
1

User Task-based Development
of Multi-device Service-oriented Applications

Fabio Paternò, Carmen Santoro, Lucio Davide Spano

CNR-ISTI, HIIS Laboratory
{fabio.paterno, carmen.santoro, lucio.davide}@isti.cnr.it

ABSTRACT
In this paper, we discuss a method and the associated tool
support able to exploit Web services in model-based user
interface development, starting with the results of a task
analysis phase, and using the content of Web service
annotations. The resulting environment is a powerful
support for developing multi-device interactive applications
based on Web Services, since it is able to generate usable
service front ends specified in a variety of implementation
languages. This is achieved through connecting pre-
existing Web services with the task model of the interactive
application that has to be built. Then, the task model is used
as a starting point for the generation of corresponding user
interfaces descriptions at different abstraction levels,
through a number of transformations that aim to preserve
the usability of the corresponding models or
implementations.

Keywords
Model-based user interface design, Web services,
Annotations, Task Models.

INTRODUCTION
Interactive applications are making more and more use of
application functionalities implemented through Web
services. The clear distinction between the front-end and
the Web services makes it possible to reuse such services
across many interactive applications and supports a
development model where the application and the service
developers are different people. However, this distinction
can make harder and longer the development of the
interactive parts because their developers need to
understand the Web service functionalities and the best
way to interact with them.

In particular, we present a design and development
environment, which supports the various possible
abstraction levels for interactive systems (tasks, abstract
and concrete user interface) [1] and it is able to derive
service front-ends for various interactive platforms
(desktop, mobile, vocal, multimodal). One of its main
innovations with respect to previous model-based tools is
the specific support for the development of interactive
applications based on Web services, with the capability to
also exploit associated user interface annotations, when
available.

Damask [3] provides support for multi-device user
interfaces using patterns and layers (which indicate what
should be available in all platforms and what is specific to a
given platform) but it does not provide any specific support
for applications based on Web services and related user
interface annotations. Model-driven design and deployment
of service-enabled Web applications using WebML has
been proposed as well (see for example [4]). Our work has
a different focus since we propose an environment based on
HCI models for generating usable service front ends, which
can be implemented in a variety of implementation
environments and not only for the Web.
In service-based applications the composition of Web
services can occur at three levels (service, application, user
interface). Our approach can potentially support all these
levels. However, since the composition at the service level
is already supported by well-known standards such as
BPEL, we have so far focused our work on providing
support for composition at the user interface and
application levels.

Using annotated services can better support the
development of interactive, service-based applications than
traditional approaches. Annotations are hints provided by
service developers in order to facilitate the development of
service front ends, e.g. suggestion, form completion,
validation, and synchronous field update. One proposal for
a metamodel for user interface annotations is in [2].
However, the authors have not been able to indicate how to
exploit such information when various abstraction levels
are considered in the development of the service front ends.
This work is also useful from an End User Development
(EUD) viewpoint because it allows the development of
multi-device, service-based applications without having to
know any of the many possible implementation languages.
This is possible through the use of models that provide a
conceptual view of the human-computer interaction hiding
the complexity derived by the plethora of low-level
implementation details. Thus, the end users that can benefit
from the approach should have a capability to develop and
understand models, which seems a reasonable assumption
in the case of domain experts that often use their domain
models in their work.

2

THE METHOD
In this Section we discuss the various parts characterising
our approach. We first introduce the language that we use
for logically specify user interfaces and then describe the
method to derive user interfaces starting with task analysis
and models.

The MARIA Language
MARIA [6] is a recent model-based language, which
allows designers to specify abstract and concrete user
interface languages according to the CAMELEON
Reference framework [1] (an instance of the framework is
in Figure 1). This language represents a step forward in this
area because it provides abstractions also for describing
modern Web 2.0 dynamic user interfaces, Web service
accesses and novel interaction techniques such as those
touch-based. In its current version it provides an abstract
language independent of the interaction modalities and
concrete languages for desktop, mobile, vocal, and
multimodal (graphical and vocal composition) platforms.
In general, concrete languages are dependent on the typical
interaction resources of the target platform but independent
of the implementation languages.

In MARIA an abstract user interface is composed of one or
multiple presentations, a data model, and a set of external
functions. Each presentation contains a number of user
interface elements (interactors) and interactor compositions
(indicating how to group or relate a set of interactors), a
dialogue model describing the dynamic behaviour of such
elements, and connections indicating when a change of
presentation should occur. The interactors are classified in
abstract terms: edit, selection, only_output, control,
interactive description, .. Each interactor can be associated
with a number of event handlers, which can change
properties of other interactors or activate external functions.

While in graphical interfaces the concept of presentation
can be easily mapped on that of a set of user interface
elements perceivable at a given time (e.g. a page in the
Web context), in the case of a vocal interface we consider a
presentation as a set of communication between the vocal

device and the user that can be considered as a logical unit,
e.g. a dialogue supporting the collection of information
regarding a user.

The Starting Points
Our approach has two distinct starting points, which

usually are developed by different people: the task analysis
and the Web services. The task analysis is the result of an
interdisciplinary group involving end users, and its results
are then formalized in a task model. The Web services are
provided by software and service experts that want to make
available some functionalities to interactive application
developers. The connection between these two elements
(task model and Web services) is obtained by the
identification of the Web services that can implement some
of such tasks. The task model is developed for providing a
high-level description of the interactive application. It
allows designers to obtain more refined descriptions of the
interactive activities than workflow models, such as
BPMN. In our work we use the ConcurTaskTrees notation
(CTT) [5], which is an engineered notation for representing
task models widely used, also for the public availability of
editing and analysis tools. This notation explicitly
represents through different icons whether a task is carried
out by the user or the system or their interaction.
The novel design environment that we present is able to
automatically access Web services, download and
graphically present their WSDL description and, if
available, their user interface annotations in the format
previously introduced. Knowledge of the operation,
parameters, data types of the Web services can be useful in
the refinement of the task model as well. In particular, the
Web service operations are functionalities automatically
performed, and thus should be associated with basic system
tasks: basic means that they are no longer decomposed in
the task model, while system means that their execution is
completely automatic (they are represented by a computer
icon in the task model). Figure 1 shows the environment for
supporting interactive association between tasks and
services. The designers can first automatically import the

Figura 1: The Environment for Associating Tasks and Services.

3

service descriptions in the right side. The central part is
dedicated to the editing of the task model. Then, they can
interactive associate tasks and operations in the Web
services. The results are shown in the two column table on
the left side. For example, in Figure 1 it is possible to see
that the Check Login Data task is associated with the
AcceptUserLogin operation of the Web service called
UserManagementBeanService. Such operation has also
associated annotations concerning label, platform, and
language.

The Transformations
Once the task model has been finalized, after the bindings
of tasks with the relevant Web services by the designer, it
can be the starting point for a series of transformations
aiming to obtain the implementation of the corresponding
interactive application. Figure 2 provides a graphical
representation of the overall method in the case that the
final results are two versions of the interactive application
(one for desktop systems and one for IPhones), which will
access the indicated Web services.

The information contained in the Web service annotations
can be exploited in this transformation process at various
abstraction levels. At the abstract user interface level, the
annotations can specify groupings definition, input
validation rules, mandatory/optional elements, data
relations (conversions, units, enumerations,), languages.

At the concrete user interface level, the annotations can
provide labels for input fields, content for help, error,
warning messages, and indications for appearance rules
(formats, design templates etc.).

Figure 2: The Approach proposed.

One of the advantages of going through various abstraction
levels is that the environment can be extended with limited
effort to obtain the derivation of interactive applications
adapted to different target interaction platforms (e.g.
desktop, mobile, vocal, …) since in this case we have to
apply different transformations only for the abstract-to-
concrete and the concrete-to-implementation cases.

The Task-to-Abstract Interface Transformation
The Task-to-Abstract Interface Transformation is not trivial
since it has to move from one representation in terms of

tasks to one in terms of (abstract) user interface elements.
The main aspects that are considered in the task model for
this purpose are the hierarchical structure, the temporal
operators, the task allocation, and the task types. Since the
user interface is structured into presentations, the first step
is to identify them from the task model. For this purpose
the algorithm first builds a binary representation of the task
model with each node annotated by the corresponding
temporal operator. Then, the goal is to identify the
presentation task sets (PTSs), which are the set of basic
tasks that should be associated with a given presentation.
The basic idea is that they are a set of tasks enabled in the
same period of time. Thus, the binary tree is visited for this
purpose taking into account the formal semantics of the
CTT temporal operators.

After the identification of the abstract presentations, the
interactors and the dialogue models associated to them have
to be generated. For this purpose, three types of rules are
applied to the task model description. Temporal relations
among tasks indicate requirements for the UI dialogue
model because the user actions should be enabled in such a
way to follow the logical flow of the activities to perform.
Task hierarchy provides information regarding grouping of
UI elements: if one task is decomposed into subtasks, it is
expected that the interactions associated with the subtasks
are logically connected and this should be made
perceivable to the user, thus a corresponding grouping
composition operator should be specified in the abstract
specification. Type of task provides useful information to
identify the most suitable interaction technique for the type
of activity to perform.

This transformation also exploits information specified by
the associations between the Web services operations and
the system tasks. In particular, usually the typical access to
a Web service is modelled through three tasks: one
interactive task for entering the user request, one system
task for the Web service execution, and one system task for
presenting the result of such execution.

In the abstract user interface, the interactors corresponding
to interactive tasks, which provide the input information for
the Web service operation, should contain a data model
entity in their state for storing the value entered by the user.
The type of such data entity is derived by the analysis of
the WSDL, which also indicates the types of the Web
service input data in XML format. Then, we need to
include an activator interactor (this is the type of interactor
that activates functionalities) for modelling the actual
access to the Web service, and lastly we need an output
interactor, which takes the result of the Web service
execution and presents it in the user interface. Likewise,
this interactor should contain a data model entity, whose
type is derived from the WSDL, in this case by analyzing
the data types of the output parameters.

The Other Transformations
The Abstract-to-Concrete Interface Transformation is much
simpler than the previous one. Depending on the target
platform, the specification is converted into the

4

corresponding concrete description through an appropriate
XSLT. Since the concrete language shares the structure of
the abstract one and adds elements to it, which refine their
description for the target platform, this transformation
mainly consists in identifying which refinement, among the
possible ones, to associate with each abstract element. It
can happen that the language allows that one abstract
element can be refined into multiple elements. In these
cases the transformation has some selection rules to
indicate which one to use depending on the value of a
certain attribute. For example, depending on the cardinality
of the possible choices a single choice can be refined either
into a radio-button or into a pull-down menu. If even with
the selection rules there are multiple possible target
elements then the transformation selects one according to
configuration properties, which can be modified by the
designer.

The Concrete Interface -to- Implementation Transformation
is a bit more complex than the previous one since
implementation languages have a considerable amount of
detail that needs to be provided. If we consider the case of a
transformation from desktop concrete interface to XHTML,
we have obtained it through XSLT as well. The
transformation has been implemented by creating a
template for each element of the source language, whose
purpose is to create the corresponding code for the target
element, and then to provide similar information for all the
attributes that have been defined.

CONCLUSIONS and ACKNOWLEDGMENTS
In this paper we have presented a method, and the
associated authoring environment for the model-based
design of interactive applications based on Web services
exploiting associated annotations. The approach allows
development of multi-device service-based applications
without knowing the various associated implementation
languages. It is sufficient to design the interactive

applications through the graphical representations of the
models describing their features.

Future work will be dedicated to further facilitating the use
of the design environment for non-professional software
developers through more intuitive representations.

The current version of the tool can be downloaded at
http://giove.isti.cnr.it/tools/Mariae/.

We thank the EU ICT STREP ServFace Project
(http://www.servface.eu) for supporting this work.

REFERENCES
1. Calvary, G., Coutaz, J., Bouillon, L., Florins, M.,

Limbourg, Q., Marucci, L., Paternò, F., Santoro, C.,
Souchon, N., Thevenin, D., and Vanderdonckt, J. 2002.
The CAMELEON reference framework. CAMELEON
Project. Deliverable 1.1.

2. Janeiro J., Preußner, A., Springer, T., Schill, A., and
Wauer. M. Improving the Development of Service-
Based Applications through Service Annotations.
Proceedings of IADIS WWW/Internet, 2009.

3. Lin J., Landay J.: Employing patterns and layers for
early-stage design and prototyping of cross-device user
interfaces. CHI 2008: 1313-1322.

4. Manolescu I., Brambilla M., Ceri S., Comai S.,
Fraternali P.: Model-driven design and deployment of
service-enabled Web applications. ACM Trans. Internet
Techn. 5(3): 439-479 (2005).

5. Paternò F.. Model-Based Design and Evaluation of
Interactive Applications. Springer-Verlag, 2000.

6. Paternò F., Santoro C., Spano L.D., "MARIA: A
Universal Language for Service-Oriented Applications
in Ubiquitous Environment", ACM Transactions on
Computer-Human Interaction, Vol.16, N.4, November
2009, pp.19:1-19:30.

