
Polylog-time and near-linear work approximation
scheme for undirected shortest paths

Edith Cohen
AT&T Labs–Research

Florham Park, NJ 07922
edith@research.att.com

Submitted July 1994; Revised July 1998; (recompiled 2013)

Abstract
1 Shortest paths computations constitute one of the most fundamental network problems. Nonethe-

less, known parallel shortest-paths algorithms are generally inefficient: they perform significantly more
work (product of time and processors) than their sequential counterparts. This gap, known in the lit-
erature as the “transitive closure bottleneck,” poses a long-standing open problem. Our main result
is an O(mnε0 + s(m + n1+ε0)) work polylog-time randomized algorithm that computes paths within
(1 + O(1/ polylog n)) of shortest from s source nodes to all other nodes in weighted undirected net-
works with n nodes and m edges (for any fixed ε0 > 0). This work bound nearly matches the Õ(sm)
sequential time. In contrast, previous polylog-time algorithms required min{Õ(n3), Õ(m2)}work (even
when s = 1), and previous near-linear work algorithms required near-O(n) time. We also present faster
sequential algorithms that provide good approximate distances only between “distant” vertices: We ob-
tain an O((m + sn)nε0) time algorithm that computes paths of weight (1 + O(1/ polylog n))dist +
O(wmax polylog n), where dist is the corresponding distance and wmax is the maximum edge weight.
Our chief instrument, which is of independent interest, are efficient constructions of sparse hop sets. A
(d, ε)-hop set of a network G = (V,E) is a set E∗ of new weighted edges such that minimum-weight
d-edge paths in (V,E ∪ E∗) have weight within (1 + ε) of the respective distances in G. We construct
hop sets of size O(n1+ε0) where ε = O(1/ polylog n) and d = O(polylog n).

1Preliminary version appeared in Proc. 26th Annual ACM Symposium on Theory of Computing, 1994

1

1 Introduction

Shortest paths computations in weighted networks constitute one of the most fundamental problems in
combinatorial optimization. They are used extensively in practice and often arise as a subroutine in the
solution of other problems. Consider a network G = (V,E), where weights are associates with edges. We
denote n = |V | and m = |E|. The single-source shortest paths problem amounts to computing minimum
weight paths from a designated source node to all other nodes. The all-pairs problem amounts to computing
minimum weight paths between all pairs of nodes. Satisfactory sequential algorithms exist for variants of
the problem: The single-source problem on graphs with nonnegative weights is solved almost optimally
by Dijkstra’s algorithm and improvements. The all-pairs problem on graphs with real weights is solved in
O(mn) time (see e.g., [6]). A standard measure of efficiency in evaluating parallel algorithms is comparing
the work performed (product of time and number of processors) by the parallel algorithm to the time of the
fastest-known sequential algorithm. The literature contains numerous parallel shortest paths algorithms that
exhibit a wide range of work/time tradeoffs. These algorithms, however, badly fail this measure: As the
target running time decreases, the work performed by the best known algorithms approaches Õ(n3),2 even
for the single-source problem and even when only approximate distances to within (1 + ε) of shortest are
required (where ε < 1). Known polylogarithmic time shortest paths algorithms amounted to performing a
transitive-closure type computation that requires Õ(n3) work. We note that a recent polylogarithmic time
algorithm by Klein and Sairam [9] exhibits an improvement for sparse graphs and solves the single-source
problem using Õ(m2) work. Although faster linear-work algorithms were known for classes of graphs
with special structure, e.g., planar graphs, the existence of efficient parallel algorithms for shortest paths on
general graphs is a long standing open problem. The inability to solve shortest paths efficiently in parallel is
dubbed in the literature “the transitive closure bottleneck.” The effort to obtain better parallel algorithms led
to considering the relaxed problem of computing paths that are within (1 + ε) of shortest, where typically
ε = O(1/ polylog n). An additional incentive for considering the relaxed problem is that approximate
shortest paths are adequate for many applications. Previously, this relaxation gave rise to some improved
work-time tradeoffs, but the difficulties depicted in the discussion above applied to the relaxed problem
as well. To match in efficiency the sequential algorithm for the single-source problem, we aspire for a
near-linear work parallel algorithm. Under this condition, however, the best previously achievable running
time was O(n). (A parallel implementation of Dijkstra’s algorithm runs in O(n log n) time and performs
O(m log n) work.) The main contribution of this paper is overcoming the transitive closure bottleneck for
approximate shortest-paths on weighted undirected graphs. We show the following

Theorem 1.1. For any fixed ε0 > 0 and d > 0, paths from s sources within (1 + O(1/ logd n)) of shortest
can be computed by a randomized algorithm in polylogarithmic time using

O(mnε0 + s(m+ n1+ε0))

work.

We also provide tradeoffs that exhibit improved approximation and work when the time is somewhat
compromised. All our results are applicable to undirected graphs with general nonnegative weights.

Another contribution is relevant to both sequential and parallel shortest paths computations. The best
known sequential time bound for computing shortest paths from s sources is Õ(sm). An obvious lower
bound (if an explicit representation of the distances is required) is O(m + sn). This gap is significant for

2We use the notation Õ(f) = O(f polylogn).

2

<_
<_

2

1 3

1

1

1

3

1

2

2

1

1

1

2

2

3

Shortest paths have size 9

2

4
4

4

2
6

12

7

8

3

4

6

4

2

1 3

1

3 1

1

3

1

2

2

1

1

1

2

2

Shortest paths have size
Graph with hop set

5

hop set edges

graph edges

Figure 1: A hop set for a weighted circle graph

dense graphs (a graph is dense if m = Ω(n1+ε) for some fixed ε > 0). We use our techniques to obtain
a sparse set of edges E∗, such that distances in (V,E∗) approximate long distances in E. Therefore, for
distant vertex-pairs, shortest paths on E∗, that can be computed in O(s|E∗|)� O(s|E|) time, have weights
within (1 +O(1/ polylog n)) of the corresponding distances in E.

Theorem 1.2. Let (V,E) be a weighted undirected graph. For any fixed ε0 > 0 and d > 0, paths within
(1 + O(1/ logd n)) of shortest between pairs of vertices that are at least Ω(wmax polylog n) apart, can be
computed in O((m + sn)nε0) time, where wmax is the maximum edge-weight (or in polylogarithmic time
using comparable expected work).

It is worth noting that faster than O(sm) algorithms were known for t-stretch paths. A path has stretch
t, if its weight is at most t times the weight of the respective minimum-weight path. Awerbuch et al. [1] pre-
sented an algorithm for computing t-stretch paths between k pairs in Õ(mn64/t+kn32/t). A later algorithm
by the author [5] runs in expected Õ((m + k)n(2+ε)/t) time. These bounds are meaningful, however, only
when the stretch is large (t ≥ 4). Theorem 1.2 can be viewed as a fast short-paths algorithm that produces
paths within an additive term from shortest as opposed to the multiplicative factor that corresponds to the
stretch.

A contribution of independent interest is our hop sets constructions. A (d, ε)-hop set of a weighted graph
G = (V,E) is a collection of weighted edges E∗ such that for every pair of vertices, the minimum-weight
d-edge path between them in (V,E ∪ E∗) has weight within (1 + ε) of the corresponding shortest path in
(V,E). We refer to d as the diameter of the hop set and to ε as the approximation quality. The set E∗ of
hop edges is chosen such that it does not decrease distances. See Figure 1 for an example. The objective,
typically, is to obtain sparse hop sets with small diameter and good approximation quality (preferably exact
hop sets, where ε = 0). One intriguing issue is the existence question of sparse hop sets with certain
attributes. In addition, we would like to construct good hop sets efficiently. We present hop set algorithms
with several tradeoffs. One tradeoff is the following:

Theorem 1.3. For any fixed ε0 > 0 and integer k, (O(polylog n), O(1/ logk n))-hop sets of size O(n1+ε0)

3

can be computed sequentially in O(mnε0) time and in parallel by a polylogarithmic time randomized algo-
rithm using O(mnε0) work.

A related concept to hop sets is graph spanners. A t-spanner is a set of weighted edges such that
distances in the spanner are not smaller, and within a factor of t of distances in the original graphs. In [5]
the author provided efficient algorithms to construct sparse spanners with the additional property that small-
size shortest paths on the spanner constitute factor-t approximation of original distances. The stretch factor
considered is t ≥ 4, resulting in much worse approximation quality than in hop sets. We remark that
our parallel hop-set algorithms can be combined with the algorithms of [5] and yield polylogarithmic-time
parallel algorithms for t-spanners and stretch-t paths, with work comparable to the sequential time bounds
given in [5] (currently best known) and an additional additive term of O(mnε0) (for any fixed ε0 > 0).

Hop-sets can be employed as follows to compute shortest paths in parallel. Limited shortest paths , or
d-edge shortest paths, are minimum weight paths that contain at most d edges. When d is small, d-edge
shortest paths can be computed efficiently in parallel: By d-iteration Bellman-Ford algorithm in O(d log n)
time using O(md) work per source, or by a parallel weighted BFS algorithm (introduced by Klein and
Sairam [8]) that produces an approximate solution using Õ(m) work. Suppose we are given a (d, ε)-hop set,
E∗, for a graphG = (V,E). In order to approximate distances inG, it suffices to compute respective d-edge
shortest paths in (V,E ∪ E∗). Hence, (1 + ε)-approximate distances in G can be computed efficiently in
Õ(d) parallel time.

Many previous parallel shortest paths algorithms utilize hop sets explicitly or implicitly. We mention
several parallel shortest paths algorithms and discuss their use of hop sets. Generally in these algorithms, the
existence question of hop sets with these attributes is immediate and the main contribution is the construction
algorithm. Ullman and Yannakakis [11] presented a parallel shortest paths algorithm for directed graphs
with unit weights. Their algorithm chooses a random subset of O(n/t) vertices. The hop set consists of
a complete graph on this subset, and has diameter Õ(t) and ε = 0. Klein and Sairam [8] gave a parallel
randomized approximation scheme for (1 + ε)-approximate single-source shortest paths computations that
runs in Õ(ε−2n0.5) time and performs Õ(mn0.5) work. Their algorithm uses the Ullman and Yannakakis
idea and constructs a hop set of diameter Õ(n0.5) and size Õ(n). The author [4] presented a Õ(t) time
Õ(sn2 + n3/t2) work algorithm that is exact when edge-weights ratios are polynomially bounded and
(1 + 1/poly n) approximate otherwise, and a Õ(s(n2/t + m) + n3/t2) work algorithm that produces
(1 + 1/ polylog n) approximation. The algorithms in [4] are based on the selective path doubling technique
and construct in polylog time and Õ(nδ2) work a hop set of size Õ(nδ2) and diameter Õ(n/δ). Spencer [10]
presented a Õ(m + n3/t2) Õ(t) time algorithm for single-source shortest paths on a directed graph, when
the edge-weights ratios are polynomially bounded. His algorithm construct data structures that he termed
“nearby lists.” These data structures can also be viewed as hop sets obtained by connecting each vertex to
its O(n/t) nearest neighbors. Better parallel shortest paths algorithm are known for graphs with special
structure. The author [3] presented a shortest paths algorithm for directed graphs with real weights and a
decomposition using O(nµ)-separators. The algorithm runs in polylogarithmic time and performs Õ(n3µ +
sn2µ) work. It produces a hop set of size Õ(n2µ), logarithmic diameter, and ε = 0. Klein and Sairam [9]
presented a polylogarithmic time (when weights are integral and polynomial) Õ(sn) work algorithm for
directed planar graphs. Their algorithm construct hop sets of size Õ(n), polylogarithmic diameter, and
approximation (1 + O(1/ polylog n)). We remark that the hop sets produced by the latter algorithms are
interesting also from the existence perspective.

4

Small clustersBig clusters

Figure 2: Hop set edges

Overview

We present our main ideas an techniques through an overview. We first outline a simple sequential con-
struction of hop sets. We then sketch further ideas needed to first improve hop-set size and (sequential)
construction time, and then to obtain a parallelized construction.

A crucial building block for our hop set algorithms are efficient constructions of pairwise covers [5].
Consider a weighted graph G = (V,E) and a positive number W . A W -pairwise cover of G is a collection
χ of subsets of V (clusters). Such that (i) for every pair of vertices {v1, v2} of distance at most W , there
exists a cluster X ∈ χ such that {v1, v2} ⊂ X . (ii) The diameter of each X ∈ χ is at most W log n, and
(iii) The sum of the sizes of all cluster is O(n) and the sum of edge occurrences in clusters is O(m). We
make use of a stronger property of the covers constructed in [5]: For every path p such that w(p) ≤W , there
exists X ∈ χ such that p ⊂ X . Pairwise covers are a modification of neighborhoods covers introduced by
Awerbuch and Peleg [2] and used extensively in the context of distributed computing. Awerbuch et al. [1]
presented near-linear time sequential constructions of neighborhood covers. The author [5] improved trade-
offs in sequential constructions and presented a randomized parallel algorithm that is imperative for our
parallel hop-set and shortest paths results.

We sketch an algorithm that for a parameter ε > 0, constructs a (O(ε−1 log n), ε)-hop set of size
Õ(n4/3). The algorithm employs a subroutine that for a given R ∈ R+, computes a restricted hop set,
that is, a set of edges that constitutes a hop set for pairs of vertices such that the distance between them is in
[R, 2R]. A complete hop set is obtained by applying the subroutine with different values of R, and taking
the union of the resulting hop sets. A reduction due to Klein and Sairam [8] allows us to assume that the
ratio between the largest and smallest distances is polynomial in n. Hence, a logarithmic number of sub-
routine calls is sufficient. To obtain the restricted hop set, we construct a cover χ with W = εR/(4 log n).
We partition χ to big clusters containing more that n1/3 vertices and small clusters containing at most n1/3

vertices. For each big cluster, we select a representative vertex. The restricted hop set consists of (i) a
complete graph on the representative vertices of big clusters, where edges are weighted by corresponding
distances, (ii) a complete graph on the vertices of each small cluster, where edges are weighted by corre-
sponding distances, and (iii) a star graph in each big cluster, centered at the representative vertex, where
the edges are assigned weight W log n. See Figure 2 for an illustration. It is easy to verify that the size of
the hop set is O(n4/3), and that distances in the hop set are not smaller than distances in (V,E). We claim

5

[R,2R]

<W

s b b s

CenterCenter

E*

s s sbs ss

Figure 3: A path, a partition to segments, and the corresponding hop edges

that for every pair {v1, v2} of vertices of distance distE(v1, v2) ∈ [R, 2R], there exists a path p∗ ⊂ E∗ ∪ E
of size |p∗| ≤ O(ε−1 log n) and weight w(p∗) ≤ (1 + ε)distE(v1, v2). Consider a path p between v1 and
v2 of weight w(p) = distE(v1, v2). To construct p∗, partition p to single edges and segments of weight
at most W , such that there are O(ε−1 log n) segments. Each segment of weight at most W is contained
in some cluster. See Figure 3 for an illustration. Segments contained in some small cluster (marked by
“s” in the illustration) have a corresponding single E∗ edge. Consider the minimal subpath that includes
all segments contained only in big clusters (marked by “b”). This subpath can be replaced by an E∗ path
of size 3, consisting of two edges between endpoints of the subpath and the respective representatives of
big cluster that contain these endpoints, and one edge between the representatives. It is easy to see that
the weight of the E∗ path is larger by an additive term of at most 4W log n than the weight of the origi-
nal subpath. By combining the above, we obtain a E ∪ E∗ path of size O(ε−1 log n) and weight at most
distE(v1, v2) + 4W log n ≤ distE(v1, v2) + εR ≤ distE(v1, v2)(1 + ε).

We provide some intuition for Theorem 1.2. Note that if the original edge weights are all smaller than
W = εR/(4 log n), the constructed path p∗ consists only ofE∗ edges. Hence, to obtain (1+ε)-approximate
distances for distances larger than R, it suffices to perform shortest paths computations on the (possibly
sparser) graph (V,E∗).

In order to obtain a faster construction algorithm and sparser hop sets, we use a recursive version of the
algorithm. Following the non-recursive version, the algorithm constructs a cover. Clusters of size larger
that n1−ε0 are designated big clusters, and other clusters are designated small clusters. The algorithm treats
big cluster as in the nonrecursive version, and generates a collection of hop edges. Instead of computing a
complete graph for small clusters, however, the algorithm is applied recursively to produce sparser hop sets.
The idea is that we can afford “denser” hop sets on the subgraphs the recursive calls are applied to. At the
bottom level of the recursion we use a complete graph.

To construct hop sets in parallel, we consider limited pairwise covers defined with respect to a parameter
`. In limited covers, only pairs of vertices that have an `-edge path of weight at most W are required to
be both contained in some cluster. The author [5] presented a near-linear work and Õ(`) expected time

6

construction of limited covers. If limited covers are used in the hop set algorithm, the algorithm produces
limited hop sets. Limited hop sets are such that only `-edge distances in (V,E) are approximated by d-edge
distances in (V,E∪E∗). Limited hop set are constructed with efficient work in time Õ(`). A critical property
is that the hop set attributes (size, diameter, and approximation quality) are independent of our choice of `.
Obviously, when ` = ω(polylog(n)), the limited hop set algorithm takes longer than polylogarithmic time.
To obtain full (unlimited) hop sets, however, we need ` = n, and therefore a direct application of the
limited hop set algorithm would not work. Roughly, to obtain full hop sets in polylogarithmic time, we fix
d = polylog(n). We perform O(log n) iterations, where in each iteration we apply the limited hop sets
algorithm with ` = 2d to the graph augmented by the hop sets produced in previous iterations.

In Section 2 we give some notation and review pairwise covers and limited parallel shortest paths compu-
tation. We also define hop sets and apply hop sets to compute shortest paths efficiently in parallel. Section 3
and 4 present a sequential hop set algorithm. Section 3 presents and analyses a restricted hop set algorithm
that produces hop edges for vertex pairs within some range of distances. Section 4 presents two complete
hop set algorithms. One algorithm is based on applying the algorithm of Section 3. The other uses a some-
what different scheme and yields different tradeoffs. Sections 5–8 present a parallel hop set algorithm. Both
schemes used for the sequential hop set constructions can be employed to obtain parallel hop set algorithms.
For brevity, however, we present and analyze only one. Section 5 presents a parallel construction of limited
hop sets. The complexity analysis is given in Section 6 and the correctness in Section 7. Section 8 em-
ploys limited hop sets to construct full hop sets. Section 9 contains concluding remarks and discusses open
problems.

2 Preliminaries

Notation We use R+ to denote the set of nonnegative real numbers. Consider a graph G = (V,E)
with weights w : E ← R+. We denote wmax = maxe∈E w(e) and wmin = mine∈E w(e). For a path
p ⊂ E, the size of the path |p| is the number of edges and the weight of the path w(p) =

∑
e∈pw(e), is the

sum of the weights of edges in the path. A shortest path between a pair of vertices is a minimum weight
path connecting them. For an integer d, a d-edge shortest paths (or limited shortest path) is a minimum
weight path containing at most d edges. Note that n-edge shortest paths are shortest paths. For two vertices
{v1, v2} ⊂ V , an integer 0 ≤ d ≤ n, and a set of weighted edges E′ ⊂ V × V , we denote by distdE′(v1, v2)
the weight of the d-edge shortest path in E′, between v1 and v2. We refer to distdE′(v1, v2) as the d-edge
distance in E′ between v1 and v2. If d is omitted assume d = n. If E′ is omitted assume E′ = E.

Polynomial-ratio assumption Throughout the paper we assume that the edge weights have a polynomial
ratio, that is wmax/wmin = poly(n) (hence, there is polynomial-ratio between the distances of the closest
and furthest pairs of vertices). The assumption is supported by a reduction due to Klein and Sairam [8]
(see also [4]), which transformed the problem of computing (1 + 1/ poly(n))-approximate shortest paths
on graphs with arbitrary nonnegative weights to computing exact shortest paths on a collection of graphs
with polynomial ratio. The collection of graphs contains O(m log n) edges in total and can be produced in
O(m log n) time sequentially, and in logarithmic time with O(m log n) in parallel. Alternatively, if (1 + ε)-
approximate distances are obtained on the collection, we get (1 + ε)(1 + 1/poly(n)) approximate distances
on the original graph. Since in our constructions, ε is typically 1/ polylog(n)� 1/ poly(n), the additional
distortion in distances due to the reduction is negligible. Hence, our approximation algorithms obtained
for graphs with polynomial-ratio can be transformed to algorithms on graphs with general nonnegative
weights. Furthermore, hop sets obtained for graphs in the collection can be combined to obtain a hop set

7

for the original graph with comparable attributes to that of hop sets obtained for similar-size graphs with
polynomial ratio.

2.1 Pairwise covers

In [5], the author introduced pairwise covers of graphs. Pairwise covers are a modification of neighbor-
hood covers that were introduced by Awerbuch and Peleg [2]. The author presented a sequential algorithm
that constructs pairwise covers more efficiently than the neighborhood-covers construction of Awerbuch et
al. [1], and a randomized parallel algorithm for constructing a limited version of pairwise covers. The par-
allel construction is an essential ingredient of our parallel shortest paths algorithm. The following definition
specifies the pairwise covers produced by the sequential construction algorithm in [5].

Definition 2.1. Consider a graph G = (V,E) with weights w : E ← R+, a scalar α ∈ R+ (we use
β = dlog1+α ne), and a scalar wr ∈ R+. A pairwise (β,wr)-cover of G is a collection of sets of vertices
X1, . . . , Xk (clusters) and vertices v1, . . . , vk, where vi ∈ Xi is the center of Xi, such that:

i. ∀{u, v} ⊂ V such that dist(u, v) ≤ wr, ∃i such that {u, v} ⊂ Xi,

ii. ∀i, ∀u ∈ Xi, dist(vi, u) ≤ (1 + lognm)βwr, and

iii.
∑k

i=1 |Xi| ≤ (1 + α)n.

Remark 2.2. The covers constructed in [5] have the following properties:

i.
∑k

i=1 |E ∩X2
i | ≤ m(1 + α)

ii. Every path of weight at most wr must be contained in some X ∈ χ.

iii. For every v ∈ V , at least one cluster X ∈ χ contains the wr/2 neighborhood of v.

Theorem 2.1. [5] A (β,wr)-cover of G can be computed in O(m(1 + α)) time.

Remark 2.3. Another tradeoff can be obtained by eliminating the constraint on the expansion of the edge
sets in the construction of clusters in [5]. Property ii changes to: ∀i, ∀u ∈ Xi, dist(vi, u) ≤ βwr, the
construction time is O(m(1 + α)2), and

∑
1≤i≤k |E ∩X2

i | = m(1 + α)2.

Constructing pairwise covers in parallel The following pairwise covers are produced by the randomized
parallel cover algorithm in [5]. The main difference from Definition 2.1 is considering `-edge distances.
Work-efficient parallelization introduced tradeoffs between the size of paths “covered” and running time.

Definition 2.4. [Pairwise cover] Consider a graph G = (V,E) with weights w : E ← R+, integers
1 ≤ ` ≤ n and β = O(log n), and scalars wr ∈ R+ and 0 ≤ δ < 1/2. A pairwise (`, β, wr, δ)-cover
(for brevity, (`, β, wr, δ)-cover) of G is a collection of sets of vertices X1, . . . , Xk (clusters) and vertices
v1, . . . , vk (where for 1 ≤ i ≤ k, vi ∈ Xi is the center of the cluster Xi) such that

i. ∀{u, v} ⊂ V, such that dist`(u, v) ≤ wr/(1 + δ), ∃i such that {u, v} ⊂ Xi,

ii. ∀i, ∀u ∈ Xi, dist{vi, u} ≤ βwr, and

iii. ∀v ∈ V , |{1 ≤ i ≤ k|v ∈ Xi}| = O(n1/ββ log n).

8

Remark 2.5. The covers constructed in [5] are such that every path of size at most ` and weight at most
wr/(1 + δ) must be contained in some X ∈ χ.

Corollary 2.6. It follows that ∀e ∈ E, |{i|1 ≤ i ≤ k ∧ e ∈ X2
i }| = O(n1/ββ log n).

Theorem 2.2. [5] An (`, β, wr, δ)-cover of G can be computed with probability 1 − O(1/ poly(n)), in
O(`δ−1β2 log n) time using O(n1/βmδ/(`β)) processors.

2.2 Computing d-edge shortest paths in parallel

We utilize two existing methods for computing, in parallel, single source d-edge shortest paths:

i. A parallel version of the Bellman-Ford shortest paths algorithm runs in O(d log n) time and performs
O(dm) work (see, e.g. [4]).

ii. A parallel approximate weighted BFS algorithm, due to Klein and Sairam [8] (see also [7]), computes
d-edge paths of weight within (1 + ε) of the minimum weight d-edge paths, in time O(dε−1 log n)
and work O(m log n).

2.3 Hop sets

Definition 2.7. Consider a weighted graph G = (V,E). A (d, ε)-Hop set for G is a set of weighted edges
E∗ such that for all {u1, u2} ⊂ V ,

i. distE∗(u1, u2) ≥ distE(u1, u2), and

ii. distdE∪E∗(u1, u2) ≤ (1 + ε)distE(u1, u2).

We refer to d as the diameter of the hop set and to (1 + ε) as the approximation quality of the hop set. We
also consider

i. Restricted hop set defined as set of weighted edges that satisfies property ii for only the subset of the
pairs V ×V that are within some range of distances from each other. We construct hop sets as unions
of restricted hop sets.

ii. Limited hop set with respect to an integer r, where property ii is relaxed to:

distdE∪E∗(u1, u2) ≤ (1 + ε)distrE(u1, u2) .

Limited hop sets are needed for parallel constructions. A staightforward parallelization of the se-
quential construction is efficient in polylogarithmic time only for polylogartihmic values of r. Our
parallel construction recursively builds hop sets with small values of r to obtain a hop set with the
desired r = n.

We link hop sets to parallel computation of shortest paths:

Proposition 2.8. Consider a weighted graph G = (V,E) and a (d, ε)-hop set E∗.

i. Paths within (1 + ε) of shortest from a single source to all other vertices in G can be computed in
O(d log n) time using O((m+ |E∗|)d) work.

9

ii. Paths within (1 + ε̂)(1 + ε) of shortest from a single source to all other vertices can be computed in
O(dε̂−1 log n) time using O((m+ |E∗|) log n) work.

Proof. It suffices to compute d-edge distances in (V,E ∪ E∗) (see Subsection 2.2). For the first part we
apply the limited parallel Bellman-Ford algorithm. For the second part we apply the parallel weighted BFS
algorithm.

3 Computing restricted hop sets

In this Section we present subroutine R-HopSet that computes a restricted hop set for vertex-pairs that are
within some specified small range of distances. In Section 4 we obtain a complete hop set by applying
R-HopSet with different ranges of weights, and combining the restricted hop sets obtained.

R-HopSet uses the parameters ρ ≥ 9, 0 < ε0 < 1, and α > 0. We denote β = dlog1+α ne. These
parameters determine tradeoffs between the running time, the size of the hop set, the approximation quality,
and the diameter.

Input R-HopSet is provided with

• a graph (V,E) with edge-weights w : E → R+,

• a parameter 0 < µ ≤ 1

• a scalar R ∈ R+

Output R-HopSet constructs a collection of weighted edges E∗ such that:

i. If ε0 ≤ 1/2:

|E∗| ≤ (1 + α)dlog1−ε0 µen1+µ/2 + nα−1((1 + α)dlog1−ε0 µe − 1)(3 + α)/2 .

If ε0 > 1/2:

|E∗| ≤ (1 + α)dlog1−ε0 µen1+µ/2 + α−1((1 + α)dlog1−ε0 µe − 1)n+∑
0≤i<dlog1−ε0 µe

(1 + α)i+2n1−(1−ε0)
i(1−2ε0)/2 .

ii. For all {u1, u2} ⊂ V , distE∗(u1, u2) ≥ distE(u1, u2).

iii. For every {u1, u2} ⊂ V such that R ≤ distE(u1, u2) ≤ ρβR,

distd
∗
E∗∪E′(u1, u2) ≤ (1 + 21/ρ)dlog(1−ε0) µedistE(u1, u2) ,

where d∗ = (4β2ρ2 + 6)dlog(1−ε0) µe, and E′ is a collection of edges such that

• for all {u1, u2} ⊂ V such that dist(u1, u2) ≤ R/(β2ρ2), we have dist2E′(u1, u2) ≤ 9βdist(u1, u2),
and

• E′ contains all edges in E of weight in [R/(ρβ)dlog1−ε0 µe, ρβR].

10

The set E′ contains a 2-hop spanner of short distances in E, and a collection of “long” single edges.
We can choose (the spanner part of) E′ to be much sparser than E, and obtain a sparse small-hop
approximation of E, when there are not too many “long” single edges. This property allows us to
obtain faster aapproximate shortest paths between distant nodes.

Theorem 3.1. R-HopSet constructs a set E∗ as above in time

O(nµ(1 + α)dlog1−ε0 µem+
∑

0≤i<dlog1−ε0 µe

(1 + α)i+1n(1−ε0)
iε0m) .

In Subsection 3.1 we present R-HopSet. In Subsection 3.2 we show that R-HopSet runs within the
time bound stated in Theorem 3.1. In Subsection 3.3 we prove that the size of the set E∗ produced by
R-HopSet is as specified in property i. In Subsection 3.4 we establish that the set E∗ possesses properties ii
and iii.

3.1 The R-HopSet algorithm

Algorithm 3.1. [R-HopSet(µ, (V,E), R)]

i. If µ ≥ 1:
E∗ ← V × V . For all e = (u1, u2) ∈ V × V , w(e)← distE(u1, u2). Stop.

ii. Construct a (β,R/(βρ))-cover χ of (V,E) (as in Definition 2.1).
Let χs ← {X ∈ χ| |X| ≤ |V |1−ε0}, χb ← {X ∈ χ| |X| > |V |1−ε0}.
Let µ′ ← min{1, µ/(1− ε0)}.

iii. For all X ∈ χs:
Place in E∗ the edges returned by the recursive call R-HopSet(µ′, (X,E ∩X2), R/(β2ρ2)).

iv. For each X ∈ χb and v ∈ X , place in E∗ an edge from the center of X to v, weighted 3R/ρ.

v. Place in E∗ a complete graph on the centers of clusters in χb. For every {X1, X2} ⊂ χb, where
c1 ∈ X1 and c2 ∈ X2 are the corresponding centers, e = (c1, c2) is assigned the weight w(e) ←
distE(c1, c2).

R-HopSet performs recursive calls. For µ0 ≤ 1, denote by k(µ0) the depth of the recursion when
R-HopSet is called with parameter µ = µ0.

Proposition 3.2.
k(µ0) = dlog(1−ε0) µ0e .

Proof. If µ0 = 1, R-HopSet does not perform recursive calls and hence, k(µ0) = 0. When µ0 < 1,
R-HopSet performs recursive calls at step iii. In these recursive calls, the algorithm is called with parameter
µ′ = min{1, µ0/(1 − ε0)}. Hence, the depth of the recursion is the minimum ` such that µ0/(1 − ε0)` ≥
1.

Each recursive call amounts to applying R-HopSet to a subgraph of the input graph. Consider the
recursion tree that corresponds to an application of R-HopSet. The tree has depth dlog1−ε0 µe. For 0 ≤
i ≤ dlog1−ε0 µe, denote by r(i) the number of subgraphs R-HopSet is applied to at the ith level of the
recursion. Denote these subgraphs by (V i

j , E
i
j) (1 ≤ j ≤ r(i)).

11

Proposition 3.3. i. For all 1 ≤ j ≤ r(i), |V i
j | ≤ n(1−ε0)

i
.

ii.
∑

j |V i
j | ≤ (1 + α)in.

iii.
∑

j |Eij | ≤ (1 + α)im.

Proof. Immediate from the algorithm, definition 2.1, and Remark 2.2.

3.2 Bounding the time

We bound the running time of R-HopSet. At the bottom level of the recursion (i = dlog1−ε0 µe), the
algorithm performs an all pairs shortest paths computation on each subgraph, and hence runs in time
O(
∑

j |V i
j ||Eij |). Note that∑

j

|V i
j ||Eij | ≤ nµ

∑
j

|Eij | ≤ nµ(1 + α)dlog1−ε0 µem .

We bound the running time at the ith level of the recursion, for 0 ≤ i < dlog1−ε0 µe. For 1 ≤ j ≤ r(i),
consider an application of R-HopSet to the subgraph (V i

j , E
i
j). Theorem 2.1 asserts that Step ii takes

O((1 + α)|Eij |) time. Step iv requires O(
∑

X∈χb |X|) = O((1 + α)|V i
j |) time. Step v amounts to single

source shortest paths computations in (V i
j , E

i
j) from at most |χb| ≤ (1 + α)|V i

j |/|V i
j |1−ε0 sources. Hence,

it takes
O((1 + α)|V i

j |ε0 |Eij |) = O((1 + α)n(1−ε0)
iε0 |Eij |)

time. It follows that level i of the recursion takes

O((1 + α)i+1(m+ n(1−ε0)
iε0m)) = O((1 + α)i+1n(1−ε0)

iε0m)

time. We obtain that R-HopSet runs in time

O(nµ(1 + α)dlog1−ε0 µem+
∑

0≤i<dlog1−ε0 µe

(1 + α)i+1n(1−ε0)
iε0m) .

3.3 Bounding the size of the hop set

At the bottom level of the recursion (i = dlog1−ε0 µe), R-HopSet computes a complete set of edges on each
subgraph, and hence produces no more than

∑
j |V i

j |2/2 edges. The sum is maximized when the subgraphs
are as large as possible and hence∑

j

|V i
j |2/2 ≤ ((1 + α)dlog1−ε0 µen/nµ)n2µ/2 = (1 + α)dlog1−ε0 µen1+µ/2 .

For 0 ≤ i < dlog1−ε0 µe, we bound the number of edges produced at the ith level of the recursion. For
1 ≤ j ≤ r(i), consider an application of R-HopSet to the subgraph (V i

j , E
i
j). Step iv produces at most

(1 + α)|V i
j | edges. Step v produces a complete graph on |χb| ≤ (1 + α)|V i

j |/|V i
j |1−ε0 vertices and hence

produces at most |χb|2/2 ≤ (1 + α)2|V i
j |2ε0/2 edges.

If ε0 ≤ 1/2, we have ∑
j

|V i
j |2ε0 ≤

∑
j

|V i
j | ≤ (1 + α)in .

12

It follows that level i of the recursion produces

(1 + α)i+1n+ (1 + α)i+2n/2 ≤ (1 + α)i+1n(3 + α)/2

edges. We obtain that if ε0 ≤ 1/2, the number of edges produces by R-HopSet is at most

(1 + α)dlog1−ε0 µen1+µ/2 + nα−1((1 + α)dlog1−ε0 µe − 1)(3 + α)/2 .

If ε0 > 1/2, we have∑
j

|V i
j |2ε0 ≤ ((1 + α)in/n(1−ε0)

i
)n2ε0(1−ε0)

i ≤ (1 + α)in1−(1−ε0)
i(1−2ε0) .

Hence, level i of the recursion produces

(1 + α)i+1n+ (1 + α)i+2n1−(1−ε0)
i(1−2ε0)/2

edges. We obtain that if ε0 > 1/2, R-HopSet produces

(1 + α)dlog1−ε0 µen1+µ/2 + α−1((1 + α)dlog1−ε0 µe − 1)n+∑
0≤i<dlog1−ε0 µe

(1 + α)i+2n1−(1−ε0)
i(1−2ε0)/2

edges.

3.4 Establishing the hop set properties

The following proposition asserts that property ii holds, that is, distances do not decrease as a result of
augmenting the graph with E∗.

Proposition 3.4. For all {u1, u2} ⊂ V , distE∗(u1, u2) ≥ distE(u1, u2).

Proof. It suffices to show that for every edge e = (u1, u2) ∈ E∗, w(e) ≥ distE(u1, u2). An edge is placed
in E∗ when a call to R-HopSet is applied to some subgraph (V ′, E′) of (V,E). Consider such an edge
e = (u1, u2). If e was produced at steps i or v, its assigned weight w(e) corresponds to the weight of some
path between u1 and u2 in (V ′, E′), and hence, w(e) ≥ distE′(u1, u2) ≥ distE(u1, u2). If e was produced
at step iv, it follows from Definition 2.1 that w(e) ≥ distE′(u1, u2) ≥ distE(u1, u2).

It remains to show that property iii holds. Consider an application of R-HopSet. For each cluster
X ∈ χs, denote by EX ⊂ X2 the edges produced by the recursive call applied at Step iii to X . Let d′ and
ε′ be as follows: For all {v1, v2} ⊂ X such that

R/(ρ2β2) ≤ distE∩X2(v1, v2) ≤ R/(ρβ) ,

distd
′
EX∪E′(v1, v2) ≤ (1 + ε′)distE∩X2(v1, v2) .

Proposition 3.5. Let {u1, u2} ⊂ V be two vertices such that R ≤ distE(u1, u2) ≤ ρβR. There exists a
path p∗ ⊂ E∗ ∪ E′ between u1 and u2 of size

|p∗| ≤ (2d′ + 2)β2ρ2 + d′ + 5

and weight
w(p∗) ≤ (1 + ε′)(1 + 21/ρ)distE(u1, u2) .

13

Proof. Consider a path p ⊂ E such that R ≤ w(p) ≤ ρβR. We explicitly construct a path p∗ such that
|p∗| ≤ (2d′+2)β2ρ2 +d′+5 and w(p∗) ≤ (1+ ε′)(1+21/ρ)w(p). We partition p to segments, where each
segment is either a single edge of weight more than R/(βρ) or a subpath of weight at most R/(βρ). We
consider a partition created by traversing the path p and cutting maximal eligible segments (every segment
is such that appending the next p edge in the traversal would cause the weight of the segment to exceed
R/(βρ).)

Remark 2.2 asserts that every segment of weight at most R/(βρ) is contained in at least one cluster
in χ. Consider the minimal subpath p′ of p that contains all the segments of p that are of weight at most
R/(βρ) and are not fully contained in χs clusters. Denote the endpoints of p′ by v1 and v2. It follows that
{v1, v2} ⊂

⋃
X∈χb X . Let X1 ∈ χb and X2 ∈ χb be such that v1 ∈ X1 and v2 ∈ X2. Consider the path

p′∗ ⊂ E∗ composed of an edge between v1 and the center of X1, an edge e′ between the centers of X1 and
X2 (if X1 6= X2), and an edge between the center of X2 and v2. The first and last edges were generated at
step iv and each has weight 3R/ρ. The edge e′ is created at step v. It follows from Definition 2.1 part ii and
from the triangle inequality that w(e′) ≤ w(p′) + 6R/ρ. Therefore, w(p′∗) ≤ w(p′) + 12R/ρ. Note that
|p′∗| ≤ 3.

Consider segments of p of weight at most R/(β2ρ2). Each such segment p̂ is either the last segment of
p or followed by an edge of weight larger than R/(βρ)−w(p̂). Hence, there are at most 1 + bw(p)(βρ)/Rc
such segments. It follows that the combined weight of these segments is at most R/(β2ρ2) + w(p)/(βρ).
Note that each such segment p̂ has a corresponding path in E′ between the endpoints of p̂ of size at most 2
and weight at most 9βw(p̂). For each segment of weight at most R/(β2ρ2) that is not contained in p′, place
correspondingE′ paths in p∗. It follows that the increase in the size of p∗ is at most 2+2bw(p)(βρ)/Rc, and
the sum of the weights of the new p∗ edges is larger by at most (9β−1)(R/(β2ρ2)+w(p)/(βρ)) ≤ 9w(p)/ρ
than the combined weight of the corresponding p segments.

Consider segments of p of weight at least R/(β2ρ2) that are not contained in p′. Every two consecutive
segments in the partition have weight greater than R/(βρ). Thus, there are at most d2w(p)(βρ)/Re such
segments. For each such a segment p̂ do as follows: If w(p̂) ≥ R/(βρ), then p̂ is a single edge in e ∈ E
(by definition of E′, we have e ∈ E′ as well). Place e in p∗. Otherwise, R/(β2ρ2) ≤ w(p̂) ≤ R/(βρ). It
follows that p̂ is contained in some cluster X ∈ χs. Therefore, it follows from the assumptions that there is
a path p̂∗ ⊂ EX ∪ E′ between the endpoints of p̂ such that |p̂∗| ≤ d′ and w(p̂∗) ≤ w(p̂)(1 + ε′). Place this
path in p∗. We obtain that the size of p∗ increased by at most d′d2w(p)(βρ)/Re, and the weight of the new
p∗ edges is at most (1 + ε′) times the combined weight of the corresponding segments.

It is easy to verify that p∗ constructed above is contained in E∗ ∪ E′ and constitutes a path between the
endpoints of p. It follows that

|p∗| ≤ d′d2w(p)(βρ)/Re+ 3 + 2 + 2bw(p)(βρ)/Rc ≤ (2d′ + 2)β2ρ2 + d′ + 5

and

w(p∗) ≤ w(p) + ε′w(p) + 12R/ρ+ 9w(p)/ρ ≤ w(p)(1 + ε′ + 21/ρ) ≤ w(p)(1 + ε′)(1 + 21/ρ) .

The following corollary establishes that property iii holds.

Corollary 3.6. For every pair of vertices {u1, u2} ⊂ V such that R ≤ distE(u1, u2) ≤ ρβR

distd
∗
E∗∪E′(u1, u2) ≤ (1 + 21/ρ)dlog(1−ε0) µedistE(u1, u2) ,

where d∗ = (4β2ρ2 + 6)dlog(1−ε0) µe.

14

Proof. The proof is by induction on the depth of the recursion k(µ). If k(µ) = 0, E∗ = V × V and
the assigned weight to e ∈ E∗ is the corresponding distance. Hence, for every pair {u1, u2} ⊂ V ,
dist1E∗(u1, u2) = distE(u1, u2). Consider an application of the algorithm where k(µ) > 0. For each
cluster X ∈ χs, denote by EX ⊂ X2 the edges produced by the recursive call applied at Step iii to X . The
induction hypothesis asserts that for d′ = (4β2ρ2+6)k(µ

′) and ε′ = (1+21/ρ)k(µ
′)−1, for all {v1, v2} ⊂ X

such that
R/(ρ2β2) ≤ distE∩X2(v1, v2) ≤ R/(ρβ) ,

distd
′
EX∪E′(v1, v2) ≤ (1 + ε′)distE∩X2(v1, v2) .

Therefore, it follows from Proposition 3.5 that there exists a path p∗ ⊂ E∗ ∪ E′ between u1 and u2 of size

|p∗| ≤ (2d′ + 2)β2ρ2 + d′ + 5 ≤ (4β2ρ2 + 6)d′ ≤ (4β2ρ2 + 6)k(µ
′)+1 = (4β2ρ2 + 6)k(µ)

and weight

w(p∗) ≤ (1 + 21/ρ)k(µ
′)(1 + 21/ρ)distE(u1, u2) ≤ (1 + 21/ρ)k(µ)distE(u1, u2) .

4 Computing a complete hop set

In this section we present algorithm HopSet that computes a hop set for all distances. HopSet employs
R-HopSet (Algorithm 3.1) as a subroutine.

4.1 Properties of HopSet

Input HopSet is provided with:

• A graph (V,E) with edge-weights w : E ← R+,

• Parameters:

– ρ ≥ 6 determines tradeoffs between approximation and diameter.

– α > 0 (β = dlog1+α ne) that determines tradeoffs between the diameter on one hand and the
time and size of the hop set on the other hand.

– 0 < ε0 < 1

– 0 < µ ≤ 1

Output HopSet constructs a collection of weighted edges E∗ such that

i. If ε0 ≤ 1/2:
|E∗| ≤ dlog2(nwmax/wmin)e(1 + α)n+

dlogβρ(nwmax/wmin)e
(

(1 + α)dlog1−ε0 µen1+µ/2 + nα−1((1 + α)dlog1−ε0 µe − 1)(3 + α)/2
)
.

If ε0 > 1/2:
|E∗| ≤ dlog2(nwmax/wmin)e(1 + α)n+

15

time |E∗| d∗ approximation
Assign: α = 1 (hence, β = O(logn)), ε0 and µ are fixed constants
O((nµ + nε0)m logn) O((n1+µ + n2ε0) logn) O(ρ logn)2dlog1−ε0

µe (1 +O(ρ−1))

Assign: 1/2 ≥ ε0 = Ω(1/ log log n), µ = Ω(1/ logn), α = 1/dlog1−ε0 µe ≤ 1 (β = O(ε−1
0 logµ−1 logn))

O((nε0 + nµ)m logn) O((n1+µ + ε−1
0 n logµ−1) logn) (ρ logn)O(ε−1

0 log µ−1) (1 + 7/ρ)dlog1−ε0
µe

Assign: the above, µ = 1/ logn, and ε0 = 1/ log logn

O(mn1/ log logn logn) O(n logn(log log n)2) (ρ logn)O((log logn)2) (1 + ρ−1)O((log logn)2)

Better hop sets but worse time bounds:
Assign: ε0 = 1/2, µ < 1/2, α = 1/dlog2 µ

−1e ≤ 1 (β = O(α−1 logn) = O(logµ−1 logn))
O(mn0.5 logn) O((n1+µ + n logµ−1) logn) (ρ logn logµ−1)O(log µ−1) (1 + 7/ρ)dlog µ

−1e

Assign: the above and µ = log−1 n

O(mn0.5 logn) O(n logn log log n) (ρ logn)O(log logn) (1 + 7/ρ)dlog2 logne

Table 1: Bounds for hop sets constructions by various parameter assignments

dlogβρ(nwmax/wmin)e((1 + α)dlog1−ε0 µen1+µ/2 + α−1((1 + α)dlog1−ε0 µe − 1)n+∑
0≤i<dlog1−ε0 µe

(1 + α)i+2n1−(1−ε0)
i(1−2ε0)/2) .

ii. for all {u1, u2} ⊂ V , distE∗(u1, u2) ≥ distE(u1, u2), and

iii. for every {u1, u2} ⊂ V ,

distd
∗
E∗∪E(u1, u2) ≤ (1 + 21/ρ)dlog(1−ε0) µedistE(u1, u2) ,

where d∗ = (4β2ρ2 + 6)dlog(1−ε0) µe.

Theorem 4.1. HopSet runs in time:

O(dlog2(nwmax/wmin)e(1 + α)m+

dlogβρ(nwmax/wmin)e(nµ(1 + α)dlog1−ε0 µem+
∑

0≤i<dlog1−ε0 µe

(1 + α)i+1n(1−ε0)
iε0m)) .

Table 1 derives bounds for the running time of HopSet and the attributes of the output hop set, for some
assignments of values to the parameters. Note that we assume wmax/wmin = O(poly n).

4.2 The HopSet algorithm

The complexity and correctness as claimed in Subsection 4.1 are immediate from the properties of R-HopSet
(Algorithm 3.1).

Algorithm 4.1. [HopSet(µ, (V,E))]

i. Compute a (9β)-spanner of diameter 2 as follows and place the spanner in E∗:
For i = 1, . . . , dlog1.5(nwmax/wmin)e do:

(1) wi ← wmin1.5i

16

(2) Construct a (β,wi)-cover χ of (V,E) (as in Definition 2.1).

(3) For each X ∈ χ and v ∈ X , place in E∗ an edge from the center of X to v, weighted 3βwi

ii. For i = 0, . . . , blogρβ(nwmax/wmin)c do:

(1) wi ← wminρ
iβi.

(2) Place in E∗ the edges returned by R-HopSet(µ, (V,E), wi)
(restricted hop set for distances in [wi, wiρβ])

Remark 4.2. If in Algorithm 3.1 we use the cover construction mentioned in Remark 2.3 instead, then step iv
can be modified such that the edges are assigned weights R/ρ instead of 3R/ρ. Suppose that in HopSet
(Algorithm 4.1) we use the cover construction of Remark 2.3 in step i, where weights of βwi are assigned
in step i3 (hence, the result is a (3β)-spanner), and we use the altered Algorithm 3.1 as a subroutine. We
obtain a collection E∗, where property iii changes to:

distd
∗
E∗∪E(u1, u2) ≤ (1 + 7/ρ)dlog(1−ε0) µedistE(u1, u2) ,

in time
O(dlog2(nwmax/wmin)e(1 + α)2m+

dlogβρ(nwmax/wmin)e(nµ(1 + α)2dlog1−ε0 µem+
∑

0≤i<dlog1−ε0 µe

(1 + α)2i+1n(1−ε0)
iε0m)) .

4.3 Faster approximate shortest paths algorithm for distant pairs

The best known sequential time bound for computing shortest paths from s sources is Õ(sm). Our algorithm
can be modified to compute a sparse set of edges E∗, such that distances in E∗ approximate long distances
in E. For dense graphs, |E∗| � |E|. Therefore, shortest paths computations on E∗, which take time
O(s|E∗|)� O(s|E|), yield good approximations for distances in E between vertex-pairs that are far apart.

We outline a modification of Algorithm 4.1 that produces such a sparse set. Consider a weighted graph
G and a parameter R > wmin. Consider applying to G a modified Algorithm 4.1 where step ii is performed
for i = 0, . . . , blogρβ(nwmax/R)c, and we let wi ← Rρiβi. It is easy to verify the following:

Proposition 4.3. The set E∗ produced by the modified algorithm possesses the properties specified in the
output of Algorithm 4.1 (see Subsection 4.1) except property iii changes to: for every {u1, u2} ⊂ V such
that distE(u1, u2) ≥ R,

distd
∗
E∗∪E′(u1, u2) ≤ (1 + 21/ρ)dlog(1−ε0) µedistE(u1, u2) ,

where
E′ = {e ∈ E|w(e) ≥ R/(ρβ)dlog1−ε0 µe} .

Corollary 4.4. If R > wmax(ρβ)dlog1−ε0 µe,

distd
∗
E∗(u1, u2) ≤ (1 + 21/ρ)dlog(1−ε0) µedistE(u1, u2) .

Proof. Note that E′ = ∅.

17

Using one of the tradeoffs in Table 1, we obtain the following:

Proposition 4.5. Let S ⊂ V , where s = |S| be a subset of vertices. For any fixed ε0 ≤ 1/2 and µ > 0,
in O(((nµ + nε0)m + sn1+µ) log n) time, we can compute for every vertex-pair (u1, u2) ∈ S × V , a path
pu1u2 such that: If

distE(u1, u2) ≥ wmax(ρ log n)dlog1−ε0 µe ,

w(pu1u2) ≤ (1 +O(ρ−1))distE(u1, u2) .

Otherwise,
w(pu1u2) ≤ wmax(ρ log n)dlog1−ε0 µe .

Remark 4.6. The key idea in avoiding O(m) work per source is producing a sparse “encoding” of the
graph, that is, a sparse set of edges that is almost as good as the original denser set of edges for shortest
paths computations between distant pairs of vertices. Unfortunately, short distances can not be “encoded”
in a similar fashion. This is demonstrated by graphs with unit weights. Note that omitting any edge results
in at least doubling the distance between its endpoints. Hence, all edges are essential and a sparse encoding
is not feasible.

4.4 A different hop set algorithm

We present algorithm HopSet2 that yields different tradeoffs. The correctness and complexity analysis are
omitted since they are along the lines of the correctness and complexity analysis of Algorithm 3.1 and of the
parallel algorithm presented in subsequent sections.

Output Assume that ε0 and µ are constants, and α = 1. The algorithm constructs a collection of weighted
edges E∗ such that

i.
|E∗| = O(n1+µ log1+dlog1−ε0 µe n+ n2ε0 log n) .

ii. for all {u1, u2} ⊂ V , distE∗(u1, u2) ≥ distE(u1, u2), and

iii. for every {u1, u2} ⊂ V

distd
∗
E∗∪E(u1, u2) = (1 +O(ρ−1)distE(u1, u2) ,

where d∗ = O(ρ log n)dlog(1−ε0) µe.

The algorithm runs in time:
O(mnµ log1+dlog1−ε0 µe n+mnε0 log n) .

Algorithm 4.7. [HopSet2(µ, (V,E))]

i. If µ ≥ 1:
E∗ ← V × V . For all e = (u1, u2) ∈ V × V , w(e)← distE(u1, u2). Stop.

ii. For i = 1, . . . , dlog(nwmax/wmin)e do:

(1) wi ← wmin2i. (compute a restricted hop set for distances in [wi/2, wi])

18

(2) Construct a (β,wi/(βρ))-cover χ of (V,E) (as in Definition 2.1).
Let χs ← {X ∈ χ||X| ≤ n1−ε0}, χb ← {X ∈ χ||X| > n1−ε0}.
Let µ′ ← min{1, µ/(1− ε0)}.

(3) For all X ∈ χs:
Place in E∗ the edges returned by the recursive call HopSet2(µ′, (X,E ∩X2)).

(4) For each X ∈ χb and v ∈ X , place in E∗ an edge from the center of X to v, weighted 3wi/ρ.

(5) Place in E∗ a complete graph on the centers of clusters in χb. For every {X1, X2} ⊂ χb, where
c1 ∈ X1 and c2 ∈ X2 are the corresponding centers, the edge e = (c1, c2) is assigned the
weight w(e)← distE(c1, c2).

5 The Limited-HopSet algorithm

We present algorithm Limited-HopSet that inputs a weighted graph (V,E), a scalarR ∈ R+, and an integer
d. Limited-HopSet produces a restricted limited hop set E∗ such that d-edge distances in (V,E) of weight
at most R, are approximated by d∗-edge distances in (V,E∗ ∪ E). Limited-HopSet is a parallel version of
Algorithm 4.7 that applies only for d-edge distances. Note that d∗ is independent of our choice of d. A work-
efficient parallel implementation of Limited-HopSet requires time linear in d. Therefore, Limited-HopSet
can not be applied directly to obtain a hop set for n-edge distances in polylog time. The latter is achieved
in a subsequent section by algorithm Full-HopSet that uses Limited-HopSet as a subroutine. Roughly,
Full-HopSet sets d ← 2d∗ and calls Limited-HopSet iteratively. In each iteration, Limited-HopSet is
applied to the input graph augmented with the hop sets produced in previous iterations.

Limited-HopSet uses the following parameters:

i. ρ� 4 that determines tradeoffs between accuracy and time.

ii. β (we set β = dlog ne and hence n1/β = O(1)) used for pairwise covers (see Definition 2.4).

iii. δ (we set δ = 0.1) used for pairwise covers (see Definition 2.4).

iv. ε0 < 1, ε0 = Ω(1/ log logn).

v. ε̂ > 0 determines the accuracy in the limited single-source shortest-paths computations performed by
the algorithm. (see Subsection 2.2).

Input Limited-HopSet is provided with:

• A graph (V,E) with edge-weights w : E ← R+.

• A parameter µ ≤ 1, µ = Ω(1/ log log n).

• A scalar R ∈ R+.

• An integer d.

19

Output Limited-HopSet constructs a collection of weighted edges E∗ such that:

i. |E∗| = O((Cdlog(R/wmin)e log2 n)dlog1−ε0 µen1+µ + n2ε0dlog(R/wmin)e log4 n), for some fixed
constant C.

ii. For all {u1, u2} ⊂ V , distE∗(u1, u2) ≥ distE(u1, u2).

iii. For every {u1, u2} ⊂ V such that distdE(u1, u2) ≤ R, we have

distd
∗
E∗∪E(u1, u2) ≤ (1 + ε̂)(1 + 4/ρ)dlog(1−ε0) µedistdE(u1, u2) ,

where d∗ = (4βρ(1 + δ) + 3)dlog(1−ε0) µe.

Algorithm 5.1. [Limited-HopSet(µ, (V,E), R, d)]

i. If µ ≥ 1:
E∗ ← V × V . The edge-weights assigned are corresponding (1 + ε̂)-approximate d-edge distances
in (V,E). Stop.

ii. For i = 1, . . . , dlog(R/wmin)e do in parallel:

(1) wi ← wmin2i. (shortcut distances in [wi/2, wi])

(2) Construct a (d, β, wi/(2βρ), δ)-cover χ of (V,E). (As in Definition 2.4).
Let χs ← {X ∈ χ||X| ≤ |V |1−ε0}, χb ← {X ∈ χ||X| > |V |1−ε0}.
Let µ′ ← min{1, µ/(1− ε0)}.

(3) For all X ∈ χs:
Place in E∗ the edges returned by the recursive call
Limited-HopSet(µ′, (X,E ∩X2), wi/(2βρ), d).

(4) For each X ∈ χb and v ∈ X , place in E∗ an edge from the center of X to v, weighted wi/(2ρ).

(5) We place in E∗ a complete graph on the centers of clusters in χb, where the edges are weighted
as follows:
For each cluster X ∈ χb, consider the graph formed by contracting X . Perform a (1 + ε̂)-
approximate d-edge single source shortest path computation in it rooted at the contracted X .
For each cluster X ′ ∈ χb, denote by a(X,X ′) the minimum weight of a computed path between
the contracted X and a vertex in X ′. The edge in E∗ between the centers of X and X ′ is
assigned weight a(X,X ′) + wi/ρ.

We utilize either one of two algorithms for the d-edge single-source shortest-paths computations per-
formed at Step i and Step ii5 (see Subsection 2.2). (i) The limited parallel Bellman-Ford algorithm that
computes exact d-edge shortest paths, and (ii) the parallel (approximate) weighted BFS algorithm that com-
putes d-edge paths that are within (1 + ε̂) of the shortest d-edge paths.

Correctness In Section 7 we establish that Algorithm 5.1 is correct, that is, the set E∗ produced by the
algorithm possesses the specified properties.

20

Complexity In Section 6 we prove that Limited-HopSet can be implemented with the following bounds
on the resources. If the weighted BFS algorithm is utilized, Limited-HopSet performs

O(mnε0 log3 ndlog(R/wmin)e+ (Ddlog(R/wmin)e log2 n)dlog1−ε0 µemnµ log n)

work and runs in
O(ε−10 ε̂−1d log3 n)

time. If the limited Bellman-Ford algorithm is utilized, Limited-HopSet performs

O(dmnε0 log2 ndlog(R/wmin)e+ (Ddlog(R/wmin)e log2 n)dlog1−ε0 µedmnµ)

work and runs in time
O(dε−10 log3 n) .

6 Complexity of Limited-HopSet

In this Section we bound the resources (time and work) used by Algorithm 5.1. We analyze the bounds
when either the limited Bellman-Ford algorithm or the parallel (approximate) weighted BFS algorithm (see
Subsection 2.2) are utilized for the d-edge single source shortest paths computations performed at Step i and
Step ii5.

For µ0 ≤ 1, denote by k(µ0) the depth of the recursion when Algorithm 5.1 is called with parameter
µ = µ0.

Proposition 6.1.
k(µ0) = dlog(1−ε0) µ0e .

Proof. Identical to the argument in the proof of Proposition 3.2.

Consider the recursion tree of a run of the algorithm. The root of the recursion tree (top level) is a
single instance applied to the input graph. Each node corresponds to an instance of the algorithm applied to
a subgraph of the input graph. The children of a node correspond to the subgraphs the recursive calls are
applied to. Each level of the tree consists of a collection of instances. For 0 ≤ i ≤ dlog1−ε0 µe, denote
by (V i

j , E
i
j) (1 ≤ j ≤ r(i)) the collection of subgraphs constituting the instances at the ith level of the

recursion.

Proposition 6.2. i. For all 1 ≤ j ≤ r(i), |V i
j | ≤ n(1−ε0)

i
.

ii.
∑

j |V i
j | = O(dlog(R/wmin)e log2 n)in.

iii.
∑

j |Eij | = O(dlog(R/wmin)e log2 n)im.

Proof. Immediate from the algorithm, Definition 2.4, and Corollary 2.6.

21

6.1 Bounding the work

We bound the work performed by Limited-HopSet when either the limited Bellman-Ford algorithm or the
parallel weighted BFS algorithm (see Subsection 2.2) are utilized.

Proposition 6.3. Suppose that the parallel weighted BFS algorithm is utilized by Algorithm 5.1. There exist
a constant D such that the work performed is

O(mnε0 log3 ndlog(R/wmin)e+ (Ddlog(R/wmin)e log2 n)dlog1−ε0 µemnµ log n) .

Proof. The work performed at the bottom level of the recursion tree (i = dlog1−ε0 µe) is dominated by
d-edge shortest paths computations in each of the subgraphs and hence is bounded by

O(
∑

1≤j≤r(i)

|V i
j ||Eij | log n) = O(n(1−ε0)

i
∑

1≤j≤r(i)

|Eij | log n) = O(dlog(R/wmin)e log2 n)inµm log n .

We bound the work at level i of the recursion, where 0 ≤ i < dlog1−ε0 µe. For 1 ≤ j ≤ r(i), consider
a subgraph (V i

j , E
i
j). Theorem 2.2 asserts that Step ii2 performs O(|Eij |(1 − ε0)2i log2 n) work. Step ii4

performs O(|V i
j |(1− ε0)2i log2 n) work. Step ii5 performs

O(|V i
j |ε0 |Eij |(1− ε0)3i log3 n)

work, since |χb| = O(|V i
j |ε0 log2 |V i

j |). Therefore, each iteration of step ii performs

O(|V i
j |ε0 |Eij |(1− ε0)3i log3 n)

work. There are dlog(R/wmin)e iteration. It follows that level i of the recursion performs∑
1≤j≤r(i)

O(|V i
j |ε0 |Eij |(1− ε0)3i log3 ndlog(R/wmin)e) =

O(n(1−ε0)
iε0(1− ε0)3i log3 ndlog(R/wmin)e

∑
1≤j≤r(i)

|Eij |) =

O(dlog(R/wmin)e log2 n)i+1mn(1−ε0)
iε0(1− ε0)3i log n

work. Using the assumption ε0 = Ω(1/ log log n), we obtain that the algorithm performs

O(mnε0 log3 ndlog(R/wmin)e+O(dlog(R/wmin)e log2 n)dlog1−ε0 µemnµ log n)

work.

Proposition 6.4. Suppose that the parallel limited Bellman-Ford algorithm is utilized by Algorithm 5.1.
There exist a constant D such that the work performed is

O(dmnε0 log2 ndlog(R/wmin)e+ (Ddlog(R/wmin)e log2 n)dlog1−ε0 µedmnµ) .

Proof. The time bounds are dominated by the single source shortest paths computations. The parallel
Bellman-Ford algorithm performs a factor of O(d/ log n) more work than the parallel weighted BFS al-
gorithm.

22

6.2 Bounding the time

We bound the number of parallel steps needed when either the limited Bellman-Ford or the parallel (approx-
imate) weighted BFS algorithms (see Subsection 2.2) are utilized.

Proposition 6.5. When the parallel weighted BFS algorithm is used, the running time is bounded by

O(ε−10 ε̂−1d log3 n) .

Proof. Note that all recursive calls at a certain level of the recursion can be performed in parallel. Hence,
to bound the time of level i, it suffices to bound the time of a single call on a subgraph. At the bottom
level of the recursion (i = dlog1−ε0 µe), the time is dominated by performing d-edge single-source shortest-
paths computations on graphs of size O(nµ). Hence, it takes O(dε̂−1µ log n) time. Consider level i of the
recursion. Consider an application of the algorithm to a subgraph (V i

j , E
i
j). The iterations at Step ii can be

performed in parallel, and hence, it suffices to bound the time of a single iteration. Theorem 2.2 asserts that
Step ii2 takes

O(dε̂−1 log3 |V i
j |) = O(dε̂−1(1− ε0)3i log3 n)

time. Steps ii3 and ii4 take O(log |V i
j |) = O((1 − ε0)

i log n) time. Step ii5 amounts to performing (in
parallel) d-edge shortest paths computations on (V i

j , E
i
j) and hence take

O(dε̂−1 log |V i
j |) = O(dε̂−1(1− ε0)i log n)

time. The proof follows.

A very similar analysis yields the following:

Proposition 6.6. When the limited Bellman-Ford algorithm is used, the running time is bounded byO(dε−10 log3 n).

7 Correctness of Limited-HopSet

In this section we show that the set E∗ constructed by Algorithm 5.1 possesses the claimed properties.

7.1 Bounding the size of the hop set

We bound the size of the set E∗ produced by Algorithm 5.1:

Proposition 7.1. There exists a constant C such that

|E∗| = O((Cdlog(R/wmin)e log2 n)dlog1−ε0 µen1+µ + n2ε0dlog(R/wmin)e log4 n) .

Proof. We bound the number of edges produced at each level of the recursion. Consider the bottom level
of the recursion (i = dlog1−ε0 µe). For each subgraph (V i

j , E
i
j), step i produces |V i

j |(|V i
j | − 1)/2 ≤ |V i

j |2
edges. Hence, the number of edges produced at the bottom level is bounded by∑

j

|V i
j |2 ≤ O(dlog(R/wmin)e log2 n)dlog1−ε0 µen1−µn2µ .

23

We bound the number of edges produced at level i, where 0 ≤ i < dlog1−ε0 µe. For 1 ≤ j ≤ r(i), consider
an application of the algorithm to a subgraph (V i

j , E
i
j). There are dlog(R/wmin)e iterations at Step ii. In

each iteration, Step ii4 produces O(|V i
j | log2 |V i

j |) edges. Step ii5 produces

O((|V i
j | log2 |V i

j |)/|V i
j |1−ε0)2 = O(|V i

j |2ε0 log4 |V i
j |)

edges. It follows that if ε0 ≤ 1/2, level i produces

O(dlog(R/wmin)e(1− ε0)4i log4 n
∑
j

|V i
j |)

= O(dlog(R/wmin)e log2 n)i+1n(1− ε0)4i log2 n

edges. If ε0 > 1/2, level i produces

O(dlog(R/wmin)e log2 n)i+1n1−(1−ε0)
i
n2ε0(1−ε0)

i
(1− ε0)4i log2 n

= O(dlog(R/wmin)e log2 n)i+1n1−(1−ε0)
i(1−2ε0)(1− ε0)4i log2 n

edges. Therefore, the algorithm produces

O(dlog(R/wmin)e log2 n)dlog1−ε0 µen1+µ

edges if ε0 ≤ 1/2 and

O(dlog(R/wmin)e log2 n)dlog1−ε0 µen1+µ +O(n2ε0dlog(R/wmin)e log4 n)

edges if ε0 > 1/2.

7.2 Establishing the hop set properties

In this Subsection we prove that:

i. For all {u1, u2} ⊂ V , distE∗(u1, u2) ≥ distE(u1, u2).

ii. For every {u1, u2} ⊂ V such that distdE(u1, u2) ≤ R, we have

distd
∗
E∗∪E(u1, u2) ≤ (1 + ε̂)(1 + 4/ρ)dlog(1−ε0) µedistdE(u1, u2) ,

where d∗ = (4βρ(1 + δ) + 3)dlog(1−ε0) µe.

Proposition 7.2. Consider an edge e = (u1, u2) that was created at the top level of Algorithm 5.1.

i. If e was created at Step i:

• w(e) ≥ distE(u1, u2)

• w(e) ≤ (1 + ε̂)distdE(u1, u2)

ii. If e was created at Step ii4, then w(e) = wi/(2ρ) ≥ distE∩X2(u1, u2).

iii. Suppose that e was created in Step ii5. Let {X1, X2} ⊂ χb be such that u1 ∈ X1 and u2 ∈ X2 are
the respective centers.

24

• w(e) ≥ distE(u1, u2).

• For all v1 ∈ X1 and v2 ∈ X2, w(e) ≤ (1 + ε̂)distdE(v1, v2) + wi/ρ.

Proof. Part i is immediate. Part ii is immediate using part ii of Definition 2.4. To prove part iii, note that

w(e) = wi/ρ+ (1 + ε̂) min{distdE(v′1, v
′
2)|v′1 ∈ X1, v

′
2 ∈ X2} .

Hence,
w(e) ≤ (1 + ε̂)distdE(v1, v2) + wi/ρ .

It remains to show that w(e) ≥ distE(u1, u2). For every v1 ∈ X1 and v2 ∈ X2, we have distE(u1, u2) ≤
distE(v1, v2) + distE(v1, u1) + distE(v2, u2) ≤ distE(v1, v2) + wi/ρ. The last inequality follows from
Definition 2.4 part ii. There exists v1 ∈ X1 and v2 ∈ X2, such that w(e) ≥ distE(v1, v2) + wi/ρ. The last
two inequalities imply that w(e) ≥ distE(u1, u2).

We prove that the edges E∗ do not decrease distances:

Corollary 7.3. For all {u1, u2} ⊂ V ,

distE∗(u1, u2) ≥ distE(u1, u2)

Proof. It suffices to show that for every edge (u1, u2) ∈ E∗, w(e) ≥ distE(u1, u2). We prove the claim by
induction on the depth of the recursion. The base case follows from part i of Proposition 7.2. Suppose that
the algorithm performs recursive calls. The claim for edges generated at the top level follows from parts ii
and iii in Proposition 7.2. The claim for edges generated by the recursive calls follows using the induction
hypothesis and the fact that the input to the recursive calls are subgraphs of the original graph, and distances
on subgraphs are not smaller than distances on the graph itself.

Let d′ and ε′ ≥ ε̂ be as follows. For all 1 ≤ i ≤ dlog(R/wmin)e, consider the ith iteration of Step ii. For
each cluster X ∈ χs, let EX ⊂ X2 be the edges produced by the recursive call applied in Step ii3 to X . For
all {u1, u2} ⊂ X , if distdE∩X2(u1, u2) ≤ wi/(2βρ), then

distd
′
EX∪E(u1, u2) ≤ (1 + ε′)distdE∩X2(u1, u2) .

Proposition 7.4. Let {u1, u2} ⊂ V be such that distdE(u1, u2) ≤ R. There exists a path p∗ ⊂ E∗ ∪ E
between u1 and u2 such that

|p∗| ≤ (4βρ(1 + δ) + 1)d′ + 2

and
w(p∗) ≤ (1 + ε′)(1 + 4/ρ)distdE(u1, u2) .

Proof. Consider a path p between u1 and u2 such that |p| ≤ d and w(p) = distdE(u1, u2). We explicitly
construct a path p∗ in E∗ ∪ E between u1 and u2 such that |p∗| ≤ (4βρ(1 + δ) + 2)d′ + 3 and w(p∗) ≤
(1 + ε′)(1 + 4/ρ)w(p).

Let 1 ≤ i ≤ dlog(R/wmin)e be such that distdE(u1, u2) ∈ [wi/2, wi]. Consider the ith iteration of Step ii
and let χ be the cover computed at the ith iteration. To construct p∗, we partition p into at most

b2w(p)/(wi/(2ρβ(1 + δ)))c+ 1 ≤ 4βρ(1 + δ) + 1

segments, where each segment is either a single edge or of weight at most wi/(2ρ(1 + δ)β), and any two
consecutive segments have combined weight at least wi/(2ρ(1 + δ)β). Such a partition can be computed

25

u uv

2

1 1 2
v
2

vv
1

u
1

u
2

E

E *

center of X
2

center of X
1

Figure 4: A path in E and a corresponding small size E∗ ∪ E path

using a single traversal of p, where segments are cut when maximal. It follows from Remark 2.5 that every
path in E of size d and weight at most wi/(2ρβ(1 + δ)) is contained in at least one cluster of χ.

Let p′ be the minimal subpath of p that contains all segments that are of weight at most wi/(2ρβ(1+ δ))
and are not contained in any χs cluster. Note that each such segment is contained in some χb cluster. Let
v1 and v2 be the endpoints of p′. It follows that {v1, v2} ⊂

⋃
X∈χb X . Let X1 ∈ χb and X2 ∈ χb be such

that v1 ∈ X1 and v2 ∈ X2. We specify at most 3 E∗ edges that constitute a path p′∗ between v1 and v2. We
include p′∗ in p∗. The path p′∗ consists of an edge from v1 to the center of X1 (if other than v1), an edge
between the centers of X1 and X2 (if X1 6= X2), and an edge between v2 and the center of X2 (if other
than v2). See Figure 4 for an illustration. The edges from v1 and v2 to the respective centers are included in
E∗ at Step ii4 and have weight wi/(2ρ). The edge between the centers is included in E∗ at Step ii5 and it
follows from Proposition 7.2 part iii that it has weight at most

(1 + ε̂)distdE(v1, v2) + wi/ρ .

It follows that
w(p′∗) ≤ (1 + ε̂)distdE(v1, v2) + 2wi/ρ .

Note that w(p′) ≥ distdE(v1, v2). Therefore,

w(p′∗) ≤ (1 + ε̂)w(p′) + 2wi/ρ .

Consider a segment p̂ = pu′1u′2 ⊂ p \ p′. We show that p̂ has a corresponding path p̂∗ ⊂ E∗ ∪ E
between u′1 and u′2 of size |p̂∗| ≤ d′ and weight w(p̂∗) ≤ (1 + ε′)w(p̂). For every such segment p̂, we
place p̂∗ in p∗. If w(p̂) > wi/(2ρ(1 + δ)β) then p̂ is a single edge and we choose p̂∗ = p̂. Otherwise,
w(p̂) ≤ wi/(2ρ(1 + δ)β). Every segment in p \ p′ of weight at most wi/(2ρ(1 + δ)β) must be contained in
some cluster of χs. Let X ∈ χs be a cluster that contains p̂. Note that |p̂| ≤ d. It follows from assumptions
that

distd
′
EX∪E(u′1, u

′
2) ≤ (1 + ε′)distdE∩X2(u′1u

′
2) ≤ (1 + ε′)w(p̂) .

The path p contains at most 4βρ(1 + δ) + 1 segments. If p′ 6= ∅, then p′ contains at least one segment.
It follows that p∗ ⊂ E∗ ∪ E constructed above constitutes a path between the endpoints of p of size |p∗| ≤
(4βρ(1 + δ) + 1)d′ + 2 and weight

w(p∗) ≤ w(p)(1 + max{ε′, ε̂}) + 2wi/ρ ≤ w(p)(1 + ε′)(1 + 2wi/(ρw(p))) ≤ w(p)(1 + ε′)(1 + 4/ρ) .

26

Consider a set E∗ produced by an application of Algorithm 5.1 with parameter µ. Denote the recursion
depth by k(µ) = dlog1−ε0 µe (see Proposition 6.1). We establish the correctness of the second claim:

Corollary 7.5. For every pair of vertices {u1, u2} ⊂ V such that distdE(u1, u2) ≤ R, we have

distd
∗
E∗∪E(u1, u2) ≤ (1 + ε̂)(1 + 4/ρ)k(µ)distdE(u1, u2) ,

where d∗ = (4βρ(1 + δ) + 3)k(µ).

Proof. The proof is by induction on k(µ). If k(µ) = 0, the proof follows from part i of Proposition 7.2.
Consider an application of the algorithm when k(µ) ≥ 1. For each iteration 1 ≤ i ≤ dlog(R/wmin)e
consider the cover χ and a cluster X ∈ χs. The induction hypothesis establishes that for all {u1, u2} ⊂ X ,
if distdE(u1, u2) ≤ wi/(2βρ) then

distd
′
EX∪E(u1, u2) ≤ (1 + ε̂)(1 + 4/ρ)k(µ

′)distdE(u1, u2) ,

where d′ = (4βρ(1 + δ) + 3)k(µ
′). It follows that d′ = (4βρ(1 + δ) + 3)k(µ

′) and ε′ such that (1 + ε′) =
(1 + ε̂)(1 + 4/ρ)k(µ

′) satisfy the assumptions of Proposition 7.4. Note that

(4βρ(1 + δ) + 1)d′ + 2 ≤ (4βρ(1 + δ) + 3)k(µ
′)+1 = (4βρ(1 + δ) + 3)k(µ) = d∗

and
(1 + ε′)(1 + 4/ρ) ≤ (1 + ε̂)(1 + 4/ρ)k(µ) .

Therefore, Proposition 7.4 establishes that for every {u1, u2} ⊂ V such that distdE(u1, u2) ≤ R, we have

distd
∗
E∗∪E(u1, u2) ≤ (1 + ε̂)(1 + 4/ρ)k(µ)distdE(u1, u2) .

8 The Full-HopSet algorithm

We present algorithm Full-HopSet that inputs a weighted graph (V,E) and produces a hop set E∗ of
diameter d∗. Full-HopSet is based on iteratively performing calls to the Limited-HopSet Algorithm, that
computes limited hop sets for d-edge distances.

Input Full-HopSet is provided with:

• A graph (V,E) with edge-weights w : E ← R+.

• A parameter ε0 < 1, ε0 = Ω(1/ log log n).

• A parameter µ ≤ 1, µ = Ω(1/ log log n).

• ρ� 4 determines tradeoffs between accuracy and time.

• ε̂ > 0 determines the accuracy in the limited single-source shortest-paths computations performed by
Limited-HopSet.

• An integer ν > 1.

27

Output Full-HopSet constructs a collection E∗ of weighted edges such that:

i. |E∗| =
O(dlogν(n/d∗)e((C log3 n)dlog1−ε0 µen1+µ + n2ε0 log5 n)) ,

for some fixed constant C.

ii. For all {u1, u2} ⊂ V , distE∗(u1, u2) ≥ distE(u1, u2).

iii. For all {u1, u2} ⊂ V ,

distd
∗
E∗∪E(u1, u2) ≤

(
(1 + ε̂)(1 + 4/ρ)dlog(1−ε0) µe

)dlogν(n/d∗)e
distE(u1, u2) ,

where d∗ = (4.4ρ log n+ 3)dlog(1−ε0) µe = O(ρ log n)dlog(1−ε0) µe

Algorithm 8.1. [Full-HopSet((V,E), ε0, µ, ρ, ν)]

i. Set β ← log n and δ ← 0.1.

ii. d∗ ← (4βρ(1 + δ) + 3)dlog(1−ε0) µe

iii. E0 ← E

iv. For i = 1, . . . , dlogν(n/d∗)e:
E∗i ← Limited-HopSet(µ, (V,Ei−1), nwmax, νd

∗)
Ei ← Ei−1 ∪ E∗i

v. Return E∗ ←
⋃

1≤i≤dlogν(n/d∗)eE
∗
i

8.1 Correctness

We establish that the set E∗ constructed by the algorithm possesses the specified properties. Properties i
and ii follow immediately from properties i and ii, respectively, of the output of Algorithm 5.1. For property i
note that dlog2 nwmax/wmine = O(log n).

To prove that property iii holds, we use the following:

Proposition 8.2. Let E′ and Ê be sets of weighted edges. Let d′, d̂, and k be integers. Let A ∈ R+.
If for all {u1, u2} ⊂ V , distd

′
E′(u1, u2) ≤ Adistd̂

Ê
(u1, u2) then for all {u1, u2} ⊂ V , distkd

′
E′ (u1, u2) ≤

Adistkd̂
Ê

(u1, u2).

Proof. Consider a path p̂ ⊂ Ê between u1 and u2 such that |p̂| ≤ kd̂. We construct a path p′ ⊂ E′ such that
|p′| ≤ kd′ and w(p′) ≤ Aw(p̂). Partition p̂ to segments ĥi (1 ≤ i ≤ r), where r ≤ k and for 1 ≤ i ≤ r,
|ĥi| ≤ d̂. It follows from the assumptions that there are paths h′i ⊂ E′ (1 ≤ i ≤ r) such that for 1 ≤ i ≤ r,
h′i has the same endpoints as ĥi, |h′i| ≤ d′, and w(h′i) ≤ Aw(ĥi). It follows that p′ =

⋃
1≤i≤r h

′
i is as

claimed.

We establish that property iii holds:

Proposition 8.3. For 0 ≤ i ≤ dlogν(n/d∗)e and all {u1, u2} ⊂ V ,

distd
∗
Ei(u1, u2) ≤ (1 + ε̂)i(1 + 4/ρ)idlog(1−ε0) µedistν

id∗
E0

(u1, u2) .

28

Proof. The proof is by induction on i. The case where i = 0 is immediate. Consider i ≥ 1. The induction
hypothesis asserts that for all {u1, u2} ⊂ V ,

distd
∗
Ei−1

(u1, u2) ≤ (1 + ε̂)i−1(1 + 4/ρ)(i−1)dlog(1−ε0) µedistν
i−1d∗
E0

(u1, u2) .

It follows from Proposition 8.2 that

distνd
∗

Ei−1
(u1, u2) ≤ (1 + ε̂)i−1(1 + 4/ρ)(i−1)dlog(1−ε0) µedistν

id∗
E0

(u1, u2) .

Property iii of the output of Algorithm 5.1 asserts that for all 0 ≤ i ≤ dlogν(n/d∗)e and for all {u1, u2} ⊂
V ,

distd
∗
Ei(u1, u2) ≤ (1 + ε̂)(1 + 4/ρ)dlog(1−ε0) µedistνd

∗
Ei−1

(u1, u2) .

The proof follows by combining the last two inequalities.

8.2 Complexity

We bound the resources (time and work) utilized by Full-HopSet when the subroutine Limited-HopSet
employs parallel weighted BFS for d-edge shortest paths computations.

Proposition 8.4. Full-HopSet runs in

O(dlogν(n/d∗)e(νd∗ε−10 ε̂−1 log3 n))

time and performs

O(dlogν(n/d∗)em′(nε0 log4 n+ (D log3 n)dlog1−ε0 µenµ log n))

work, where
m′ ≤ m+O(dlogν(n/d∗)e((C log3 n)dlog1−ε0 µen1+µ + n2ε0 log5 n)) .

Proof. The work is dominated by the calls to Limited-HopSet. The algorithm performs dlogν(n/d∗)e calls
to Limited-HopSet, sequentially. Each call to Limited-HopSet takes

O(ε−10 ε̂−1νd∗ log3 n)

time. Hence, the algorithm runs in

O(dlogν(n/d∗)eε−10 ε̂−1νd∗ log3 n)

time. The ith call to Limited-HopSet performs

O(|Ei−1|nε0 log4 n+ (D log3 n)dlog1−ε0 µe|Ei−1|nµ log n)

work. Note that |Ei−1| ≤ m+ |E∗|. Therefore, the work is bounded by

O(dlogν(n/d∗)em′(|nε0 log4 n+ (D log3 n)dlog1−ε0 µenµ log n)) ,

where m′ = m+ |E∗|.

When the subroutine Limited-HopSet employs parallel Bellman-Ford for d-edge shortest paths compu-
tations, ε̂ = 0. We obtain the following bounds:

29

Proposition 8.5. Full-HopSet runs in

O(dlogν(n/d∗)e(νd∗ε−10 log3 n))

time and performs

O(dlogν(n/d∗)em′νd∗(nε0 log3 n+ (D log3 n)dlog1−ε0 µenµ))

work, where
m′ ≤ m+O(dlogν(n/d∗)e((C log3 n)dlog1−ε0 µen1+µ + n2ε0 log5 n)) .

8.3 Bounds for hop sets constructions in parallel

For the choice ε̂ = O(1/ρ) and ν = 2. The hop set attributes are:
d∗ approximation |E∗|
O(ρ log n)dlog(1−ε0) µe (1 +O(1/ρ))dlognedlog(1−ε0) µe O(n1+µ(C log n)3dlog(1−ε0) µe+1 + n2ε0 log6 n)

Polylogarithmic time In addition, assume that ρ = O(logr n), µ = ε0, and that ε0 is fixed. The hop set
attributes are:
d∗ approximation |E∗|
O(log n)(r+1)k(ε0) (1 +O(1/ logr−1 n)) O(n1+ε0 log3k(ε0)+1 n)

The algorithm runs in
O(log(r+1)(k(ε0)+1)+2 n)

time and performs
O((m+ |E∗|)nε0 log3k(ε0)+2 n)

work.

Improved work but worse time If we choose ε0 = µ0 = θ(1/ log log n), ν = 2, and ρ = O(logr n) for
some fixed r, the hop set attributes are:
d∗ approximation |E∗|
(log n)O((log logn)2) (1 +O((log log n)2/ logr−1 n)) O(n1+O(1/ log logn))

The algorithm performs
Õ(mnO(1/ log logn))

work and runs in time
(log n)O((log logn)2) .

Improved approximation quality A choice of ρ = n−δ for some fixed δ, would lead to a hop set with
better approximation quality (but larger diameter and hence, worse time bounds). To maintain the approxi-
mation quality we choose ε̂ = O(dlog(1−ε0) µe/ρ), if the parallel weighted BFS algorithm is employed, or
otherwise use the parallel Bellman-Ford algorithm.

30

9 Concluding remarks

We give some remarks and suggest future research directions.
We used two different schemes, Algorithm 4.1 and Algorithm 4.7, for the sequential hop sets construc-

tions. The parallel version, Algorithm 5.1 follows the scheme of Algorithm 4.7. We remark that similarly,
we can design a parallel algorithm that follows the scheme of Algorithm 4.1 and obtain different tradeoffs.
By using the second scheme we obtain more efficient parallel algorithms for shortest paths between distant
pairs of vertices (as done in Subsection 4.3 for the sequential version).

The randomization in our parallel shortest paths stems from the pairwise cover constructions in [5]. De-
terministic parallel cover algorithm would yield a deterministic parallel approximation scheme for shortest
paths.

Our algorithms do not extend to general directed graphs because pairwise covers can not be constructed
for directed graphs. Our algorithms, however, do apply to “almost symmetric” directed graphs, where for
every pair of vertices (u1, u2) ∈ V ×V , the distance from u1 to u2 is within a constant or a polylogarithmic
factor of the distance from u2 to u1. We can obtain pairwise covers for almost symmetric digraphs by
applying the cover algorithm to the graph where edge-directions are ignored. It is easy to see that the
resulting collection of clusters, with restored edge directions, constitutes a pairwise cover.

A way to save some logarithmic factors is by searching for parallel constructions that produce sparser
covers than the constructions in [5]. The hop set algorithm uses covers to partition the graph recursively in
a divide-and-conquer style approach. The ratio of the size of the cover to the size of the original graph is
crucial for the complexity: Each level of the recursion increases the total size of the subgraphs considered
by a factor that equals this ratio. This ratio is about O(log2 n) in the parallel cover construction, but is
much tighter in the sequential constructions. We remark that the size of the covers was not as critical for the
applications in [5]

One of the contributions of this paper is explicitly employing hop sets, and efficient hop set construc-
tions, to produce efficient parallel approximate shortest paths algorithms for undirected graphs. We believe
that searching for good hop sets is a promising general approach for work-efficient parallel exact shortest
paths, directed shortest-paths, and reachability algorithms. In addition, we find the existence of good hop
sets to be an intriguing research problem on its own right.

We established the existence and presented efficient algorithms for constructing sparse hop sets of poly-
logarithmic diameter and approximation quality (1 + 1/ polylog n) for undirected graphs. We ask whether
comparable tradeoffs (and possibly efficient construction algorithms) exist for the following problems: (in
conjectured order of difficulty)

i. Exact hop sets (ε = 0) for undirected graphs.

ii. Directed reachability.

iii. Directed graphs with nonnegative weights (approximate or exact),

iv. Directed graphs with real weights.

Acknowledgements The author would like to thank David Applegate and Noga Alon for discussions
regarding existence of good hop sets, and Phil Klein, John Reif, and Mihalis Yannakakis for discussions on
parallel shortest paths algorithms.

31

References

[1] B. Awerbuch, B. Berger, L. Cowen, and D. Peleg. Near-linear cost sequential and distributed con-
structions of sparse neighborhood covers. In Proc. 34th IEEE Annual Symposium on Foundations of
Computer Science, pages 638–647. IEEE, 1993.

[2] B. Awerbuch and D. Peleg. Sparse partitions. In Proc. 31st IEEE Annual Symposium on Foundations
of Computer Science, pages 503–513. IEEE, 1990.

[3] E. Cohen. Efficient parallel shortest-paths in digraphs with a separator decomposition. J. Alg., 21:331–
357, 1996.

[4] E. Cohen. Using selective path-doubling for parallel shortest-path computations. J. Alg., 22:30–56,
1997.

[5] E. Cohen. Fast algorithms for t-spanners and stretch-t paths. SIAM J. Comput., 28:210–236, 1999.

[6] T. Cormen, C. Leiserson, and R. Rivest. Introduction to algorithms. McGraw-Hill Book Co., New
York, 1990.

[7] P. N. Klein. A parallel randomized approximation scheme for shortest paths. Draft of journal version,
1992.

[8] P. N. Klein and S. Sairam. A parallel randomized approximation scheme for shortest paths. In Proc.
24th Annual ACM Symposium on Theory of Computing, pages 750–758. ACM, 1992.

[9] P. N. Klein and S. Sairam. A linear-processor polylog-time algorithm for shortest paths in planar
graphs. In Proc. 34th IEEE Annual Symposium on Foundations of Computer Science, pages 259–270.
IEEE, 1993.

[10] T. H. Spencer. Time-work tradeoffs for parallel algorithms. J. Assoc. Comput. Mach., 44:742–778,
1997.

[11] J. D. Ullman and M. Yannakakis. High-probability parallel transitive closure algorithms. SIAM J.
Comput., 20:100–125, 1991.

32

Contents
1 Introduction 2

2 Preliminaries 7
2.1 Pairwise covers . 8
2.2 Computing d-edge shortest paths in parallel . 9
2.3 Hop sets . 9

3 Computing restricted hop sets 10
3.1 The R-HopSet algorithm . 11
3.2 Bounding the time . 12
3.3 Bounding the size of the hop set . 12
3.4 Establishing the hop set properties . 13

4 Computing a complete hop set 15
4.1 Properties of HopSet . 15
4.2 The HopSet algorithm . 16
4.3 Faster approximate shortest paths algorithm for distant pairs . 17
4.4 A different hop set algorithm . 18

5 The Limited-HopSet algorithm 19

6 Complexity of Limited-HopSet 21
6.1 Bounding the work . 22
6.2 Bounding the time . 23

7 Correctness of Limited-HopSet 23
7.1 Bounding the size of the hop set . 23
7.2 Establishing the hop set properties . 24

8 The Full-HopSet algorithm 27
8.1 Correctness . 28
8.2 Complexity . 29
8.3 Bounds for hop sets constructions in parallel . 30

9 Concluding remarks 31

33

