
HAL Id: inria-00543874
https://inria.hal.science/inria-00543874v1

Submitted on 6 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Parametric Segmentation Functor for Fully Automatic
and Scalable Array Content Analysis
Patrick Cousot, Radhia Cousot, Francesco Logozzo

To cite this version:
Patrick Cousot, Radhia Cousot, Francesco Logozzo. A Parametric Segmentation Functor for Fully
Automatic and Scalable Array Content Analysis. Proceedings of the 38th Annual ACM Symposium
on Principles Of Programming Languages (POPL), Jan 2011, Austin, Texas, United States. �inria-
00543874�

https://inria.hal.science/inria-00543874v1
https://hal.archives-ouvertes.fr

A Parametric Segmentation Functor for Fully
Automatic and Scalable Array Content Analysis

Patrick Cousot
École normale supérieure &

New York University
Courant Institute of Mathematical Sciences

t neo f@s .u roc s , o us uc .u deo s@t ny .pc

Radhia Cousot
Centre National de la Recherche Scientifique

École normale supérieure &
Microsoft Research, Redmond

c fuh .n@a soo s t. ed ira r

Francesco Logozzo
Microsoft Research, Redmond

z s orm co fog @z .o t mc ool i

Abstract
We introduce FunArray, a parametric segmentation abstract do-
main functor for the fully automatic and scalable analysis of array
content properties. The functor enables a natural, painless and effi-
cient lifting of existing abstract domains for scalar variables to the
analysis of uniform compound data-structures such as arrays and
collections. The analysis automatically and semantically divides
arrays into consecutive non-overlapping possibly empty segments.
Segments are delimited by sets of bound expressions and abstracted
uniformly. All symbolic expressions appearing in a bound set are
equal in the concrete. The FunArray can be naturally combined
via reduced product with any existing analysis for scalar variables.
The analysis is presented as a general framework parameterized by
the choices of bound expressions, segment abstractions and the re-
duction operator. Once the functor has been instantiated with fixed
parameters, the analysis is fully automatic.

We first prototyped FunArray in Arrayal to adjust and exper-
iment with the abstractions and the algorithms to obtain the appro-
priate precision/ratio cost. Then we implemented it into Clousot,
an abstract interpretation-based static contract checker for .NET.
We empirically validated the precision and the performance of the
analysis by running it on the main libraries of.NET and on its own
code. We were able to infer thousands of non-trivial invariants and
verify the implementation with a modest overhead (circa 1%). To
the best of our knowledge this is the first analysis of this kind ap-
plied to such a large code base, and proven to scale.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Program Verification—formal methods, validation, asser-
tion checkers; D.3.1 [Programming Languages]: Formal Def-
initions and Theory—semantics; F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about
Programs—Mechanical verification, assertions, invariants; F.3.2
[Logics and Meanings of Programs]: Semantics of Programming
Languages—Program analysis.

General Terms Algorithms, Design, Languages, Performance,
Reliability, Security, Theory, Verification.

Keywords Abstract interpretation, Array abstraction, Array con-
tent analysis, Array property inference, Invariant synthesis, Static
analysis, Program verification.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’11, January 26–28, 2011, Austin, Texas, USA.
Copyright c© 2011 ACM 978-1-4503-0490-0/11/01. . . $10.00

1. Introduction
Our goal is to augment static analyzers for very large programs
with a new fully automatic static analysis determining properties
of array elements with good precision but at low cost so as to scale
up. The approach is in the context of abstract interpretation [7].
The first objective of the array content analysis is to reduce the
false alarms due to accessing array elements which analysis is of-
ten imprecise, in particular because their proper initialization is un-
known. The second objective is to allow for automatically proving
user provided pre/post conditions and assertions of moderate com-
plexity on arrays (such as the non relational property “all elements
are initialized” but not the relational one “the array is sorted” as
in [6]). To cope with verification, we want to be able to adjust the
cost/precision ratio towards more or less precision, one extreme
being the classical analysis by array smashing, the other being an
element by element analysis of maximal precision and cost.

2. Motivating Example
Let us consider the example in Fig. 1, extracted from the public
constructor of the Random class of the .NET framework. The con-
structor initializes all the elements of the private array SeedArray
to be ≥ −1. The initialization process is quite complex, relying
on some number theory properties which are out-of-the scope of
the paper. The precondition requires the parameter Seed not to be
the smallest 32-bits integer, to prevent Math.Abs from throwing an
OverflowException. Next, an array of 56 elements is allocated
and assigned to SeedArray. The last array element is set to the
value of Seed, whereas all the others are zero (because of.NET se-
mantics). The first loop (Loop 1), sets all the elements of indexes
1 . . . 54 to be ≥ −1 according to the non-contiguous indexing se-
quence: 21, 42, 8, . . ., leaving the first and the last elements un-
changed. Therefore the assertion at the end of Loop 1 holds. The
next loop (Loop 2) shakes the values in the array, updating the last
element of the array but not the first. To prove the second assertion
one should prove that (i) the last element of SeedArray is defi-
nitely updated in the inner loop to a ≥ 1 value; and that (ii) the
inner loop is executed at least once.

Array expansion The first and most precise approach for proving
the two assertions: (i) expands the 56 cells of the array to 56 local
variables; (ii) fully unrolls the loops. The example will then become
intractable, even with up-to-date hardware and tools. We totally
unrolled the first loop, we sliced the second loop according to
some “interesting” variables (manually determined), and we tried
to prove the second postcondition using Boogie [2] and the state-of-
the-art SMT solver Z3 [10]. We let the verification process run for
a whole week-end without getting an answer. The theorem prover

public Random(int Seed) {
Contract.Requires(Seed != Int32.MinValue);

int num2 = 161803398 - Math.Abs(Seed);

this.SeedArray = new int[56];
this.SeedArray[55] = num2;

int num3 = 1;

// Loop 1
for (int i = 1; i < 55; i++) {
int index = (21 * i) % 55;
this.SeedArray[index] = num3; // (*)
num3 = num2 - num3;
if (num3 < 0) num3 += 2147483647;
num2 = this.SeedArray[index];

}

Contract.Assert(Contract.Forall(// (**)
0,this.SeedArray.Length - 1, i => a[i] >= -1));

// Loop 2
for (int j = 1; j < 5; j++) {
// Loop 3
for (int k = 1; k < 56; k++) {
this.SeedArray[k] -= this.SeedArray[1 + (k + 30) % 55];
if (this.SeedArray[k] < 0)
this.SeedArray[k] += 2147483647;

} }

Contract.Assert(Contract.Forall(0, // (***)
this.SeedArray.Length, i => a[i] >= -1));

}

Figure 1. A motivating example taken from the core li-
brary of.NET. Contract.{Requires, Assert, ForAll} is the
CodeContracts API (adopted in .NET from v4.0) to express pre-
conditions, assertions and bounded universal quantifications [3].

was overcome by the large number of case splits it had to perform
(because of conditionals in loop bodies and the lack of primitive
support for the remainder operation which had to be axiomatized).

Array smashing At the opposite side of the precision spectrum
there is the smashing of all the array elements into one summary
location. It is immediate that this is not going to work. For instance
in Loop 1, the value of SeedArray[55] is smashed with the
others, concluding that any value can be written anywhere in the
array.

Predicate abstraction The method of Qadeer and Flanagan [15]
uses some easy syntactic heuristics to derive the predicates used for
the abstraction, which unfortunately do not work here. For instance,
one needs to know that 1 ≤ index < 55 to determine that the
last element of SeedArray is never overwritten in Loop 1, or that
num3 ≥ −1. Both properties cannot be inferred with syntactic
heuristics.

Array Partitioning The array partitioning approach of Gopan,
Reps and Sagiv [17] (later improved by Péron and Halbwachs [19])
separates the task of array partitioning from that of establishing ar-
ray properties. Given a partition of the array into slices, the analy-
sis populates the slices with some abstract value. The partitioning
is done either syntactically or by some pre-analysis. The syntac-
tic approach (used in the examples of [17, 19, 29]) simply does
not work here (e.g. it cannot determine which array element is
written at (*)), and in general it is unfeasible in the generic set-
ting of the bytecode analysis, where high-level syntactic structures
are compiled away. As a consequence, at the early stages of this
work, we tried to implement the second pre-analysis approach in
Clousot [14]. The idea was to first perform a preliminary analysis
of indices to provide a restricted domain for each loop, and then
to perform the array analysis (generalizing [19, Sect. 15]). Perfor-

mance turned out to be extremely bad. The first pre-analysis gen-
erated too many partition slices (also noticed by Dillig et al [12,
Sect. 4]). The second analysis needed to replay the index analy-
sis (e.g. to distinguish the first iteration from all the others) and
the partition analysis (e.g. to track how abstract values flowed be-
tween partitions). The analysis of the example induced a 28× slow-
down with respect to a run of Clousot without the array analysis.
We have therefore developed a new approach (subject of this pa-
per) in which: (i) the scalar analysis and the array analysis are per-
formed at the same time (which is also more precise [8]); (ii) the
array segmentation is automatically and semantically discovered by
the analysis; and (iii) the segmentation admits possibly empty seg-
ments. In particular, possibly empty segments are a winning choice
because they enable a compact representation for array partitions
avoiding the exponential multiplication of slices of the aforemen-
tioned works (Sect. 4.4). Yang et al remarked similar advantages
when using possibly empty list segments for shape analysis [37].

Under-approximations and Templates The technique of Gul-
wani, McCloskey and Tiwari [18] is extremely powerful yet ex-
pensive. It requires: (i) the user to provide templates for the ar-
ray invariants; and (ii) the abstract domain to perform under-
approximations for the index variable. It can infer all the invariants
of our example, provided some refinement in the handling of tran-
sition functions for quantified facts and in the under-approximation
algorithm. Their technique uses uninterpreted functions and a
guess & prove cycle to determine precedents for guards. Unfor-
tunately, the abstract domain of uninterpreted functions exposes
a double-exponential complexity [18], which seriously affects the
analysis cost. According to [18, Sect.5.2], at best the quantified
domain induces a 70% slowdown of their analyzer, and at most a
1800% slowdown (w.r.t. a normal run) on small examples. As a
comparison, the functor abstract domain presented in this paper in-
duces a mere 1% slowdown with respect to a normal Clousot run
on huge, production quality libraries (cf. Sect. 12), yet presenting a
high precision.

Deductive methods Program verifiers à la ESC/Java 2 [5] or
Spec# [1] require the user to provide loop invariants. In our run-
ning example, we needed to provide a few extra-annotations (9 to
be exact) to help both tools prove the assertions in the code. First we
have to add the invariant on the content of SeedArray to every loop
in the code. Then, we added the loop invariant num3 ≥ −1∧i ≥ 1
to Loop 1, j ≥ 1 to Loop 2 and k ≥ 1 to Loop 3. In general,
such program verifiers are very powerful but the extra-annotations
impose a burden that very few professional programmers are will-
ing to pay for. Furthermore, deductive verification-based tools can
check the correctness of a program fragment (e.g. a method), but
they cannot infer facts to be used on larger pieces of code (e.g.
class invariants to verify whole classes [26]).

Theorem prover-based The method of Kovács and Voronkov [23]
uses a saturation theorem prover to generate loop invariants. The
idea is to encode the changes to an array at the i-th iteration as a
quantified fact and then to systematically apply resolution to derive
a closed form (one not mentioning the loop iteration i). A prob-
lem with such a technique is termination, for instance to determine
when the “right” loop invariant has been produced by a satura-
tion step. This may require a human help (stopping the saturation
process when a postcondition does not work: for instance if we
remove the first assertion in Fig. 1, then the process may go on
forever). Furthermore, their method is based on the use of mono-
tonic changes to the array (which is not the case for Loop 1) and it
requires a pre-analysis of indexes (causing an extra slow-down).

The techniques of Jhala and McMillan [20, 30] and of Seghir,
Podelski and Wies [35] make use of the loop postconditions to be
proven in order to infer the quantified loop invariants. Suppose we

remove (**) and (***) from the example. Then their techniques
(unlike ours) cannot infer the postcondition that all the elements of
SeedArray are initialized to a value≥ −1 at the end of the Random
constructor. In practice, such a postcondition is needed, for instance
to prove that it is an object invariant for the class Random [26] and
hence to prove the safety of the public methods. Furthermore, the
techniques above do not always guarantee termination.

The fluid updates technique of Dillig, Dillig and Aiken [12] is
very expressive and it can be extended to precisely track complex
containers properties [13]. It is exposed to a potential exponential
explosion too. Theoretically, their technique is the lifting to the
reduced cardinal power [8] of a points-to analysis. Practically,
every time an array is accessed or created, the points-to edges are
modified, new constraints are added and calls to an SMT solver are
issued to prove the (un-)feasibility of the edge(s) and simplify the
constraints. This may negatively influence the performance of the
analysis and also affect the precision (whenever the expressions go
out of the language treated by the SMT solver, as for instance the
reminder in Fig. 1).

Our Approach Our analysis infers all the invariants for Fig. 1
without user interaction: no templates, no annotations nor partitions
are required, no hypotheses are done on the structure of the source
program. The invariants are inferred even if the assertions are
removed from the code. The code is analyzed in (a little bit less
than) 60 milliseconds (50 milliseconds for reading the bytecode,
performing a stack analysis, heap analysis, non-null, and numerical
analysis alone).

The analysis is an instance of FunArray, which we introduce in
this paper. FunArray is a functor abstract domain which lifts exist-
ing analyses for scalar values to uniform compound data structures
as arrays or collections. In this paper we will concentrate on arrays,
but it is immediate to see how the results generalize to collections
as found in mainstream object-oriented languages such as C# or
Java as well as matrices when instantiating the functor on itself.

The FunArray analysis automatically divides the array into a
sequence of possibly empty segments delimited by a set of seg-
ment bounds. The content of each segment is uniformly abstracted.
The array analysis can be combined via a reduced product with an
abstraction for scalar variables. Therefore the FunArray has three
main parameters: (i) the expressions used to describe the segment
bounds; (ii) the abstract domain used to abstract the segment val-
ues; and (iii) the abstract domain used to abstract scalar variables.
When the three parameters above are chosen to be: (i) simple ex-
pressions in the form k or x + k where x is a variable and k is an
integer [33]; (ii) and (iii) intervals [7] then for Loop 1 our analy-
sis infers that all the values of the arrays with indexes in the range
1 . . . 54 are greater or equal to −1, and that the last element of the
array is not overwritten. The FunArray uses the information to in-
fer the segmentation below, which is enough to prove the assertion
(**) (values in brackets are bounds, intervals denote the abstrac-
tion for the array elements in the bounds, see Sect. 4.3).

{0} [-1,+oo] {55} [+oo,-oo] {56}. (1)

For Loop 3, the analysis discovers that all the array elements,
including the last one, have been overwritten with a value ≥ −1:

{0} [-1,+oo] {56}. (2)

The loop invariant for Loop 2 is then the union of the two in-
variants above, that is (1) as the first segmentation subsumes the
second one. If directly propagated after the loop, this invariant is
too weak to prove the assertion (***). The imprecision is origi-
nated by the fact that we are not considering that the body of Loop
2 is executed at least once, so that SeedArray[55] is overwritten
at least once (because of (1)). Standard static analysis techniques
such as loop unrolling or backwards goal propagation [14, Sect. 6]

can be used to recover the needed precision, and hence refine the
abstract post-state of Loop 2 to (2). This highlights another advan-
tage of our analysis, which benefits for free of precision refinement
techniques applied to the analyzer.

3. Our Contribution
The main advantages of our analysis can be summarized as:

1. The array segmentation is automatically and semantically in-
ferred during the analysis. By semantically, we mean that the
subdivision of the array is done during the analysis using seman-
tic information, unlike the aforementioned approaches which de-
rive the partition by looking at the syntactic structure of the pro-
gram. The segments are consecutive, without holes (a hole being
just another segment). The segments derive from the way array
elements are modified and accessed. Segments are delimited by
bounds, in increasing order, denoted by sets of simple symbolic
expressions with equal but unknown values;

2. The combinatorial explosion in the handling of disjunctions is
avoided by considering symbolic segment bounds as well as
possibly empty segments;

3. The relations between array indexes and array elements can be
inferred by abstracting pairs made of the array index and the
value of the corresponding array element (vs. abstracting array
element values only);

4. The precision/cost ratio in the abstraction of the array content
can be finely tuned using a functor abstract domain: the array
content analysis is parameterized by the abstract domain repre-
senting symbolic segment bound expressions, the abstract do-
main abstracting the pairs (index, value) in segments, the ab-
stract domain assigning values to segment bound expressions,
and the reduction between those domains.

5. By instantiating the array segmentation abstract domains functor
with different abstract domains, different static analyzers can
be automatically generated with different cost/precision ratios
allowing the cost versus precision tradeoff of the analysis to be
tuned depending on the target application at no re-programming
cost of the static analyzer.

We have first implemented our technique in a research proto-
type Arrayal, to quickly experiment with the algorithms and ad-
just the abstractions. Then we fully implemented it in Clousot,
an industrial-quality static contract checker for .NET based on ab-
stract interpretation. The functor abstract domain enabled a natural
lifting of the abstract domains, already present in Clousot, to ar-
ray contents. To the users, this is exposed as a simple checkbox
in the development environment. We validated the precision of the
analysis by using it to check its own implementation. The analy-
sis is extremely fast: we estimated the cost of the array analysis on
Clousot to be less than 1% of the total running time when running
it on production code (Sect. 12). To the best of knowledge, this is
the first analysis of this kind applied to such a large scale.

4. Array Initialization
We explain the details of our technique on the initialization exam-
ple of Fig. 2, slightly more general than Loop 3. We illustrate how
we avoid the combinatorial explosion on the partial initialization
example of Fig. 3 and on the array rearrangement example of Fig. 4.

4.1 Manual proof
A manual proof of the exit specification would involve a loop
invariant at program point 2 stating that if A.Length = 0 then
i = 0 and the array A is empty or else A.Length > 1 in which
case either i = 0 and the array A is not initialized or else i > 0

void Init(int[] A) {
/* 0: */ int i = 0;
/* 1: */ while /* 2: */ (i < A.Length) {
/* 3: */ A[i] = 0;
/* 4: */ i = i + 1;
/* 5: */ }
/* 6: */ }

Figure 2. The fully initialized example. We want to prove that
∀i ∈ [0, A.Length) : A[i] = 0 at program point 6.

so that A[0] = A[1] = . . . = A[i − 1] = 0. Formally the
invariant (A.Length = 0 ∧ i = 0) ∨ (A.Length > 1 ∧ 0 6 i 6
A.Length ∧ ∀j ∈ [0, i) : A[j] = 0) holds at point 2 (1).

This invariant shows that array content analyses must be able to:
(i) express disjunctions of array descriptions; (ii) express properties
of array segments (that is sequences of values of consecutive array
elements); and (iii) relate the symbolic limits 0, i−1, A.Length−1
of these segments to the scalar program variables.

4.2 Automatic proof and the meaning of the abstract
invariant predicates

In our array segmentation analysis instantiated e.g. with constant
propagation [22], we automatically get the abstract invariant predi-
cates

p1 = A: {0 i} T {A.Length}?
p2 = A: {0} 0 {i}? T {A.Length}?
p6 = A: {0} 0 {A.Length i}?

where pi is the abstract invariant predicate at program point i =
1, . . . , 6. In this example the properties of scalar variables need not
be used. The abstract values for constant propagation can be |
(i.e., bottom ⊥, meaning unreachable), an integer constant (mean-
ing equal to that constant), or T (i.e., top >, meaning unknown).

In the array environments such as A: {0 i} T {A.Length}?
in p1, each array of the program (such as A) has its content de-
scribed by a segmentation (such as {0 i} T {A.Length}?). From
the symbolic segment bounds such as {0 i} and {A.Length}? we
know that i = 0 (since all expressions in a bound are equal) and
that 0 = i 6 A.Length (since the segment bounds are in increas-
ing order, strictly increasing in absence of ?). The segments are not
empty, except if the upper bound of the segment is marked with ?.
The segments are consecutive without holes, since a hole can al-
ways be represented by a > segment (possibly empty if the hole
may or may not be absent). Each segment uniformly describes the
array elements within that segment bounds, lower bound included,
upper bound excluded. In {0 i} T {A.Length}?, the array ele-
ment abstract value is T, meaning in the constant propagation anal-
ysis, that the array values are unknown (>). So the invariant p1
states that i = 0 6 A.Length ∧ ∀j ∈ [0, A.Length) : A[j] ∈ Z.
In particular, when i = A.Length = 0, the interval [0, A.Length)
is empty, so the quantified expression holds vacuously.

The invariant p2 states that 0 6 i 6 A.Length (in ab-
sence of question marks ? these inequalities would be strict), that
A[0] = A[1] = . . . = A[i − 1] = 0 when i > 0 and that
the values A[i], A[i + 1], . . . , A[A.Length − 1] are unknown
when A.Length > i. So the array is divided into consecutive non-
overlapping segments, which may be empty and are delimited by
symbolic expressions in increasing order. The abstraction of the ar-
ray elements within one segment is uniform but different segments
can have different abstract properties.

(1) This invariant can also be written 0 6 i 6 A.Length ∧ ∀j ∈ [0, i) :
A[j] = 0 with the convention that [0,−1] = ∅ is the empty set in which
case A[j] is not evaluated, which is made explicit by a disjunction of cases
(marked ? in segmentation bounds).

In order to avoid combinatorial explosion, disjunctions ap-
pear in restricted form only either as possible segment empti-
ness, or symbolic bounds which may have different values, or in
the segment content analysis (see Sect. 11.1). For example, the
post-condition p6 expresses that either the array is empty (i.e.
A.Length = i = 0) or else A.Length = i > 0 and all array
elements are initialized to 0.

Please note that the case A.Length < 0 is excluded. This
comes from the initial condition stating that A.Length > 0 since
most programming languages like C, C# and Java do not allow
arrays of negative size. We handle all such runtime errors including
division by zero, index out of bounds, . . . by stopping execution.
This is a sound treatment of their undefined semantics in absence
of runtime errors but may otherwise miss some other possible
erroneous executions (following from the fact that execution goes
on in practice with an undefined semantics).

4.3 Detailed unreeling of the initialization example analysis
We now consider the details of the analysis of the code of Fig. 2
with constant propagation. The initial condition A.Length > 0 is
recorded in the segmentation of array A.

p0 = A: {0} T {A.Length}?

The assignment i = 0; sets the value of the scalar variable i to 0.
The equality i = 0 is valid after the assignment and so is recorded
in the lower bound of the array segment. Initially p2 = p3 = . . . =
p5 = ⊥ denotes unreachability of the loop so that the abstract loop
invariant is initially p2 = p1 t p5 = p1 (using the join t in the
constant abstract domain for segments: x t ⊥ = ⊥ t x = x,
x t > = > t x = >, i t i = i, and i t j = > when i 6= j).

p2 = p1 = p0[i=0] = A: {0 i} T {A.Length}?

The loop is entered when i < A.Length so that the array, hence
its only segment, cannot be empty so ? is dropped:

p3 = p2[i<A.Length] = A: {0 i} T {A.Length}

The analysis of the array assignment A[i] = 0; splits the array
segment around the index i and assigns to the array element the
value of expression 0 in the constant domain that is 0:
p4 = p3[A[i]=0] = A: {0 i} 0 {1 i+1} T {A.Length}?

Please note that the segment i . . . i+1 is definitely not empty while
the segment i+1 . . . A.Length may be empty. The scalar variable
assignment i = i + 1; is invertible since the old value of i is the
new value of variable i decremented by 1. So the segment bounds
involving variable i have to be modified accordingly:
p5 = p4[i=i+1] = A: {0 i-1} 0 {1 i} T {A.Length}?

The next approximation of the loop invariant is p2 = p1tp5. This
join first involves the unification of the segment {0 i}>{A.Length}
of p1 and that {0 i − 1}0{1 i}>{A.Length}? of p5. Keep-
ing only the expressions appearing in both segmentations, we
get {0 i}>{A.Length} and {0}0{i}>{A.Length}?. Split-
ting the bound {0 i} we get {0}⊥{i}?>{A.Length} so that
the union with {0}0{i}>{A.Length}? can now be performed
segmentwise in the constant domain {0}⊥ t 0{i}(? g)> t
>{A.Length}(g?) = {0}0{i}?>{A.Length}? since the seg-
ments may be empty in at least one of the cases (that is g =
for non-empty segments and otherwise g ? = ?g = ?g ? = ?
for possibly empty ones). We get

p2 = p1 U p5 = A: {0} 0 {i}? T {A.Length}?

The next iteration is similar:
p3 = p2[i<A.Length] = A: {0} 0 {i}? T {A.Length}
p4 = p3[A[i]=0] = A: {0} 0 {i}? 0 {i+1} T {A.Length}?
p5 = p4[i=i+1] = A: {0} 0 {i-1}? 0 {i} T {A.Length}?
p2 = p1 U p5 = A: {0} 0 {i}? T {A.Length}?

void InitPartial(int[] A, int[] C) {
Contract.Requires(A.Length == C.Length);

int i = 0, j = 0;

while (i < A.Length) {
if (p(A[i])) // For some predicate p

C[j++] = 1;
i++;

} }

Figure 3. Partial array initialization. Partition-based techniques
use four partitions encoding the fact that at loop exit C may be
empty, partially filled, almost-totally filled or totally filled. Our
analysis: (i) compactly represents the same information with only
one segmentation; and (ii) infers the segmentation automatically.

so that we have reached a fixpoint. It remains to compute
p6 = p2[i>=A.Length] = A: {0} 0 {A.Length,i}?

where A.Length = i since the segmentation of p2 provides the
information that 0 6 i 6 A.Length.

The array content analysis always terminates since the only two
reasons for non-termination are impossible:

1. The array might have infinitely many symbolic segments as in
{0} {n-3} ... {n-2} ... {n-1} ... {n} which is prevented
by segmentation unification and widening;

2. A segment might take successive strictly increasing abstract
values which is prevented by the use of a widening/narrowing
convergence acceleration for segment content analysis [7]. No
widening was necessary for constant propagation which satisfies
the ascending chain condition (⊥ @ i @ >, i ∈ Z).

4.4 Partial Array Initialization
Full array initialization is a very well studied example, and array-
partitioning techniques perform reasonably well on it [17, 19].
However, partial array initialization (Fig. 3) illustrates the multipli-
cation of partitions which makes those techniques not-scalable. At
the end of the loop, our analysis (instantiated with constant propa-
gation) infers the following segmentation for C:

{0} 1 {j}? T {i,A.Length,C.Length}?

which compactly captures the fact that C may be empty (when
0 = j = i), may be not initialized (when j = 0), may be partially
initialized (when 0 < j < i), may be fully initialized (when
0 < j = i). Compare it with partition-based approaches where
the abstract state at the end of the loop contains four disjuncts:
one representing the concrete state when none of the C elements
is initialized (j = 0), two representing the partial initialization of C
distinguishing when j+1 < C.Length or j < C.Length, and one
representing the total initialization (j == C.Length) ([17, 7.2]).
We tried this example using our early implementation of [19] and
we got a 2× slow-down with respect to a normal run of Clousot
(it is worth noting that the experimental results reported in [17] and
those in [18] are even worse than our first implementation). For this
example, Clousot lifted with the functor abstract domain was so
fast that we were unable to measure its impact on the performances:
the additional cost is in the order of magnitude the noise of the
virtual machine (JIT, garbage collector . . .) i.e. few milliseconds.

4.5 Array in-situ rearrangement example
The in-situ array rearrangement algorithm of Fig. 4 [4, 23] maintains
an invariant

[0,100] [-100,100] [-100,-1]

0 a b A.length

void Rearrangement(int[] A) {
Contract.Requires(A.length > 1);
Contract.Requires(Contract.Forall(0,A.length,

i => (-100 <= A[i] && A[i] <= 100)));
int a = 0, b = A.length;

/* 1: */ while /* 2: */ (a < b) {
/* 3: */ if A[a] >= 0 then {
/* 4: */ a = a + 1;
/* 5: */ } else {
/* 6: */ b = b - 1;
/* 7: */ int x = A[a]; A[a] = A[b]; A[b] = x;
/* 8: */ } }
/* 9: */ }

Figure 4. The array in-situ rearrangement example.

where positive numbers are on the left of a, the negative numbers
are on the right, from b included, and in the middle, between a and
b − 1 the numbers remain to be handled. If A[a] is positive, the
limit a is moved to the right. Otherwise, A[a] is exchanged with
A[b-1] and b is moved to the left. The algorithm terminates when
the central zone is empty. This invariant which is automatically
inferred by the automatic array segmentation analysis illustrates the
interest of using possibly empty segments:
p1 = (A: {0 a} [-100,100] {b A.length}

a:[0,0] b:[2,+oo] A.length:[2,+oo])
p2 = (A: {0}[0,100]{a}?[-100,100]{b}?[-100,-1]{A.length}?

a:[0,+oo] b:[0,+oo] A.length:[2,+oo])
p9 = (A: {0} [0,100] {b a}? [-100,-1] {A.length}?

a:[0,+oo] b:[0,+oo] A.length:[2,+oo])

5. Abstract Domains and Functors
An abstract domain D includes a set D of abstract properties as
well as abstract functions and operations D.op for the partial order
structure of abstract properties (v), the join (t), the meet (u),
convergence acceleration operators: widening (

`
) and narrowing

(
a

), the abstract property transformers involved in the definition of
the semantics of the programming language: the abstract evaluation
of program arithmetic and Boolean expressions, the assignment
to scalar variables . . . [7]. A monotonic concretization function γ
provides the meaning of abstract properties in terms of concrete
properties.

An abstract domain functor D is a function from the pa-
rameter abstract domains D1, . . . ,Dn to a new abstract domain
D(D1, . . . ,Dn). The term “functor” is mutated from OCaml ter-
minology. The formal parameters D1, . . . ,Dn of the abstract do-
main functor D can be instantiated to various actual abstract do-
mains without needing to rewrite the code of the static analyzer.
So various abstractions can be experimented at no programming
cost. The abstract domain functor D(D1, . . . ,Dn) composes ab-
stract properties D1, . . . ,Dn of the parameter abstract domains
D1, . . . ,Dn to build a new class of abstract properties D (e.g.
abstract environments mapping program numerical variables to in-
tervals) and operations (e.g. assignment of an interval to a variable).
For short, we can omit the parameters writing D or op when the
parameters D1, . . . ,Dn are clear from the context.

6. Concrete Semantics
We describe the elements of the semantics of programming lan-
guages to which our array content analysis does apply, that is scalar
variables, simple expressions, and unidimensional arrays and cor-
responding assignments.

6.1 Scalar Variables Semantics The operational semantics of
scalar variables with basic types (bool, char, int, float, etc.) is
assumed to be concrete variable environments ρ ∈ Rv mapping

variable names i ∈ X to their values ρ(i) ∈ V so thatRv , X 7→
V . In the following we let A.Length ∈ X be the name denoting the
length of the array A.

6.2 Simple Expressions Semantics The program simple ex-
pressions e ∈ E containing only constant, scalar variables, and
mathematical unary and binary operators have a semantics JeKρ
in the concrete variable environment ρ so that JeK ∈ Rv 7→ V .
For simplicity, the values in our examples are chosen to be inte-
gers (so V = Z). The semantics of scalar variable assignment is
as usual Ji := eKρ , ρ[i := JeKρ] where ρ[i := v](i) = v and
ρ[i := v](j) = ρ(j) when j 6= i.

6.3 Unidimensional Arrays Semantics The operational seman-
tics of array variables (such as A ∈ A) are concrete array envi-
ronments θ ∈ Ra mapping array names A ∈ A to their values
θ(A) ∈ A , Rv×E×E× (Z 7→ (Z×V)) so thatRa , A 7→ A.

In order to be able to relate array element values to their indexes,
we assume that the concrete value of an array A is a quadruple
a = (ρ, A.low, A.high, A) ∈ A, where:

• ρ ∈ Rv is a scalar variable environment (Sect. 6.1);
• A.low ∈ E is an expression (0 in our examples) which value

JA.lowKρ evaluated in the variable environment ρ yields the
integer lower bound of the array;
• A.high ∈ E (A.Length in our examples) is an expression which

value JA.highKρ evaluated in the variable environment ρ yields
the integer upper bound of the array;
• A maps an index i ∈ [JA.lowKρ, JA.highKρ) to a pair A(i) =

(i, v) of the index i and the corresponding array element value v.

The instrumented semantics of arrays makes explicit the fact that
arrays relate indexes to indexed element values by considering ar-
ray elements to be a pair of an index and an array element value.
This instrumented semantics is in contrast with the classical se-
mantics a ∈ [`, h) 7→ V of arrays mapping indexes in [`, h) to ar-
ray element values in V . The explicit inclusion of the array bounds
is useful to handle arrays of parametric length such as JavaScript
arrays or collections in managed languages. Nevertheless, the ex-
amples here consider arrays of fixed length, maybe unknown, with
A.low = 0. The inclusion of the concrete variable environment
is also necessary to explain segments (which are sub-arrays whose
bounds may symbolically coincide at different program points al-
though they may take different concrete values over time, so that
the length of the segment can vary during execution as shown e.g.
in Sect. 4.3 by p1 and p5).

The semantics of an array element access A[e] is classical. The
expression e is evaluated to an index i. The array variable A is
evaluated to its array value a = (ρ, A.low, A.high, A) where ρ is
the concrete variable environment. It is a “buffer overrun” runtime
error if i < JA.lowKρ or JA.highKρ 6 i, in which case the value
of A[i] is undefined so that program execution is assumed to stop.
Otherwise the index is in-bounds so A(i) = (i, v) is well-defined
and v is the value, in the classical sense, of the array element A[e].
Obviously storing (i, v) instead of v is useless but for the fact that
the instrumented semantics can be used to make the array content
analysis more precise.
Example 1 Let us consider the initialization example of Fig. 2
with the additional assumption that A.Length > 1. At program
point 6 the final values of the scalar variables are given by ρ6 such
that ρ6(i) = ρ6(A.Length) = n where n > 1 is the unknown
array length. The final value of A is a6 = (ρ6, 0, A.Length, A6)
withA6(i) = (i, 0) for all i ∈ [0, n). Because ρ6, 0, and A.Length
are easily understood from the context, we write A[i] = (i, 0) by
abuse of notation where the value i of i is assumed to be in-bounds.

ut

In the analysis of the example of Fig. 2, the pair A[i] = (i, v)
was first abstracted to v, which is the case for all non-relational ab-
stract domains such as constant propagation which cannot establish
a relation between the index i and the array element value v.

Array properties are sets of concrete array values and so belong
to ℘(A) (relations between array values are thus abstracted away).

We have no hypotheses on expressions but Z ⊆ E and X ⊆ E
so that the expressions used in segment bounds can at least be
integer constants or scalar variables, which is necessary in most
programming languages to express bounds.

7. The Variable and Expression Abstract Domains
7.1 Scalar variable abstraction
We let X be an abstract domain encoding program variables includ-
ing a special variable v0 which value is assumed to be always zero
so X = X ∪ {v0} where v0 6∈ X. Operations include the equality
comparison of variables.

Properties and property transformers of concrete variable en-
vironments in ℘(Rv) are abstracted by the variable environment
abstract domain R(X) which depends on the variable abstract do-
main X (so that R is an abstract domain functor). The abstract
properties ρ ∈ R are called abstract variable environments. The
concretization γv(ρ) denotes the set of concrete variable environ-
ments having this abstract property. It follows that γv ∈ R 7→
℘(Rv).

The static analysis of scalar variables may or may not be rela-
tional. For non-relational abstractions, ℘(Rv) is first abstracted to
X 7→ ℘(V) and R , X 7→ V where the abstract domain V ab-
stracts properties of values in V with concretization γv ∈ V 7→
℘(V).

7.2 Expressions in simple normal form
The symbolic expressions appearing in segment bounds belong to
the expression abstract domain E(X). The abstract properties E
consist in a set of symbolic expressions depending on the vari-
ables in X restricted to a canonical normal form plus the bottom
expression ⊥ corresponding to unreachability and the top expres-
sion > abstracting all symbolic expressions which cannot be put
in the considered normal form. The array bound expressions are
assumed to be converted in canonical normal form (e.g. via aux-
iliary variables, so that ...A[B[i]]... becomes ...{int x; x
:= B[i]; A[x]}...). Different canonical forms for expressions
correspond to different expression abstract domains E(X).

In our examples, and in the Clousot implementation, the ab-
stract expressions E are restricted to the normal form v + k where
v ∈ X is an integer variable plus an integer constant k ∈ Z (v0 +k
represents the integer constant k). An alternative example of con-
venient normal form would be linear expressions a.v + b where v
is a variable and a, b ∈ Z (a = 0 for constants).

7.3 Concretization
Given an abstract domain for scalar variables with concretization
γv ∈ R 7→ ℘(X 7→ Z), the concretization γe(e)ρ of an expression
e ∈ E depends on the abstract value ρ ∈ R of the scalar variables
in X and is the set of possible concrete values of the expression.
So γe ∈ E 7→ R 7→ ℘(V) such that γe(⊥)ρ , ∅, γe(>)ρ , V ,
γe(v0 + i)ρ , {i}, and otherwise γe(v + i)ρ , {ρ(v) + i | ρ ∈
γv(ρ)}.

7.4 Abstract operations on expressions in simple normal form
Simple operations are defined on symbolic expressions in normal
form such as the check that an expression depends or not on a given
variable, or the substitution of an expression for a variable in an

expression followed by its reduction in normal form, returning> if
impossible.

Given two expressions in normal form, we must be able to an-
swer the question of their equality and inequality, which in the ab-
stract is always true, false or unknown. These abstract equality and
inequality tests of expressions may be more or less sophisticated.
We consider below three cases of increasing complexity, which one
is chosen can be a parameter of the analysis.

Syntactic comparisons In their simplest form the comparisons
can be purely syntactic. For example v + i = v’ + j is true if
and only if v = v’ and i = j, false if v = v’ and i 6= j and
unknown otherwise. Similarly v + i < v’ + j is true if and only
if v = v’ and i < j, false if v = v’ and i > j and unknown
otherwise. The comparison of i and v+j where v 6= v0 always has
an unknown result. This is very simple, rapid, but rather imprecise.

Variable comparisons An immediate refinement consists in using
the abstract information ρ ∈ R available on scalar variables. This is
always possible since the corresponding abstract domains, whether
relational or not, do have primitives to handle program conditional
expressions.

For example assume that R(X) is an interval analysis, ρ(v) =
[a, b], and ρ(v’) = [a′, b′]. The comparison v + i < v’ + j is
true when v = v’ and i < j or v 6= v’ but (using the abstract
variable environment) b + i < a′ + j, false when v = v’ and
i > j or v 6= v’ but (using the abstract variable environment)
b′+j 6 a+j and unknown otherwise. Relational domains such as
DBM [11] and Octagons [32] can directly answer such questions.
In that case the expression abstract domain E is an abstract domain
functor E(X,R(X)) depending on the variable abstract domain X
and the variable environment abstract domain R(X).

Please note that comparison of expressions e, e′ ∈ E must be
done for all possible variable abstract domains R which requires
all of them to share a common abstract interface for expression
comparison. A reasonable choice is to translate the comparison
of normal expressions in E to that of program expressions which
anyway have to be evaluated in the abstract using R.

Segmentation-based comparisons The information in the array
segmentation can be used to symbolically compare expressions.
In fact a segmentation {e11 . . . e1m1} . . . {e21 . . . e2m2}[?2] . . .
{en

1 . . . en
mn}[?n] maintains the information that e11 = . . . =

e1m1 6 e21 = . . . = e2m2 6 . . . 6 en
1 = . . . = en

mn (where
the i-th inequality is strict when [?i+1] is empty and not strict
when [?i+1] is ?). In its simplest form, two expressions are known
to be equal if they appear in the same segment bound, unequal if
they appear in different segment bounds of the same array (strictly
when separated by at least one), and otherwise their comparison
is unknown.

More sophisticated algorithms can be used depending on the
allowed syntactic form of normal expressions.

For example, in the case of expressions of the restricted form
v+ i, i ∈ Z where constant expressions are represented by the dis-
tinguished variable v0 which value is assumed to always be zero,
we can use Pratt’s algorithm [33] to compare their symbolic values.
A graph matrix is constructed with an edge (v, v’) labelled i − j
whenever v+i 6 v’+j (respectively i−j+1 when v+i < v’+j)
is derived from a segmentation of some array. Equalities are rep-
resented by two inverse inequalities. Arcs between incomparable
variables are marked +∞ (including when i− j or i− j + 1 over-
flows so that the relation is abstracted away). The Roy-Warshall-
Floyd all-pairs shortest paths/transitive closure algorithm [34] is
used to derive all possible comparisons derived by repeated appli-
cation of the transitivity of comparisons. A cycle (v, v) for a vari-
able v in the transitive closure matrix means impossibility, that is

unreachability in the concrete. A constraint v+k 6 v’ holds when
the label of arc (v, v’) is less than or equal to k in the transitive
closure matrix.

Another similar example is Shostak algorithm [36] for com-
parison of linear expressions of the form a.v + b.v’ 6 c where
a, b, c ∈ Z.

8. Segment Bounds Abstract Domain Functor
The segment bound abstract domain functor B takes any of the ex-
pression abstract domains E discussed in Sect. 7.2 and produces an
instantiated segment bound abstract domain B(E) whose abstract
properties are sets of expressions B , ℘(E \ {⊥,>}). The empty
set ∅ denotes unreachability while non-empty sets {e1 . . . em}
of expressions e1, . . . , em ∈ E are all equivalent symbolic deno-
tations of some concrete value (generally unknown in the abstract
except when one of the ei is a constant).

8.1 Concretization
The concretization γb ∈ B 7→ ℘(Rv) of segment bounds is the set
of scalar variables concrete environments ρ making the concrete
values of all expressions in the set to be equal Je1Kρ = . . . =
JemKρ. So γb(∅) = ∅ and γb(S) = {ρ | ∀e, e’ ∈ S : JeKρ =
Je’Kρ} where JeKρ is the concrete value of expression e in the
concrete environment ρ (for example Jv0 + cKρ , c and otherwise
Jv + cKρ = ρ(v) + c).

When normal expressions and segment bounds are simplified
and compared in the context of variable abstract environments
ρ ∈ R (Sect. 7.4), the concretization can be chosen as γb ∈ B 7→
R 7→ ℘(Rv) such that γb(S)ρ = {ρ ∈ γv(ρ) | ∀e, e’ ∈ S :
JeKρ = Je’Kρ}.

8.2 Abstract operations on segment bounds
The segment bound abstract domain operations include basic set
operations (such as the empty and singleton constructors, test for
emptiness, inclusion, strict inclusion, and equality, union, intersec-
tion) as well as a widening (when the normal form of expressions
does not enforce the finiteness of the number of expressions which
can all have the same concrete value). A simple widening limits the
number of expressions that can appear to a maximum given as a
parameter of the analysis.

In order to handle non-invertible assignments to scalar vari-
ables, the segment bounds abstract domain B(E) has an operation
that eliminates from a set of expressions all the expressions that
contain a given variable (using the check provided by the expres-
sion domain parameter E in Sect. 7.4).

Similarly, to handle invertible assignments to scalar variables,
an operation is available to substitute an expression for a variable
in all expressions of a set, a resulting expression being eliminated
from the set when the expression domain parameter cannot put it
in normal form. After a side-effect free assignment i=e; or an
equality test i==e, we have i = e so e’(e) can be added to
a segment bound containing the expression e’(i) provided the
expression domain parameter E can put e’(e) in normal form.

Based on the comparison of expressions in sections Sect. 7.4
the segment bounds abstract domain functor can compare sets of
equal expressions. For example s < s′ is true if there exists an
expression e in s and expression e′ in s′ such that the expression
domain parameter E can determine that e < e′ is true. s < s′

is false if the expression domain parameter E can determine that
there exists e ∈ s and e′ ∈ s′ such that e ≥ e′. Otherwise the
comparison s < s′ has an unknown result.

9. Array Element Abstract Domain
The array element abstract domain A abstracts properties of pairs
(index, value of indexed array element). The concretization is γa ∈
A 7→ ℘(Z× V).

Properties in ℘(Z × V) may not or may be first abstracted
to ℘(V) when we do not want to relate array element values to
their index. In the first case we have a relational analysis (e.g. in
Sect. 11.1), in the second a non-relational (e.g. in Sect. 4.3).

10. Conversion between the Variable and Array
Element Abstract Domains

In general the variable and array elements abstractions do differ so
that a conversion from one to the other is needed.

A variable to array element abstract property conversion is in-
volved in an assignment A[i] = e; (handled as A[i] = (i,e);),
while an array element to variable property conversion is required
in an assignment x := A[i];, and no conversion is required in
A[i] := A[j]; or i = j;. This is taken care of by a conversion
abstract domain providing the two conversion functions. There-
fore, the analysis must be parameterized by a conversion abstract
domain functor C(A,R) which contains two conversion functions
from variable abstract properties in R to abstract array elements
properties inA and inversely. This domain can also abstract (i,e)
into e to get array content analyses not relating indexes to indexed
array elements.

11. FunArray: The Array Segmentation Abstract
Domain Functor

The array segmentation abstract domain S(B(E),A,R) abstracts
a set of possible array contents by consecutive, non-overlapping
segments covering all array elements. The precision/cost ratio of
the array segmentation analysis can be adjusted to a specific ap-
plication domain by changing the abstraction R of scalar variable
environments (Sect. 7.1), the normal form E of symbolic expres-
sions (Sect. 7.2), hence that of the segment bounds B(E) (Sect. 8),
the abstraction A of the abstract array elements (Sect. 9), as well
as the various parameters of these abstract domains (such are the
degree of refinement of expression comparison in E in Sect. 7.4,
hence of segment bounds comparison of B(E) (Sect. 8.2) and the
conversions (Sect. 10).

11.1 Examples of array segmentation functor instantiations
To illustrate the possibility of relating the value of array elements
to their index, let us consider the static analysis of

int n = 10, i = 0;
int[] A = new int[n];

/* 1: */ while /* 2: */ (i < n) {
/* 3: */ A[i] = 0;
/* 4: */ i = i + 1:
/* 5: */ A[i] = -16;
/* 6: */ i = i + 1:
/* 7: */ }
/* 8: */

(3)

typical of data transfer protocols where even and odd numbered
packets contain data of different types e.g. [16, Sec. 6.6.3], [25].
We will combine parity (where | (i.e. ⊥) is unreachable, o is
odd, e is even, T (i.e. >) is unknown) and intervals.
Example 2 The first abstraction is the reduced product [8] of par-
ity and intervals where pairs of a parity and an interval denote the
conjunction of both properties (with a reduction e.g. of bounds by
parity (such as (e,[0,9])→ (e,[0,8])) and parity for constant
intervals (such as (T,[1,1]) → (o,[1,1]))). In the following

analysis of (3) this abstraction is used both for variables and ar-
ray elements (hence ignoring their relationship to indexes since
J(i, e)Kρ = (parity(JeKρ), interval(JeKρ))).
p1 = (A: {0 i} (T, [-oo,+oo]) {n 10},

i: (e, [0,0]) n: (e, [10,10]))
p2 = (A: {0} (e, [-16,0]) {i}? (T, [-oo,+oo]) {n 10}?

i: (e, [0,10]) n: (e, [10,10]))
p8 = (A: {0} (e, [-16,0]) {n 10 i}

i: (e, [10,10]) n: (e, [10,10]))

The analysis of i starts with the initial value (e,[0,0]) and is
(e,[0,2]) after one iteration which is widened to (e,[0,+oo])
hence stable. The narrowing phase starts with the test i < n where
n in [10, 10] so i is in (e,[0,9]) hence (e,[0,8]) by re-
duction through evenness. After one more iteration we get back
(e,[0,10]) to narrow (e,[0,+oo]) which is (e,[0,10]) and
is a fixpoint. ut
Example 3 The second abstraction is the reduced cardinal power
[8] of intervals by parity whose abstract properties have the form
(o -> io,e -> ie) meaning that the interval is io (resp. ie) when
the parity is o (resp. e). In the following non-relational analysis of
(3), we use the reduced product of parity and intervals for simple
variables and the power of parity by interval for array elements
(hence ignoring their relationship to indexes since J(i, e)Kρ maps
parity(JeKρ) to interval(JeKρ)). For example (o -> | ,e ->
[-16,0])means that the indexed array elements must be even with
value included between −16 and 0.
p1 = (A: {0 i} (o -> [-oo,+oo],e -> [-oo,+oo]) {n 10},

i: (e, [0,0]) n: (e, [10,10]))
p2 = (A: {0} (o -> _|_,e -> [-16,0]) {i}?,

(o -> [-oo,+oo],e -> [-oo,+oo]) {n 10}?,
i: (e, [0,10]) n: (e, [10,10]))

p8 = (A: {0} (o -> _|_,e -> [-16,0]) {n i 10},
i: (e, [10,10]) n: (e, [10,10]))

Observe that the abstraction is more powerful but the result is
exactly the same as in the above analysis in Ex. 1 using the re-
duced product since (o -> | ,e -> [-16,0]) is exactly (e,
[-16,0]) on array elements. ut
Example 4 The third abstraction also uses the reduced cardinal
power of intervals by parity, but this time in a relational way for
arrays thus relating the parity of an index to the interval of possible
variation of the corresponding element (so J(i, e)Kρ is a map of
parity(JiKρ) to interval(JeKρ)). We get
p1 = (A: {0 i} (o -> [-oo,+oo],e -> [-oo,+oo]) {n 10},

i: (e, [0,0]) n: (e, [10,10]))
p2 = (A: {0} (o -> [-16,-16],e -> [0,0]) {i}?

(o -> [-oo,+oo],e -> [-oo,+oo]) {n 10}?,
i: (e, [0,10]) n: (e, [10,10]))

p8 = (A: {0} (o -> [-16,-16],e -> [0,0]) {n 10 i},
i: (e, [10,10]) n: (e, [10,10]))

so that the array elements with odd index are shown to be equal to
-16 while those of even index are zero. ut

11.2 Abstract Predicates
The array segmentation abstract predicates belong to S , {(B ×
A)× (B×A×{ , ?})k × (B×{ , ?}) | k > 0} ∪ {⊥} and have
the form
{e11 ... e1m1}P1 {e21 ... e2m2}[?2]P2 . . . Pn−1 {en

1 ... en
mn}[?n]

where
• the segment bounds {ei

1 ... ei
mi} ∈ B, i ∈ [1, n], n > 1, are finite

non-empty sets of symbolic expressions in normal form ei
j ∈ E

as respectively considered in Sect. 8 and Sect. 7.2;
• the Pi∈ A are abstract predicates chosen in an abstract domain

A denoting possible values of pairs (index, indexed array ele-
ment) in a segment of Sect. 9; and

• the optional question mark [?i] follows the upper bound of a
segment. Its presence ? means that the segment might be empty.
Its absence means that the segment cannot be empty. Because
this information is attached to the segment upper bound (which
is also the lower bound of the next segment), the lower bound
{e11 . . . e1m1} of the first segment never has a question mark.
({ , ?},4, , ?,g,f) is a complete lattice with ≺ ?.
The symbolic expressions ek

i ∈ E in a given segment bound de-
pend on scalar variables but not on array elements hence A[A[i]]
should be handled as x=A[i]; A[x] so that the auxiliary vari-
able x can appear in a segment bound for array A. The consecutive
segment bounds are in strictly increasing order in the concrete ex-
cept when followed by a question mark meaning that the preceding
block may be empty. There is no hole between segments (since this
hole can always be viewed as another segment whose properties
are unknown). The first block limit always contains an expression
in normal form denoting the array lower bound while the last block
always contains an expression in normal form denoting the array
upper bound. Within one block the abstraction is uniform (but can
be relational, since the array semantics of Sect. 6.3 can relate the
array value A[i] to the index i). A possible refinement would be
to introduce relationships between segment emptiness marks (so as
to express that in {0} 0{i}? T {n}? both segments cannot be si-
multaneously empty), which we do not do for the sake of efficiency.

11.3 Concretization
Given the concretizations γv ∈ R 7→ ℘(Rv) for the variable ab-
stract domain and γa ∈ A 7→ ℘(Z × V) for the array elements
abstract domain, the concretization γs of an abstract array segmen-
tation is an array property so γs ∈ S 7→ R 7→ ℘ (A).

The concretization of a segment B P B′ [?] is the set of arrays
whose elements in the segment [B,B′) satisfy the abstract property
P (< stands for < while <? stands for 6):

γ′s(B P B′ [?])ρ ,

{(ρ, `, h,A) | ρ ∈ γv(ρ) ∧ ∀e1, e2 ∈ B : ∀e′1, e′2 ∈ B′ :
J`Kρ ≤ Je1Kρ = Je2Kρ <[?] Je′1Kρ = Je′2Kρ ≤ JhKρ ∧
∀i ∈

[
Je1Kρ, Je′1Kρ

)
: A(i) ∈ γa(P)}

The concretization of an array segmentation B1P1B2[?
2]P2 . . .

Pn−1Bn[?n] is the set of arrays whose elements in all segments
[Bi, Bi+1), i = 1, . . . , n−1 satisfy abstract propertyPi and whose
lower and upper bounds are respectively given by B1 and Bn.

γs(B1P1B2[?
2]P2 . . . Pn−1Bn[?n])ρ ,

{(ρ, `, h,A) ∈
n−1⋂

i=1

γ′s(Bi Pi Bi+1[?
i+1])ρ |

∀e1 ∈ B1 : Je1Kρ = J`Kρ ∧ ∀en ∈ Bn : JenKρ = JhKρ}

and γs(⊥) = ∅.

11.4 Segmentation unification
Given two segmentations with compatible extremal segment bounds
(in general for the same array), the objective of segmentation unifi-
cation is to modify the two segmentations so that they coincide. By
compatible we mean that the first (the last) segment bounds should
have a non-empty intersection. In practice this is always the case
as the first segment bound always contains 0 and the last segment
bound always contains the symbolic name for the array length (e.g.,
A.Length).

On the best unification The problem of segmentation unification
admits a partially ordered set of solutions, in general not forming a
lattice.

The minimal elements, hence the least precise unifications are
those where all the segments are joined, and only the extremes are
preserved.

Example 5 Let a and b be distinct variables. When unifying
{0}...{a b} with {0}...{a b c}, both segmentations {0}...{a}
and {0}...{b} are minimal solutions, but not comparable. ut

The maximal elements, hence the most precise unifications are
the coarsest common refinements of both segmentations.

Example 6 When unifying {0}...{a}...{b}...{c} with {0}...{b}
...{a}...{c} both segmentations {0}...{a}...{c} and {0}...{b}...
{c} are maximal , but not comparable solutions. ut

In general, a solution is such that the bounds: (i) do appear in
one or the other initial segmentation; and (ii) preserve the original
orderings.

One segment can be empty in one segmentation (like {0 i})
and non-empty in the other one (like {0}P{1,i}). Therefore
segmentation must include the splitting of empty segments (like
{0 i} → {0}P ′{i}?). Such an empty segment splitting is used in
the comparison/join/meet/widening/narrowing of segments (which
are not all commutative) so that the abstract value P ′ of the created
empty segment must be chosen as the left/right neutral element of
the considered operation (e.g. P ′ is ⊥ for join, > for meet, ⊥ on
the left and > on the right of the partial order v).

The segmentations involved in a unification are usually related
to different program contexts:

Example 7 Assume we want to unify {0 i-1}P1{i} and {0
i-2}P2{i} (obviously in two different contexts). The coars-
est common refinement is {i-2}⊥{0}⊥{i-1}?P1{i} for {0,
i-1}P1{i} and {i-2}⊥{0}?P2{i-1}P2{i} for {0,i-2}P2{i}
(which would yield the join {i-2}⊥{0}?P2{i-1}?P1 ∪ P2{i}).
However, it might be the case that i < 2 from the abstract variable
environment, in which case the expression i-2 in the lower bound
of the first refined segmentation is undefined. ut

Therefore, the well-definedness of the coarsest common refine-
ment, if any, depends upon the abstract variable environment, too.

To sum up, we want the array segmentation analysis: (i) to have
the possibility of being completely independent of the variable
analysis (see Sect. 11.7); (ii) to have a deterministic behavior in
presence of several maximal common refinements. Therefore we
present a segmentation unification which does not provide any
guarantee on the maximality of the result, but instead one which:
(i) is always well-defined in absence of knowledge of the contexts
of the segmentations; (ii) does terminate; (iii) is deterministic.

The segmentation unification algorithm The first step of the al-
gorithm is checking the compatibility of the two input segmenta-
tions to verify that they do have common lower and upper bounds.

Then, the unification proceeds recursively from left to right and
maintains the invariant that the left part is already unified. We let
⊥>l (resp. ⊥>r) denote the left (resp. right) neutral element.
1. B[?1] P1 B

′
1[?
′
1] . . . and B[?2] P2 B

′
2[?
′
2] . . . have same lower

bounds and so keep the first segments as they are and go on with
B′1[?

′
1] . . . and B′2[?′2]

2. In case (B∪B1)[?1]P1B
′
1[?
′
1] . . . andB[?2]P2B

′
2[?
′
2] . . . with

B1 6= ∅ and B ∩B1 = ∅, let B1 be the set of expressions in B1

appearing in the second segmentation blocks B′2,
2.1 If B1 is empty then go on with B[?1] P1 B

′
1[?
′
1] . . . and

B[?2] P2 B
′
2[?
′
2] . . . following case 1.

2.2 Otherwise go on with B[?1] ⊥>l B1? P1 B
′
1[?
′
1] . . . and

B[?2] P2 B
′
2[?
′
2] . . . as in case 1.

3. The symmetrical case is similar.
4. In case (B∪B1)[?1]P1B

′
1[?
′
1] . . . and (B∪B2)[?2]P2B

′
2[?
′
2] . . .

with B1, B2 6= ∅ and B ∩ B1 = B ∩ B2 = ∅, let B1 (resp.

B2) be the set of expressions in B1 (resp. B2) appearing in the
second (resp. first) segmentation blocks B′2, . . . (B′1, . . .).
4.1 IfB1 andB2 are both empty, go on withB[?1]P1B

′
1[?
′
1] . . .

and B[?2] P2 B
′
2[?
′
2] . . . as in case 1.

4.2 Else if B1 is empty (so that B2 is not empty) then go on
with B[?1] P1 B

′
1[?
′
1] . . . and B[?2] ⊥>r B2? P2 B

′
2[?
′
2] . . .

(where ⊥>r is the right neutral element).
4.3 The symmetrical case is similar.
4.4 Finally if B1 and B2 are both non-empty then go on with

B[?1]⊥>lB1?P1B
′
1[?
′
1] . . . andB[?2]⊥>rB2?P2B

′
2[?
′
2] . . .

as in case 1.
5. In case B1[?1] P1 B

′
1[?
′
1] . . . and B2[?2] P2 B

′
2[?
′
2] . . . with

B1 ∩ B2 = ∅, we cannot be on the first left segment block
so we have on the left B0[?0] P0 B1[?1] P1 B

′
1[?
′
1] . . . and

B′0[?
′
0]P

′
0B2[?2]P2B

′
2[?
′
2] . . . and go on by merging these con-

secutive blocks B0[?0]P0 tP1 B
′
1[?1f?′1] . . . and B′0[?′0]P ′0 t

P2 B
′
2[?2f?′2]

6. Finally, at the end either we are left with the right limits that have
both been checked to be equal or else we have B1[?1]P1B

′
1[?
′
1]

and B2[?2] with B′1 = B2. Because we have maintained the
invariant that B1 is always equal to B2 in the concrete (so
necessarily [?′1] =? since then B1 = B2 = B′1), and so we
end up with (B1 ∪B′1 ∪B2)[?1] and (B1 ∪B′1 ∪B2)[?2] ut

Example 8 In the analysis of the example of Fig. 2, we have
to unify {0 i} T {n} and {0 i-1} 0 {1 i} T {n}? which be-
comes {0}⊥ {i}? T {n} and {0} 0 {1 i} T {n}? by 4.3 and
we go on with {i}? T {n} and {1 i} T {n}? which, by the
symmetric in 3 of 2.1 becomes {i}? T {n} and {i} T {n}? so
we go on with {n} and {n}? which terminates the recursion by 6,
thus returning {0}⊥{i}? T {n} and {0} 0 {i} T {n}?. Their
array segmentation join is then {0} 0 {i}? T {n}? (taking the
disjunction g of potential segment emptiness). ut

The algorithm never adds any new expression to the segment
bounds nor increments the total number of segment bounds in
splits and so does terminate. The algorithm has a look-ahead of
1 (cf. case 5). It can be easily refined to provide a larger look-
ahead at a price of an increased complexity. However, an advantage
of the algorithm is that its behavior and output are deterministic.
For instance, in the Ex. 6 our algorithm returns the non-maximal
segmentation {0}...{c}. A 2-look-ahead algorithm should make
the choice between the two maximal solutions.

In general, the algorithm can be easily adapted and refined to
take into account specific knowledge when comparing segment
bounds (for instance the total order induced by constants Sect. 12.2).

11.5 Partial order/join/meet/widening/narrowing
For an array segmentation join S.t, a (⊥,⊥)-segmentation uni-
fication is performed and then the array element abstract domain
join A.t is applied segmentwise. For the meet S.u, a (>,>)-
segmentation unification is performed and then a segmentwise meet
A.u. For the widening S.

`
, a (⊥,⊥)-segmentation unification is

performed and then a segmentwise widening A.
`

. Moreover, the
widening merges consecutive segments with same abstract value.
Widenings could also be used to limit the size of segment bound
sets and/or the number of segments given as parameters of the anal-
ysis. For the narrowing S.

a
, a (>,>)-segmentation unification is

performed and then a segmentwise narrowing A.
a

. For the par-
tial order S. v, a (⊥,>)-segmentation unification is performed
before returning the conjunction of the segmentwise comparisons
A. v. The potential segment emptiness indications must also be
taken into account, that is = ≺ ? = ?.

11.6 Abstract Transfer Functions
Abstract value of an indexed array element Assume that we have
to evaluate JA[e]Kρ for the array A abstracted by the segmentation
B1P1B2[?

2]P2 . . . Pn−1Bn[?n]. The expression B1 6 e 6 Bn

is evaluated in the abstract and a warning is emitted if the result is
unreachable (dead code), false (definite error) or unknown (poten-
tial error). Let B` be the largest segment bound such that B` 6 e
is true (B1 otherwise) and Bh be the smallest segment bound such
that e < Bh is true (Bn otherwise, assuming that execution goes
on only in absence of buffer overrun). The value of JA[e]Kρ is then⊔h−1

k=` Pk where t is the join in the domain A abstracting (index,
value of indexed array element) pairs. A call to a conversion func-
tion of C is necessary if this abstract value in A must be converted
to a variable abstract value in R.

Assignment to an array element In an array element assignment
A[e] = e’ with abstract variable environment ρ where the array A
is abstracted by the segmentationB1P1B2[?

2]P2 . . . Pn−1Bn[?n],
we first determine the range of segments such thatB` 6 e < Bh is
definitely true. The segmentation of A can be thought of as being ab-
stracted to B1P1 . . . B`[?

`](
⊔h−1

k=` Pk)Bh[?′]Ph . . . Pn−1Bn[?n]
where [?′] is ? if all the [?`+1], . . . , [?h] are ? (so that the block
B` . . . Bh can then be empty) and otherwise. Of course it may
happen that h = ` + 1 in which case only one segment is con-
cerned or ` = 1 and h = n in which case all segments are
smashed. In all cases, the assignment is definitely in the seg-
ment B` . . . Bh (may be at its borders). This segment is split.
Let P ∈ A be the abstraction of the value of the pair (e, e’)
in A. After the array element assignment, the array segmen-
tation of A becomes B1P1 . . . B`[?

`](
⊔h−1

k=` Pk){e}[?l]P{e +

1}(
⊔h−1

k=` Pk)Bh[?r]Ph . . . Pn−1Bn[?n]. [?l] is ? unless the seg-
ment bounds comparison discussed in Sect. 8.2 can determine that
B` < {e} is always true. Similarly, [?r] is when {e + 1} < Bh

for sure and ? otherwise.
There are special cases. When the index expression e or e+1

or both cannot be put in the normal form of E, we have to merge
the corresponding segments, to getB1P1 . . . B`[?

`](P t
⊔h−1

k=` Pk)
Bh[?′]Ph . . . Pn−1Bn[?n] in the worst case. This is the case of the
assignment (*) in Fig. 1. If the segment bounds comparison can
determine that B` = {e} we get B1P1 . . . (B` ∪ {e})[?l]P{e +
1}(
⊔h−1

k=` Pk)Bh[?r]Ph . . . Pn−1Bn[?n]. Similarly if {e + 1} =

Bh for sure, we getB1P1 . . . B`[?
`](
⊔h−1

k=` Pk){e}[?l]P ({e+1}∪
Bh)Ph . . . Pn−1Bn[?n].

Test of an array element A test c(A[e]) of an array element A[e]
can be done by getting the abstract value of (i, v) of (e,A[e]) in
A, restricting the abstract value (i, v) by restricting i to the array
bounds (execution is assumed to stop in case of buffer overrun)
and v to the test c(v), and assigning the restricted value back to
the array element A[e]. For a simpler uniform treatment of tests
involving both scalar variables and array elements, (i, v) in A
can be converted to the variable abstract domain R and back after
handling the test using C.

Assumption for the content of an array For a statement in the
form of assume ∀i ∈ [a, b). c(A[e]) (assuming a ≤ b are within
the array bounds): (i) we infer an abstract segment value as in the
previous case (let us call it P); (ii) we abstract the bounds a, b
in the quantification to their best possible approximation a, b in
the bounds abstract domain; (iii) we materialize the most generic
abstract segmentation
A: {0} T {a}? P {b}? T {A.Length}?

and we use the scalar abstract domain to get rid of some of the un-
certainties. Finally the so-obtained abstract predicate is intersected

(using the meet operation) with the abstract value in the pre-state
of A. For example, using the abstract domain of intervals:
/* (A: {0} T {A.Length}, k:[10,10], A.Length:[10, +oo]) */
assume forall i: [0, k) => A[i] >= 0;
/* (A: {0} [0, +oo] {k} T {A.Length}?, ...) */

In fact, the materialized abstract segment is
A: {0} T {0}? [0, +oo] {k}? T {A.Length}?,

which can be reduced using the abstract domain of scalars to:
A: {0} [0, +oo] {k} T {A.Length}?

The constant zero is trivially equal to itself and k is positive but it
may be equal to the length of the array A. Finally the value in the
pre-state of A is refined via the meet operation.

Invertible assignment to a scalar variable In an invertible assign-
ment to a scalar variable x = f(x,~y) where ~y = y1, . . . , ym, we
have xnew = f(xold, ~y), where f is the value of f, xold denotes the
value of the variable x before assignment, xnew denotes the value
of the variable x after assignment, f has no side effect so the val-
ues ~y of the variables ~y are not changed, and xold = f−1(xnew, ~y).
For such an invertible assignment, all occurrences of the variable x
in the expressions in the segment bounds must be replaced by the
expression f−1(x,~y) and the resulting expressions simplified into
canonical normal form, if any, and dropped otherwise. In case a
segment bound becomes empty because normalization is impossi-
ble, the two adjacent segments must be joined. For the example in
Fig. 2, we have:
/* (A: {0} 0 {i}? 0 {i+1} T {n}?, ...) */
i = i + 1;
/* (A: {0} 0 {i-1}? 0 {i} T {n}?, ...) */

Non-invertible assignment to a scalar variable In a non invert-
ible assignment x = f(x,~y), no inverse xold = f−1(xnew, ~y) is
available, for example in x = f(~y). For such a non invertible as-
signment x = e, all expressions in the segment bounds containing
occurrences of the variable x must be eliminated from these seg-
ment bounds. In case a segment bound becomes empty, the two
adjacent segments must be joined. Then the variable x and expres-
sion e are added to the segment bound containing an expression e′

such that Je′ == eKρ is definitely true in the abstract. In the simple
purely syntactic case of Sect. 7.4, Je′ == eKρ = true is under-
approximated by e′ = e so that x is added to all segment bounds
containing e. For the example of Fig. 2 we have:

/* (A: {0} T {n}?, i: T n: T) */
i = 0;
/* (A: {0 i} T {n}?, i: 0 n: T) */

In case of an assignment x = f(~y), x 6∈ ~y where yi = f−1
i (xnew,

y1, . . . , yi−1, yi+1, . . . , ym) is available, the expression e(f−1
i (xnew,

y1, . . . , yi−1, yi+1, . . . , ym)) can be added to all segment bounds
containing an expression e(yi) whenever simplification in canoni-
cal normal form is possible. For example:

/* (A: {0} 0 {i+5 j+7} T {10 n}, ...) */
i = j - 7;
/* (A: {0} 0 {i+14 j+7} T {10 n}, ...) */

Comparison of scalar variable expressions The equality com-
parison e = e’ (where e and e’ have equivalent normal forms) to-
gether with the segment bounds comparison discussed in Sect. 8.2
that may be able to determine that e = Bi

(2) is always true
will add e and e’ to Bi. Moreover, if e’ = Bj for sure and
i < j then the segmentation B1P1B2[?

2]P2 . . . Pn−1Bn[?n] will
be reduced to B1P1B2[?

2]P2 . . . Pi−1(Bi ∪ Bi+1 ∪ . . . ∪ Bj ∪
{e, e’})[?i]Pj . . . Pn−1Bn[?n] or to unreachability when one of

(2) Recall that e = B is ∃e′ ∈ B : e = e′.

InitBackwards(int[] A) {
int i = A.Length;

/* 1: */ while /* 2: */ (0 < i) {
/* 3: */ i = i - 1;
/* 4: */ A[i] = 0;
/* 5: */ }
/* 6: */ }

Figure 5. Example of a backwards initialization. Array segmen-
tation reduction is needed to prove the postcondition ∀j ∈
[0, A.Length). A[j] = 0.

the [?i+1], . . . , [?j] is (since then e < e’). The comparison
e 6 e’ has the same effect when j < i or when e < e’ and
i = j.

Otherwise disequality e <> e’ and strict inequality e < e’
with e = Bi and e’ = Bi+1 can be used to remove a doubt ? on
the possible emptiness of a segment BiPiBi+1? which becomes
BiPiBi+1.

11.7 Array segmentation reduction
A program analysis is the product of a segmentation analysis for
arrays and the analysis of scalar variables. The two analyses can
be completely independent which is an important feature for the
array segmentation analysis to be easily inserted in any analyzer
without having to make any hypothesis on the static analyzer. The
consequence is that the result may not be as precise as possible. Let
us illustrate this phenomenon on the program of Fig. 5.

Using the independent product of interval abstractions for array
elements and scalar variables, the post condition derived by the
static analyzer with Sect. 7.4 at program point 6 is
(A: {0} [-oo,+oo] {i}? [0,0] {A.Length}?,
i: [0,0] A.Length: [2,+oo])

It states that it is possible that i = 0 but the array segmenta-
tion analysis cannot prove that this is indeed always the case. It
is in general always more precise to consider the reduced prod-
uct of the array and variable analyses [8]. This consists in iter-
ating reduction operators that propagate information for one ab-
stract domain to the other. For example it may be useful to prop-
agate the relational information of array segmentation (equality of
expressions in a segment bounds and segment bounds in increas-
ing order (strictly increasing in absence of ?)), unless a more pre-
cise relational domain is already used for scalar variables. In the
other direction, the information provided by the scalar variable
analysis can be propagated to segmentations. A possibly empty
segment . . . B[?] P B′? . . . can be reduced to a non-empty one
. . . B[?] P B′ . . . if the scalar variables environment ρ implies
∃e ∈ B : ∃e′ ∈ B′ : JeKρ < Je′Kρ is always true in the ab-
stract (the abstract test returning either ⊥, true, false, or unknown).
Similarly, a possibly empty segment . . . B[?]P B′? . . .may be def-
initely empty and reduced to the bound . . . (B ∪ B′)[?] . . . when
∃e ∈ B : ∃e′ ∈ B′ : JeKρ = Je′Kρ = true .

In the reduction example of Fig. 5, the fact that i ∈ [0, 0]
implies that the segment {0} [-oo,+oo] {i} is empty, in which
case the reduction automatically yields
(A: {0 i} [0,0] {A.Length},
i: [0,0] A.Length: [2,+oo])

which is exactly the expected result at program point 6.

12. Implementation
12.1 CodeContracts and Clousot

CodeContracts allow the language-agnostic specification of con-
tracts (preconditions, postconditions and object-invariants [3, 31]).

The CodeContracts API is included in .NET starting from v4.0.
Clousot is an abstract interpretation-based static analyzer devel-
oped at MSR Redmond used to statically check: (i) contracts; and
(ii) the absence of common runtime errors such as non-null deref-
erences or buffer overruns. Clousot is used both inside and out-
side Microsoft on large production projects. When a method is an-
alyzed, its preconditions is turned into an assumption and its post-
condition into an assertion. For each method call appearing in the
method body, its precondition is turned into an assertion and the
postcondition into an assumption. Object-invariants are assumed at
the entry of public methods and asserted at the exit point (a detailed
description of the object-invariants treatment is out-of-the scope of
this paper). Further assertions are generated from the body text:
e.g. when an array is accessed the indexing expression is better
being in bounds. Clousot analyzes the bytecode, which presents
several advantages (independence from the compiler, the language,
the language version . . .), but also some drawbacks (lack of pro-
gram structure . . .) [27]. After reading the bytecode, extracting
the contracts, creating the control flow graph, and simplifying the
program, a heap analysis is run so to resolve aliasing, and the pro-
gram is turned into a scalar form. The heap analysis makes some
assumptions on parameter aliasing, we refer the interested reader
to [14]. On the top of the program scalar form several forward value
analyses are run, and their results are used to discharge the asser-
tions. Assertions are discharged using simple built-in decision pro-
cedures. If an assertion cannot be discharged, then the analysis is
refined by using a more precise abstract domain or a goal-directed
backward propagation. If refinement does not work, then a warn-
ing is reported to the user. Warnings are issued because of a lack of
knowledge (e.g. missing postcondition, precondition too weak . . .),
incompleteness of the analysis (inevitable in all the static analyses),
or because of too complex assertions (e.g. quadratic inequalities).

Before this work, quantified assertions over arrays (e.g. all the
elements are non-null) were not understood by Clousot which
reported warnings for assertions as e.g. the ones in Fig. 1. Fur-
thermore, the analysis was also very imprecise in handling array
loads (and iterations over collections), so that each time a value was
loaded from an array, nothing could be stated on that value, hence
the worst case was assumed, degrading the analysis precision. Fix-
ing those issues were a main request from Clousot’s users.

12.2 Implementation of FunArray in Clousot

We fully implemented FunArray in Clousot. To the user (typ-
ically a programmer with no background in formal methods)
FunArray is exposed as a simple check-box in Visual Studio.
When the check-box is enabled, the FunArray is transparently
instantiated with the abstract domains in Clousot. The array anal-
ysis is orthogonal to the other components of Clousot, so that it
can benefit of precision improvements for free. For instance, if a
more precise scalar variable abstract environment is used, then the
FunArray analysis is likely to get more precise.

Functor instantiation In the current implementation: (i) the ab-
stract domain used for the segment elements is the disjoint union of
intervals with non-nullness; (ii) the expressions used in the segment
limits are the simple expressions of Sect. 7.2 augmented with ex-
plicit casts to model the fact that a.Length and (int) a.Length
both denote the length of an array a in the bytecode; and (iii) the
scalar numerical abstract domain is the one provided by Clousot
in the particular run. Several numerical abstract domains are avail-
able in Clousot, among them: Pentagons [28] combined with Lin-
ear equalities [21], Subpolyhedra [24].

Clousot numerical domains are composed according to a tree
topology [9]. Reduction is achieved via pushing or pulling of in-
formation. An abstract domain can push information to abstract
domains of lower rank, and pull information from all other do-

mains. The segmentation abstract domain is at the root of the tree.
It pushes: bottom (contradiction), expression equality (when the
two expressions appears in the same bound), array values (e.g.,
in x = a[i], if it determines that a[i]!= null, then it pushes
the information x != null). It pulls: comparisons (exp1 < exp2,
exp1!= exp2, exp1 == exp2 . . .), integer constants (all the vari-
ables which are known to be definitely constants), intervals (e.g. in
x = a[exp], which is the range for exp?), abstract values (e.g. in
a[i] = z, which is the abstract value for z?).

The array analysis is currently implemented as a value analysis
run on the top of the heap analysis, when in particular array aliasing
has been resolved. As a consequence, the abstract transfer functions
implemented in the analyzer are very similar to those described in
Sect. 11, with some adjustements to meet the peculiarietes of the
.NET semantics and Clousot infrastructure.

Array creation When an array is created with the instruction
newarr A exp then the segmentation

{0} d { A.Length, exp }?

is materialized, where d denotes the abstraction in the segment
value abstract domain of the default value for the type of the array
elements (e.g., 0 is the default value for int and null is the default
value for reference types). The so-materialized segmentation is
then refined pulling some information from the scalar variables
abstract domain. In the particular case, Clousot first asks the
numerical abstract domain if exp > 0. If the answer is true then the
uncertainity ? is dropped. If the answer is false, then it means that
exp == 0 (as if exp < 0, then a buffer overrun occurs, causing
the concrete execution to stop, and having some other Clousot
analysis reporting the bug). Therefore the empty segmentation is
returned. Otherwise, the original segmentation could not be refined,
and it is returned as it is.

Assertions Clousot implements a very simple and special-
ized decision procedure to check whether an quantified assertion
over arrays holds at a given program point. Given the statement
assert ∀i ∈ [e1, e2). c(A[i]), Clousot uses the numerical ab-
stract domain to provide a lower bound l for e1 and an upper bound
u for e2 to be used to determine an upper-approximation v for the
values of A[i] in the range [l, u). The expression c(v), which does
not contain any reference to array values, is then constructed and
its truth is decided by the internal decision procedures commonly
used in Clousot.
Example 9 Let us consider the example in Fig. 2, and let us
suppose that at the end of the method there was the statement
assert ∀i ∈ [0, A.Length). A[i] == 0. Clousot infers the limits
to be 0 and A.Length, and it uses the abstract state p6 to determine
that in such a range v = A[i] = 0. The consequent proof obligation
0 == 0 is then trivially discharged. ut

Function calls Function calls are not-inlined as Clousot relies
on their contract instead. So they are turned into two instructions,
an assert for the precondition, and an assume for the postcondi-
tion.

Segmentation Unification In the implementation we slightly re-
fined the algorithm of Sect. 11.4 to cope with some noise produced
by the bytecode representation and heap analysis. In general, in
a segmentation done at bytecode level one will find many more
extra-variables than those that one may expect, in particular when
reasoning at the equivalent source code.

The first modification is the introduction of a purification step,
which pre-processes the segmentations to remove those segment
bounds (and hence segments) containing variables appearing only
in one of the two segmentations. Of course those would have disap-
peared anyway with the original algorithm, but the purification step

has the advantage of making the algorithm faster and more precise,
as shown by the next example.
Example 10 Suppose we need to unify the segmentation {0} ...
{a} ...{b}...{A.Length} with {0}... {b}... {A.Length}.
The purification step removes {a} from the first segmentation,
enabling the segmentation unification algorithm to produce a more
precise result. Without purification, we would have needed a deeper
look-ahead for the algorithm to prevent the abstraction of the bound
{b}. ut

The second modification is a refinement of the step 5 to take
into account constants: If B1 and B2 contain a constant then we
can use this information to materialize new bounds, as illustrated
by the next example.
Example 11 Suppose we need to unify {0}...{25}...{26}
...{A.Length} with {0}... {20}... {30}... {A.Length}.
The result of the unification is {0}...{20}...{25} ...{26}
...{30} ...{A.Length}. ut

13. Experimental Evaluation
We validated the performances of the analysis by running on large,
production quality libraries. We validated its precision by running
it on its own implementation (Clousot is written in C#).

13.1 Analysis of large libraries
We report the experience of running Clousot on the main libraries
of the .NET framework. The mscorlib.dll and System.dll li-
braries provide core functionalities such as basic types, optimized
data structures, cryptographic primitives, date manipulation, inter-
faces with the operating system, etc. The other libraries focus on
database interfacing (System.data.dll), bitmap manipulations
(System.Drawings.dll), WEB contents (System.Web.dll),
XML parsing and creation (System.Xml.dll). Libraries have
been authored by several different programmers over the years,
hence present all kinds of different programming styles and op-
timizations. We randomly inspected a large set of methods con-
taining loops with arrays. For instance, this is how we picked the
example in Fig. 1. We found few cases of code as Fig. 2, whereas
Fig. 3 is a lot more common pattern. Other common idioms include
the initialization using multiple loops, conditional initialization of
an array prefix (or postfix) followed (or not) by the initialization of
the remaining array segment (or a sub-segment). From our manual
inspection we deduced that simple partitions based on the assump-
tion that arrays are uniformly traversed from the first to the last
element (e.g. [29]) simply do not apply to existing .NET code.
Other syntactic-based partitioning heuristics do not apply as well
(roughly because at bytecode level the structure of loops has been
compiled away). We conclude that an array analysis technique in
order to be effective should handle very efficiently the above cases.

At the beginning of this project, our first attempt was to im-
plement the technique of [19] on the top of a semantic analysis to
determine the array partitions. Performances turned out to be ex-
tremely bad: up to 100× slower w.r.t. a normal run of Clousot.
The main reasons for the bad performance were: (i) the large num-
ber of generated slices (because of lack of possibly empty seg-
ments, unlike us); (ii) the need to re-run the analysis once the par-
tition is discovered (e.g. to distinguish the first iteration from all
the others); (iii) the cost of partition changes (detailed in [19, Sect.
5]). More generally, the problem of [17, 19] is that they abstract
too much the concrete environment, e.g. by separating the array
partitioning from the discovery of array partitions (we do it at the
same time instead) and e.g. by forgetting the relative positioning of
array slices (we have consecutive segments). The information lost
because of the rough abstraction must then be recovered during the
array analysis.

Next, we developed FunArray in which we made sure that: (i)
the array analysis is run at the same time as the scalar variable
analysis; and (ii) explicit partition enumeration is avoided by means
of possibly empty segments, i.e at each program point there is
at most one approximation for a given array. We first sketched
the analysis in a research prototype (Arrayal), to experiment and
adjust the algorithms and then we validated it by integrating it in
Clousot.

Our analysis turned out to be extremely fast. We report the ex-
perimental results in Tab. 1. For each library, we report the number
of functions, the analysis time without the array analysis, the anal-
ysis time with the array analysis, the slowdown, and the number of
inferred non-trivial array invariants in function postconditions. The
libraries are not annotated with contracts, so we cannot report on it.
In the experimental setting Clousot is run in its off-the-shelf con-
figuration except for the iterative refinement which is switched off
(as it is not needed for the particular experience). The workbench
is a 2.4GHz Core 2 duo laptop running Windows 7 and.NET v3.5.
The first observation is that the FunArray introduces a negligible
analysis slowdown (less than 1%) whereas it discovers a thousands
of non-trivial array invariants. More interestingly, we did not en-
countered any corner case causing the analysis time to blow up
(unlike previous published similar techniques). This fact makes us
comfortable to state that the analysis scales up well. We were also
positively impressed by the fact that the analysis was able to han-
dle complex initialization patterns such as the one in Fig. 1, which
were not considered at all during its design, meaning that the anal-
ysis is robust enough to handle unexpected code (a problem that
unfortunately afflicts several static analyses usually developed for
few coding patterns).

Lib # func. time
time w.

arr. ∆ # inv

mscorlib.dll 21 475 4:06 4:15 0:09 2 430
System.dll 15 489 3:40 3:46 0:06 1 385

System.data.dll 12 408 4:49 4:55 0:06 1 325
System.Drawings.dll 3 123 0:28 0:29 0:01 289

System.Web.dll 23 647 4:56 5:02 0:06 840
System.Xml.dll 10 510 3:59 4:16 0:17 807

Table 1. The execution time with and without the array analysis,
the slow-down and the number of non-trivial array invariants. Time
is in minutes. The incidence of array analysis is a mere 1%.

13.2 Analysis of annotated code
To validate the precision of the analysis in the context of contract
checking we ran it against its own implementation in Clousot.
Once again we run Clousot in the off-of-the-shelf configuration
(and iterative refinement on). We implemented FunArray with
a pair of mutable sequences, one for the bounds and the other
for the array elements. Each sequence should only contain non-
null elements. Sequences are implemented as partially filled ar-
rays (to optimize cache hits). The class NonNullSeq abstracts se-
quences, allowing for in-place insertion, manipulation, update and
removal of elements (13 methods in total). The object invariant of
NonNullSeq states that all the elements in the partially filled ar-
ray are non-null. The analysis of NonNullSeq without the func-
tor analysis takes 5.36 seconds, reporting 11 warnings (out of 210
proof obligations). The analysis of NonNullSeq with the functor
analysis takes 3.85 seconds, with 0 warnings! Therefore the more
precise analysis is also faster. The reason why is that the array anal-
ysis induces a negligible slow-down and discover more facts on the
program, which can be directly used to discharge the proof obliga-
tions, without moving to more refined analyses. Once NonNullSeq
has been verified, then we considered the FunArray implementa-

tion (78 methods), where we were able to prove 61 further proof
obligations, out of 1800 total (FunArray analysis cost was negli-
gible). The remaining 8 warnings are issued by a possible violation
of the precondition of the segment unification algorithm (out-of-
reach of Clousot, and maybe of existing SMT solvers). Overall,
our experience matched the feedback from our users (we do not
have access to their code though): FunArray reduced the number
of false positives at a negligeable cost.

14. Conclusions
Our main goal was to have a non-intrusive, precise and scalable
static analysis for array contents. We achieved it through these core
ideas: (i) to derive the segment bounds through array accesses in
array element tests and assignments (so that we do not rely on the
end-user or other analyses/tools to infer the segment bounds); (ii)
to exploit segment unification for partial order, joins, meets, widen-
ings, and narrowings; (iii) to carefully treat disjunction (via possi-
bly empty segments, symbolic bounds with different instances, and
relation of array values to indexes). Although expressiveness of ar-
ray segmentation is limited, our analysis is self-contained without
hidden hypotheses. It has proved to be simple enough to scale up
in production-quality static analysis tools (whereas a previous at-
tempt based on [17, 19] did not). We used it to validate its own
implementation, effectively reducing to zero the false alarms.

The approach is applicable to matrices of higher dimensions by
recursively instantiating the functor on an array instantiation. The
work can be extended to relational properties among segments by
using an auxiliary scalar variable to denote the value of any ele-
ment of a segment and relating the values of these auxiliary scalar
variables for different segments by a relational abstraction in the
scalar environment. This would handle the partitioning in Quick-
Sort. Intra-segment relational properties can also be considered by
using several auxiliary scalar variables xi, xj , . . . to denote the val-
ues of elements indexed i 6 j 6 . . . within the segment and relat-
ing them in the scalar environment. This would handle sorting al-
gorithms [6]. Of course inter-segments and intra-segment relational
properties can be combined. The extra cost makes those relational
analyses probably inappropriate in a general-purpose and scalable
static verifier such as Clousot.

Acknowledgments We would like to thank Manuel Fähndrich
for the insightful discussions and the support provided with the
implementation of the decompilation of ForAll in Clousot. Work
partly supported by the CMACS NSF Expeditions in Computing.

References
[1] M. Barnett, K. Leino, and W. Schulte. The Spec# programming

system: An overview. CASSIS’04, LNCS 3362, 49–69. Springer,
2005.

[2] M. Barnett, B.-Y. Chang, R. DeLine, B. Jacobs, and K. Leino. Boogie:
A modular reusable verifier for object-oriented programs. FMCO’05,
LNCS 4111, 364–387. Springer, 2006.

[3] M. Barnett, M. Fähndrich, and F. Logozzo. Embedded contract
languages. SAC’10. ACM, 2010.

[4] D. Beyer, T. A. Henzinger, R. Majumdar, and A. Rybalchenko. Path
invariants. PLDI’07, 300–309. ACM, 2007.

[5] P. Chalin, J. Kinirya, G. Leavens, and E. Poll. Beyond assertions:
Advanced specification and verification with JML and ESC/Java2.
FMCO’05, LNCS 4111, 77–101. Springer, 2006.

[6] P. Cousot. Verification by abstract interpretation. Verification –
Theory & Practice, LNCS 2772, 243–268. Springer, 2003.

[7] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approxima-
tion of fixpoints. 4th POPL, 238–252. ACM, 1977.

[8] P. Cousot and R. Cousot. Systematic design of program analysis
frameworks. 6th POPL, 269–282. ACM, 1979.

[9] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monni-
aux, and X. Rival. Combination of abstractions in the Astrée static
analyzer. ASIAN, LNCS 4435, 272–300. Springer, 2006.

[10] L. de Moura and N. Bjørner. Z3: An efficient SMT solver. TACAS’08,
LNCS 4963, 337–340. Springer, 2008.

[11] D. Dill. Timing assumptions and verification of finite-state concurrent
systems. Automatic Verification Methods for Finite State Systems,
LNCS 407, 197–212. Springer, 1989.

[12] I. Dillig, T. Dillig, and A. Aiken. Fluid updates: Beyond strong vs.
weak updates. ESOP’10, LNCS 6012, 246–266. Springer, 2010.

[13] I. Dillig, T. Dillig, and A. Aiken. Precise reasoning for programs
using containers. 37th POPL. ACM, 2011.

[14] M. Fähndrich and F. Logozzo. Static contract checking with abstract
interpretation. FoVeOOS’10, LNCS. Springer, 2010.

[15] C. Flanagan and S. Qadeer. Predicate abstraction for software verifi-
cation. 29th POPL, 191–202. ACM, 2002.

[16] Garmin Int. Garmin device interface specification. Technical report,
Garmin Int., Inc., Olathe, 2006. www.garmin.com/support/pdf/i
op_spec.pdf.

[17] D. Gopan, T. Reps, and S. Sagiv. A framework for numeric analysis
of array operations. 32nd POPL, 338–350. ACM, 2005.

[18] S. Gulwani, B. McCloskey, and A. Tiwari. Lifting abstract interpreters
to quantified logical domains. 35th POPL, 235–246. ACM, 2008.

[19] N. Halbwachs and M. Péron. Discovering properties about arrays in
simple programs. PLDI’2008, 339–348. ACM, 2008.

[20] R. Jhala and K. McMillan. Array abstractions from proofs. CAV’07,
LNCS 4590, 193–206. Springer, 2007.

[21] M. Karr. Affine relationships among variables of a program. Acta Inf.,
6:133–151, 1976.

[22] G. Kildall. A unified approach to global program optimization. 1st
POPL, 194–206. ACM, 1973.

[23] L. Kovács and A. Voronkov. Finding loop invariants for programs
over arrays using a theorem prover. FASE’2009, LNCS 5503, 470–
485. Springer, 2009.

[24] V. Laviron and F. Logozzo. Subpolyhedra: A (more) scalable ap-
proach to infer linear inequalities. VMCAI, LNCS 5403, 229–244.
Springer, 2009.

[25] S.-H. Lee and D.-H. Cho. Packet-scheduling algorithm based on pri-
ority of separate buffers for unicast and multicast services. Electronics
Letters, 39(2):259–260, 2003.

[26] F. Logozzo. Class-level modular analysis for object oriented lan-
guages. SAS’03, LNCS 2694, 37–54. Springer, 2003.

[27] F. Logozzo and M. Fähndrich. On the relative completeness of
bytecode analysis versus source code analysis. CC’08, LNCS 4959,
197–212. Springer, 2008.

[28] F. Logozzo and M. Fähndrich. Pentagons: a weakly relational abstract
domain for the efficient validation of array accesses. SAC, 184–188.
ACM, 2008.

[29] M. Marron, D. Stefanovic, M. Hermenegildo, and D. Kapur. Heap
analysis in the presence of collection libraries. PASTE’07, 31–36.
ACM, 2007.

[30] K. L. McMillan. Quantified invariant generation using an interpo-
lating saturation prover. TACAS’08, LNCS 4963, 197–212. Springer,
2008.

[31] B. Meyer. Eiffel: The Language. Prentice Hall, 1991.
[32] A. Miné. The octagon abstract domain. Higher-Order and Symbolic

Computation, 19:31–100, 2006.
[33] V. Pratt. Two easy theories whose combination is hard. Technical

report, MIT, 1977. boole.stanford.edu/pub/sefnp.pdf.
[34] B. Roy. Transitivité et connexité. Comptes-Rendus de l’Académie des

Sciences de Paris, Sér. A-B, 249:216–218, 1959.
[35] M. Seghir, A. Podelski, and T. Wies. Abstraction refinement for

quantified array assertions. SAS’09, LNCS 5673, 3–18. Springer,
2009.

[36] R. Shostak. Deciding linear inequalities by computing loop residues.
JACM, 28(4):769–779, 1981.

[37] H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and
P. W. O’Hearn. Scalable shape analysis for systems code. CAV’98,
LNCS 5123, 385–398. Springer, 2008.

http://cmacs.cs.cmu.edu/
www.garmin.com/support/pdf/iop_spec.pdf
www.garmin.com/support/pdf/iop_spec.pdf
boole.stanford.edu/pub/sefnp.pdf

	Introduction
	Motivating Example
	Our Contribution
	Array Initialization
	Manual proof
	Automatic proof and the meaning of the abstract invariant predicates
	Detailed unreeling of the initialization example analysis
	Partial Array Initialization
	Array in-situ rearrangement example

	Abstract Domains and Functors
	Concrete Semantics
	Scalar Variables Semantics
	Simple Expressions Semantics
	Unidimensional Arrays Semantics

	The Variable and Expression Abstract Domatoins
	Scalar variable abstraction
	Expressions in simple normal form
	Concretization
	toAbstract operations on expressions in simple normal ftoorm

	Segment Bounds Abstract Domain Functor
	Concretization
	Abstract operations on segment bounds

	Array Element Abstract Domain
	Conversion between the Variable and Array Element Abstract Domains
	FunArray: The Array Segmentation Abstract Domain Functor
	Examples of array segmentation functor instantiations
	Abstract Predicates
	Concretization
	Segmentation unification
	Partial order/join/meet/widening/narrowing
	Abstract Transfer Functions
	Array segmentation reduction

	Implementation
	CodeContracts and Clousot
	Implementation of FunArray in Clousot

	Experimental Evaluation
	Analysis of large libraries
	Analysis of annotated code

	Conclusions

