiong : B1 \ B2 → B2 \ B1 such that for alle ∈ B1 \ B2, B1 \ {e} ∪ {g(e)} is
independent inE .

Corollary 9 LetB1 andB2 be arbitrary independent sets in some matroid set systemE . Then there exists
a setB′

2 ⊆ B2 and a one to one functiong : B′
2 → B1 such that for alle ∈ B′

2, B1 \ {g(e)} ∪ {e} is
independent inE , and for alle ∈ B2 \B

′
2, B1 ∪ {e} is independent inE .

Proof: In order to apply Proposition 8 we need independent sets of equal size. So we begin by repeatedly
applying the augmentation property to whichever ofB1 andB2 is smaller in order to end up with two sets
B̄1 ⊃ B1 andB̄2 ⊃ B2 such that|B̄1| = |B̄2|. Now, Proposition 8 guarantees us a bijectiong : B̄2 \ B̄1 →
B̄1 \ B̄2 such that∀e ∈ B̄2 \ B̄1, B̄1 \ {g(e)} ∪ {e} is independent.

SetB2
′ = B2 \ B̄1 ⊂ B̄2 \ B̄1; note that sinceB̄1⊂B1 ∪ B2, we haveB̄1 \ B̄2 ⊂ B1. Thus, we

may viewg as a one to one functiong : B2
′ → B1. It retains the first specified property, since for any

e ∈ B2
′, B1 \ {g(e)} ∪ {e} ⊂ B̄1 \ {g(e)} ∪ {e} is independent. Furthermore,e∈B2 \B2

′ ⊂ B̄1 implies
B1 ∪ {e} ⊂ B̄1 is independent, and so the second specified property holds aswell.

Our proof consists of three steps:
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1. From Lemma 4, we note that any randomized mechanism for this problem can be seen as a lottery-
based mechanism.

2. We bound the revenue of any lottery-based mechanism for aninstanceI of the BMUMD by those of a
collection of three truthful deterministic mechanisms forthe corresponding single-parameter instance
with copies,Icopies.

3. We use the result in [9] (Theorem 2) to construct a truthfuldeterministic mechanism forI whose
revenue is within a factor of4/27 of the optimal revenue forIcopies.

Lemma 10 Consider an instanceI of the BMUMD in Setting 3. The revenue from any lottery-basedmech-
anismML for I is at most five times the expected revenue of Myerson’s mechanism for the instanceIcopies.

Proof: We define three truthful deterministic mechanismsM1, M2, M3 for Icopies, all facing the same
feasibility constraintJ as the set of lottery pricingsL, such that

RML

(v) ≤ RM1(v) + 2
(
RM2(v) +RM3(v)

)
(3)

≤ 5RM(v),

The second inequality follows from the optimality of Myerson’s mechanism for single parameter settings
(Myerson’s mechanism also faces the feasibility constraint J ).

Consider theIcopies setting and fix an instantiation of valuesv. Let A1(v) denote the set of pseudo-
agents that belong to the maximum-valued matching (we drop the argument wherever it is obvious). Among
the remaining(I × J) \ A1 pseudo-agents, again letA2 denote the set of pseudo-agents that belong to the
maximum-valued matching i.e.

A2(v) = argmax
S⊆[mn],S∩A1(v)=∅

S is a matching

v(S).

We may assume without loss of generality thatA1 andA2 are defined uniquely.
Note thatA1(v) is a unit-demand allocation function. Therefore, Lemma 5 implies that

RML

(v) ≤ RAL

(v)
︸ ︷︷ ︸

Term1

+
∑

(i,j)/∈A1(v)

qij(v)vij

︸ ︷︷ ︸

Term2

. (4)

We now define the three mechanismsM1, M2 andM3 for Icopies. MechanismM1 isAL and soRM1 is
exactly Term1. MechanismsM2 andM3 are defined in such a way that2(RM2 +RM3) is at least Term2.
This would prove (3).

Now, Corollary 9 implies the existence of two one to one partial functions with the following properties.

g1 : A2 → A1 s.t.∀e ∈ A2 :

g1(e) is undefined andA1 ∪ {e} ∈ J1, or

g1(e) is defined andA1 \ {g1(e)} ∪ {e} ∈ J1

g2 : A2 → A1 s.t.∀e ∈ A2 :

g2(e) is undefined andA1 ∪ {e} ∈ J2, or

g2(e) is defined andA1 \ {g2(e)} ∪ {e} ∈ J2

14



Note that the maximality ofA1 implies that every element ofA2 has an image under eitherg1 or g2 or both.
We define the mechanismsM2 andM3 by specifying their allocation rules. Given a valuation vector v, the
mechanismM2 serves only those pseudo-agents(i, j) that belong toA1 and for whichvij ≥ vg−1

1
(i,j)/2 (if

g−1
1 is defined at that point). Likewise, mechanismM3 serves only those pseudo-agents(i, j) ∈ A1 that have
vij ≥ vg−1

2
(i,j)/2 (if defined). We note thatM2 andM3 have monotone allocation rules, and are therefore

truthful. Truthful payments can be defined appropriately. They also satisfy the feasibility constraintJ .
We now prove the revenue guarantee forM2 andM3 through the following two claims.

Claim 1 Twice the combined revenue of mechanismsM2 andM3 is no less than the sum of values of all
pseudo-agents inA2, i.e.,

2
(
RM2(v) +RM3(v)

)
≥

∑

(i,j)∈A2

vij .

Proof:Consider any pseudo-agent(i, j) ∈ A2, and the pseudo-agentsg1(i, j) andg2(i, j) ∈ A1 if defined.
Note thatA′

1 = A1 ∪ (i, j) \ {g1(i, j), g2(i, j)} is feasible. Suppose bothvg1(i,j) and vg2(i,j) are less
thanvij/2; then the matchingA′

1 is a valid matching andv(A′
1) > v(A1) which is a contradiction to the

optimality ofA1. Thus one ofvg1(i,j) or vg2(i,j) must be at leastvij/2 and we get this amount inM2 or M3

respectively.

Claim 2 The sum of values of all pseudo-agents inA2 is no less than Term2:
∑

(i,j)∈A2(v)

vij ≥
∑

(i,j)/∈A1(v)

qij(v)vij .

Proof:Consider then ×m matrix of all probabilitiesqij(v). This matrix arose from a feasible randomized
mechanism; it therefore represents a probability distribution over matchings and can be represented as a
convex combination of matchings. In this probability matrix, replace with zeros all the entries(i, j) ∈ A1.
The newly obtained matrix can be represented as a convex combination of matchings all of which have a
zero entry for every(i, j) ∈ A1. Then the claim follows by the definition ofA2.

Claims 1 and 2 together with Equations (3) and (4) complete the proof.

Theorem 11 The revenue of any randomized mechanism for an instance of the BMUMD in Setting 3 is at
most33.75 times the revenue of the optimal truthful deterministic mechanism for the instance.

Proof: The proof follows from Lemmas 4 and 10, and Theorem 2.

5.2 The general matroid setting (Setting 4)

We now show that Theorem 11 extends to the general matroid intersection version of the BMUMD as well.
While Lemma 10 extends to this more general setting almost exactly, the counterpart of Theorem 2 for this
setting is somewhat weaker. So we can only bound the gap between the revenue of an optimal random-
ized incentive-compatible mechanism and that of an optimaldeterministic implementation in undominated
strategies (see Theorem 3) for this setting.

As defined earlier, in Setting 4, the seller faces a feasibility constraint specified by the set systemJ ⊆
2I×J , whereI is the set of agents andJ is the set of services,J is the intersection of a general matroid

15



constraint (given byJ1) and the unit demand constraint (that we denote usingJ2); J = J1 ∩J2. Note that
J2 is also a matroid.

We use the same three step approach as for the matching version to bound the revenue of the randomized
mechanism

Lemma 12 Consider an instanceI of the BMUMD in Setting 4. The revenue from any lottery-basedmech-
anismML for instanceI is at most five times the expected revenue of Myerson’s mechanism for the single
parameter instance with copiesIcopies.

Proof: We will prove this Lemma along the lines of our proof for Lemma10. We define three truthful
deterministic mechanismsM1, M2, M3 for Icopiesso that

RML

(v) ≤ RM1(v) + 2
(
RM2(v) +RM3(v)

)
(5)

≤ 5RM(v).

As before, given an instantiation of valuesv, let A1(v) denote the set of pseudo-agents that belong to
the maximum valued feasible set. Among the remaining pseudo-agents, letA2(v) denote the set of pseudo-
agents that belong to the maximum valued feasible set i.e.

A2(v) = argmax
S∈J−A1(v)

v(S)

Lemma 5 implies

RML

(v) ≤ RAL

(v)
︸ ︷︷ ︸

Term1

+
∑

(i,j)/∈A1(v)

qij(v)vij

︸ ︷︷ ︸

Term2

.

Therefore, once again we defineM1 to beAL and defineM2 andM3 in such a way that twice their revenue
combined is no less than Term2.

As before we can define partial one to one functions fromA2 toA1 satisfying

g1 : A2 → A1 s.t.∀e ∈ A2 :

g1(e) is undefined andA1 ∪ {e} ∈ J1, or

g1(e) is defined andA1 \ {g1(e)} ∪ {e} ∈ J1

g2 : A2 → A1 s.t.∀e ∈ A2 :

g2(e) is undefined andA1 ∪ {e} ∈ J2, or

g2(e) is defined andA1 \ {g2(e)} ∪ {e} ∈ J2

The mechanismsM2 andM3 are also defined as before:M2 serves only those pseudo-agents(i, j) in
A1 for which vij ≥ vg−1

1
(i,j)/2 (if defined), andM3 serves only those pseudo-agents(i, j) ∈ A1 that have

vij ≥ vg−1

2
(i,j)/2 (if defined). We note that every element inA2 gets mapped to at least one and at most

two elements under the partial functions defined above. Therefore, we can extract a revenue of at least
1/2

∑

(i,j)∈A2
vij from M2 andM3 together. Claim 2 now implies the result.

Theorem 13 The revenue of any incentive compatible randomized mechanism for an instanceI of the
BMUMD in Setting 4 is at most40 times the revenue of the optimal deterministic mechanism for I imple-
mented in undominated strategies.

Proof: The proof follows from Lemmas 4 and 12, and Theorem 3.
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6 Discussion and open problems

We show that in multi-parameter Bayesian optimal mechanismdesign the benefit of randomness is only
a small constant factor when agents are unit-demand and their values for different items have little or no
correlation. We believe that this result should extend to instances involving arbitrary positive correlation
between values of a single agent for items that are substitutes (the unit-demand constraint). For example, it
would be interesting to extend our result to the multiplicative values model of Armstrong [2]. Another open
problem is to extend our techniques beyond the unit-demand setting. This may lead to a better understanding
of and approximations to optimal mechanism design in those settings, for which nothing is known as yet.
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Gap between lottery pricings and Myerson’s mechanism

We give an example where the revenue of a lottery pricing for asingle agent BMUMD instanceI is 1.13
times the revenue of Myerson’s mechanism for the instanceIcopies. The instanceI is defined as follows.
There is a single agent with i. i. d. valuations for two items,distributed according to theequal-revenue
distribution, bounded atn. Formally, the valuationsv1 andv2 for items 1 and 2 have cdfsF1 andF2 such
that

F1(x) = F2(x) =

{

1− 1/x 1 ≤ x < n

1 x = n
.

For the single parameter settingIcopies, an upper bound on the expected revenue of any mechanism can
be obtained by removing the feasibility constraint of allocating to a single agent at a time. Then, the optimal
revenue with the feasibility constraint is no more than twice the optimal revenue that can be obtained by a
single agent alone. The latter, for the equal revenue distribution, is1 regardless of the price charged to the
agent. Therefore, the optimal revenue forIcopiesis bounded above by2. The same bound also applies to the
revenue of any item pricing forI.

Now let us consider the following lottery pricingL for I.

L = {(0.5, 0.5, 2.5), (1, 0, 2 +
3n

8
), (0, 1, 2 +

3n

8
)}

The first two coordinates in every lottery denote the probabilities with which items 1 and 2 are offered by
that lottery and the third coordinate is the price.

Figure 3 shows the allocation function of this lottery pricing. In particular,Ri for i ∈ [3] is the set of
valuations where lotteryi is bought. The probability mass of regionsR2 andR3 together can be computed to
be2(4/3n+O(log n/n2)). The probability mass of regionR1 is 0.4 + 0.08 ln 4− o(1) ≈ 0.51. Therefore,
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the revenue ofL can be computed to be5/2 · 0.51 + 3n/8 · 8/3n + o(1) = 2.275 + o(1). This is a factor
of 1.13 higher than the optimal revenue forIcopies, or the revenue of any item pricing forI.
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Figure 3: The allocation function for the lottery pricingL.
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