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Quantum cryptographic systems have been commercially available, with a striking advantage over classical
systems that their security and ability to detect the presence of eavesdropping are provable based on the
principles of quantum mechanics. On the other hand, quantum protocol designers may commit more faults
than classical protocol designers since human intuition is poorly adapted to the quantum world. To offer for-

mal techniques for modeling and verification of quantum protocols, several quantum extensions of process
algebra have been proposed. An important issue in quantum process algebra is to discover a quantum gener-
alization of bisimulation preserved by various process constructs, in particular, parallel composition, where
one of the major differences between classical and quantum systems, namely quantum entanglement, is
present. Quite a few versions of bisimulation have been defined for quantum processes in the literature, but
in the best case they are only proved to be preserved by parallel composition of purely quantum processes
where no classical communication is involved.

Many quantum cryptographic protocols, however, employ the LOCC (Local Operations and Classical Com-
munication) scheme, where classical communication must be explicitly specified. So, a notion of bisimula-
tion preserved by parallel composition in the circumstance of both classical and quantum communication
is crucial for process algebra approach to verification of quantum cryptographic protocols. In this paper we
introduce novel notions of strong bisimulation and weak bisimulation for quantum processes, and prove
that they are congruent with respect to various process algebra combinators including parallel composition
even when both classical and quantum communication are present. We also establish some basic algebraic
laws for these bisimulations. In particular, we show the uniqueness of the solutions to recursive equations
of quantum processes, which proves useful in verifying complex quantum protocols. To capture the idea
that a quantum process approximately implements its specification, and provide techniques and tools for
approximate reasoning, a quantified version of strong bisimulation, which defines for each pair of quantum
processes a bisimulation-based distance characterizing the extent to which they are strongly bisimilar, is
also introduced.
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1. INTRODUCTION

Quantum computing offers the potential of considerable speedup over classical com-
puting for some important problems such as prime factoring [Shor 1994] and unsorted
database search [Grover 1997]. However, functional quantum computers which can
harness this potential in dealing with practical applications are extremely difficult
to implement. On the other hand, quantum cryptography, of which the security and
ability to detect the presence of eavesdropping are provable based on the principles of
quantum mechanics, has been developed so rapidly that quantum cryptographic sys-
tems are already commercially available by a number of companies such as Id Quan-
tique, Cerberis, MagiQ Technologies, SmartQuantum, and NEC.

As is well known, it is very difficult to guarantee the correctness of classical com-
munication protocols at the design stage, and some simple protocols were finally found
to have fundamental flaws. Since human intuition is poorly adapted to the quantum
world, quantum protocol designers may commit more faults than classical protocol de-
signers, especially when more and more complicated quantum protocols can be imple-
mented by future physical technology. With the purpose of cloning the success classical
process algebras achieved in analyzing and verifying classical communication proto-
cols and even distributed computing, various quantum process algebras have been
proposed independently by several research groups. Jorrand and Lalire [Jorrand and
Lalire 2004] defined a language QPAlg (Quantum Process Algebra) by extending a
classical CCS-like process algebra. A branching bisimulation which identifies quantum
processes associated with graphs having the same branching structure was also pre-
sented [Lalire 2006]. The bisimulation is, however, not congruent: it is not preserved
by parallel composition. Gay and Nagarajan [Gay and Nagarajan 2005] defined a lan-
guage CQP (Communicating Quantum Processes), which combines the communication
primitives of pi-calculus [Milner et al. 1992] with primitives for unitary transforma-
tions and measurements. One distinctive feature of CQP is a type system which guar-
antees the physical realizability of quantum processes. However, no notion of equiva-
lence between processes was presented.

Authors of the current paper proposed a model named qCCS [Feng et al. 2007] for
quantum communicating systems by adding quantum input/output and quantum op-
eration/measurement primitives to classical value-passing CCS [Hennessy 1991; Hen-
nessy and Ingólfsdóttir 1993]. The semantics of quantum input and output was care-
fully designed to describe the communication of quantum systems which have been
entangled with other systems. A bisimulation was defined for finite processes, and a
simplified version of congruence property was proved, in which parallel composition is
only permitted when the participating processes are free of quantum input, or free of
quantum operations and measurements. In [Ying et al. 2009] the same authors studied
a purely quantum version of qCCS where no classical data is explicitly involved, aim-
ing at providing a suitable framework to observe the interaction of computation and
communication in quantum systems. A strong bisimulation was defined for this purely
quantum qCCS and shown to be fully preserved by parallel composition. However, it
is worth noting that the bisimulation proposed in [Ying et al. 2009] cannot be directly
extended to general qCCS where classical data as well as probabilistic behaviors are
included.

In this paper, we combine the two models proposed in [Feng et al. 2007] and [Ying
et al. 2009] together to involve both classical data and quantum data. This general
model, which we still call qCCS for coherence, accommodates all classical process con-
structors (especially recursive definitions) as well as quantum primitives. As a conse-
quence, both sequential and distributed quantum computing, quantum communication
protocols, and quantum cryptographic systems can be formally modeled and rigorously
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analyzed in the framework of qCCS. We also design strong/weak bisimulations and
approximate strong bisimulation for quantum processes, all turning out to be congru-
enct with respect to various process constructors of qCCS. These bisimulations have
several distinctive features compared with those proposed in the literature: Firstly,
the bisimulations in this paper take local quantum operations into account in a weak
manner, but at the same time fit well with recursive definitions. Lalire’s bisimulation
cannot distinguish different operations on a quantum system which will never be out-
put: quantum states are only compared when they are input or output. Bisimulation
defined in [Feng et al. 2007] works well only for finite processes since quantum states
are required to be compared after all the actions have been performed. Note that no
state comparison is needed in [Ying et al. 2009] since all local quantum operations
are regarded as visible actions, and the resulted bisimulation is a very strong one –
it distinguishes two different sequences of local operations even when they have the
same effect as a whole. Secondly, entanglement between the input/output system and
the remaining systems is fully considered in our definition of bisimulations. Bisimu-
lation presented in [Lalire 2006] totally ignores this correlation by only considering
the reduced state of the input/output system. In [Feng et al. 2007] this consideration is
implicitly made by the state comparison after the processes terminating. Again, it does
not work for infinite processes. Finally, but most importantly, the strong bisimilarity
and the equivalence derived from the weak bisimulation are both congruence, mak-
ing them suitable for equational reasoning in verifying quantum communication and
cryptographic systems. Lalire’s bisimulation is not preserved by parallel composition.
The bisimulation in [Feng et al. 2007] is not preserved by restriction, and whether it is
preserved by parallel composition still remains open, although the positive answer is
affirmed in two special cases. The strong bisimulation proposed in [Ying et al. 2009] is
indeed a congruence. However, since no classical data is involved in that model, many
important quantum communication protocols such as superdense coding and telepor-
tation cannot be described. This restricts the scope of its application.

This paper is an extension and completion of our primary results reported at
POPL [Feng et al. 2011]. The main difference is that in the current paper (1) a sec-
tion on strong bisimulation is added where internal actions are treated in the same
way as visible actions; (2) a notion of approximate strong bisimulation is introduced
to characterize the extent to which two quantum processes are bisimilar; and (3) the
proofs of the main results are presented, wheras they were omitted in [Feng et al. 2011]
because of the limitation of space. The rest of the paper is organized as follows. In Sec-
tion 2, we review some basic notions from linear algebra and quantum mechanics. The
syntax and operational semantics of qCCS are presented in Section 3. To illustrate the
expressiveness of qCCS, we describe with it the well-known quantum superdense cod-
ing and teleportation protocols. We also show how to encode quantum unitary gates
and measurement gates, which are two basic elements of quantum circuits, by qCCS.
Section 4 defines the notion of strong bisimulation for configurations as well as quan-
tum processes. Various properties such as congruence property, monoid laws, static
laws, the expansion law, as well as uniqueness of solutions of process equations, are
also examined. In Section 5, a notion of approximate strong bisimulation is proposed
and its corresponding metric between quantum processes defined. It is proved that
the approximate strong bisimulation is also congruent and the corresponding metric
non-expansive with respect to all process constructors in qCCS. Section 6 is devoted to
proposing a weak bisimulation, and an equivalence relation based on the weak bisim-
ularity is also defined and proved to be fully preserved by all process constructors of
qCCS. The validity of examples in Section 3 is proved by using the notion of weak
bisimilarity defined in this section. We outline the main results in Section 7 and point
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out some problems for further study. In particular, we discuss the difficulty of defining
an approximate weak bisimulation for quantum processes.

2. PRELIMINARIES

For convenience of the reader, we briefly recall some basic notions from linear algebra
and quantum theory which are needed in this paper. For more details, we refer to
[Nielsen and Chuang 2000].

2.1. Basic linear algebra

An inner product space H is a vector space equipped with an inner product function

〈·|·〉 : H×H → C

such that

(1) 〈ψ|ψ〉 ≥ 0 for any |ψ〉 ∈ H, with equality if and only if |ψ〉 = 0;
(2) 〈φ|ψ〉 = 〈ψ|φ〉∗;
(3) 〈φ|∑i ci|ψi〉 =

∑
i ci〈φ|ψi〉,

where C is the set of complex numbers, and for each c ∈ C, c∗ stands for the complex
conjugate of c. Furthermore, if H is also a complete metric space with respect to the
distance function induced by the inner product, then it is called a Hilbert space. For any
vector |ψ〉 ∈ H, its length |||ψ〉|| is defined to be

√
〈ψ|ψ〉, and it is said to be normalized

if |||ψ〉|| = 1. Two vectors |ψ〉 and |φ〉 are orthogonal if 〈ψ|φ〉 = 0. An orthonormal basis
of a Hilbert space H is a basis {|i〉} where each |i〉 is normalized and any pair of them
are orthogonal.

Let L(H) be the set of linear operators on H. For any A ∈ L(H), A is Hermitian if
A† = A where A† is the adjoint operator of A such that 〈ψ|A†|φ〉 = 〈φ|A|ψ〉∗ for any
|ψ〉, |φ〉 ∈ H. The fundamental spectral theorem states that the set of all normalized
eigenvectors of a Hermitian operator in L(H) constitutes an orthonormal basis for H.
That is, there exists a so-called spectral decomposition for each Hermitian A such that

A =
∑

i

λi|i〉〈i| =
∑

λi∈spec(A)

λiEi

where the set {|i〉} constitute an orthonormal basis of H, spec(A) denotes the set of
eigenvalues of A, and Ei is the projector to the corresponding eigenspace of λi. A linear
operator A ∈ L(H) is unitary if A†A = AA† = IH where IH is the identity operator on
H. In this paper, we will use some well-known unitary operators listed as follows: the
quantum control-not operator performed on two qubits with the matrix representation

CN =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




under the computational basis, and the 1-qubit Hadamard operator H and Pauli oper-
ators σ0, σ1, σ2, σ3 defined respectively as

H =
1√
2

(
1 1
1 −1

)
, σ0 = I =

(
1 0
0 1

)
,

σ1 =

(
0 1
1 0

)
, σ2 =

(
1 0
0 −1

)
, σ3 =

(
0 −i
i 0

)
.
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The trace of A ∈ L(H) is defined as tr(A) =
∑

i〈i|A|i〉 for some given orthonormal
basis {|i〉} of H. It is worth noting that trace function is actually independent of the
orthonormal basis selected. It is also easy to check that trace function is linear and
tr(AB) = tr(BA) for any operators A,B ∈ L(H).

Let H1 and H2 be two Hilbert spaces. Their tensor product H1 ⊗ H2 is defined as
a vector space consisting of linear combinations of the vectors |ψ1ψ2〉 = |ψ1〉|ψ2〉 =
|ψ1〉 ⊗ |ψ2〉 with |ψ1〉 ∈ H1 and |ψ2〉 ∈ H2. Here the tensor product of two vectors is
defined by a new vector such that

(
∑

i

λi|ψi〉
)

⊗




∑

j

µj |φj〉



 =
∑

i,j

λiµj |ψi〉 ⊗ |φj〉.

Then H1⊗H2 is also a Hilbert space where the inner product is defined as the following:
for any |ψ1〉, |φ1〉 ∈ H1 and |ψ2〉, |φ2〉 ∈ H2,

〈ψ1 ⊗ ψ2|φ1 ⊗ φ2〉 = 〈ψ1|φ1〉H1
〈ψ2|φ2〉H2

where 〈·|·〉Hi
is the inner product of Hi. For any A1 ∈ L(H1) and A2 ∈ L(H2), A1⊗A2 is

defined as a linear operator in L(H1 ⊗H2) such that for each |ψ1〉 ∈ H1 and |ψ2〉 ∈ H2,

(A1 ⊗A2)|ψ1ψ2〉 = A1|ψ1〉 ⊗A2|ψ2〉.
The partial trace of A ∈ L(H1⊗H2) with respect to H1 is defined as trH1

(A) =
∑
i〈i|A|i〉

where {|i〉} is an orthonormal basis of H1. Similarly, we can define the partial trace of
A with respect to H2. Partial trace functions are also independent of the orthonormal
basis selected.

A linear operator E on L(H) is completely positive if it maps positive operators in
L(H) to positive operators in L(H), and for any auxiliary Hilbert space H′, the triv-
ially extended operator IH′ ⊗ E also maps positive operators in L(H′ ⊗H) to positive
operators in L(H′ ⊗H). Here IH′ is the identity operator on L(H′). The elegant and
powerful Kraus representation theorem [Kraus 1983] of completely positive operators
states that a linear operator E is completely positive if and only if there is some set of
operators {Ei} with appropriate dimension such that

E(A) =
∑

i

EiAE
†
i

for any A ∈ L(H). The operators Ei are called Kraus operators of E . A linear operator is
said to be a super-operator if it is completely positive and trace-nonincreasing. Here an
operator E is trace-nonincreasing if tr(E(A)) ≤ tr(A) for any positive A ∈ L(H), and it
is said to be trace-preserving if the equality always holds. Then a super-operator (resp.
a trace-preserving super-operator) is a completely positive operator with its Kraus

operators Ei satisfying
∑
i E

†
iEi ≤ I (resp.

∑
iE

†
iEi = I).

2.2. Basic quantum mechanics

According to von Neumann’s formalism of quantum mechanics [von Neumann 1955],
an isolated physical system is associated with a Hilbert space which is called the state
space of the system. A pure state of a quantum system is a normalized vector in its state
space, and a mixed state is represented by a density operator on the state space. Here a
density operator ρ on Hilbert space H is a positive linear operator such that tr(ρ) = 1.
Another equivalent representation of density operator is probabilistic ensemble of pure
states. In particular, given an ensemble {(pi, |ψi〉)} where pi ≥ 0,

∑
i pi = 1, and |ψi〉 are

pure states, then ρ =
∑

i pi[|ψi〉] is a density operator. Here [|ψi〉] denotes the abbrevia-
tion of |ψi〉〈ψi|. Conversely, each density operator can be generated by an ensemble of
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pure states in this way. The set of density operators on H is defined as

D(H) = { ρ ∈ L(H) : ρ is positive and tr(ρ) = 1}.
The state space of a composite system (for example, a quantum system consisting of

many qubits) is the tensor product of the state spaces of its components. For a mixed
state ρ on H1 ⊗ H2, partial traces of ρ have explicit physical meanings: the density
operators trH1

ρ and trH2
ρ are exactly the reduced quantum states of ρ on the second

and the first component system, respectively. Note that in general, the state of a com-
posite system cannot be decomposed into tensor product of the reduced states on its
component systems. A well-known example is the 2-qubit state

|Ψ〉 = 1√
2
(|00〉+ |11〉)

which appears repeatedly in our examples of this paper. This kind of state is called
entangled state. To see the strangeness of entanglement, suppose a measurement
M = λ0[|0〉] + λ1[|1〉] is applied on the first qubit of |Ψ〉 (see the following for the defi-
nition of quantum measurements). Then after the measurement, the second qubit will
definitely collapse into state |0〉 or |1〉 depending on whether the outcome λ0 or λ1 is
observed. In other words, the measurement on the first qubit changes the state of the
second qubit in some way. This is an outstanding feature of quantum mechanics which
has no counterpart in classical world, and is the key to many quantum information
processing tasks such as teleportation [Bennett et al. 1993] and superdense coding
[Bennett and Wiesner 1992].

The evolution of a closed quantum system is described by a unitary operator on its
state space: if the states of the system at times t1 and t2 are ρ1 and ρ2, respectively, then
ρ2 = Uρ1U

† for some unitary operator U which depends only on t1 and t2. In contrast,
the general dynamics which can occur in a physical system is described by a trace-
preserving super-operator on its state space. Note that the unitary transformation
U(ρ) = UρU † is a trace-preserving super-operator.

A quantum measurement is described by a collection {Mm} of measurement opera-
tors, where the indices m refer to the measurement outcomes. It is required that the
measurement operators satisfy the completeness equation

∑
mM

†
mMm = IH. If the

system is in state ρ, then the probability that measurement result m occurs is given
by

p(m) = tr(M †
mMmρ),

and the state of the post-measurement system is MmρM
†
m/p(m).

A particular case of measurement is projective measurement which is usually repre-
sented by a Hermitian operator. Let M be a Hermitian operator and

M =
∑

m∈spec(M)

mEm (1)

its spectral decomposition. Obviously, the projectors {Em : m ∈ spec(M)} form a quan-
tum measurement. If the state of a quantum system is ρ, then the probability that
result m occurs when measuring M on the system is p(m) = tr(Emρ), and the post-
measurement state of the system is EmρEm/p(m). Note that for each outcome m, the
map

Em(ρ) = EmρEm

is again a super-operator by Kraus Theorem; it is not trace-preserving in general.
Let M be a projective measurement with Eq.(1) its spectral decomposition. We

call M non-degenerate if for any m ∈ spec(M), the corresponding projector Em is 1-
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dimensional; that is, all eigenvalues of M are non-degenerate. Non-degenerate mea-
surement is obviously a very special case of general quantum measurement. However,
when an ancilla system lying at a fixed state is provided, non-degenerate measure-
ments together with unitary operators are sufficient to implement general measure-
ments. For convenience of the readers, we elaborate the simulation process here. Sup-
pose we are given a quantum system, which we call the principle system in the fol-
lowing, and want to perform a measurement {Mm} on it. To do this, we introduce an
ancilla system having an orthonormal basis {|m〉} in one-to-one correspondence with
the possible outcomes of the measurement. Let the fixed state of the ancilla system be
|0〉. We define an operator U such that for any |ψ〉,

U |ψ〉|0〉 =
∑

m

Mm|ψ〉|m〉.

It is direct to check that U can be extended to a unitary operator which we also denote
by U , from the completeness equation of {Mm}. Now we perform a non-degenerate pro-
jective measurement M =

∑
mm|m〉〈m| on the ancilla system. Let ρ be the state of the

principle system before measurement, and
∑

i pi|ψi〉〈ψi| be the spectral decomposition
of ρ. Then for each i, (I ⊗ |m〉〈m|)U |ψi〉|0〉 =Mm|ψi〉|m〉. Thus with probability

p(m) = tr[(I ⊗ |m〉〈m|)U [ρ⊗ |0〉〈0|]U †] =
∑

i

pi〈ψi|M †
mMm|ψi〉 = tr(M †

mMmρ)

the outcome m occurs, and the post-measurement states of the principle-ancilla joint
system and the principle system, when m is observed, are given by

(I ⊗ |m〉〈m|)U [ρ⊗ |0〉〈0|]U †(I ⊗ |m〉〈m|)√
p(m)

=
MmρM

†
m ⊗ |m〉〈m|

tr(M †
mMmρ)

and MmρM
†
m/tr(M

†
mMmρ), respectively, which coincide exactly with the case when the

measurement {Mm} is directly applied on the principle system.
We shall need a notion of distance between quantum states in defining approximate

strong bisimulation between quantum processes. For any positive operator A, if A =∑
λi∈spec(A) λiEi is a spectral decomposition of A, then we define

√
A =

∑

λi∈spec(A)

√
λiEi.

Furthermore, for any operator A, we set |A| =
√
A†A. Then the trace distance of ρ, σ ∈

D(H) is defined to be

d(ρ, σ) =
1

2
tr|ρ− σ|.

Trace distance is one of the most popular metrics used by the quantum information
community. Here we collect some properties of the trace distance which are useful in
this paper.

THEOREM 2.1. ([Nielsen and Chuang 2000], Theorem 9.1) Let ρ, σ ∈ D(H). Then

d(ρ, σ) = max
{Mi}

d({pi}, {qi})

where the maximization is over all quantum measurement {Mi}, and pi = tr(ρM †
iMi)

and qi = tr(σM †
iMi) are the probabilities of obtaining outcome i when the initial states

are ρ and σ, respectively. The trace distance between two probabilistic distributions {pi}
and {qi} is defined as d({pi}, {qi}) = 1

2

∑
i |pi − qi|.
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THEOREM 2.2. ([Nielsen and Chuang 2000], Theorem 9.2) Let ρ, σ ∈ D(H), and E a
trace-preserving super-operator on H. Then d[E(ρ), E(σ)] ≤ d(ρ, σ).

The notion of trace distance can be extended to super-operators in a natural way [Ki-
taev 1997]. For any super-operators E1 and E2 on H, their diamond trace distance is
defined to be

d⋄(E1, E2) = sup{d[(E1 ⊗ IH′)(ρ), (E2 ⊗ IH′)(ρ)] : ρ ∈ D(H⊗H′)}
where H′ ranges over all finite-dimensional Hilbert spaces. The quantity d⋄(E1, E2)
characterizes the maximal probability that the outputs of E1 and E2 can be distin-
guished for the same input where auxiliary systems are allowed.

3. BASIC DEFINITIONS OF QCCS

In this section, we give the basic definitions of qCCS which is a combination of those
proposed in [Feng et al. 2007] and [Ying et al. 2009], involving classical data as well
as quantum data, and all classical process constructors (especially the recursive defi-
nition) as well as quantum primitives. The reader is referred to [Feng et al. 2007] and
[Ying et al. 2009] for further examples and explanations of the language.

3.1. Syntax

We assume three types of data in qCCS: Bool for booleans, real numbers Real for clas-
sical data, and qubits Qbt for quantum data. Let cV ar, ranged over by x, y, . . . , be the
set of classical variables, and qV ar, ranged over by q, r, . . . , the set of quantum vari-
ables. It is assumed that cV ar and qV ar are both countably infinite. We assume a set
Exp of classical data expressions over Real, which includes cV ar as a subset and is
ranged over by e, e′, . . . , and a set of boolean-valued expressions BExp, ranged over by
b, b′, . . . , with the usual set of boolean operators true, false, ¬, ∧, ∨, and →. In partic-
ular, we let e ⊲⊳ e′ be a boolean expression for any e, e′ ∈ Exp and ⊲⊳∈ {>,<,≥,≤,=}.
We further assume that only classical variables can occur free in both data expressions
and boolean expressions. Let cChan be the set of classical channel names, ranged over
by c, d, . . . , and qChan the set of quantum channel names, ranged over by c, d, . . . . Let
Chan = cChan ∪ qChan. A relabeling function f is a one to one function from Chan to
Chan such that f(cChan) ⊆ cChan and f(qChan) ⊆ qChan.

We often abbreviate the indexed set {q1, . . . , qn} to q̃ when q1, . . . , qn are distinct
quantum variables and the dimension n is understood. Sometimes we also use q̃ to
denote the string q1 . . . qn. We assume a set of process constant schemes, ranged over
by A,B, . . . . Assigned to each process constant scheme A there is a non-negative inte-
ger ar(A). If q̃ is a tuple of distinct quantum variables with |q̃| = ar(A), then A(q̃) is
called a process constant.

Based on these notations, we now propose the syntax of qCCS as follows.

Definition 3.1. (Quantum process) The set of quantum processes qProc and the free
quantum variable function qv : qProc → 2qV ar are defined inductively by the following
formation rules:

(1) nil ∈ qProc, and qv(nil) = ∅;
(2) A(q̃) ∈ qProc, and qv(A(q̃)) = q̃;
(3) τ.P ∈ qProc, and qv(τ.P ) = qv(P );
(4) c?x.P ∈ qProc, and qv(c?x.P ) = qv(P );
(5) c!e.P ∈ qProc, and qv(c!e.P ) = qv(P );
(6) c?q.P ∈ qProc, and qv(c?q.P ) = qv(P ) − {q};
(7) If q 6∈ qv(P ) then c!q.P ∈ qProc, and qv(c!q.P ) = qv(P ) ∪ {q};
(8) E [q̃].P ∈ qProc, and qv(E [q̃].P ) = qv(P ) ∪ q̃;
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(9) M [q̃;x].P ∈ qProc, and qv(M [q̃;x].P ) = qv(P ) ∪ q̃;
(10) P +Q ∈ qProc, and qv(P +Q) = qv(P ) ∪ qv(Q);
(11) If qv(P ) ∩ qv(Q) = ∅ then P‖Q ∈ qProc, and qv(P‖Q) = qv(P ) ∪ qv(Q);
(12) P [f ] ∈ qProc, and qv(P [f ]) = qv(P );
(13) P\L ∈ qProc, and qv(P\L) = qv(P );
(14) if b then P ∈ qProc, and qv(if b then P ) = qv(P ),

where P,Q ∈ qProc, c ∈ cChan, x ∈ cV ar, c ∈ qChan, q ∈ qV ar, q̃ ⊆ qV ar, e ∈ Exp,
τ is the silent action, A(q̃) is a process constant, f is a relabeling function, L ⊆ Chan,
b ∈ BExp, E and M are respectively a trace-preserving super-operator and a non-
degenerate projective measurement applying on the Hilbert space associated with the
systems q̃. Furthermore, for each process constant A(q̃), there is a defining equation

A(q̃)
def
= P

where P ∈ qProc with qv(P ) ⊆ q̃. When q̃ = ∅, we simply denote A(q̃) as A.

For the sake of simplicity, we only consider non-degenerate measurements in this pa-
per. This will not sacrifice the expressiveness of qCCS since as stated in Section 2, non-
degenerate measurements can implement general quantum measurements with the
help of unitary operators which, as special case of trace-preserving super-operators,
can also be described in qCCS.

The notion of free classical variables in quantum processes can be defined in the
usual way with a unique modification that the quantum measurement prefix M [q̃;x]
has binding power on x. A quantum process P is closed if it contains no free classical
variables, i.e., fv(P ) = ∅.

3.2. Operational semantics

To present the operational semantics of qCCS, some further notations are necessary.
For each quantum variable q ∈ qV ar, we assume a 2-dimensional Hilbert space Hq to
be the state space of the q-system. For any S ⊆ qV ar, we denote

HS =
⊗

q∈S
Hq.

In particular, H = HqV ar is the state space of the whole environment consisting of all
the quantum variables. Note that H is a countably-infinite dimensional Hilbert space.

Suppose P is a closed quantum process. A pair of the form 〈P, ρ〉 is called a configu-
ration, where ρ ∈ D(H) is a density operator on H. The set of configurations is denoted
by Con. We sometimes let C,D, . . . range over Con to ease notations.

Let D(Con) be the set of finite-support probability distributions over Con; that is,

D(Con) = {µ : Con → [0, 1] | µ(C) > 0 for finitely many C, and
∑

µ(C)>0

µ(C) = 1}.

For any µ ∈ D(Con), we denote by supp(µ) the support set of µ, i.e., the set of
configurations C such that µ(C) > 0. When µ is a simple distribution such that
supp(µ) = {C} for some C, we abuse the notation slightly to denote µ by C. Sometimes
we find it convenient to denote a distribution µ by an explicit form µ = ⊞i∈Ipi • Ci (or
µ = ⊞pi • Ci when the index set I is understood) where Ci are distinct configurations,
supp(µ) = {Ci : i ∈ I}, and µ(Ci) = pi for each i ∈ I.

Given µ1, . . . , µn ∈ D(Con) and p1, . . . , pn ∈ [0, 1],
∑

i pi = 1, we define the combined
distribution, denoted by

∑n
i=1 piµi, to be a new distribution µ such that supp(µ) =⋃

i supp(µi), and for any D ∈ supp(µ), µ(D) =
∑

i piµi(D).
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It is worth pointing out the difference between the two notations ⊞i∈Ipi • Ci and∑
i∈I piCi: the former is the explicit form of a distribution, so it is required that pi > 0

for each i ∈ I, and Ci 6= Cj for i 6= j; while the latter is the combined distribution of
the simple distributions Ci with the probability weights pi, so pi may be zero for some
i ∈ I, and Cis are not necessarily distinct.

Let µ = ⊞i∈Ipi • 〈Pi, ρi〉. We denote by qv(µ) the free variables of µ; that is, qv(µ) =⋃
i∈I qv(Pi). We write tr(µ) =

∑
i∈I pitr(ρi), and E(µ) = ⊞i∈Ipi • 〈Pi, E(ρi)〉 when E is a

super-operator.
Let

Act = {τ} ∪ {c?v, c!v | c ∈ cChan, v ∈ Real} ∪ {c?r, c!r | c ∈ qChan, r ∈ qV ar}.
For each α ∈ Act, we define the bound quantum variables bv(α) of α as bv(c?r) = {r}
and bv(α) = ∅ if α is not a quantum input. The channel names used in action α is
denoted by cn(α); that is, cn(c?v) = cn(c!v) = {c}, cn(c?r) = cn(c!r) = {c}, and cn(τ) =
∅.

The semantics of qCCS is given by the probabilistic labeled transition system
(Con,Act,−→), where −→ ⊆ Con × Act × D(Con) is the smallest relation satisfy-

ing the rules defined in Figs. 1 and 2 (For brevity, we write 〈P, ρ〉 α−→ µ instead of
(〈P, ρ〉, α, µ) ∈ −→. The symmetric forms for Rules Inp-Int, Oth-Int, and Sum are
omitted).

The transition relation −→ can be lifted to D(Con)×Act×D(Con) by writing µ
α−→ ν

if for any C ∈ supp(µ), C α−→ νC for some νC , and ν =
∑

C∈supp(µ) µ(C)νC .

For any S ⊆ qV ar we denote by S the complement set of S in qV ar. The following
lemmas can be easily observed from the inference rules defined above.

LEMMA 3.2. If 〈P, ρ〉 α−→ µ, then qv(µ) ⊆ qv(P ) ∪ bv(α).
PROOF. By induction on the inference rules.

LEMMA 3.3. If 〈P, ρ〉 α−→ µ, then

(1) tr(ρ) = tr(µ);
(2) there exist a set of trace-preserving super-operators {Ei : i ∈ I} and a set of projectors

{Ei : i ∈ I}, both acting on Hqv(P ) and
∑

i∈I Ei = I, such that for any σ ∈ D(H),

〈P, σ〉 α−→
∑

i∈I
qσi 〈Pi, Ei(σ)〉

where qσi = tr(Eiσ);

(3) for any trace-preserving super-operator E acting on H
qv(P ), 〈P, E(ρ)〉

α−→ E(µ).
PROOF. By induction on the inference rules. The only case deserving an explanation

is for (2) when the action is caused by a measurement prefix M [q̃;x]. Since only non-
degenerate projective measurements are considered in qCCS, we can suppose that
M =

∑
i∈I λi|ψi〉〈ψi| for some orthonormal basis {|ψi} in the state space of q̃. Then

from the inference rule Meas, we have

〈P, σ〉 α−→
∑

i∈I
tr(|ψi〉〈ψi|σ)〈P{λi/x}, |ψi〉〈ψi|q̃ ⊗ σ′〉

where σ′ = trq̃(σ). By letting Ei be the trace-preserving super-operator which sets the
quantum systems q̃ to |ψi〉, Ei = |ψi〉〈ψi|, and Pi = P{λi/x}, the result follows.

3.3. Examples

To illustrate the expressiveness of qCCS, we give some examples.
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Tau :
〈τ.P, ρ〉 τ−→ 〈P, ρ〉

C-Inp :
〈c?x.P, ρ〉 c?v−→ 〈P{v/x}, ρ〉

, v ∈ Real

C-Outp :
〈c!e.P, ρ〉 c!v−→ 〈P, ρ〉

, v = [[e]]

C-Com :
〈P1, ρ〉 c?v−→ 〈P ′

1, ρ〉, 〈P2, ρ〉 c!v−→ 〈P ′
2, ρ〉

〈P1‖P2, ρ〉 τ−→ 〈P ′
1‖P ′

2, ρ〉

Q-Inp :
〈c?q.P, ρ〉 c?r−→ 〈P{r/q}, ρ〉

, r 6∈ qv(c?q.P )

Q-Outp :
〈c!q.P, ρ〉 c!q−→ 〈P, ρ〉

Q-Com :
〈P1, ρ〉 c?r−→ 〈P ′

1, ρ〉, 〈P2, ρ〉 c!r−→ 〈P ′
2, ρ〉

〈P1‖P2, ρ〉 τ−→ 〈P ′
1‖P ′

2, ρ〉

Oper :
〈E [r̃].P, ρ〉 τ−→ 〈P, Er̃(ρ)〉

Meas :
〈M [r̃;x].P, ρ〉 τ−→∑

i∈I pi〈P{λi/x}, Eir̃ρEir̃/pi〉

where M has the spectral decomposition
M =

∑
i∈I λiE

i and pi = tr(Eir̃ρ)

Fig. 1. Inference rules for qCCS (Part 1)

Example 3.4. Superdense coding [Bennett and Wiesner 1992] is a quantum protocol
using which two bits of classical information can be faithfully transmitted by sending
only one qubit, provided that a maximally entangled state is shared a priori between
the sender and the receiver. The protocol goes as follows. Let |Ψ〉 = (|00〉 + |11〉)/

√
2

be the entangled state shared between the sender Alice and the receiver Bob. Alice
applies a Pauli operator on her qubit of |Ψ〉 according to which information among the
four possibilities she wishes to transmit, and sends her qubit to Bob. With the two
qubits in hand, Bob performs a perfect discrimination among the possible states (they
are actually the four Bell states {σi⊗I|Ψ〉 : i = 0, 1, 2, 3} where σi are defined in Section
2) and retrieves the information Alice has sent.

We now show how to describe the protocol of superdense coding with qCCS. Let M be
a 2-qubit measurement such that M =

∑3
i=0 i|̃i〉〈̃i|, where ĩ is the binary expansion of i.

Let CN be the controlled-not operator and H Hadamard operator. Then the quantum
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Inp-Int :
〈P1, ρ〉 c?r−→ 〈P ′

1, ρ〉
〈P1‖P2, ρ〉 c?r−→ 〈P ′

1‖P2, ρ〉
, r 6∈ qv(P2)

Oth-Int :
〈P1, ρ〉 α−→ ⊞i∈Ipi • 〈P ′

i , ρi〉
〈P1‖P2, ρ〉 α−→ ⊞i∈Ipi • 〈P ′

i‖P2, ρi〉
, α 6= c?r

Sum :
〈P, ρ〉 α−→ µ

〈P +Q, ρ〉 α−→ µ

Rel :
〈P, ρ〉 α−→ ⊞pi • 〈Pi, ρi〉

〈P [f ], ρ〉 f(α)−→ ⊞pi • 〈Pi[f ], ρi〉

Res :
〈P, ρ〉 α−→ ⊞pi • 〈Pi, ρi〉

〈P\L, ρ〉 α−→ ⊞pi • 〈Pi\L, ρi〉
, cn(α) 6⊆ L

Cho :
〈P, ρ〉 α−→ µ

〈if b then P, ρ〉 α−→ µ
, [[b]] = true

Def :
〈P{r̃/q̃}, ρ〉 α−→ µ

〈A(r̃), ρ〉 α−→ µ
, A(q̃)

def
= P

Fig. 2. Inference rules for qCCS (Part 2)

processes participated in superdense coding protocol can be defined as follows:

Alices = c?x.
∑

0≤i≤3

(
if x = i then σi[q1].e!q1.nil

)
,

Bobs = e?q1.CN [q1, q2].H [q1].M [q1, q2;x].d!x.nil,

Sdc = (Alices‖Bobs)\{e}.

For any ρ ∈ D(H{q1,q2}) and v ∈ {0, 1, 2, 3}, we have the transitions

〈Sdc, [|Ψ〉]q1,q2 ⊗ ρ〉

c?v−→
〈



∑

0≤i≤3

(if v = i then σi[q1].e!q1.nil)


 ‖Bobs


 \{e}, [|Ψ〉]q1,q2 ⊗ ρ

〉

τ−→ 〈(e!q1.nil‖Bobs)\{e}, σvq1([|Ψ〉])⊗ ρ〉
τ−→ 〈(nil‖CN [q1, q2].H [q1].M [q1, q2;x].d!x.nil)\{e}, σvq1([|Ψ〉])⊗ ρ〉
τ−→ 〈(nil‖H [q1].M [q1, q2;x].d!x.nil)\{e}, CNq1,q2(σvq1 ([|Ψ〉]))⊗ ρ〉
τ−→ 〈(nil‖M [q1, q2;x].d!x.nil)\{e}, [|ṽ〉]q1,q2 ⊗ ρ〉 (2)
τ−→ 〈(nil‖d!v.nil)\{e}, [|ṽ〉]q1,q2 ⊗ ρ〉
d!v−→ 〈(nil‖nil)\{e}, [|ṽ〉]q1,q2 ⊗ ρ〉.
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Here Eq.(2) is calculated as follows:

Hq1(CNq1,q2(σ
v
q1
([|Ψ〉]))) =






Hq1(CNq1,q2([
|00〉+|11〉√

2
])) = [|00〉], if v = 0

Hq1(CNq1,q2([
|10〉+|01〉√

2
])) = [|01〉], if v = 1

Hq1(CNq1,q2([
|00〉−|11〉√

2
])) = [|10〉], if v = 2

Hq1(CNq1,q2([
|01〉−|10〉√

2
])) = [|11〉], if v = 3.

Example 3.5. Quantum teleportation [Bennett et al. 1993] is one of the most im-
portant protocols in quantum information theory which can make use of a maximally
entangled state shared between the sender and the receiver to teleport an unknown
quantum state by sending only classical information. It serves as a key ingredient in
many other communication protocols. The protocol goes as follows. Let |Ψ〉q1,q2 be the
entanglement state shared between the sender Alice and the receiver Bob, with Alice
holding q1 and Bob holding q2. Let q be the quantum system whose state Alice wants
to transmit to Bob. Alice first applies a quantum control-not operations on q and q1,
with q the control qubit and q1 the target, followed by a Hadamard operator H on q.
She then measures q and q1 according to the computational basis, and sends the mea-
surement outcome to Bob. Upon receiving the classical bits from Alice, Bob applies a
corresponding Pauli operator on his qubit q2 to recover the original state of q.

Let M , CN , H , and σi, i = 0, . . . , 3 be as defined in Example 3.4. Then the quantum
processes participated in teleportation protocol can be defined as follows:

Alicet = c?q.CN [q, q1].H [q].M [q, q1;x].e!x.nil,

Bobt = e?x.
∑

0≤i≤3

(if x = i then σi[q2].d!q2.nil),

T el = (Alicet‖Bobt)\{e},

For any ρ ∈ D(H{q1,q2}), we have

〈Tel, [|Ψ〉]q1,q2 ⊗ ρ〉
c?r−→ 〈(CN [r, q1].H [r].M [r, q1;x].e!x.nil‖Bobt)\{e}, [|Ψ〉]q1,q2 ⊗ ρ〉
τ−→ 〈(H [r].M [r, q1;x].e!x.nil‖Bobt)\{e}, CNr,q1([|Ψ〉]q1,q2 ⊗ ρ)〉
τ−→ 〈(M [r, q1;x].e!x.nil‖Bobt)\{e},

∑

0≤j≤3

1

4
[|̃j〉]r,q1 ⊗ σjq2 (ρ)〉 (3)

τ−→ 1/4 • 〈(e!0.nil‖Bobt)\{e}, [|00〉]r,q1 ⊗ ρ〉
⊞1/4 • 〈(e!1.nil‖Bobt)\{e}, [|01〉]r,q1 ⊗ σ1

q2
(ρ)〉

⊞1/4 • 〈(e!2.nil‖Bobt)\{e}, [|10〉]r,q1 ⊗ σ2
q2
(ρ)〉

⊞1/4 • 〈(e!3.nil‖Bobt)\{e}, [|11〉]r,q1 ⊗ σ3
q2
(ρ)〉,
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and for 0 ≤ j ≤ 3,

〈(e!j.nil‖Bobt)\{e}, [|̃j〉]r,q1 ⊗ σjq2 (ρ)〉
τ−→ 〈(nil‖

∑

0≤i≤3

(if j = i then σi[q2].d!q2.nil))\{e}, [|̃j〉]r,q1 ⊗ σjq2(ρ)〉

τ−→ 〈(nil‖d!q2.nil)\{e}, [|̃j〉]r,q1 ⊗ ρ〉
d!q2−→ 〈(nil‖nil)\{e}, [|̃j〉]r,q1 ⊗ ρ〉.

Here Eq.(3) is calculated as follows. Notice that any ρ ∈ D(H{q1,q2}) can be decomposed

as ρ =
∑

0≤i≤3 γi[|ψi〉]r ⊗ ρi where |ψ0〉 = |0〉, |ψ1〉 = |1〉, |ψ2〉 = |+〉 = (|0〉+ |1〉)/
√
2, and

|ψ3〉 = |−〉 = (|0〉 − |1〉)/
√
2. Then it is easy to derive that

Hr(CNr,q1([|Ψ〉]q1,q2 ⊗ ρ)) =
γ0
4
[|000〉+ |011〉+ |100〉+ |111〉]r,q1,q2 ⊗ ρ0

+
γ1
4
[|001〉+ |010〉 − |101〉 − |110〉]r,q1,q2 ⊗ ρ1

+
γ2
4
[|00+〉+ |01+〉+ |10−〉− |11−〉]r,q1,q2 ⊗ ρ2

+
γ3
4
[|00−〉− |01−〉+ |10+〉+ |11+〉]r,q1,q2 ⊗ ρ3

=
1

4
[|00〉]r,q1 ⊗ ρ+

1

4
[|01〉]r,q1 ⊗ σ1

q2
(ρ)

+
1

4
[|10〉]r,q1 ⊗ σ2

q2
(ρ) +

1

4
[|11〉]r,q1 ⊗ σ3

q2
(ρ).

Example 3.6. (Encode quantum circuits with qCCS) Quantum circuits consist of
two different types of gates: unitary gates and quantum measurements. We now show
how to encode them using qCCS. To ease the notations, we allow quantum channels
to input and output multiple qubits. We write the quantum channel c as cn if n qubits
can be communicated through c simultaneously. In other words, the quantum capacity
of cn is n qubits.

— Unitary gate. Suppose U is a unitary operator acting on n qubits. Then the unitary
gate which implements U can be defined as a process constant U(U), qv(U(U)) = ∅,
with the defining equation

U(U)
def
= cn?q̃.U [q̃].dn!q̃.U(U).

We set ar(U(U)) = n.
— Measurement gate. Suppose M is a quantum measurement acting on n qubits. Then

the measurement gate which implements M can be defined as

M(M)
def
= cn?q̃.M [q̃;x].e!x.dn!q̃.M(M).

We set ar(M(M)) = n.

For any ρ ∈ D(H), we have

〈U(U), ρ〉 c
n?r̃−→ 〈U [r̃].dn!r̃.U(U), ρ〉
τ−→ 〈dn!r̃.U(U), Ur̃ρU

†
r̃
〉

d
n!r̃−→ 〈U(U), Ur̃ρU

†
r̃
〉
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and

〈M(M), ρ〉 c
n?r̃−→ 〈M [r̃;x].e!x.dn!r̃.M(M), ρ〉
τ−→ ⊞i∈Ipi • 〈e!λi.dn!r̃.M(M), Eir̃ρE

i
r̃/pi〉

where M =
∑

i∈I λiE
i and pi = tr(Eir̃ρ)/tr(ρ). Now for each i ∈ I,

〈e!λi.dn!r̃.M(M), Eir̃ρE
i
r̃/pi〉

e!λi−→ 〈dn!r̃.M(M), Eir̃ρE
i
r̃/pi〉

d
n!r̃−→ 〈M(M), Eir̃ρE

i
r̃/pi〉.

Suppose G1 and G2 are two (unitary or measurement) gates with ar(G1) = ar(G2) = n.
The sequential composition of G1 and G2 can be defined as

G1 ◦ G2
def
= (Ls‖G1[e

n/cn, fn/dn]‖G2[f
n/cn, gn/dn]‖Rs)\{c, en, fn, gn}

where Ls
def
= cn?q̃.en!q̃.c?x.Ls and Rs

def
= gn?q̃.dn!q̃.c!0.Rs.

If ar(G1) = m and ar(G2) = n, then the parallel composition of G1 and G2 is defined
as

G1 ⊗ G2
def
= (Lp‖G1[e

m
1 /c

m, fm1 /d
m]‖G2[e

n
2/c

n, fn2 /d
n]‖Rp)\{c, em1 , fm1 , en2 , fn2 }

where Lp
def
= cm+n?q̃.em1 !l(q̃).en2 !r(q̃).c?x.Lp, Rp

def
= fm1 ?r̃1.f

n
2 ?r̃2.d

m+n!(r̃1r̃2).c!0.Rp, l(q̃)
denotes the prefix of q̃ with length m while r(q̃) the postfix of q̃ with length n, and r̃1r̃2
is the concatenation of r̃1 and r̃2.

4. STRONG BISIMULATION BETWEEN QUANTUM PROCESSES

This section is devoted to a strong bisimulation between quantum processes. Firstly,
we need a definition from [Baier and Kwiatkowska 2000] which lifts a relation on Con
to a relation on D(Con).

Definition 4.1. Let R ⊆ Con× Con, and µ, ν ∈ D(Con). A weight function for (µ, ν)
w.r.t. R is a function δ : supp(µ)× supp(ν) → [0, 1] which satisfies

(1) For all C ∈ supp(µ) and D ∈ supp(ν),
∑

D∈supp(ν)
δ(C,D) = µ(C),

∑

C∈supp(µ)
δ(C,D) = ν(D);

(2) If δ(C,D) > 0, then (C,D) ∈ R.

We write µRν if there exists a weight function for (µ, ν) w.r.t. R.

LEMMA 4.2. [Baier and Kwiatkowska 2000] Suppose µ, ν, ω ∈ D(Con), R,R′ ⊆
Con× Con.

(1) µRν if and only if νR−1µ;
(2) If µRν and νR′ω, then µ(R ◦R′)ω;
(3) If R ⊆ R′, then µRν implies µR′ν.

The following lemma gives an equivalent characterization of the lifted relation on
D(Con) directly from the original one on Con, without resorting to a weight function: 1

1While completing this paper, we were aware of that the same equivalent characterization was established
independently by Yuxin Deng and Wenjie Du in [Deng and Du 2011]. They actually adopted Lemma 4.3 as
the definition of lifted relations, and treated the weight function approach in Definition 4.1 as a property.
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LEMMA 4.3. Let µ, ν ∈ D(Con) and R ⊆ Con × Con. Then µRν if and only if
µ =

∑
i∈I piCi and ν =

∑
i∈I piDi such that CiRDi for each i ∈ I. In particular, if CRν

then CRD for each D ∈ supp(ν).

PROOF. This is simply a special case of Lemma 5.2 presented in Section 5.

With the notion of lifted relations, we can define strong bisimulation between con-
figurations as follows.

Definition 4.4. A relation R ⊆ Con× Con is called a strong bisimulation if for any
〈P, ρ〉, 〈Q, σ〉 ∈ Con, 〈P, ρ〉R〈Q, σ〉 implies that qv(P ) = qv(Q), trqv(P )(ρ) = trqv(Q)(σ),
and

(1) whenever 〈P, ρ〉 c?q−→ 〈P ′, ρ〉, then 〈Q, σ〉 c?q−→ 〈Q′, σ〉 for some Q′ such that for any
trace-preserving super-operator E acting on H

qv(P ′)−{q}, 〈P ′, E(ρ)〉R〈Q′, E(σ)〉;
(2) whenever 〈P, ρ〉 α−→ µ where α is not a quantum input, then there exists ν such

that 〈Q, σ〉 α−→ ν and µRν;

(3) whenever 〈Q, σ〉 c?q−→ 〈Q′, σ〉, then 〈P, ρ〉 c?q−→ 〈P ′, ρ〉 for some P ′ such that for any
trace-preserving super-operator E acting on H

qv(Q′)−{q}, 〈P ′, E(ρ)〉R〈Q′, E(σ)〉;
(4) whenever 〈Q, σ〉 α−→ ν where α is not a quantum input, then there exists µ such

that 〈P, ρ〉 α−→ µ and µRν.

Then the strong bisimilarity between configurations is the largest strong bisimu-
lation, and strong bisimilarity between processes can be defined by comparing two
processes in the same environment.

Definition 4.5.

(1) Two quantum configurations 〈P, ρ〉 and 〈Q, σ〉 are strongly bisimilar, denoted by
〈P, ρ〉 ∼ 〈Q, σ〉, if there exists a strong bisimulation R such that 〈P, ρ〉R〈Q, σ〉;

(2) Two quantum processes P and Q are strongly bisimilar, denoted by P ∼ Q,
if for any quantum state ρ ∈ D(H) and any indexed set ṽ of classical values,
〈P{ṽ/x̃}, ρ〉 ∼ 〈Q{ṽ/x̃}, ρ〉. Here x̃ is the set of free classical variables contained
in P and Q.

Some design decisions made in Definition 4.4 deserve justification and explanation:

— Recall that in the definition of bisimulations proposed in [Feng et al. 2007], a clause

If 〈P, ρ〉 6−→ and 〈Q, σ〉 6−→, then ρ = σ (4)

is presented to guarantee that the quantum operations applied by P and Q, which
give rise only to invisible actions, have the same effect. That definition, however,
does not fit well with recursive definitions since recursively defined processes will
generally never reach a terminating process.
In Definition 4.4, we solve this problem by requiring instead that

trqv(P )(ρ) = trqv(Q)(σ). (5)

Obviously, when 〈P, ρ〉 6−→ and 〈Q, σ〉 6−→, and P and Q do not hold any quantum
variables, Eqs. (4) and (5) are equivalent. However, Eq.(5) can deal with processes
which have infinite behaviors. For example, let

A
def
= c?q.Set0[q].τ.c!q.A
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and

B
def
= c?q.M0,1[q;x].

1∑

i=0

(if x = λi then σi[q].c!q.B)

where Set0 is the trace-preserving super-operator which sets the target qubit to |0〉,
and M0,1 is the 1-qubit measurement according to the computational basis; that is,
M0,1 = λ0|0〉〈0|+ λ1|1〉〈1|. Intuitively, B can be regarded as an implementation of A,
specifying how to set the input qubit to |0〉. We now show A ∼ B indeed holds under
our definition of strong bisimulation. Let

Conρ = {〈A, ρ〉, 〈B, ρ〉}
Conq,ρ = {〈A1q, ρ〉, 〈A2q, ρ0〉, 〈A3q , ρ0〉, 〈B1q, ρ〉, 〈B2qj , ρj〉, 〈B3q , ρ0〉 : j = 0, 1}

where A1q = Set0[q].τ.c!q.A, A2q = τ.c!q.A, A3q = c!q.A,

B1q = M0,1[q;x].
1∑

i=0

(if x = λi then σi[q].c!q.B),

B2qj =
1∑

i=0

(if λj = λi then σi[q].c!q.B),

B3q = c!q.B, and ρj = [|j〉]q ⊗ trqρ. Let R ⊆ Con × Con such that 〈P, σ〉R〈Q, η〉
if and only if there exist q ∈ qV ar and ρ ∈ D(H) such that 〈P, σ〉 and 〈Q, η〉 are
simultaneously included in Conρ or Conq,ρ. It is not difficult to prove that R is a
strong bisimulation. Thus A ∼ B.

— Furthermore, by replacing Eq.(4) with Eq.(5), the derived bisimilarity will be pre-
served by restriction. Take the example in [Feng et al. 2007]. Let U1, U2, V1, and V2
be unitary operators such that U2U1 = V2V1 but U1 6= V1. Let

P = U1[q].c!0.U2[q].nil, Q = V1[q].c!0.V2[q].nil.

Then P and Q are strongly bisimilar but P\{c} and Q\{c} are not if Eq.(4) is re-
quired in the definition. However, in our Definition 4.4, P\{c} and Q\{c} are also
strongly bisimilar since in Eq.(5) we only need to consider the reduced states on the
systems qv(P ) = qv(Q). The “unfinished” quantum operations, which are blocked
by the restriction, are not taken into account when comparing the accompanying
quantum states.

— Another question one may ask is that why we require qv(P ) = qv(Q) in the defini-
tion, which excludes the pair

P = I[q].nil and Q = τ.nil

to be strongly bisimilar. The reason is, although P and Q have the same effect (they
both do nothing at all) on the environment, they are indeed different under parallel
composition. For example, if q ∈ qv(R), then the process Q‖R is valid while P‖R is
not.

— In clause (1), we require 〈P ′, E(ρ)〉R〈Q′, E(σ)〉 for any trace-preserving super-
operator E acting on H

qv(P ′)−{q}. The reason for this rather strange requirement

is as follows. To check whether two configurations are bisimilar, we have to feed
them with all possible inputs. In classical process algebra, this is realized by re-
quiring that the input value is arbitrarily chosen. In quantum process algebra,
however, since the state of all environmental systems is fixed for a given configu-
ration, only requiring the arbitrariness of the input system is not sufficient. Note
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that the state-preparation operation and the swap operation are both special trace-
preserving super-operators. Our definition actually allows the possibility of inputing
an arbitrary system which lies in an arbitrary state. Furthermore, this requirement
is also essential in proving the congruence property of the derived bisimilarity (See
Theorems 4.8 and 6.16 below).

The following properties can be directly derived from the definitions and Lemma 4.3.

THEOREM 4.6. ∼ is a strong bisimulation on Con, and it is an equivalence relation.

THEOREM 4.7. For any configurations 〈P, ρ〉 and 〈Q, σ〉, 〈P, ρ〉 ∼ 〈Q, σ〉 if and only
if qv(P ) = qv(Q), trqv(P )(ρ) = trqv(Q)(σ), and

(1) whenever 〈P, ρ〉 c?q−→ 〈P ′, ρ〉, then 〈Q, σ〉 c?q−→ 〈Q′, σ〉 for some Q′ such that for any
super-operator E acting on H

qv(P ′)−{q}, 〈P ′, E(ρ)〉R〈Q′, E(σ)〉;
(2) whenever 〈P, ρ〉 α−→ µ where α is not a quantum input, then there exists ν such that

〈Q, σ〉 α−→ ν and µ ∼ ν;

and the symmetric conditions of (1) and (2).

The strong bisimilarity for configurations is preserved by all static constructors and
the summation.

THEOREM 4.8. If 〈P, ρ〉 ∼ 〈Q, σ〉 then

(1) 〈P +R, ρ〉 ∼ 〈Q+R, σ〉, provided that 〈R, ρ〉 ∼ 〈R, σ〉;
(2) 〈P‖R, ρ〉 ∼ 〈Q‖R, σ〉;
(3) 〈P [f ], ρ〉 ∼ 〈Q[f ], σ〉;
(4) 〈P\L, ρ〉 ∼ 〈Q\L, σ〉;
(5) 〈if b then P, ρ〉 ∼ 〈if b then Q, σ〉.

PROOF. Items (1) and (3)-(5) are easy from Theorem 4.7. Item (2) is simpler than
Theorem 6.16 (1) in Section 6, thus we omit the proof here.

The strong configuration bisimilarity is not preserved, however, by dynamic con-
structors such as prefix. A counterexample is as follows. Let P = M0,1[q;x].nil where
M0,1 = λ0[|0〉] + λ1[|1〉] is the 1-qubit measurement according to the computational
basis, Q = I[q].nil, and ρ = [|0〉]q ⊗ σ where σ ∈ D(Hq). Then 〈P, ρ〉 ∼ 〈Q, ρ〉, but
〈H [q].P, ρ〉 6∼ 〈H [q].Q, ρ〉 where H is the Hadamard operator.

Nevertheless, similar to classical value-passing CCS, strong bisimilarity for quan-
tum processes is preserved by all the combinators of qCCS.

THEOREM 4.9. If P ∼ Q then

(1) a.P ∼ a.Q, a ∈ {τ, c?x, c!e, c?q, c!q, E [q̃],M [q̃;x]};
(2) P +R ∼ Q +R;
(3) P‖R ∼ Q‖R;
(4) P [f ] ∼ Q[f ];
(5) P\L ∼ Q\L;
(6) if b then P ∼ if b then Q.

PROOF. Item (1) is easy to check. The rest is direct from Theorem 4.8.

The monoid laws and the static laws in classical CCS can also be generalized to
qCCS.

THEOREM 4.10. For any P,Q,R ∈ qProc, K,L ⊆ Chan, any relabeling functions f
and f ′, and any action prefix a, we have
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(1) P + nil ∼ P ;
(2) P + P ∼ P ;
(3) P +Q ∼ Q+ P ;
(4) P + (Q+R) ∼ (P +Q) +R;
(5) P‖nil ∼ P ;
(6) P‖Q ∼ Q‖P ;
(7) P‖(Q‖R) ∼ (P‖Q)‖R;
(8) (a.P )\L ∼ a.P\L, if cn(a) 6⊆ L
(9) (a.P )[f ] ∼ f(a).P [f ];

(10) (P +Q)\L ∼ P\L+Q\L;
(11) (P +Q)[f ] ∼ P [f ] +Q[f ];
(12) P\L ∼ P if cn(P ) ∩ L = ∅, where cn(P ) is the set of free channel names used in P ;
(13) (P\K)\L ∼ P\(K ∪ L);
(14) (P‖Q)\L ∼ P\L‖Q\L, if cn(P ) ∩ cn(Q) ∩ L = ∅;
(15) P [f ]\L ∼ P\f−1(L)[f ];
(16) P [Id] ∼ P where Id is the identity relabeling function;
(17) P [f ] ∼ P [f ′] if the restrictions of f and f ′ on cn(P ) coincide;
(18) P [f ][f ′] ∼ P [f ′ ◦ f ];
(19) (P‖Q)[f ] ∼ P [f ]‖Q[f ] if the restriction of f on cn(P ) ∪ cn(Q) is one-to-one.

PROOF. Similar to Propositions 4.7 and 4.8 in [Milner 1989]

We now establish the expansion law for quantum processes. In the following theo-

rem, we simply write P
α−→ P ′ if for any ρ ∈ D(H), 〈P, ρ〉 α−→ 〈P ′, ρ〉.

THEOREM 4.11. (Expansion Law) Let

P = (P1[f1]‖ · · · ‖Pn[fn])\L.
Then

P ∼
∑{

fi(α).(P1[f1]‖ · · · ‖P ′
i [fi]‖ · · · ‖Pn[fn])\L : Pi

α−→ P ′
i and fi(cn(α)) 6⊆ L

}

+
∑{

fi(c)?x.(P1[f1]‖ · · · ‖P ′
i [fi]‖ · · · ‖Pn[fn])\L : Pi

c?v−→ P ′
i{v/x} for any v, and fi(c) 6∈ L

}

+
∑{

E [q̃].(P1[f1]‖ · · · ‖P ′
i [fi]‖ · · · ‖Pn[fn])\L : 〈Pi, ρ〉 τ−→ 〈P ′

i , Eq̃(ρ)〉 for any ρ
}

+
∑



M [q̃;x].(P1[f1]‖ · · · ‖P ′

i [fi]‖ · · · ‖Pn[fn])\L :M =
∑

j∈J
λjK

j and

〈Pi, ρ〉 τ−→
∑

j∈J
pj〈P ′

i{λj/x},Kj
q̃
ρKj

q̃
/pj〉 for any ρ





+
∑{

τ.(P1[f1]‖ · · · ‖P ′
i [fi]‖ · · · ‖P ′

j [fj ]‖ · · · ‖Pn[fn])\L :

Pi
α−→ P ′

i , Pj
β−→ P ′

j , i < j, fi(cn(α)) = fj(cn(β)),and

among α and β there is exactly one input and one output}
provided that there is at least one summand at the right hand side of the above equation.

PROOF. Similar to Proposition 4.9 in [Milner 1989]. We put the restriction on the
number of summands here for the following reason: in general Q\L 6∼ nil even if all
the free channel names used in Q are included in L, since qv(nil) = ∅ while qv(Q\L) =
qv(Q) is normally not empty.

ACM Transactions on Programming Languages and Systems, Vol. 34, No. 4, Article 17, Publication date: December 2012.



17:20 Y. Feng et al.

We now turn to examine the properties of strong bisimilarity under recursive def-
initions. To this end, we assume a set of process variable schemes, ranged over by
X,Y, . . . . Assigned to each process variable scheme X there is a non-negative integer
ar(X). If q̃ is an indexed set of distinct quantum variables with |q̃| = ar(X), then X(q̃)
is called a process variable.

Process expressions may be defined by adding the following clause into Definition
3.1 (and replacing the word “process” by the phrase “process expression” and “qProc”
by “qExp”):

(15) X(q̃) ∈ qExp, and qv(X(q̃)) = q̃

where X(q̃) is a process variable. We use metavariables E,F, . . . to range over process
expressions. Suppose that E is a process expression, and {Xi(q̃i) : i ∈ I} is a family of
process variables. If {Pi : i ∈ I} is a family of processes such that qv(Pi) ⊆ q̃i for all i,
then we write

E{Pi/Xi(q̃i) : i ∈ I}
for the process obtained by replacing simultaneously Xi(q̃i) in E with Pi for all i ∈ I.

Definition 4.12. Let E and F be process expressions containing at most process
variables {Xi(q̃i) : i ∈ I}. Then E and F are strongly bisimilar, denoted by E ∼ F ,
if for all family {Pi : i ∈ I} of quantum processes with qv(Pi) ⊆ q̃i, we have

E{Pi/Xi(q̃i) : i ∈ I} ∼ F{Pi/Xi(q̃i) : i ∈ I}.

For simplicity, sometimes we denote E{Pi/Xi(q̃i) : i ∈ I} as E{P̃ /X̃} or even E(P̃ )
when it does not cause any confusion. The next theorem shows that ∼ is also preserved
by recursive definitions.

THEOREM 4.13.

(1) If A(q̃)
def
= P , then A(q̃) ∼ P ;

(2) Let {Ei : i ∈ I} and {Fi : i ∈ I} be two families of process expressions containing at
most process variables {Xi(q̃i) : i ∈ I}, and Ei ∼ Fi for each i ∈ I. If {Ai(q̃i) : i ∈ I}
and {Bi(q̃i) : i ∈ I} be two families of process constants such that

Ai(q̃i)
def
= Ei{Aj(q̃j)/Xj(q̃j) : j ∈ I}

Bi(q̃i)
def
= Fi{Bj(q̃j)/Xj(q̃j) : j ∈ I},

then Ai(q̃i) ∼ Bi(q̃i) for all i ∈ I.

PROOF. (1) is obvious, and (2) is similar to Proposition 4.12 in [Milner 1989]

Finally, the uniqueness of solutions of equations can be proved for process expres-
sions in qCCS.

Definition 4.14. Given a process variable X(q̃) and a process expression E, we say
X(q̃) is weakly guarded in E if each occurrence of X(q̃) is within some subexpression
a.F of E where a is a prefix.

We also say that E is weakly guarded if each process variable is weakly guarded in
E.

THEOREM 4.15. Let {Ei : i ∈ I} be a family of process expressions containing at
most process variables {Xi(q̃i) : i ∈ I}, and each Xj(q̃j) is weakly guarded in each
Ei. Let {Pi : i ∈ I} and {Qi : i ∈ I} be two families of quantum processes such that
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qv(Pi) ∪ qv(Qi) ⊆ q̃i for each i, and

Pi ∼ Ei{Pj/Xj(q̃j) : j ∈ I}
Qi ∼ Ei{Qj/Xj(q̃j) : j ∈ I},

then Pi ∼ Qi for all i ∈ I.

PROOF. Similar to Proposition 4.14 in [Milner 1989]

5. APPROXIMATE STRONG BISIMULATION

In the previous section, only exact strong bisimulation is presented where two quan-
tum processes are either bisimilar or non-bisimilar. Obviously, such a bisimulation
cannot capture the idea that a quantum process approximately implements its speci-
fication. To measure the behavioral distance between processes, the notion of approx-
imate bisimulation and the bisimulation distance for classical processes were intro-
duced by various authors [Ying 2001; 2002; Desharnais et al. 2004; Deng et al. 2006].
Note that approximation, or imprecision, is especially essential for quantum process
algebra since quantum operations constitute a continuum and exact bisimulation is
not always practically suitable for their physical implementation. To provide tech-
niques and tools for approximate reasoning, a quantified version of strong bisimu-
lation, which defines for each pair of quantum processes a bisimulation-based distance
characterizing the extent to which they are strongly bisimilar, has already been pro-
posed for purely quantum processes in [Ying et al. 2009]. In this section, we introduce
an approximate variant of strong bisimulation presented in Section 4. To this end, we
first present the approximate notion of weight functions defined in Definition 4.1.

Definition 5.1. Let R be a relation on Con, and µ, ν ∈ D(Con). A λ-weight function
for (µ, ν) w.r.t. R is a function δ : supp(µ)× supp(ν) → [0, 1] which satisfies

(1) For any C ∈ supp(µ) and D ∈ supp(ν),

∑

D∈supp(ν)
δ(C,D) ≤ µ(C),

∑

C∈supp(µ)
δ(C,D) ≤ ν(D);

(2)
∑

C∈supp(µ)

∑

D∈supp(ν)
δ(C,D) ≥ 1− λ;

(3) If δ(C,D) > 0, then (C,D) ∈ R.

We write µRλν if there exists a λ-weight function for (µ, ν) w.r.t. R.

Similar to Lemma 4.3, we have

LEMMA 5.2. Let µ, ν ∈ D(Con). Then µRλν if and only if µ =
∑
i∈I piCi and ν =∑

i∈I piDi such that
∑

i∈I
{|pi : CiRDi|} ≥ 1− λ.

In particular, for any C,D ∈ Con and λ < 1, CRλD if and only if CRD.
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PROOF. Let µRλν, and δ is a λ-weight function for (µ, ν) w.r.t. R. For any C ∈
supp(µ), let λC = µ(C)−∑D∈supp(ν) δ(C,D). Then we have

µ =
∑

C∈supp(µ)
µ(C)C

=
∑

C,D
δ(C,D)C +

∑

C∈supp(µ)
λCC.

Similarly, we derive ν =
∑

C,D δ(C,D)D +
∑

D∈supp(ν) λDD where λD = ν(D) −∑
C∈supp(µ) δ(C,D). Note that

∑

C∈supp(µ)
λC =

∑

D∈supp(ν)
λD = 1−

∑

C,D
δ(C,D).

We can further write

µ =
∑

C,D
δ(C,D)C +

∑

C,D

λCλD
T

C

ν =
∑

C,D
δ(C,D)D +

∑

C,D

λCλD
T

D

where T = 1 −∑CRD δ(C,D). Let Ij = supp(µ) × supp(ν) × {j} for j = 0, 1, and I =
I0 ∪ I1. Now for any (C,D, j) ∈ I, let p(C,D,j) be δ(C,D) if j = 0, and λCλD/T if j = 1.
Furthermore, let C(C,D,j) = C and D(C,D,j) = D. Then

∑

(C,D,j)∈I
{|p(C,D,j) : C(C,D,j)RD(C,D,j)|} ≥

∑

CRD
δ(C,D)

=
∑

C,D
δ(C,D) ≥ 1− λ.

That proves the necessity part.
Conversely, suppose µ =

∑
i∈I piCi and ν =

∑
i∈I piDi where

∑
i∈I{|pi : CiRDi|} ≥

1 − λ. Let IC = {i ∈ I : Ci = C} and ID = {i ∈ I : Di = D}. We construct a function
δ : supp(µ)× supp(ν) → [0, 1] such that

δ(C,D) =

{∑{|pi : i ∈ IC ∩ ID|} if CRD,

0 otherwise.

Obviously, if δ(C,D) > 0, then CRD. Furthermore, for any C ∈ supp(µ),
∑

D∈supp(ν)
δ(C,D) =

∑
{|pi : i ∈ IC , and CiRDi|}

≤
∑

{|pi : i ∈ IC |} = µ(C).
Similarly, we have

∑
C∈supp(µ) δ(C,D) ≤ ν(D). Finally, we calculate that

∑

C∈supp(µ)

∑

D∈supp(ν)
δ(C,D) =

∑

C∈supp(µ)

∑
{|pi : i ∈ IC , and CiRDi|}

=
∑

{|pi : CiRDi|} ≥ 1− λ.

Thus δ is a λ-weight function for (µ, ν) w.r.t. R, and then µRν.
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The following lemma is an approximation correspondence of Lemma 4.2.

LEMMA 5.3. Suppose µ, ν, ω ∈ D(Con), R,R′ ⊆ Con× Con.

(1) If R ⊆ R′ and λ ≤ λ′, then µRλν implies µR′
λ′ν.

(2) µRλν if and only if ν(R−1)λµ;
(3) µRλν and νR′

λ′ω, then µ(R ◦R′)λ+λ′ω;

PROOF. (1) and (2) are direct from Definition 5.1 or Lemma 5.2. For (3), let δ be a
λ-weight function for (µ, ν) w.r.t. R, and δ′ a λ′-weight function for (ν, ω) w.r.t. R′. We
construct ∆ : supp(µ)× supp(ω) → [0, 1] such that for any C ∈ supp(µ) and K ∈ supp(ω),

∆(C,K) =
∑

D∈supp(ν)

δ(C,D)δ′(D,K)

ν(D)
.

It is easy to check that
∑

K∈supp(ω) ∆(C,K) ≤ µ(C) and
∑

C∈supp(µ) ∆(C,K) ≤ ω(K).

Futheremore, when ∆(C,K) > 0, then there exists D ∈ supp(ν) such that both δ(C,D) >
0 and δ′(D,K) > 0. Thus CRD and DR′K, and so C(R ◦R′)K. Finally, we calculate

∑

C∈supp(µ)

∑

K∈supp(ω)
∆(C,K) =

∑

C∈supp(µ)

∑

D∈supp(ν)

δ(C,D)

ν(D)
(ν(D) − λD)

≥ 1− λ−
∑

C∈supp(µ)

∑

D∈supp(ν)

δ(C,D)

ν(D)
λD

≥ 1− λ−
∑

D∈supp(ν)
λD ≥ 1− λ− λ′

where λD = ν(D)−∑K∈supp(ω) δ
′(D,K), and the last inequality is calculated by

∑

D∈supp(ν)
λD = 1−

∑

D∈supp(ν)

∑

K∈supp(ω)
δ′(D,K) ≤ λ′.

Thus ∆ is indeed a λ+ λ′-weighted function for (µ, ω) w.r.t. R ◦R′.

With these notions, we can define the approximate strong bisimulation between con-
figurations as follows.

Definition 5.4. A relation R ⊆ Con×Con is called a λ-strong bisimulation if for any
〈P, ρ〉, 〈Q, σ〉 ∈ Con, 〈P, ρ〉R〈Q, σ〉 implies that qv(P ) = qv(Q), d[trqv(P )(ρ), trqv(Q)(σ)] ≤
λ, and

(1) whenever 〈P, ρ〉 c?q−→ 〈P ′, ρ〉, then 〈Q, σ〉 c?q−→ 〈Q′, σ〉 for some Q′ such that for any
trace-preserving super-operator E acting on H

qv(P ′)−{q}, 〈P ′, E(ρ)〉Rλ〈Q′, E(σ)〉;
(2) whenever 〈P, ρ〉 α−→ µ where α is not a quantum input, then there exists ν such

that 〈Q, σ〉 α−→ ν and µRλν;

and the symmetric conditions of (1) and (2).

Note that by Lemma 5.2, the Rλ in clause (1) of Definition 5.4 can actually replaced
by R. Obviously, when λ = 0, the above definition exactly coincides with the strong
bisimulation defined in Definition 4.4.

The approximate strong bisimilarity between configurations and approximate
strong bisimilarity between processes can be defined in a straightforward way.

Definition 5.5.
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(1) Two quantum configurations 〈P, ρ〉 and 〈Q, σ〉 are λ-strongly bisimilar, denoted by

〈P, ρ〉 λ∼ 〈Q, σ〉, if there exists a λ-strong bisimulation R such that 〈P, ρ〉R〈Q, σ〉;
(2) Two quantum processes P and Q are λ-strongly bisimilar, denoted by P

λ∼ Q,
if for any quantum state ρ ∈ D(H) and any indexed set ṽ of classical values,

〈P{ṽ/x̃}, ρ〉 λ∼ 〈Q{ṽ/x̃}, ρ〉. Here x̃ is the set of free classical variables contained
in P and Q.

(3) The strong bisimulation distance between P and Q is defined by

Dsb(P,Q) = inf{λ ≥ 0 : P
λ∼ Q}.

When P 6 λ∼ Q for any λ ≥ 0, we simply set Dsb(P,Q) = ∞.

The following lemmas are useful in proving the latter properties of approximate
strong bisimilarity.

LEMMA 5.6. For any configurations 〈P, ρ〉 and 〈Q, σ〉, 〈P, ρ〉 λ∼ 〈Q, σ〉 if and only if
qv(P ) = qv(Q), d[trqv(P )(ρ), trqv(Q)(σ)] ≤ λ, and

(1) whenever 〈P, ρ〉 c?q−→ 〈P ′, ρ〉, then 〈Q, σ〉 c?q−→ 〈Q′, σ〉 for some Q′ such that for any

trace-preserving super-operator E acting on H
qv(P ′)−{q}, 〈P ′, E(ρ)〉 λ∼ 〈Q′, E(σ)〉;

(2) whenever 〈P, ρ〉 α−→ µ where α is not a quantum input, then there exists ν such that

〈Q, σ〉 α−→ ν and µ
λ∼λ ν;

and the symmetric conditions of (1) and (2).

PROOF. Easy from the definitions and Lemma 5.3(1).

LEMMA 5.7.

(1) If Ri is a λi-strong bisimulation (i = 1, 2), then R1 ◦ R2 is a (λ1 + λ2)-strong bisim-
ulation;

(2) If 〈P, ρ〉 λ1∼ 〈Q, σ〉 and 〈Q, σ〉 λ2∼ 〈R, η〉, then 〈P, ρ〉 λ1+λ2∼ 〈R, η〉;
(3) If P

λ1∼ Q and Q
λ2∼ R, then P

λ1+λ2∼ R;

(4)
λ1∼ ⊆ λ2∼ whenever λ1 ≤ λ2.

PROOF. (1) can be deduced easily from Lemma 5.3(3). Then (2) follows from (1), and
(3) from (2) directly. Finally, (4) is obvious by definition.

The following theorem states that the infimum in Definition 5.5 (3) of strong bisim-
ulation distance can be replaced by minimum; that is, the infimum is achievable.

THEOREM 5.8. If Dsb(P,Q) <∞, then P
Dsb(P,Q)∼ Q.

PROOF. Suppose λ = Dsb(P,Q) <∞. We need only to prove that

R = {(〈P, ρ〉, 〈Q, σ〉) : 〈P, ρ〉 λi∼ 〈Q, σ〉 for some decreasing sequence

λ1 > λ2 > · · · > 0, and lim
i→∞

λi = λ}

is a λ-strong bisimulation. For any 〈P, ρ〉R〈Q, σ〉, since 〈P, ρ〉 λi∼ 〈Q, σ〉 we have qv(P ) =
qv(Q), and d(trqv(P )ρ, trqv(Q)σ) ≤ λi for any i ≥ 1. Thus d(trqv(P )ρ, trqv(Q)σ) ≤ λ. Fur-
thermore,
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(1) if 〈P, ρ〉 c?q−→ 〈P ′, ρ〉, then for any i ≥ 1, 〈Q, σ〉 c?q−→ 〈Q′
i, σ〉 such that for any trace-

preserving super-operator E acting on H
qv(P ′)−{q}, 〈P ′, E(ρ)〉 λi∼ 〈Q′

i, E(σ)〉. Since by

the semantics of qCCS, all configurations are image-finite; that is, the set

K = {〈Q′
i, σ〉 : 〈Q, σ〉

c?q−→ 〈Q′
i, σ〉}

is finite, there exists a 〈Q′, σ〉 ∈ K and a decreasing subsequence {λni
} of {λi} such

that for any trace-preserving super-operator E acting on H
qv(P ′)−{q} and for any

i ≥ 1, 〈P ′, E(ρ)〉 λni∼ 〈Q′, E(σ)〉. Thus 〈P ′, E(ρ)〉R〈Q′, E(σ)〉.
(2) if 〈P, ρ〉 α−→ µ where α is not a quantum input, then for any i ≥ 1, 〈Q, σ〉 α−→ νi

and µ
λi∼λi

νi. Again, since 〈Q, σ〉 is image-finite, there exists a ν ∈ D(Con) and

a decreasing subsequence {λni
} of {λi} such that 〈Q, σ〉 α−→ ν, and for any i ≥ 1,

µ
λni∼ λni

ν. In the following, we show that this indeed implies µRλν.
For any i ≥ 1, let δi : supp(µ) × supp(ν) → [0, 1] be a λni

-weight function for (µ, ν)

w.r.t.
λni∼ . Since {δi : i ≥ 1} can be regarded as a bounded sequence in the Euclidean

space R
N where N = |supp(µ)| · |supp(ν)|, there exists a convergent subsequence

{δmi
} of {δi}. Let δ = limi→∞ δmi

. Obviously, δ is again a function from supp(µ) ×
supp(ν) to [0, 1]. Suppose δ(C,D) > 0. Then there exists N ≥ 1 such that for any

i ≥ N , δmi
(C,D) > 0, and so C

λnmi∼ D. Thus by the definition of R, we have CRD.
With this, we can easily check that δ is a λ-weight function for (µ, ν) w.r.t. R.

Symmetric results can be shown when 〈Q, σ〉 performs an action. Thus R is a λ-strong

bisimulation, from which we derive easily that P
λ∼ Q.

A direct consequence of the above theorem is that the strong bisimulation distance
between two quantum processes vanishes if and only they are strongly bisimilar.

COROLLARY 5.9. For any P,Q ∈ qProc, P ∼ Q if and only if Dsb(P,Q) = 0.

PROOF. Direct from Theorem 5.8, by noting that ∼ =
0∼.

Similar to strong bisimilarity, the approximation strong bisimilarity is also congru-
ent with respect to various process constructors of qCCS.

THEOREM 5.10. For any λ ≥ 0,
λ∼ is a congruent relation on qProc. That is, if P

λ∼ Q
then

(1) a.P
λ∼ a.Q, a ∈ {τ, c?x, c!e, c?q, c!q, E [q̃],M [q̃;x]};

(2) P +R
λ∼ Q+R;

(3) P‖R λ∼ Q‖R;

(4) P [f ]
λ∼ Q[f ];

(5) P\L λ∼ Q\L;

(6) if b then P
λ∼ if b then Q.

We now show that all the process constructors of qCCS are non-expansive according
to the pseudo-metric Dsb. To this end, we need a lemma.

LEMMA 5.11. 〈P, ρ〉 λ∼ 〈P, σ〉 provided that d(ρ, σ) ≤ λ.
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PROOF. We need only to show the following relation

R = {(〈P, ρ〉, 〈P, σ〉) : d(ρ, σ) ≤ λ}
is a λ-strong bisimulation. Let 〈P, ρ〉R〈P, σ〉. Then d[trqv(P )ρ, trqv(P )σ] ≤ d(ρ, σ) ≤ λ by
Theorem 2.2. Furthermore,

— if 〈P, ρ〉 c?q−→ 〈P ′, ρ〉, then 〈P, σ〉 c?q−→ 〈P ′, σ〉. For any trace-preserving super-operator
E acting on Hqv(P ′)−{q}, we have d[E(ρ), E(σ)] ≤ d(ρ, σ) ≤ λ, again by Theorem 2.2.
Thus 〈P ′, E(ρ)〉R〈P ′, E(σ)〉 by definition.

— if 〈P, ρ〉 α−→ µ is caused by a measurement prefix M [q̃;x] where M =
∑

i∈I λi|ψi〉〈ψi|,
then we have µ =

∑
i∈I pi〈P{λi/x}, ρi〉, pi = tr(|ψi〉〈ψi|ρ), ρi = |ψi〉〈ψi|q̃ ⊗ trq̃ρ, and

〈P, σ〉 α−→ ν =
∑

i∈I
qi〈P{λi/x}, σi〉

with qi = tr(|ψi〉〈ψi|σ) and σi = |ψi〉〈ψi|q̃⊗ trq̃σ. Let δ : supp(µ)×supp(ν) → [0, 1] such
that

δ(C,D) =

{
min{pi, qi} if C = 〈P{λi/x}, ρi〉 and D = 〈P{λi/x}, σi〉,

0 otherwise.

Then for any C ∈ supp(µ) and D ∈ supp(ν),
∑

D∈supp(ν)
δ(C,D) =

∑

C∈supp(µ)
δ(C,D) = min{µ(C), ν(D)},

and
∑

C∈supp(µ)

∑

D∈supp(ν)
δ(C,D) =

∑

i∈I
min{pi, qi} ≥ 1− λ,

where the last inequality is from the following argument. Note that

2
∑

i∈I
min{pi, qi} =

∑

i∈I
pi +

∑

i∈I
qi −

∑

i∈I
|pi − qi|.

It follows that d({pi}, {qi}) = 1 −∑i∈I min{pi, qi}. Furthermore, since {|ψi〉〈ψi| : i ∈
I} constitute a quantum measurement on q̃, we have d({pi}, {qi}) ≤ d(ρ, σ) from
Theorem 2.1.
Now we have shown that δ is a λ-weight function for (µ, ν) w.r.t. R. Then µRλν by
definition.

— if 〈P, ρ〉 α−→ µ where α is not a quantum input and the transition is not caused by
a measurement, then µ = 〈P ′, E(ρ)〉 for some P ′ and some trace-preserving super-

operator E . Then we have 〈P, σ〉 α−→ 〈P ′, E(σ)〉, and 〈P ′, E(ρ)〉R〈P ′, E(σ)〉.
Symmetric results can be shown when 〈P, σ〉 performs an action. Thus R is a λ-strong
bisimulation.

THEOREM 5.12.

(1) The strong bisimulation distance Dsb is a pseudo-metric on qProc;
(2) For any processes P and Q, we have:

(a) Dsb(E [q̃].P,F [q̃].Q) ≤ d⋄(E ,F) +Dsb(P,Q);
(b) Dsb(a.P, a.Q) ≤ Dsb(P,Q) where a ∈ {τ, c?x, c!e, c?q, c!q, E [q̃],M [q̃;x]};
(c) Dsb(P +R,Q+R) ≤ Dsb(P,Q);
(d) Dsb(P‖R,Q‖R) ≤ Dsb(P,Q);
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(e) Dsb(P [f ], Q[f ]) ≤ Dsb(P,Q);
(f) Dsb(P\L,Q\L) ≤ Dsb(P,Q);
(g) Dsb(if b then P, if b then Q) ≤ Dsb(P,Q).

PROOF. (1) We need only to prove that Dsb satisfies the triangle inequality

Dsb(P,Q) +Dsb(Q,R) ≥ Dsb(P,R).

For any λ1 > Dsb(P,Q) and λ2 > Dsb(Q,R), we have P
λ1∼ Q and Q

λ2∼ R by definition.

Then P
λ1+λ2∼ R from Lemma 5.7(3). So Dsb(P,R) ≤ λ1 + λ2, and the result holds from

the arbitrariness of λ1 and λ2.
(2a) The case when Dsb(P,Q) = ∞ is obvious. Now suppose Dsb(P,Q) < ∞. For any

λ > Dsb(P,Q), we have 〈P, σ〉 λ∼ 〈Q, σ〉 for any σ ∈ D(H). To prove the result, it suffices

to show E [q̃].P λ′

∼ F [q̃].Q where λ′ = λ+ d⋄(E ,F).

We first derive qv(P ) = qv(Q) from 〈P, ρ〉 λ∼ 〈Q, ρ〉, and then qv(E [q̃].P ) = qv(F [q̃].Q).

For any ρ ∈ D(H), we have 〈E [q̃].P, ρ〉 τ−→ 〈P, Eq̃(ρ)〉 and 〈F [q̃].Q, ρ〉 τ−→ 〈Q,Fq̃(ρ)〉.
Note that d[Eq̃(ρ),Fq̃(ρ)] ≤ d⋄(E ,F). Then 〈P, Eq̃(ρ)〉

d⋄(E,F)∼ 〈P,Fq̃(ρ)〉 by Lemma 5.11.

Furthermore, we have 〈P, Eq̃(ρ)〉 λ′

∼ 〈Q,Fq̃(ρ)〉 from Lemma 5.7(2). Thus 〈E [q̃].P, ρ〉 λ′

∼
〈F [q̃].Q, ρ〉 by Lemma 5.6, and E [q̃].P λ′

∼ F [q̃].Q from the arbitrariness of ρ.
(2b) - (2g) are direct from Theorem 5.10. We omit the proofs here.

Note that in classical process algebra, a notion of approximate bisimulation has been
proposed for deterministic processes from which any action causes at most one prob-
abilistic transition [Giacalone et al. 1990]. This approximate bisimulation, however,
does not yield a pseudo-metric for general probabilistic processes, as shown by van
Breugel [van Breugel 2010]. The problem is, Giacalone et al.’s bisimulation is pre-
assumed to be an equivalence relation, which, in some sense, violates the intuition
that approximate bisimulation is not transitive: P approximates Q and Q approxi-
mates R do not necessarily imply that P approximates R. Our definition in this sec-
tion, however, only requires an approximate bisimulation to be symmetric, thanks
to the method, introduced by [Baier and Kwiatkowska 2000], of lifting relations be-
tween processes to those between probability distributions. Thus we are able to obtain
a pseudo-metric for quantum processes.

6. WEAK BISIMULATION BETWEEN QUANTUM PROCESSES

It is obvious that the (approximate) strong bisimulations proposed in previous sections
are too overdiscriminative since even internal actions, caused by local quantum opera-
tions and (classical or quantum) communication, are required to be perfectly matched
by bisimilar quantum processes. In this section, we turn to weak bisimulation, origi-
nated from [Baier and Hermanns 1997], which abstracts from the internal actions. To
do this, we first extend the transition relation defined in Section 3.

Definition 6.1. We define the relation =⇒ ⊆ D(Con) × D(Con) as the smallest
relation satisfying the following conditions:

(1) C =⇒ C;
(2) if C τ−→ µ and µ =⇒ ν, then C =⇒ ν;
(3) if µ =

∑
i∈I piCi, and for any i ∈ I, Ci =⇒ νi for some νi, then µ =⇒∑

i∈I piνi.

Allowing different transitions with the same weak labels to be combined together is
essential for the definition of weak bisimulation for probabilistic processes, as pointed
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out in [Deng et al. 2005] and [Desharnais et al. 2002; 2010]. That is the reason why we
add clause (3) here in Definition 6.1.

For any µ, ν ∈ D(Con) and s = α1 . . . αn ∈ Act∗, we say that µ can evolve into ν by a

weak s-transition, denoted by µ
s

=⇒ ν, if there exist µ1, . . . , µn+1, ν1, . . . , νn ∈ D(Con),

such that µ =⇒ µ1, µn+1 = ν, and for each i = 1, . . . , n, µi
αi−→ νi and νi =⇒ µi+1.

Note that µ =⇒ α−→ ν and µ
α

=⇒ ν are different since in the former the last action of
every execution branch from µ to ν must be α while in the latter the action α appeared
in each branch is not necessarily the last one.

The following lemma is a direct consequence of Proposition 6.1 in [Deng et al. 2007].

LEMMA 6.2. If µ
s

=⇒ ν, and µ =
∑

i∈I piµi where pi > 0 for each i ∈ I, then for

any i ∈ I, µi
s

=⇒ νi for some νi such that ν =
∑
i∈I piνi. Conversely, if for each i ∈ I,

µi
s

=⇒ νi, then µ
s

=⇒ ν where µ =
∑
i∈I piµi, ν =

∑
i∈I piνi, pi > 0 for each i ∈ I, and∑

i∈I pi = 1.

By Lemma 6.2, we can show the transitivity of weak transitions.

LEMMA 6.3. If µ =⇒ ν and ν =⇒ ω, then µ =⇒ ω.

PROOF. We prove by induction on the depth of the inference by which the action
µ =⇒ ν is inferred, using clauses (1)-(3) in Definition 6.1:

— If ν = µ, then µ =⇒ ω holds trivially.

— Suppose µ = C, C τ−→ µ′, and µ′ =⇒ ν. Then by induction, we derive µ′ =⇒ ω. Thus
µ =⇒ ω by definition.

— Suppose µ =
∑

i∈I piCi, for any i ∈ I, Ci =⇒ νi for some νi, and ν =
∑
i∈I piνi. Then

by Lemma 6.2, we have νi =⇒ ωi for some ωi such that ω =
∑

i∈I piωi. Now by
induction, Ci =⇒ ωi, and then µ =⇒ ω by Lemma 6.2.

To conclude this subsection, we extend Lemma 3.3 to the weak transition case.

LEMMA 6.4. If 〈P, ρ〉 s
=⇒ µ, then

(1) tr(ρ) = tr(µ);
(2) there exist a set of trace-preserving super-operators {Ei : i ∈ I} and a set of projectors

{Ei : i ∈ I}, both acting on Hqv(P )∪bv(s) where bv(α1 . . . αn) = bv(α1) ∪ · · · ∪ bv(αn),∑
i∈I Ei = I, such that for any σ ∈ D(H),

〈P, σ〉 s
=⇒

∑

i∈I
qσi 〈Pi, Ei(σ)〉

where qσi = tr(Eiσ);
(3) for any trace-preserving super-operator E acting on H

qv(P )∪bv(s), we have

〈P, E(ρ)〉 s
=⇒ E(µ).

PROOF. Note that from Lemma 3.3 (1), if ν
α−→ µ then tr(ν) = tr(µ). So to prove (1),

we need only to show tr(ν) = tr(µ) provided that ν =⇒ µ. We prove by induction on the
depth of the inference by which the action ν =⇒ µ is inferred, using clauses (1)-(3) in
Definition 6.1:

— If ν = µ, then tr(ν) = tr(µ) holds trivially.

— Suppose ν = 〈P, ρ〉, 〈P, ρ〉 τ−→ ω, and ω =⇒ µ. Then we have tr(µ) = tr(ω) = tr(ρ),
where the first equation is derived by induction, and the second by Lemma 3.3(1).
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— Suppose ν =
∑
i∈I piCi, for any i ∈ I, Ci =⇒ νi for some νi, and µ =

∑
i∈I piνi. Then

by induction, tr(νi) = tr(Ci). Thus tr(µ) =
∑

i∈I pitr(νi) =
∑

i∈I pitr(Ci) = tr(ν).

The proofs of (2) and (3) are more complicated, but the idea is similar. So we omit
the detail here.

6.1. Weak bisimulation

Definition 6.5. A relation R ⊆ Con × Con is called a weak bisimulation if for any
〈P, ρ〉, 〈Q, σ〉 ∈ Con, 〈P, ρ〉R〈Q, σ〉 implies that qv(P ) = qv(Q), trqv(P )(ρ) = trqv(Q)(σ),
and

(1) whenever 〈P, ρ〉 c?q−→ µ, then 〈Q, σ〉 =⇒ c?q−→ ν for some ν such that for any trace-
preserving super-operator E acting on H

qv(µ)−{q}, E(µ)RE(ν);
(2) whenever 〈P, ρ〉 α−→ µ where α is not a quantum input, then there exists ν such

that 〈Q, σ〉 α̂
=⇒ ν and µRν;

(3) whenever 〈Q, σ〉 c?q−→ ν, then 〈P, ρ〉 =⇒ c?q−→ µ for some µ such that for any trace-
preserving super-operator E acting on H

qv(ν)−{q}, E(µ)RE(ν);
(4) whenever 〈Q, σ〉 α−→ ν where α is not a quantum input, then there exists µ such

that 〈P, ρ〉 α̂
=⇒ µ and µRν.

Definition 6.6.

(1) Two quantum configurations 〈P, ρ〉 and 〈Q, σ〉 are weakly bisimilar, denoted by
〈P, ρ〉 ≈ 〈Q, σ〉, if there exists a weak bisimulation R such that 〈P, ρ〉R〈Q, σ〉;

(2) Two quantum processes P and Q are weakly bisimilar, denoted by P ≈ Q, if for any
quantum state ρ ∈ D(H) and any indexed set ṽ of classical values, 〈P{ṽ/x̃}, ρ〉 ≈
〈Q{ṽ/x̃}, ρ〉. Here x̃ is the set of free classical variables contained in P and Q.

To illustrate the power of weak bisimilarity defined above, we revisit the examples
presented in Section 3.

Example 6.7. (Superdense coding revisited) This example is devoted to proving rig-
orously that the protocol presented in Example 3.4 indeed sends two bits of classical
information from Alice to Bob by transmitting a qubit, with the help of a maximally
entangled state. Let

Sdcspec = c?x.Setx[q1, q2].d!x.nil

be the specification of superdense coding protocol, where

Setx[q1, q2].d!x.nil =

3∑

i=0

(if x = i then Seti[q1, q2].d!x.nil),

and Seti, i = 0, . . . , 3, is the 2-qubit super-operator which sets the target qubits to |̃i〉;
that is, for any ρ ∈ D(H),

Seti,q,q′(ρ) = [|̃i〉]q,q′ ⊗ trq,q′(ρ).

We have Setx[q1, q2] in the specification simply for technical reasons: to make
qv(Sdcspec) = qv(Sdc), and to set q1, q2 to the required final states. For any ρ ∈
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D(H{q1,q2}), and v ∈ {0, 1, 2, 3},

〈Sdcspec, [|Ψ〉]q1,q2 ⊗ ρ〉
c?v−→ 〈Setv[q1, q2].d!v.nil, [|Ψ〉]q1,q2 ⊗ ρ〉
τ−→ 〈d!v.nil, [|ṽ〉]q1,q2 ⊗ ρ〉
d!v−→ 〈nil, [|ṽ〉]q1,q2 ⊗ ρ〉.

We can easily prove

〈Sdc, [|Ψ〉]q1,q2 ⊗ ρ〉 ≈ 〈Sdcspec, [|Ψ〉]q1,q2 ⊗ ρ〉
by checking that

R = {(〈Sdc, ρΨ〉, 〈Sdcspec, ρΨ〉)}
∪{(〈P, η〉, 〈Setv[q1, q2].d!v.nil, ρΨ〉) : v = 0, . . . , 3,

〈Sdc, ρΨ〉 c?v
=⇒ 〈P, η〉, and qv(P ) 6= ∅}

∪{(〈(nil‖d!v.nil)\{e}, ρṽ〉, 〈d!v.nil, ρṽ〉) : v = 0, . . . , 3}
∪{(〈(nil‖nil)\{e}, ρṽ〉, 〈nil, ρṽ〉) : v = 0, . . . , 3}

is a weak bisimulation, where ρψ = [|ψ〉]q1,q2 ⊗ ρ.

Note that Sdc ≈ Sdcspec does not hold in general since superdense coding protocol
needs the assistance of a maximally entangled state to realize the intended task.

Example 6.8. (Teleportation revisited) This example is devoted to proving rigor-
ously that the protocol presented in Example 3.5 indeed teleports any unknown quan-
tum state from Alice to Bob, again with the help of a maximally entangled state. To
employ our notion of weak bisimulation, we need to modify the original definition of
Alice’s protocol in Example 3.5 as follows:

Alice′t = c?q.CN [q, q1].H [q].M [q, q1;x].SetΨ[q, q1].e!x.nil

and Tel′ = (Alice′t‖Bobt)\{e} where SetΨ is the 2-qubit super-operator which sets the
target qubits to |Ψ〉. Let

Telspec = c?q.SWAP1,3[q, q1, q2].d!q2.nil

be the specification of teleportation protocol, where SWAP1,3 is a 3-qubit unitary op-
erator which exchanges the states of the first and the third qubits, keeping the second
qubit untouched. Again, we involve qubit q1 here just for technical reason: to make
qv(Telspec) = qv(Tel′). Then for any ρ ∈ D(H{q1,q2}) and r 6= q1, q2,

〈Telspec, [|Ψ〉]q1,q2 ⊗ ρ〉
c?r−→ 〈SWAP1,3[r, q1, q2].d!q2.nil, [|Ψ〉]q1,q2 ⊗ ρ〉
τ−→ 〈d!q2.nil, [|Ψ〉]q1,r ⊗ ρ〉

d!q2−→ 〈nil, [|Ψ〉]q1,r ⊗ ρ〉.
We can now prove

〈Tel′, [|Ψ〉]q1,q2 ⊗ ρ〉 ≈ 〈Telspec, [|Ψ〉]q1,q2 ⊗ ρ〉
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by checking that

R = {(〈Tel′, ρq1,q2Ψ 〉, 〈Telspec, ρq1,q2Ψ 〉)}
∪{(〈P, η〉, 〈SWAP1,3[r, q1, q2].d!q2.nil, σq1,q2Ψ ) :

〈Tel′, σq1,q2Ψ 〉 c?r
=⇒ 〈P, η〉, σ ∈ D(H{q1,q2}), qv(P ) = {r, q1, q2}, and r 6= q1, q2}

∪{(〈P, η〉, 〈d!q2.nil, σq1,rΨ ) : 〈Tel′, σq1,q2Ψ 〉 c?r
=⇒ µ with 〈P, η〉 ∈ supp(µ),

σ ∈ D(H{q1,r}), qv(P ) = {q2}, and r 6= q1, q2}
∪{(〈(nil‖nil)\{e}, σq1,rΨ 〉, 〈nil, σq1,rΨ 〉) : σ ∈ D(H{q1,r})}

is a weak bisimulation, where σq,q
′

ψ = [|ψ〉]q,q′ ⊗ σ.

Again, Tel′ ≈ Telspec does not hold in general since teleportation protocol is valid
only when a maximally entangled state is provided and consumed.

Example 6.9. (Encode quantum circuits by qCCS, revisited) Using the notations
presented in Example 3.6, we can prove the following properties considering the se-
quential composition and parallel composition of quantum gates:

(1) U(U) ◦ U(V ) ≈ U(V U), provided that ar(U(U)) = ar(U(V ));
(2) U(U) ◦M(M) ≈ M(U †MU) ◦ U(U), provided that ar(U(U)) = ar(M(M));
(3) U(U)⊗ U(V ) ≈ U(U ⊗ V ).

The proof is straightforward, and we only take (1) as an example. Suppose ar(U(U)) =
ar(U(V )) = n. Let

R = {(〈U(U) ◦ U(V ), ρ〉, 〈U(V U), ρ〉) : ρ ∈ D(H)}
∪ {(〈P, σ〉, 〈Q, η〉) : 〈U(U) ◦ U(V ), ρ〉 c

n?r̃
=⇒ 〈P, σ〉 and

〈U(V U), ρ〉 c
n?r̃
=⇒ 〈Q, η〉 where r̃ ⊆ qV ar and ρ ∈ D(H)}

∪ {(〈P, σ〉, 〈Q, η〉) : 〈U(U) ◦ U(V ), ρ〉 c
n?r̃,dn!r̃
=⇒ 〈P, σ〉 and

〈U(V U), ρ〉 c
n?r̃,dn!r̃
=⇒ 〈Q, η〉 where r̃ ⊆ qV ar and ρ ∈ D(H)}.

It is easy to check that R is a weak bisimulation. So we have 〈U(U) ◦ U(V ), ρ〉 ≈
〈U(V U), ρ〉 for all ρ ∈ D(H) and then U(U) ◦ U(V ) ≈ U(V U).

To conclude this subsection, we prove some properties of weak bisimilarity which
are useful in the rest of this paper.

LEMMA 6.10. Let R be a weak bisimulation, and µRν.

(1) If µ =⇒ µ′, then there exists ν′ such that ν =⇒ ν′ and µ′Rν′;
(2) If µ

c?q−→ µ′, then there exists ν′ such that ν =⇒ c?q−→ ν′ and for any trace-preserving
super-operator E acting on H

qv(µ′)−{q}, E(µ′)RE(ν′);
(3) If µ

α−→ µ′, then there exists ν′ such that ν
α̂

=⇒ ν′ and µ′Rν′;

PROOF. Easy from Lemmas 6.2 and 6.3.

THEOREM 6.11. ≈ is a weak bisimulation on Con, and it is an equivalence relation.
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PROOF. Suppose each Ri, i = 1, 2, . . . , is a weak bisimulation on Con. From Lem-
mas 4.2 and 6.10, we can prove that the following relations are all weak bisimulations:

(1) IdCon (2) R−1
i

(3) R1 ◦ R2 (4)
⋃
iRi.

Then the result follows.

The following lemma gives a recursive characterization of weak bisimilarity between
configurations.

THEOREM 6.12. For any configurations 〈P, ρ〉 and 〈Q, σ〉, 〈P, ρ〉 ≈ 〈Q, σ〉 if and only
if qv(P ) = qv(Q), trqv(P )(ρ) = trqv(Q)(σ), and

(1) whenever 〈P, ρ〉 c?q−→ µ, then 〈Q, σ〉 =⇒ c?q−→ ν for some ν such that for any trace-
preserving super-operator E acting on H

qv(µ)−{q}, E(µ) ≈ E(ν);
(2) whenever 〈P, ρ〉 α−→ µ where α is not a quantum input, then there exists ν such that

〈Q, σ〉 α̂
=⇒ ν and µ ≈ ν;

and the symmetric conditions of (1) and (2).

PROOF. Similar to the corresponding result, Theorem 36, of [Feng et al. 2007].

LEMMA 6.13. If 〈P, ρ〉 ≈ 〈Q, σ〉, then for any super-operator E acting on H
qv(P ), we

have tr(E(ρ)) = tr(E(σ)). In particular, tr(ρ) = tr(σ).

PROOF. Let S = qv(P ). From 〈P, ρ〉 ≈ 〈Q, σ〉, we have trS(ρ) = trS(σ). Note that
E(trS(ρ)) = trS(E(ρ)) since E acts only on HS , and tr(E(ρ)) = trS(trS(E(ρ))). The result
follows.

As in classical process algebra, the notion of weak bisimulation up to ≈ is useful:

Definition 6.14. A relation R ⊆ Con × Con is called a weak bisimulation up to ≈
if for any 〈P, ρ〉, 〈Q, σ〉 ∈ Con, 〈P, ρ〉R〈Q, σ〉 implies that qv(P ) = qv(Q), trqv(P )(ρ) =
trqv(Q)(σ), and

(1) whenever 〈P, ρ〉 c?q−→ µ, then 〈Q, σ〉 =⇒ c?q−→ ν for some ν such that for any trace-
preserving super-operator E acting on H

qv(µ)−{q}, E(µ)R◦ ≈E(ν);
(2) whenever 〈P, ρ〉 α−→ µ where α is not a quantum input, then there exists ν such

that 〈Q, σ〉 α̂
=⇒ ν and µR◦ ≈ν;

and the symmetric conditions of (1) and (2).

LEMMA 6.15. If R is a weak bisimulation up to ≈, then R ⊆ ≈.

PROOF. Suppose R is a weak bisimulation up to ≈. We first prove that that R◦ ≈
is a weak bisimulation. Let 〈P, ρ〉R◦ ≈ 〈Q, σ〉; that is, there exists 〈R, η〉 such that
〈P, ρ〉R〈R, η〉 and 〈R, η〉 ≈ 〈Q, σ〉. Then qv(P ) = qv(R) = qv(Q), and trqv(P )(ρ) =
trqv(R)(η) = trqv(Q)(σ).

Let 〈P, ρ〉 c?q−→ µ. Then 〈R, η〉 =⇒ c?q−→ ω such that for any trace-preserving super-
operator E acting on H

qv(µ)−{q}, E(µ)R◦ ≈E(ω). We further derive from Lemma 6.10

that 〈Q, σ〉 =⇒ c?q−→ ν, and for any trace-preserving super-operator F acting on
H
qv(ω)−{q}, F(ω)≈F(ν). Note that qv(µ) = qv(ω). We have E ′(µ)R◦ ≈E ′(ν) for any trace-

preserving super-operator E ′ acting on H
qv(µ)−{q}, by Lemma 4.2.
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Let 〈P, ρ〉 α−→ µ for some α not a quantum input. Then 〈R, η〉 α̂
=⇒ ν such that µR◦ ≈ν.

Furthermore, from 〈R, η〉 ≈ 〈Q, σ〉 we have 〈Q, σ〉 α̂
=⇒ ω such that ν≈ω, by Lemma 6.10.

So we have µR◦ ≈ω from Lemma 4.2.
The symmetric form when 〈Q, σ〉 performs an action can be similarly proved. So

R◦ ≈ is a weak bisimulation; that is, R◦ ≈ ⊆ ≈. Then the result holds by noting that
the identity relation is a trivial weak bisimulation.

6.2. Weak bisimilarity congruence

We now turn to prove the congruence properties of weak bisimilarity. First, we show
that the weak bisimilarity for configurations is preserved by all static constructors.

THEOREM 6.16. If 〈P, ρ〉 ≈ 〈Q, σ〉 then

(1) 〈P‖R, ρ〉 ≈ 〈Q‖R, σ〉;
(2) 〈P [f ], ρ〉 ≈ 〈Q[f ], σ〉;
(3) 〈P\L, ρ〉 ≈ 〈Q\L, σ〉;
(4) 〈if b then P, ρ〉 ≈ 〈if b then Q, σ〉.

PROOF. Let us prove (1); other cases are simpler. Let

R = {(〈P‖R, E(ρ)〉, 〈Q‖R, E(σ)〉) : 〈P, ρ〉 ≈ 〈Q, σ〉,
and E is a trace-preserving super-operator acting on H

qv(P )}.

It suffices to show that R is a weak bisimulation. Suppose (C,D) ∈ R where C =
〈P‖R, E(ρ)〉 and D = 〈Q‖R, E(σ)〉 for some 〈P, ρ〉 ≈ 〈Q, σ〉, and E is a trace-preserving
super-operator acting on H

qv(P ). Then qv(P ) = qv(Q) and trqv(P )(ρ) = trqv(Q)(σ) by

Theorem 6.12. Thus qv(P‖R) = qv(Q‖R) and

trqv(P‖R)(E(ρ)) = trqv(Q‖R)(E(σ)).

Let 〈P‖R, E(ρ)〉 α−→ µ for some α and µ. There are three cases to consider.

I: The transition is caused by P solely. We need to further consider two subcases:

i: α = c?q is a quantum input. Then there exists a transition 〈P, ρ〉 c?q−→ 〈P ′, ρ〉 and
µ = 〈P ′‖R, E(ρ)〉. By the assumption that 〈P, ρ〉 ≈ 〈Q, σ〉, we have

〈Q, σ〉 =⇒ ⊞i∈Ipi • 〈Q′
i, σi〉

c?q−→ ⊞i∈Ipi • 〈Qi, σi〉
such that for any trace-preserving super-operator F acting on H

qv(P ′)−{q},

〈P ′,F(ρ)〉 ≈ 〈Qi,F(σi)〉 (6)

holds for any i ∈ I. Then 〈Q, E(σ)〉 =⇒ ⊞i∈Ipi • 〈Q′
i, E(σi)〉 by Lemma 6.4(3), from

which we further derive

〈Q, E(σ)〉 =⇒ c?q−→ ⊞i∈Ipi • 〈Qi, E(σi)〉
and

〈Q‖R, E(σ)〉 =⇒ c?q−→ ν = ⊞i∈Ipi • 〈Qi‖R, E(σi)〉.
For any trace-preserving super-operator F ′ acting on H

qv(P ′‖R)−{q}, we obtain

from Lemma 3.2 that the composite map F ′ ◦ E is a trace-preserving super-
operator acting on H

qv(P ′)−{q}. Now using Eq.(6) we have

〈P ′,F ′(E(ρ))〉 ≈ 〈Qi,F ′(E(σi))〉,
and thus 〈P ′‖R,F ′(E(ρ))〉R〈Qi‖R,F ′(E(σi))〉. That is, F ′(µ)RF ′(ν) as required.
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ii: α is not a quantum input. Then there exists a transition 〈P, ρ〉 α−→ µ1 = ⊞i∈Ipi •
〈Pi, ρi〉 and µ = ⊞i∈Ipi • 〈Pi‖R, E(ρi)〉 by Lemma 3.3(3). From the assumption that
〈P, ρ〉 ≈ 〈Q, σ〉, we have

〈Q, σ〉 α̂
=⇒ ν1 = ⊞j∈Jqj • 〈Qj , σj〉

and µ1 ≈ ν1 by Theorem 6.12. Noting that E is a trace-preserving super-operator

on H
qv(Q), we have 〈Q, E(σ)〉 α̂

=⇒ ⊞j∈Jqj • 〈Qj , E(σj)〉 by Lemma 6.4(3). So it holds

that

〈Q‖R, E(σ)〉 α̂
=⇒ ν = ⊞j∈Jqj • 〈Qj‖R, E(σj)〉.

Now for each i ∈ I and j ∈ J , 〈Pi, ρi〉 ≈ 〈Qj , σj〉 implies
〈Pi‖R, E(ρi)〉R〈Qj‖R, E(σj)〉 since from Lemma 3.2, E is also a trace-preserving
super-operator acting on H

qv(Pi)
. Thus we have µRν by Lemma 4.3, by noting

that µ1 ≈ ν1.
II: The transition is caused byR solely. We also need to further consider three subcases:

i: α = c?q is a quantum input where q 6∈ qv(P ). Then we have 〈R, E(ρ)〉 c?q−→ 〈R′, E(ρ)〉
for some R′, and µ = 〈P‖R′, E(ρ)〉. Thus 〈R, E(σ)〉 c?q−→ 〈R′, E(σ)〉. By inference rule
Inp-Int, we have

〈Q‖R, E(σ)〉 c?q−→ 〈Q‖R′, E(σ)〉
since q 6∈ qv(Q). Now for any trace-preserving super-operator F acting on
H
qv(P‖R′)−{q}, the composite map F ◦E is a trace-preserving super-operator acting

on H
qv(P ) from the fact that qv(P‖R′)− {q} ⊇ qv(P )− {q} = qv(P ). Thus

〈P‖R′,F(E(ρ))〉R〈Q‖R′,F(E(σ))〉
from the definition of R.

ii: α = τ , and the transition is caused by a measurement prefix M [q̃;x] where

M =
∑

i∈I λi|ψi〉〈ψi|. Then we have 〈R, E(ρ)〉 α−→ ∑
i∈I pi〈Ri,Fi(E(ρ))〉 where

pi = tr(|ψi〉q̃〈ψi|E(ρ)), Ri = R{λi/x}, Fi is the trace-preserving super-operator
which sets the q̃ systems to |ψi〉〈ψi|; that is,

Fi(η) =
∑

k∈I
|ψi〉q̃〈ψk|η|ψk〉q̃〈ψi|

for any η ∈ D(H), and µ =
∑
i∈I pi〈P‖Ri,Fi(E(ρ))〉. We further derive that

〈Q‖R, E(σ)〉 α−→ ν =
∑

i∈I
qi〈Q‖Ri,Fi(E(σ))〉

with qi = tr(|ψi〉q̃〈ψi|E(σ)).
Notice that for any i, the composite map Ei ◦E is a super-operator acting on H

qv(P )

where Ei(η) = |ψi〉q̃〈ψi|η|ψi〉q̃〈ψi| for any η ∈ D(H). It follows that pi = qi from
Lemma 6.13. Furthermore, we have

(〈P‖Ri,Fi(E(ρ))〉, 〈Q‖Ri,Fi(E(σ))〉) ∈ R
since Fi ◦ E is a trace-preserving super-operator acting on H

qv(P ). Then it follows

that µRν from Lemma 4.3.
iii: α is not a quantum input and the transition is not caused by a measurement. Then

there exists a transition 〈R, E(ρ)〉 α−→ 〈R′,F(E(ρ))〉 where F is a trace-preserving

super-operator on Hqv(R), and µ = 〈P‖R′,F(E(ρ))〉. We also have 〈R, E(σ)〉 α−→
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〈R′,F(E(σ))〉. Thus 〈Q‖R, E(σ)〉 α−→ 〈Q‖R′,F(E(σ))〉, and

(〈P‖R′,F(E(ρ))〉, 〈Q‖R′,F(E(σ))〉) ∈ R
since F ◦ E is a trace-preserving super-operator acting on H

qv(P ).

III: The transition is caused by a communication between P and R. Without loss of
generality, we assume that

〈P, ρ〉 c?q−→ 〈P ′, ρ〉, 〈R, ρ〉 c!q−→ 〈R′, ρ〉,
and µ = 〈P ′‖R′, E(ρ)〉. Other cases are simpler. Then q 6∈ qv(P ) by the validity of

P‖R, and 〈R, η〉 c!q−→ 〈R′, η〉 for any η ∈ D(H). From the assumption that 〈P, ρ〉 ≈
〈Q, σ〉, we have

〈Q, σ〉 =⇒ ⊞i∈Ipi • 〈Q′
i, σi〉

c?q−→ ⊞i∈Ipi • 〈Qi, σi〉
such that for any i ∈ I and any trace-preserving super-operator F acting on
H
qv(P ′)−{q}, it holds that 〈P ′,F(ρ)〉 ≈ 〈Qi,F(σi)〉. In particular, we have

〈P ′, E(ρ)〉 ≈ 〈Qi, E(σi)〉 (7)

since qv(P ) ⊇ qv(P ′) − {q}. Noting that E is a trace-preserving super-operator on
H
qv(Q), we have 〈Q, E(σ)〉 =⇒ ⊞i∈Ipi • 〈Q′

i, E(σi)〉 by Lemma 6.4(3), from which we

derive further

〈Q, E(σ)〉 =⇒ c?q−→ ⊞i∈Ipi • 〈Qi, E(σi)〉,
and

〈Q‖R, E(σ)〉 =⇒ τ−→ ν = ⊞i∈Ipi • 〈Qi‖R′, E(σi)〉.
Furthermore, for any i ∈ I, we have

(〈P ′‖R′, E(ρ)〉, 〈Qi‖R′, E(σi)〉) ∈ R
by Eq.(7). That is, µRν as required.

The symmetric form when 〈Q‖R, E(σ)〉 α−→ ν can be similarly proved. So R is a weak
bisimulation on Con. The result follows by noting that the identity transformation is
also a trace-preserving super-operator on H

qv(P ).

From Theorem 6.16, the superdense coding protocol and teleportation protocol pre-
sented in Section 3 are still valid in any quantum process context which consists only
of parallel composition, relabeling, restriction, and conditional.

Similar to classical value-passing CCS, the weak bisimilarity for quantum processes
is preserved by all the combinators of qCCS except for summation.

THEOREM 6.17. If P ≈ Q then

(1) a.P ≈ a.Q, a ∈ {τ, c?x, c!e, c?q, c!q, E [q̃],M [q̃;x]};
(2) P‖R ≈ Q‖R;
(3) P [f ] ≈ Q[f ];
(4) P\L ≈ Q\L;
(5) if b then P ≈ if b then Q.

PROOF. The proof for (1) is similar to Theorem 38 of [Feng et al. 2007], and (2)-(5)
are direct from Theorem 6.16.

6.3. Congruent equivalence of quantum processes

As in classical process algebra, the weak bisimilarity is not preserved by the summa-
tion combinator. To deal with this problem, we introduce the notion of equality between
quantum processes based on ≈.
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Definition 6.18. Two configurations 〈P, ρ〉 and 〈Q, σ〉 are said to be equal, denoted
by 〈P, ρ〉 ≃ 〈Q, σ〉, if qv(P ) = qv(Q), trqv(P )(ρ) = trqv(Q)(σ), and

(1) whenever 〈P, ρ〉 c?q−→ µ, then 〈Q, σ〉 =⇒ c?q−→ ν for some ν such that for any trace-
preserving super-operator E acting on H

qv(µ)−{q}, E(µ) ≈ E(ν);
(2) whenever 〈P, ρ〉 α−→ µ where α is not a quantum input, then there exists ν such

that 〈Q, σ〉 α
=⇒ ν and µ ≈ ν;

and the symmetric conditions of (1) and (2).

The only difference between the definitions of ≈ and ≃ is that in the latter the
α̂

=⇒
transition in clause (2) is replaced by

α
=⇒; that is, the matching actions for a τ -move

have to be at least one τ -move.
Furthermore, we lift the definition of equality to quantum processes as follows. For

P,Q ∈ qProc, P ≃ Q if and only if for any quantum state ρ ∈ D(H) and any indexed
set ṽ of classical values, 〈P{ṽ/x̃}, ρ〉 ≃ 〈Q{ṽ/x̃}, ρ〉 where x̃ = fv(P ) ∪ fv(Q).

It is worth noting that all the weak bisimulation relations proved in the examples of
previous sections are also valid when ≈ is replaced by ≃. The following properties are
easy to show:

THEOREM 6.19.

(1) ≃ is an equivalence relation;
(2) P ∼ Q implies P ≃ Q, and P ≃ Q implies P ≈ Q;
(3) If P ≈ Q then a.P ≃ a.Q for a ∈ {τ, c?x, c!e, c?q, c!q, E [q̃],M [q̃;x]};
(4) P ≃ Q if and only if P +R ≈ Q+R for all R ∈ qProc.

Now we prove that the equality relation is preserved by all process constructors of
qCCS.

THEOREM 6.20. If P ≃ Q then

(1) a.P ≃ a.Q, a ∈ {τ, c?x, c!e, c?q, c!q, E [q̃],M [q̃;x]};
(2) P +R ≃ Q +R;
(3) P‖R ≃ Q‖R;
(4) P [f ] ≃ Q[f ];
(5) P\L ≃ Q\L;
(6) if b then P ≃ if b then Q.

PROOF. (2) is direct from Theorem 6.19 (4). Others are similar to the proofs of cor-
responding results for weak bisimilarity.

We now turn to examine the properties of the congruent equivalence ≃ under recur-
sive definitions.

Definition 6.21. Let E and F be process expressions containing at most process
variables {Xi(q̃i) : i ∈ I}. Then E and F are equal, denoted by E ≃ F , if for all family
{Pi : i ∈ I} of quantum processes with qv(Pi) ⊆ q̃i, we have

E{Pi/Xi(q̃i) : i ∈ I} ≃ F{Pi/Xi(q̃i) : i ∈ I}.
The next theorem shows that ≃ is also preserved by recursive definitions.

THEOREM 6.22.

(1) If A(q̃)
def
= P , then A(q̃) ≃ P ;
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(2) Let {Ei : i ∈ I} and {Fi : i ∈ I} be two families of process expressions containing at
most process variables {Xi(q̃i) : i ∈ I}, and Ei ≃ Fi for each i ∈ I. If {Ai(q̃i) : i ∈ I}
and {Bi(q̃i) : i ∈ I} be two families of process constants such that

Ai(q̃i)
def
= Ei{Aj(q̃j)/Xj(q̃j) : j ∈ I}

Bi(q̃i)
def
= Fi{Bj(q̃j)/Xj(q̃j) : j ∈ I},

then Ai(q̃i) ≃ Bi(q̃i) for all i ∈ I.

PROOF. (1) is obvious. For (2), we only prove the special case where |I| = 1 and for

any i ∈ I, q̃i = ∅. That is, we prove A ≃ B assuming that qv(A) = qv(B) = ∅, A
def
= E(A)

and B
def
= F (B) where E and F are process expressions containing process variable X

with qv(X) = ∅, and E ≃ F .
Let

R = {(〈G(A), ρ〉, 〈G(B), ρ〉) : ρ ∈ D(H), G contains at most process variable X}.
Obviously, for any 〈G(A), ρ〉R〈G(B), ρ〉, we have qv(G(A)) = qv(G(B)) and
trqv(G(A))(ρ) = trqv(G(B))(ρ). Similar to Propositions 4.12 and 7.8 of [Milner 1989], we
can prove the following properties by induction on the depth of the inference by which

the action 〈G(A), ρ〉 α−→ µ is inferred:

(i) whenever 〈G(A), ρ〉 c?q−→ µ, then 〈G(B), ρ〉 =⇒ c?q−→ ν such that for any trace-
preserving super-operator E acting on H

qv(µ)−{q}, E(µ)R◦ ≈E(ν);
(ii) whenever 〈G(A), ρ〉 α−→ µ where α is not a quantum input, there exists ν such

that 〈G(B), ρ〉 α
=⇒ ν and µR◦ ≈ν.

Only one case deserves elaboration: when G = G1‖G2 and 〈G(A), ρ〉 τ−→ 〈P ′, ρ〉 is
caused by

〈G1(A), ρ〉 c?q−→ 〈P ′
1, ρ〉 and 〈G2(A), ρ〉 c!q−→ 〈P ′

2, ρ〉
where P ′ = P ′

1‖P ′
2. By induction, we have

〈G1(B), ρ〉 =⇒ c?q−→ ⊞i∈Ipi • 〈Qi1,F ′
i(ρ)〉

where F ′
i is a trace-preserving super-operator acting on qv(G1) (here Lemma 6.4(2)

is used for the =⇒ transition), and for any trace-preserving super-operator E on
H
qv(P ′

1
)−{q} and any i ∈ I, it holds

〈P ′
1, E(ρ)〉R〈Q′

1, E(ρ)〉 ≈ 〈Qi1, E(F ′
i(ρ)〉. (8)

Thus P ′
1 = H1(A) and Q′

1 = H1(B) for some H1 containing only process variable X .
Also by induction, we have

〈G2(B), ρ〉 c!q
=⇒ ⊞j∈Jqj • 〈Qj2,Fj(ρ)〉

where Fj is a trace-preserving super-operator acting on qv(G2), and for any j ∈ J ,

〈P ′
2, ρ〉R〈Q′

2, ρ〉 ≈ 〈Qj2,Fj(ρ)〉. (9)

Thus P ′
2 = H2(A) and Q′

2 = H2(B) for some H2 containing only process variable X .
Now by inference rule Q-Com, and noting that F ′

i and Fj commute for any i ∈ I and
j ∈ J since qv(G1) ∩ qv(G2) = ∅, we derive that

〈G(B), ρ〉 τ
=⇒ ⊞i∈I ⊞j∈J piqj • 〈Qi1‖Qj2,Fj(F ′

i(ρ))〉.
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Now we calculate that for any i ∈ I and j ∈ J ,

〈P ′
1‖P ′

2, ρ〉 = 〈(H1‖H2)(A), ρ〉
R 〈(H1‖H2)(B), ρ〉 By definition

= 〈Q′
1‖Q′

2, ρ〉
≈ 〈Q′

1‖Qj2,Fj(ρ)〉 By Eq.(9) and Theorem 6.16

≈ 〈Qi1‖Qj2,Fj(F ′
i(ρ))〉 By Eq.(8), Lemma 3.2, and Theorem 6.16.

Similarly, we can prove the symmetric forms of (i) and (ii) for 〈G(B), ρ〉 α−→ ν. Then
R is a weak bisimulation up to ≈, and so R⊆ ≈ by Lemma 6.15. Now from (i) and (ii)
again, we have 〈G(A), ρ〉 ≃ 〈G(B), ρ〉. Taking G = X and noting the arbitrariness of ρ,
we have A ≃ B.

Finally, the uniqueness of solutions of equations can be proved for process expres-
sions in qCCS, in the sense of ≃.

Definition 6.23. Given a process variable X(q̃) and a process expression E, we say

—X(q̃) is sequential in E if every subexpression of E which contains X(q̃), excluding
X(q̃) itself, is of the form a.F ,

∑
i∈I Fi, or if b then F ;

—X(q̃) is guarded in E if each occurrence of X(q̃) is within some subexpression a.F of
E where a is a (classical or quantum) input or output.

We also say that E is sequential (resp. guarded) if each process variable is sequential
(resp. guarded) in E.

LEMMA 6.24. Let G be guarded and sequential, and contain at most process vari-

ables X̃. If 〈G(P̃ ), ρ〉 α−→ ⊞i∈Ipi •〈P ′
i , ρi〉. Then there exist sequential process expressions

{Hi : i ∈ I}, containing at most process variables X̃, such that P ′
i = Hi(P̃α) for each i,

and for any Q̃, 〈G(Q̃), ρ〉 α−→ ⊞i∈Ipi • 〈Hi(Q̃α), ρi〉. Here

P̃α =






P̃{r/q} for some q ∈ qv(P̃ ), if α = c?r

P̃{v/x} for some x ∈ fv(P̃ ), if α = c?v or α = τ is caused by a measurement

P̃ , otherwise

and Q̃α is defined similarly. Moreover, if α = τ , then Hi is guarded.

PROOF. Similar to Lemma 7.12 of [Milner 1989].

THEOREM 6.25. Let {Ei : i ∈ I} be a family of process expressions containing at
most process variables {Xi(q̃i) : i ∈ I}, and each Xj(q̃j) is sequential and guarded in
each Ei. Let {Pi : i ∈ I} and {Qi : i ∈ I} be two families of quantum processes such that
qv(Pi) ∪ qv(Qi) ⊆ q̃i for each i, and

Pi ≃ Ei{Pj/Xj(q̃j) : j ∈ I}
Qi ≃ Ei{Qj/Xj(q̃j) : j ∈ I},

then Pi ≃ Qi for all i ∈ I.

PROOF. For simplicity, we only prove the case where |I| = 1 and all the processes
contain no free classical or quantum variables. That is, we prove P ≃ Q assuming that
qv(P ) = qv(Q) = ∅, fv(P ) = fv(Q) = ∅, P ≃ E(P ), and Q ≃ E(Q), where E contains at
most process variable X .
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Let

R = {(〈M,ρ〉, 〈N, σ〉) : 〈M,ρ〉 ≈ 〈H(P ), η〉 and 〈N, σ〉 ≈ 〈H(Q), η〉
for some η ∈ D(H), and H is sequential and contains at most X}.

We show R is a weak bisimulation. The proof is somewhat similar to Proposition 7.13
in [Milner 1989]. We first claim that for any 〈M,ρ〉R〈N, σ〉,

If 〈M,ρ〉 =⇒ µ, then 〈N, σ〉 =⇒ ν such that µRν (10)

Suppose 〈M,ρ〉 =⇒ µ. Then 〈H(P ), η〉 =⇒ µ1, µ ≈ µ1, from 〈M,ρ〉 ≈ 〈H(P ), η〉. By The-
orem 6.20, we have H(E(P )) ≃ H(P ), so 〈H(E(P )), η〉 =⇒ µ2 such that µ1 ≈ µ2. Note
that X is both sequential and guarded in H(E(P )). By repeatedly using Lemma 6.24,
we have µ2 = ⊞i∈Kpi • 〈H ′

i(P ), ρi〉, and

〈H(E(Q)), η〉 =⇒ ν2 = ⊞i∈Kpi • 〈H ′
i(Q), ρi〉

where H ′
i is sequential for any i ∈ K. Since H(E(Q)) ≃ H(Q) and 〈N, σ〉 ≈ 〈H(Q), η〉,

we have 〈H(Q), η〉 =⇒ ν1, ν2 ≈ ν1, and 〈N, σ〉 =⇒ ν, ν1 ≈ ν. Furthermore, it is obvious
that µ2Rν2 from Lemma 4.3, and then µRν by Lemma 4.2 since ≈ ◦R◦ ≈⊆ R.

Now let 〈M,ρ〉 α−→ µ where α 6= τ . There are two cases to consider:

(1) α = c?q is a quantum input. Then µ = 〈M ′, ρ〉 for some M ′. So 〈H(P ), η〉 =⇒ c?q−→
µ1 such that E(µ) ≈ E(µ1) for any trace-preserving super-operator E acting on

H
qv(µ)−{q}. By Theorem 6.10 we further have 〈H(E(P )), η〉 =⇒ c?q−→ µ2 such that

F(µ1) ≈ F(µ2) for any trace-preserving super-operator F acting on H
qv(µ1)−{q}.

Note that X is both sequential and guarded in H(E(P )). By repeatedly using
Lemma 6.24, we have µ2 = ⊞j∈Jqj • 〈H ′

j(P ), ρ
′
j〉, and

〈H(E(Q)), η〉 =⇒ c?q−→ ν2 = ⊞j∈Jqj • 〈H ′
j(Q), ρ′j〉

where H ′
j is sequential for any j ∈ J . Using Theorem 6.10 again we have

〈H(Q), η〉 =⇒ c?q−→ ν1 such that F ′(ν2) ≈ F ′(ν1) for any trace-preserving super-

operator F ′ acting on H
qv(ν2)−{q}, and 〈N, σ〉 =⇒ c?q−→ ν such that E ′(ν1) ≈ E ′(ν)

for any trace-preserving super-operator E ′ acting on H
qv(ν1)−{q}. Finally, since

qv(µ) = qv(µ1) = qv(ν1) = qv(ν2), we have

G(µ) ≈ G(µ1) ≈ G(µ2) and G(ν2) ≈ G(ν1) ≈ G(ν)
for any trace-preserving super-operator G acting on H

qv(µ)−{q}. Note that by

Lemma 4.3, G(µ2)RG(ν2). Then G(µ)RG(ν) from Lemma 4.2 since ≈ ◦R◦ ≈⊆ R.

(2) α is a quantum output or classical input/output. Then 〈H(P ), η〉 α
=⇒ µ1, µ ≈ µ1,

and 〈H(E(P )), η〉 α
=⇒ µ2, µ1 ≈ µ2. We further break the actions of 〈H(E(P )), η〉 into

〈H(E(P )), η〉 =⇒ α−→ µ3 =⇒ µ2.

Note that X is both sequential and guarded in H(E(P )). By repeatedly using
Lemma 6.24, we have µ3 = ⊞i∈Kpi • 〈H ′

i(P ), ρi〉, and

〈H(E(Q)), η〉 =⇒ α−→ ν3 = ⊞i∈Kpi • 〈H ′
i(Q), ρi〉

where H ′
i is sequential. For any i ∈ K, it is obvious that 〈H ′

i(P ), ρi〉R〈H ′
i(Q), ρi〉. So

by Eq.(10) we have ν3 =⇒ ν2 such that µ2Rν2. We further derive 〈H(Q), η〉 α
=⇒ ν1,

ν2 ≈ ν1 and 〈N, σ〉 α
=⇒ ν, ν1 ≈ ν. Finally, we have µRν from µ2Rν2.
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We have proved that R is a weak bisimulation. In particular, for any sequential H ,
H(P ) ≈ H(Q). Since E is guarded and sequential, every occurrence of X is within some
subexpression a.F of E where F is also sequential. Then we have F (P ) ≈ F (Q), and so
a.F (P ) ≃ a.F (Q). Thus E(P ) ≃ E(Q) by Theorem 6.20. Now the result P ≃ Q follows
from P ≃ E(P ) and Q ≃ E(Q).

To illustrate the power of the theorems proved in this section, let us reconsider Ex-
ample 6.9. We will provide another proof for U(U)◦U(V ) ≃ U(V U) using the Expansion
law and the uniqueness of solutions of equations. For simplicity, we only consider the
special case where U and V are both 1-qubit unitary operators. Recall the definition of
U(U) ◦ U(V ) in Example 3.6:

U(U) ◦ U(V )
def
= (Ls‖U(U)[e/c, f/d]‖U(V )[f/c, g/d]‖Rs)\L

where L = {c, e, f, g}. Then from Theorem 6.22 (1), and repeatedly using Theorems 4.11
and 6.20, we have

U(U) ◦ U(V ) ≃ c?q.τ.U [q].τ.V [q].τ.d!q.τ.U(U) ◦ U(V )

where the first τ action is caused by interaction between Ls and U(U)[e/c, f/d], the sec-
ond one between U(U)[e/c, f/d] and U(V )[f/c, g/d], the third one between U(V )[f/c, g/d]
and Rs, while the last one between Rs and Ls.

On the other hand, by Theorem 6.22 (1) we have

U(V U) ≃ c?q.V U [q].d!q.U(V U).

Now let X be a quantum process variable with qv(X) = ∅, and

E = c?q.τ.U [q].τ.V [q].τ.d!q.τ.X , F = c?q.V U [q].d!q.X

be two quantum process expressions. Then E and F are both sequential and guarded,
and E ≃ F . So we have U(U) ◦ U(V ) ≃ U(V U) from Theorem 6.25.

7. CONCLUSIONS AND FURTHER WORK

In this paper, we propose a formal model qCCS, which is a quantum extension of
classical value-passing CCS, to model and rigorously analyze the behaviors of quan-
tum distributed computing and quantum communication protocols. We define notions
of strong/weak bisimulations for quantum processes in qCCS, and prove that they
are preserved by various process constructors, including parallel composition where
both classical and quantum communication are present. These are the first congruent
equivalences for process algebras proposed so far aiming at modeling quantum com-
municating systems. We also propose an approximate version of strong bisimulation to
characterize the distance between two quantum processes based on strong bisimula-
tion, even when they are not strongly bisimilar. Various examples are fully examined
to show the expressiveness of qCCS as well as the proof techniques presented in this
paper.

Approximate strong bisimulation has been successfully developed in Section 5. A
corresponding notion for weak bisimulation seems, however, very difficult to define.
A naive trial is to define a relation R on Con to be a λ-weak bisimulation if for any
〈P, ρ〉, 〈Q, σ〉 ∈ Con, 〈P, ρ〉R〈Q, σ〉 implies that qv(P ) = qv(Q), d[trqv(P )(ρ), trqv(Q)(σ)] ≤
λ, and

(1) whenever 〈P, ρ〉 c?q−→ µ, then 〈Q, σ〉 =⇒ c?q−→ ν for some ν such that for any trace-
preserving super-operator E acting on H

qv(µ)−{q}, E(µ)RλE(ν);
(2) whenever 〈P, ρ〉 α−→ µ where α is not a quantum input, then there exists ν such

that 〈Q, σ〉 α̂
=⇒ ν and µRλν;
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and the symmetric conditions of (1) and (2). To establish a similar result of
Lemma 5.7(1), which is the key for the triangle inequality of the derived bisimula-
tion distance, we naturally require that if 〈P, ρ〉R〈Q, σ〉 for some λ-weak bisimulation

R, then whenever 〈P, ρ〉 α
=⇒ µ for some α 6= τ , there exists ν such that 〈Q, σ〉 α

=⇒ ν
and µRλν. However, this property does not hold in general. To see this, suppose

〈P, ρ〉 τ−→ µ′ α−→ µ, and 〈Q, σ〉 =⇒ ν′ is the weak transition 〈Q, σ〉 takes to match

the action 〈P, ρ〉 τ−→ µ′, and µ′Rλν
′. However, the conditions that µ′Rλν

′ and µ′ α−→ µ

do not necessarily imply that ν′
α

=⇒ ν for some ν; they only guarantee that a portion
of ν with the probability weight not less than 1− λ can perform a weak α-action. Fur-
thermore, even such a ν exists, we can only infer µR2λν from µ′Rλν

′ but not µRλν as
expected. That is, the imperfection, or error, which is allowed by approximate bisimu-
lation will accumulate during the execution of weak transitions.

Another interesting direction worth researching is to expand the application scope
of qCCS to model and analyze the security properties of quantum cryptographic sys-
tems. By introducing cryptographic primitives, such as constructors for encryption and
decryption, into pi-calculus, the Spi calculus [Abadi and Gordon 1997] has been very
successful in cryptographic protocol analysis. We believe that a similar extension of
our qCCS will provide tools for analyzing quantum cryptographic protocols such as
BB84 quantum key distribution protocol.
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