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ABSTRACT

We study the simplification of simplicial complexes by repeated
edge contractions. First, we extend to arbitrary simplicial com-
plexes the statement that edges satisfying the link condition can be
contracted while preserving the homotopy type. Our primary inter-
est is to simplify flag complexes such as Rips complexes for which it
was proved recently that they can provide topologically correct re-
constructions of shapes. Flag complexes (sometimes called clique

complexes) enjoy the nice property of being completely determined
by the graph of their edges. But, as we simplify a flag complex by
repeated edge contractions, the property that it is a flag complex
is likely to be lost. Our second contribution is to propose a new
representation for simplicial complexes particularly well adapted
for complexes close to flag complexes. The idea is to encode a
simplicial complex K by the graph G of its edges together with
the inclusion-minimal simplices in the set difference Flag(G)\K.
We call these minimal simplices blockers. We prove that the link
condition translates nicely in terms of blockers and give formulae
for updating our data structure after an edge contraction. Finally,
we observe in some simple cases that few blockers appear during
the simplification of Rips complexes, demonstrating the efficiency
of our representation in this context.

Categories and Subject Descriptors: F.2.2 [Analysis of Algo-
rithms and Problem Complexity]: Nonnumerical Algorithms and
Problems—Geometrical problems and computations, Computations

on discrete structures; I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling; E.2 [Data Storage Representa-
tions]: Object representation
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1. INTRODUCTION
As datasets are growing larger in size and in dimension, simpli-

cial complexes built upon these data become gigantic, challenging
our ability to extract useful and concise information. In particu-
lar, storing all simplices becomes prohibitive. A way to overcome
this difficulty is reducing the size of the simplicial complex prior to
analysis. During that process, it is desirable to preserve the homo-
topy type.

In this work, we focus on the simplification of a particular class
of simplicial complexes, likely to be encountered in high dimen-
sional data analysis and manifold learning. Specifically, we are in-
terested in flag complexes also known as clique complexes that have
the property of containing simplices wherever the adjacency of ver-
tices permit one. Precisely, the flag complex of a graph G is the
largest simplicial complex whose 1-skeleton is G. Obviously, flag
complexes are completely determined by their 1-skeletons, which
provide a very light form of storage. A standard way of building
the 1-skeleton of a flag complex is to consider the proximity graph

of a point cloud. The flag complex of such a graph is called a Rips

complex. In the light of recent results [1, 2], Rips complexes seem
to be good candidates for reproducing the homotopy type of the
shape sampled by the point cloud. In this context, simplification
can be used as a preprocessing phase for reducing, for instance, the
cost of computing topological invariants such as Betti numbers [6,
12]).

Following what has been done within the computer graphics and
visualization communities, one can consider several elementary op-
erations for simplifying a simplicial complex: vertex removal [14],
vertex clustering [13], triangle contraction [8]. We primarily con-
centrate here on edge contraction, the operation that consists in
merging two vertices. It was used in the pioneering work of Hoppe
et al. [9] for generating progressive meshes and has been inten-
sively studied ever since. Garland and Heckbert [7] proposed an
elegant way of prioritizing edge contractions for surface simplifi-
cation. Dey et al. [4] introduced a local condition called the link

condition that characterizes edge contractions that permit a home-
omorphic modification of 2- and 3-manifolds.

It would be tempting as we repeatedly apply edge contractions on
a flag complex to keep its nature of flag complex, thus preserving its
light form of storage along the simplification process. As already
observed in [16] and confirmed by our first experiments, this seems
to be “almost” possible. Indeed, Zomorodian uses a representa-
tion by simplicial sets that allows him to collapse any edge while
keeping the homotopy type unchanged. He observed that, along
the simplification process, most cells remain regular simplices. We



suggest here another strategy that will preserve the representation
by simplicial complexes along the simplification.

Our first contribution is the proof that the link condition intro-
duced in [4] can also be used to guarantee homotopy-preserving
edge contractions in arbitrary simplicial complexes. Our second
contribution is to introduce a new data structure well-adapted for
high-dimensional simplicial complexes which are “almost” flag com-
plexes. Besides the 1-skeleton, we encode parsimoniously how
the complex differs from the flag complex of its 1-skeleton. Pre-
cisely, we represent any simplicial complex K by its 1-skeleton G
together with the set of inclusion-minimal simplices in the set dif-
ference Flag(G)\K. These minimal simplices are called blockers.
The intuition is that simplicial complexes “close” to flag complexes
will have a small amount of blockers.

We show that the link condition translates nicely in terms of
blockers in our new data structure and give an explicit expression
of the blockers created (and destroyed) during an edge contraction.
We have implemented the data structure and the edge contraction
operation. Our first experiments indicate that the simplification of
Rips complexes in some simple cases and using a reasonable strat-
egy for prioritizing edge contractions leads to the apparition of very
few blockers. This seems to make the proposed representation effi-
cient in practice.

When drawing simplicial complexes in figures, we adopt the con-

vention that besides drawing 1-skeletons, either we shade inclusion-

maximal simplices or hatch blockers. When no triangles are shaded

or hatched, the convention is that the blocker set is empty or equiv-

alently that the simplicial complex is a flag complex.

2. BASIC DEFINITIONS
In this section, we recall standard definitions and notations that

can be found in textbooks such as [11]. The cardinality of a set X
will be denoted ♯X .

2.1 Abstract simplicial complexes
An abstract simplex is any finite non-empty set. The dimension

of a simplex σ is one less than its cardinality, dimσ = ♯σ − 1.
A k-simplex designates a simplex of dimension k. If τ ⊂ σ is
a non-empty subset, we call τ a face of σ and σ a coface of τ .
If in addition τ ( σ, we say that τ is a proper face and σ is a
proper coface. An abstract simplicial complex is a collection of
simplices, K, that contains, with every simplex, the faces of that
simplex. The dimension of K is the largest dimension of one of
its simplices. The closure of a set of simplices Σ, denoted Cl(Σ),
is the smallest simplicial complex containing Σ. The vertex set
of the abstract simplicial complex K is the union of its elements,
Vert(K) =

⋃

σ∈K
σ. A subcomplex of K is a simplicial complex

L ⊂ K. A particular subcomplex is the i-skeleton consisting of all
simplices of dimension i or less, which we denote by K(i). The 0-
skeleton is the set of inclusion-minimal simplices. Besides classical
definitions, the following concept will be useful:

DEFINITION 1 (EXPANSION). Let K be a simplicial complex

whose dimension is k. The expansion of K, denoted Expand (K),
is the largest simplicial complex having K as a k-skeleton. In par-

ticular, the expansion of a graph G is the flag complex of G and is

denoted Flag(G).

Throughout the paper, we will restrict ourselves to finite sim-
plicial complexes. Note that the expansion of the 0-skeleton K(0)

is the power set of the vertex set Vert(K) minus the empty set,

Expand
(

K(0)
)

= 2Vert(K) \ {∅} and consists of all simplices

σ ⊂ Vert(K) spanned by vertices in K. In particular, it has a
unique inclusion-maximal simplex which is Vert(K). In Section 4,

we will be interested by expansions of i-skeletons, Expand
(

K(i)
)

,

which form for increasing values of i an inclusion-decreasing se-
quence of simplicial complexes all containing K; see Figure 4
for a schematic drawing of K and the expansion of its 0- and 1-
skeletons.

2.2 Intersection and union
Two abstract simplices τ and σ are disjoint if they have no ver-

tices in common or equivalently if τ ∩σ = ∅. It will be convenient
to denote the union of two simplices σ and τ simply στ instead
of σ ∪ τ . In the same spirit, we shall use indifferently one of the
two notations {v0, v1, . . . , vk} or v0v1 . . . vk to designate the k-
simplex spanned by vertices v0, v1, . . . , vk. In particular, we shall
make no distinction between the vertex v of K and the 0-simplex
{v} ∈ K. We shall also use the notation ab instead of {a, b} to
designate the edge connecting vertex a and vertex b.

2.3 Underlying space
Let π : Vert(K) → Rn be an injective map that sends the n

vertices of K to n affinely independent points of Rn, such as for
instance the n vectors of the standard basis of Rn. The underlying

space of K is the point set |K| =
⋃

σ∈K
Hullπ(σ) and is defined

up to a homeomorphism. We shall say that a transformation f be-
tween two simplicial complexes K and K′ preserves the topologi-
cal type if the underlying spaces of K and K′ are homeomorphic,
|K| ≈ |K′| and we say that f preserves the homotopy type if the
underlying spaces are homotopy equivalent, |K| ≃ |K′|.

3. HOMOTOPY-PRESERVING EDGE CON-

TRACTION
In this section, we give a local condition on the link of an edge ab

in a simplicial complex K under which the contraction of the edge
ab preserves the homotopy type of K. This condition, called the
link condition, was introduced in [4] to characterize edge contrac-
tions that permit a homeomorphic modification when the simplicial
complex K is the triangulation of a 2-manifold or a 3-manifold.
Unlike previous works [4, 15], we make no assumptions on the
simplicial complex K. In particular, we do not require that K tri-
angulates a manifold.

3.1 Edge contraction
Recall that Vert(K) designates the set of vertices of K and con-

sider a, b ∈ Vert(K) and c 6∈ Vert(K). To describe the edge
contraction ab 7→ c, we define a vertex map f that takes vertices a
and b to c and takes all other vertices to themselves:

f(v) =

{

c if v ∈ {a, b},

v if v 6∈ {a, b}.
(1)

We then extend f to all simplices σ = {v0, . . . , vk} of K, setting
f(σ) = {f(v0), . . . , f(vk)}. The edge contraction ab 7→ c is
the operation that changes K to K′ = {f(σ) | σ ∈ K}. By
construction f is surjective and K′ is a simplicial complex. Note
that the edge contraction ab 7→ c is well defined even when ab does
not belong to K.

3.2 Link condition
Let σ be a simplex of the simplicial complex K. The link of σ

in K is the simplicial complex

LkK(σ) = {τ ∈ K | τ ∪ σ ∈ K, τ ∩ σ = ∅}.



When K is clear from the context, we will drop it and denote the
link of σ in K simply by Lk(σ). In particular, whenever we con-
tract an edge ab ∈ K to a new vertex c ∈ K′, it is unambiguous
to write Lk(a), Lk(b), Lk(ab) for the links of a, b and ab in K
and Lk(c) for the link of c in K′. Before stating our main theorem,
we start with two technical lemmas about links. We also review the
Nerve Theorem on which relies our proof.

LEMMA 1. Let σ ⊂ Vert(K) \ {a, b} be a simplex spanned by

vertices of K disjoint from a and b. The simplex cσ belongs to K′ if

and only if either aσ or bσ belongs to K. Equivalently, σ ∈ Lk(c)
if and only if σ ∈ Lk(a) ∪ Lk(b).

PROOF. Using f−1[{cσ}] = {aσ, bσ, abσ} ∩ K, we get that
cσ ∈ K′ ⇐⇒ f−1[{cσ}] 6= ∅ ⇐⇒ {aσ, bσ, abσ} ∩ K 6=
∅ ⇐⇒ {aσ, bσ} ∩K 6= ∅ ⇐⇒ aσ ∈ K or bσ ∈ K.

The star of a simplex σ in K, denoted StK(σ), is the collection
of simplices of K having σ as a face. Provided that there is a unique
inclusion-maximal simplex τ 6= σ in the star of σ, it is well-known
that |K| deformation retracts to |K\StK(σ)| and the operation that
removes StK(σ) is then called a collapse [5]. A simplicial complex
is said to be collapsible if it can be reduced to a single vertex by a
finite sequence of collapses. In particular, the underlying space of
a collapsible complex is contractible.

LEMMA 2. Suppose ab ∈ K satisfies Lk(ab) = Lk(a)∩Lk(b)
and let K′ be the simplicial complex obtained after the edge con-

traction ab 7→ c. The preimage of the closure of any simplex in K′

is non-empty and collapsible.

PROOF. For all σ ∈ K′, we give an expression of the preim-
age f−1[Cl(σ)] which entails its collapsibility. Recalling that the
closure of a simplex is Cl(σ) =

⋃

∅6=τ⊂σ
{τ} and noting that the

preimage of a union is the union of the preimages, we consider
three cases:

Case 1: f−1[Cl(c)] = f−1[{c}] = {a, b, ab} is collapsible.

Case 2: If σ ∩ c = ∅, then for all faces τ of σ, we also have
τ ∩ c = ∅ and therefore f−1[{τ}] = {τ}. It follows that

f−1[Cl(σ)] =
⋃

∅6=τ⊂σ

f−1[{τ}] =
⋃

∅6=τ⊂σ

{τ} = Cl(σ).

Case 3: If σ belongs to the link of c in K′, then σ ∈ Lk(a) ∪
Lk(b) by Lemma 1. If in addition ab satisfies the link condition
Lk(ab) = Lk(a) ∩ Lk(b), this implies that σ belongs either to
Lk(ab) or to Lk(a) \Lk(ab) or to Lk(b) \Lk(ab). Observing that
the same is true for all faces τ of σ, we deduce immediately that
for all ∅ 6= τ ⊂ σ

f−1[{cτ}] =











{aτ, bτ, abτ} if τ ∈ Lk(ab),

{aτ} if τ ∈ Lk(a) \ Lk(ab),

{bτ} if τ ∈ Lk(b) \ Lk(ab).

Since Cl(cσ) = {c} ∪ Cl(σ) ∪
⋃

∅6=τ⊂σ
{cτ}, we obtain that

f−1[Cl(cσ)] = {a, b, ab} ∪ Cl(σ) ∪
⋃

∅6=τ⊂σ

f−1[{cτ}].

Writing Σ · Σ′ = {σσ′ | σ ∈ Σ, σ′ ∈ Σ} and setting L =
Cl(σ) ∩ Lk(ab) we get that f−1[Cl(cσ)] is equal to











Cl(abσ) if σ ∈ Lk(ab),

Cl(aσ) ∪ {b, ab} ∪ {b, ab} · L if σ ∈ Lk(a) \ Lk(ab),

Cl(bσ) ∪ {a, ab} ∪ {a, ab} · L if σ ∈ Lk(b) \ Lk(ab).

Hence, if σ ∈ Lk(ab), the preimage f−1[Cl(cσ)] is clearly col-
lapsible. If σ ∈ Lk(a) \ Lk(ab), we can always find a set of
simplices λ1, . . . , λk whose closure is equal to the simplicial com-
plex L = Cl(σ) ∩ Lk(ab) and such that, for all 1 ≤ i, j ≤ k, the
simplex λi is neither a face nor a coface of the simplex λj . In other
words, the set of simplices λ1, . . . , λk are the inclusion-maximal
simplices of L. By construction, abλi is the only proper coface of
bλi in f−1[Cl(cσ)]. After a sequence of k elementary collapses
consisting in removing pairs of simplices (bλi, abλi), we are left
with the simplicial complex Cl(aσ)∪{b, ab} which is collapsible.
The case σ ∈ Lk(b) \ Lk(ab) is done similarly.

Recall that the nerve of a collection of set {Si, i ∈ I} is the
simplicial complex

Nrv{Si, i ∈ I} = {σ ⊂ I |
⋂

i∈σ

Si 6= ∅}

The Nerve Theorem has several versions [3], one of the earliest
being due to Leray [10]. For the proof of Theorem 2, we shall use
the following form:

THEOREM 1 (NERVE THEOREM). If a triangulable space X
is the union of a finite collection of closed sets {Si, i ∈ I}, and if,

for every σ ∈ Nrv{Si, i ∈ I},
⋂

i∈σ
Si is contractible, then the

underlying space of Nrv{Si, i ∈ I} is homotopy equivalent to X .

We are now ready to state our main result (see Figure 1):

a b

x y

v

x y
v

c

a b a b

x y

v

x y
v

Figure 1: Top: link of a and link of b. Bottom: link of ab
and simplicial complex after contraction of the edge ab. One

can check that ab satisfies the link condition. Equivalently, no

blocker contains ab (see Section 4.3). As a consequence, the

contraction of ab preserves the homotopy type. Note that the

edge contraction ab 7→ c creates the blocker cxy and α = x
and β = y satisfy (i) and (ii) in Lemma 4. The contraction of

any of the edges cv, xv and yv removes blocker cxy.

THEOREM 2 (LINK CONDITION THEOREM). Let K be a sim-

plicial complex. The contraction of the edge ab ∈ K preserves the

homotopy type whenever Lk(ab) = Lk(a) ∩ Lk(b).

PROOF. Suppose ab ∈ K satisfies the link condition Lk(ab) =
Lk(a) ∩ Lk(b) and let K′ be the complex obtained after the edge



contraction ab 7→ c. The proof considers two coverings, one for
|K| and one for |K′|, whose nerves N and N ′ are proved to be
equal and for which we establish that |K| ≃ |N | and |N ′| ≃ |K′|.
By abuse of language, we will write |σ| for the underlying space of
the closure of σ.

Consider first the collection of sets {|σ|, σ ∈ K′} which covers
|K′| and let N ′ denote its nerve. Clearly, for any simplex Σ ∈
N ′, the intersection

⋂

σ∈Σ σ is either empty or a simplex of K′

and therefore the intersection of sets in the collection
⋂

σ∈Σ |σ| is
either empty or contractible. The Nerve Theorem then implies that
|K′| ≃ |N ′|. Let f̄ : |K| → |K′| be the simplicial map induced by
the vertex map f : Vert(K)→ Vert(K′) defined in Equation (1).
Consider the collection of sets {f̄−1[|σ|], σ ∈ K′} obtained by
taking the preimages of sets in the first collection. This collection
covers |K| and we denote its nerve by N . The two nerves N and
N ′ are equal because the surjectivity of f̄ implies that:

⋂

σ∈Σ

f̄−1[|σ|] = f̄−1

[

⋂

σ∈Σ

|σ|

]

6= ∅ ⇐⇒
⋂

σ∈Σ

|σ| 6= ∅.

Furthermore, if the intersection
⋂

σ∈Σ |σ| is non-empty, then there
exists a simplex τ ∈ K′ such that τ =

⋂

σ∈Σ σ and by Lemma

2, the intersection
⋂

σ∈Σ f̄−1[|σ|] = f̄−1[|τ |] = |f−1(Cl(τ))| is

contractible since f−1(Cl(τ)) is collapsible. To summarize, we
established that |K| ≃ |N | ≈ |N ′| ≃ |K′|, showing that |K| and
|K′| have same homotopy type.

An example of edge ab satisfying the link condition Lk(ab) =
Lk(a)∩Lk(b) is given in Figure 1, where simplicial complexes are
depicted with the convention adopted at the end of the introduction.
Note that the converse of Theorem 2 is in general not true (see
Figure 2).

x

bya a by

x

z

x

y

c

c

zz

baa b

Figure 2: Left and middle: two 2-dimensional simplicial com-

plexes with a blocker through ab. Right: The edge contraction

ab 7→ c may (top) or may not (bottom) preserves the homotopy

type.

4. ENCODING COMPLEXES WITH THEIR

SKELETONS AND BLOCKER SETS
It is common to represent a simplicial complex K of small di-

mension by the subset L ⊂ K of simplices that are inclusion-
maximal, that is, the set of simplices of K which have no proper
cofaces in K (see Figure 3, top left). The simplicial complex K
can then be recovered from L by taking the closure, K = Cl(L).
In this section, we introduce a new way of representing simplicial
complexes (see Figures 3 to 5). Roughly, we store the 1-skeleton G
of K together with a minimal set of simplices called blockers that
indicates how much K differs from the flag complex of G. First,

we describe our data structure for encoding simplicial complexes.
Then, we explain how to check the link condition and how to main-
tain the data structure as we contract edges. Pseudo-codes and time
complexities are given in the appendix.

4.1 Data structure

DEFINITION 2 (BLOCKERS). Let i ≥ 0. We say that a sim-

plex σ ⊂ Vert(K) is an order i blocker of K if it satisfies the

following three conditions (1) dimσ > i; (2) σ does not belong

to K; (3) all proper faces of σ belong to K. The set of order i
blockers of K is denoted Blockersi(K).

Equivalently, the order i blockers of K are the inclusion-minimal

simplices of Expand
(

K(i)
)

\K; see Figures 3 and 4.

a b c d e f

abc abd acd bcd cdf ecf

b

c

d

e

f

a

b

c

d

e

f

a

ab ac ad bc bd cd df fc fe ec

abcd

Figure 3: Top left: simplicial complex consisting of six ver-

tices, ten edges and four non-overlapping shaded triangles. Top

right: same simplicial complex represented by its 1-skeleton

and order 1 blocker set {cdf, bcd}. Bottom: Hasse diagram of

the expansion of the 1-skeleton. Nodes in dark gray are in the

simplicial complex. Blockers and inclusion-maximal simplices

are shown as framed nodes.

A key consequence is that the pair (K(i),Blockersi(K)) en-
codes entirely the simplicial complex K. Indeed, the simplicial
complex whose i-skeleton is S and whose order i blocker set is B
can be retrieved from the pair (S,B) using the formula

K = {σ ∈ Expand (S) | σ has no face in B}. (2)

In this paper, we are primarily interested in simplicial complexes
K “close” to flag complexes with a “small” 1-skeleton and there-
fore choose to represent them by the pair (K(1),Blockers1(K)).
Indeed, if K = Flag(G) is a flag complex, then its blocker set is
empty and K can be represented by the pair (G, ∅). As we sim-
plify the simplicial complex by edge contractions, we hope that the
blocker set will remain small. This intuition is sustained by exper-
iments we make in Section 5 in which K is the Rips complex of a



∅

Vert(K)

K(0)

K(1) \K(0)

K

Expand
(

K(1)
)

Expand
(

K(0)
)

order 1 blocker

order 0 blocker

Figure 4: Hasse diagram of K.

point set that samples a shape. Hereafter, blockers will always refer
to order 1 blockers.

Let N (v) = NK(v) be the set of vertices w 6= v such that
vw ∈ K and write B(v) = BK(v) for the set of blockers that

contain v. Clearly, encoding the pair (K(1),Blockers1(K)) boils
down to encoding for each vertex v of K the pair (N (v),B(v)).
Precisely, our data structure consists of a linear array V for the
vertices and records for each vertex v the set of neighborsN (v) and
a set of pointers to blockers in B(v); see Figure 5. It follows that
the size of our data structure is a constant times

∑

v∈Vert(K)(1 +

♯N (v) + 2♯B(v)). To see this, charge each vertex in a blocker to
its corresponding vertex in V . During the operation, each vertex in
V is charged at most ♯B(v) times.

To conclude this section, we give a crude upper bound on the
dimension and number of blockers in a simplicial complex with n
vertices. Consider a blocker σ passing through a vertex v. Since
σ ⊂ {v} ∪ N (v), we get ♯σ ≤ 1 + ♯N (v) and therefore dimσ ≤
maxv∈σ ♯N (v). It follows that Nmax = maxv∈Vert(K) ♯N (v) is

an upper bound on the dimension of the blockers and O(2Nmax)
is an upper bound on the number of blockers through v. The total
amount of blockers in our data structure is O(n2Nmax).

4.2 Testing whether a simplex belongs to the
complex

Recall that a simplex σ belongs to K if and only if σ belongs to

Expand
(

K(i)
)

and σ has no face in Blockersi(K) (see Equation

(2)). It will be convenient to use this equivalence with i = 0 for
the proofs and i = 1 for computations. Precisely, in the proofs, we
will use that for all σ ⊂ Vert(K), we have the equivalence: σ ∈
K ⇐⇒ σ has no face in Blockers0(K). For the computations,
we will set i = 1 and test whether σ ⊂ Vert(K) belongs to K by
checking whether its edges belong to the 1-skeleton and σ contains
no order 1 blocker; see the appendix for the details.

4.3 Checking the Link Condition
Next lemma formulates the link condition in terms of blockers.

LEMMA 3. Let K be a simplicial complex. The edge ab ∈ K
satisfies the link condition Lk(ab) = Lk(a) ∩ Lk(b) if and only if

no blocker of K contains ab.

PROOF. It is not difficult to see that for all simplicial complexes
K and for all edges ab ∈ K, we have the inclusion Lk(ab) ⊂

a b c d e f

b
c
d

a
c
d

a
b
d
e
f

a
b
c
f

f
c

f
e

b c d c d f

Neighbors

Blockers

Figure 5: Data structure representing the simplicial complex

in Figure 3.

Lk(a)∩Lk(b). Let us prove that Lk(ab) = Lk(a)∩Lk(b) implies
that no blocker of K contains ab. Suppose for a contradiction that
the simplex abτ is a blocker of K for some simplex τ such that
ab ∩ τ = ∅. By definition of a blocker, all proper faces of abτ
belong to K and in particular aτ ∈ K and bτ ∈ K. On the other
hand, abτ does not belong to K. It follows that τ ∈ Lk(a), τ ∈
Lk(b) and τ 6∈ Lk(ab), implying that Lk(ab) 6= Lk(a) ∩ Lk(b).
Conversely, suppose no blocker of K contains ab and let us prove
that Lk(a) ∩ Lk(b) ⊂ Lk(ab). Consider a simplex σ ∈ Lk(a) ∩
Lk(b). By definition, aσ ∈ K, bσ ∈ K and ab ∩ σ = ∅. We
claim that all proper faces of abσ belong to K. If this claim is
satisfied, then we are done. Indeed, since abσ cannot be a blocker,
one has abσ ∈ K and therefore σ ∈ Lk(ab). We now prove the
claim by contradiction. Suppose some of the proper faces of abσ do
not belong to K and let τmin be an inclusion-minimal face among
them. In other words, τmin is an order 0 blocker. Since τmin ⊂
abσ, τmin /∈ K, aσ ∈ K and bσ ∈ K, we must have ab ⊂ τmin

which contradicts the assumption that no (order 1) blocker of K
contains ab.

Testing whether an edge ab ∈ K satisfies the link condition can
be done by traversing the blockers through a and testing for each
blocker whether it contains b. The pseudo-code and time complex-
ity of this procedure are given in the appendix.

4.4 Updating the data structure after an edge
contraction

In this section, we describe how to update the data structure af-
ter an edge contraction. More precisely, we consider a simplicial
complex K and let K′ be the simplicial complex obtained after
the edge contraction ab 7→ c. Our goal is to compute the pair
(NK′(c),BK′(c)). Clearly, NK′(c) = (N (a) \ {b}) ∪ (N (b) \
{a}). Next lemma prepares the computation of BK′(c) by charac-
terizing blockers through c.

LEMMA 4. Let K′ be the simplicial complex obtained after the

edge contraction ab 7→ c. Suppose σ ⊂ Vert(K) \ {a, b} is a sim-

plex with dimσ ≥ 1. The simplex cσ belongs to Blockers1(K
′) if

and only if the following two conditions are fulfilled:

(i) σ ∈ K; every proper face of σ belongs to Lk(a) ∪ Lk(b);

(ii) σ = αβ with aβ ∈ Blockers0(K) and bα ∈ Blockers0(K).

PROOF. First, note that the proper faces of cσ belong to K′ if
and only if (i) is satisfied. Indeed, using Lemma 1, (i) is equivalent
to σ ∈ K′ and cτ ∈ K′ for all proper faces τ ( σ. Hence, cσ ∈



Blockers1(K
′) =⇒ (i). Let us prove that cσ ∈ Blockers1(K

′)
=⇒ (ii). Since cσ 6∈ K′, neither aσ nor bσ belongs to K. It
follows that aσ has a face in Blockers0(K) and since σ ∈ K,
this face must contain a. Let us denote this face aβ with β ⊂
σ. Similarly, since bσ 6∈ K, there exists a face α ⊂ σ such that
bα ∈ Blockers0(K). Let us prove that αβ = σ. Suppose for a
contradiction that αβ is a proper face of σ. (i) implies that αβ ∈
Lk(a)∪ Lk(b). If αβ belongs to Lk(a), then β being a face of αβ
must also belong to Lk(a) which contradicts aβ ∈ Blockers0(K).
Similarly, if αβ belongs to Lk(b), we also get a contradiction.

Conversely, let us prove that (i) and (ii) =⇒ cσ ∈ Blockers (K′).
We have seen that (i) implies that all proper faces of cσ belongs to
K′. To prove that cσ 6∈ K′, we note that neither aσ nor bσ belongs
to K. Indeed, aσ = aαβ 6∈ K since its face aβ ∈ Blockers0(K)
and bσ = bαβ 6∈ K since its face bα ∈ Blockers0(K).

x

y
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b

z
x

y

z

c

Figure 6: Triangle ayz is a 2-blocker. We have that Lk(a) =
{x, y, z, xy, xz, b, by, bz}, Lk(b) = {y, z, yz, a, ay, az},
Lk(ab) = {y, z}. Note that σ = αβ with α = x and β = yz
fulfills (i) and (ii) in Lemma 4. Therefore, the edge contraction

ab 7→ c leads to the creation of the 3-blocker cxyz and the

destruction of the 2-blocker ayz.

A few remarks. Suppose σ = αβ with dimσ ≥ 1 and ab ∩
σ = ∅ satisfies (i) and (ii) in Lemma 4. Because order 0 blockers
have dimension 1 or more, the two sets α and β are non-empty.
Writing di(v) for the largest dimension of order i blockers through
v, it follows directly from the lemma that the largest dimension of
order 1 blockers through c satisfies d1(c) ≤ d0(a) + d0(b) (see
Figure 6 for an example in which equality is attained). Finally,
we show that if α is a vertex, then α ∈ N (a). Suppose α is a
vertex. Because dimσ ≥ 1, α is a proper face of σ. Thus, (i)

implies α ∈ Lk(a) ∪ Lk(b) and (ii) implies α 6∈ Lk(b), yielding
α ∈ Lk(a).

We are now ready to derive an expression for the set of blockers
through c. First, note that

Blockers0(K) = Blockers1(K)

∪ {xy | x ∈ K(0), y ∈ K(0), xy 6∈ K(1)}.

Hence, bα ∈ Blockers0(K) if and only if bα ∈ Blockers1(K)

or α ∈ K(0) \ N (b). Thus, to exhaust simplices σ = αβ with
dimσ ≥ 1, ab ∩ σ = ∅ that satisfy (i) and (ii), it suffices to take α
in the set of simplices

Za(b) = {α | bα ∈ B(b), ab ∩ α = ∅}

∪ (N (a) \ (N (b) ∪ {b})) .

Switching a and b, we define Zb(a) similarly and obtain

BK′(c) = { cαβ | α ∈ Za(b), β ∈ Zb(a), αβ ∈ K,

∀τ ( αβ, τ ∈ Lk(a) ∪ Lk(b) }.

From this formula, we derive immediately an algorithm for com-
puting BK′(c) presented in the appendix. The only piece that we
still need to explain is how to compute the link of a vertex.

4.5 Computing the link of a vertex
Since the link of a vertex v ∈ K is a simplicial complex, we can

also represent it by a pair consisting of its 1-skeleton and its order
1 blocker set. We give below formulas expressing each element in
the pair with respect to the 1-skeleton and order 1 blocker set of K.

LEMMA 5. Let K be a simplicial complex. For every vertex v
in K, we have:

Lk(v)(1) = {σ ⊂ N (v) | σ ∈ K(1), vσ 6∈ Blockers1(K)}

Blockers1(Lk(v)) = {σ ∈ K | vσ ∈ Blockers2(K)}

∪ {σ ∈ Blockers1(K) | ∀τ ( σ, vτ ∈ K}

PROOF. Let us prove the first formula. By definition, σ is a
vertex or an edge of the link of v if and only if σ ∈ K(1), σ∩v = ∅
and vσ ∈ K. The latter condition is equivalent to σ ⊂ N (v),

σ ∈ K(1) and vσ 6∈ Blockers1(K), yielding the first formula.
Set X = {σ ∈ K | vσ ∈ Blockers2(K)} and Y = {σ ∈

Blockers1(K) | ∀τ ( σ, vτ ∈ K}. Note that no simplices σ in
X ∪ Y contain v. Indeed, suppose for a contradiction that v ∈ σ
and σ ∈ X ∪ Y . Then, vσ = σ and we would get simultane-
ously σ ∈ K and σ 6∈ K, which is impossible. We establish the
second formula by proving that Blockers1(Lk(v)) = X ∪ Y . We
first prove that Blockers1(Lk(v)) ⊂ X ∪ Y . Consider an order 1
blocker σ of the link of v. By definition, dimσ ≥ 2

σ 6∈ Lk(v) and ∀τ ( σ, τ ∈ Lk(v).

We distinguish two cases. If σ ∈ K, we deduce that every proper
face of vσ belongs to K while on the other hand vσ 6∈ K. Thus, vσ
is a blocker of K and σ ∈ X . If σ 6∈ K, observe that every proper
face of σ belongs to K. Thus, σ is a blocker of K and σ ∈ Y .

For the converse, recall that no simplices σ ∈ X ∪ Y contain v.
Hence, for all faces τ of σ, we have vτ ∈ K ⇐⇒ τ ∈ Lk(v).

To prove that X ⊂ Blockers1(Lk(v)), consider σ ∈ X . By
definition, σ ∈ K and vσ is an order 2 blocker of K. This implies
vσ 6∈ K and for all τ ( σ, vτ ∈ K. Hence, σ 6∈ Lk(v) and for all
τ ( σ, τ ∈ Lk(v), showing that σ is an order 1 blocker of the link
of v.

To prove that Y ⊂ Blockers1(Lk(v)), consider σ ∈ Y . By
definition, σ is a blocker of K whose proper faces belong to the
link of v. Since σ 6∈ K, it follows that σ 6∈ Lk(v) and σ is a
blocker of Lk(v).

Note that for every vertex x ∈ Lk(v), we have ♯NLk(v)(x) ≤
♯NK(x) and ♯BLk(v)(x) ≤ ♯BK(x). In particular, if K is a flag
complex, so is the link of any of its vertices. The algorithm for
computing the link together with its time complexity are given in
the appendix.

Let Nσ = maxv∈σ ♯N (v). Overall, updating the data structure
after the edge contraction ab 7→ c has a cost which increases with
the number and dimension of blockers in a neighborhood of a and
b and can be done efficiently in O( NaNb logNN (a) ) assuming
there are no blockers in a neighborhood of a and b (see the appendix
for the details).

5. EXPERIMENTS AND DISCUSSION
In this section we apply our representation to the simplification

of a subfamily of flag complexes, namely Rips complexes. Given as
input a point cloud P in a metric space and a real number r ≥ 0, the



proximity graph Gr(P ) is the graph whose vertices are the points
P and whose edges connect all pairs of points within distance 2r.
By definition, the Rips complex is the flag complex of the proximity
graph, R(P, r) = Flag(Gr(P )). In our experiments, we consider
finite point sets P that sample various d-dimensional manifolds
X embedded in the D-dimensional Euclidean space. Typically,
d ∈ {2, 3}. Rips complexes are built using the extrinsic distance
of the embedding space. When sampling shape X with point set
P , we try to adjust the Hausdorff distance ε = dH(P,X) and the
scale parameter r, so that |R(P, r)| ≃ X . In this we are helped by
[2] which describes conditions guaranteeing that the Rips complex
R(P, r) recovers the homotopy type of X , whenever X has a pos-
itive µ-reach for µ > 0.775 in R3 and µ > 0.814 in R4. Note that
the number of neighbors of a vertex v in the Rips complex are the
number of points of P in the ball centered at v with radius 2r. If we
assume no oversampling, an upper bound on the number of neigh-

bors is Nmax = O
(

rd

εd

)

. Since the number of blockers through v

is upper bounded by 2Nmax , we get that the size of our data struc-
ture depends only upon the intrinsic dimension d and not upon the
ambient dimension D.

We consider two scenarios for building P . First, we sample reg-
ularly the boundary of a cube, Cd = ∂[−1, 1]d+1. We then normal-
ize these points to get a second point set that samples the d-sphere
Sd = {x ∈ Rd+1 | ‖x‖ = 1}. Once the Rips complex of P is
built, we simplify it by iteratively contracting edges. Initially, all
edges are stored in a priority queue Q. We use the length of the
edges to prioritize them, so that the shortest edge has highest pri-
ority. We then remove the edge ab with highest priority from the
priority queue. If ab satisfies the link condition, we contract ab to a
new vertex c = a+b

2
and update the data structure, which includes

the removal of edges from Q and the insertion of new edges into
Q. We let the process continue until no edges remain in Q. Each
edge contraction decreases the number of vertices by one. We call
Ki the simplicial complex obtained after i edge contractions and
set ni = ♯Vert(Ki) = ♯Vert(K0) − i. For each point set P , we
plot with respect to the number i of edge contractions :

• the number of blockers in Ki (first column in Figure 8).

•
∑

v∈Ki
♯N (v), 2

∑

v∈Ki
♯B(v) and the sum which is pro-

portional to the size of the data structure (second column in
Figure 8).

• 1
ni

∑

v∈Ki
♯N (v) and 1

ni

∑

v∈Ki
♯B(v) which represent re-

spectively the average number of neighbors and the average
number of blockers per vertex (third column in Figure 8).

• the average dimension of blockers in the complex (Figure 7).

In our experiments, we observe that the total amount of blockers
increases at first but eventually diminishes and reaches 1 for our
point sets that sample C2, S2 and C3. The blocker after the last
edge contraction is a tetrahedron for C2 and S2 and is a 4-simplex
for C3. Furthermore, this unique remaining blocker is spanned by
the entire vertex set of the complex. The results we obtain are thus
consistent with the topology of the sampled shape. We also observe
that the size of our data structure decreases during the simplifica-
tion, the additional cost of storing blockers remaining negligible
compared to the cost of storing the neighbors. Furthermore, the
average dimension of blockers remains close to 2.

These very first illustrations of our data structure and simplifi-
cation procedure are quite promising. Indeed, in these preliminary
experiments we have only tested one of the simplest criteria for
ordering edge contractions, namely the edge length, and restricted
ourselves to a strict application of edge collapses. In fact, together

with [2], we believe that this theoretical work lays theoretical foun-
dations and opens a new field of design and experimentation of sim-
plification strategies or computation of topological invariants in our
representation. In our future work, usual simplification operations
including, beyond edge contractions, cloud filtering or simplex col-
lapses and anti-collapses will be revisited in this context.
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Figure 7: Average dimension of blockers for C2, S2, C3, S3.
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Figure 8: First row: point set P of size 2646 that samples C2 = ∂[−1, 1]3 in R3 with dH(P,C2) ≤ 0.07 and simplification of its Rips
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APPENDIX

We provide pseudo-codes for testing the link condition, comput-
ing the link of a vertex v, testing whether a vertex belongs to a
complex and computing the blockers passing through c after the
edge contraction ab 7→ c. To express time complexities, let Nσ =
maxv∈σ ♯N (v) and Bσ = maxv∈σ ♯B(v). Moreover, let Mv

be the number of blockers with at least one vertex in N (v) and
M ′

v ≤ Mv be the number of blockers contained in N (v). Re-
call that di(v) designates the largest dimension of order i blockers
through v. We also suppose that we are able to answer whether
v ∈ σ in O(log ♯σ) time and whether τ ⊂ σ in O(♯σ log ♯σ)
time. Furthermore, we suppose that removing a vertex from σ takes
O(log ♯σ) time.

Algorithm 1 Return true if and only if ab satisfies the link condition
Lk(ab) = Lk(a) ∩ Lk(b).

for all σ ∈ B(a) do

if b ∈ σ then return false end if

end for

return true

The time complexity for Algorithm 1 is O(Ba log d1(a)) if the
set of blockers B(a) 6= ∅ and O(1) otherwise.

Algorithm 2 Compute the 1-skeleton (V,E) and the blockers B in
the link of vertex v.

V ← N (v)
E ← ∅
for all x ∈ N (v) do

for all y ∈ N (v) such that x < y and y ∈ N (x) do

if vxy 6∈ B(v) then E ← E ∪ {xy} end if

end for

end for

B ← ∅
for all τ ∈ B(v) with dim τ ≥ 3 do

B ← B ∪ {τ \ {v}}
end for

for all x ∈ N (v) do

for all σ ∈ B(x) such that x first vertex of σ and σ ⊂ N (v)
do

newblocker ← true

for all η ∈ B(v) do

if (η \ {v}) ( σ then

newblocker ← false; break

end if

end for

if newblocker then B ← B ∪ {σ} end if

end for

end for

Algorithm 2 takes advantage of the fact that all simplices in the
link of v are subsets of N (v) and therefore blockers in the link of
v are to be found inN (v). The time complexity is O(l(v)) with

l(v) = (Nv)
2(logNN (v) +Bv)+

NvBN (v) +MvNv logNv +M ′
vBvNv logNv.

Algorithm 3 Return true if and only if the simplex σ ⊂ Vert(L)
belongs to the subcomplex L ⊂ K.

for all v ∈ σ do

for all w ∈ σ such that v < w do

if w 6∈ NL(v) then return false end if

end for

end for

for all v ∈ σ do

for all τ ∈ BL(v) do

if τ ⊂ σ then return false end if

end for

end for

return true

For L = K, the time complexity of Algorithm 3 is O(g(♯σ, σ))
where g(x, y) = x2 (logNy +By log x). If L is the link of a
vertex v ∈ K, the time complexity can also bound by O(g(♯σ, σ))
because for each vertex x in the link of v, we have ♯NLk(v)(x) ≤
♯NK(x) and ♯BLk(v)(x) ≤ ♯BK(x).

Algorithm 4 Compute the blockers B passing through c after the
edge contraction ab 7→ c.

B ← ∅; La ← Lk(a); Lb ← Lk(b)
for all α ∈ Za(b) do

for all β ∈ Zb(a) do

if αβ ∈ K then

newblocker ← true

for all τ ( αβ with dimension one less than αβ do

if τ 6∈ La and τ 6∈ Lb then

newblocker ← false; break

end if

end for

if newblocker then B ← B ∪ {cαβ} end if

end if

end for

end for

Let d = d1(c) ≤ d0(a) + d0(b). Noting that the size of Za(b)
is upper bounded by Bb + Na and that αβ ⊂ Lk(a) ∪ Lk(b) has
size d at most, we get that the time complexity for Algorithm 4 is

O( l(a) + l(b) + (Na +Bb)(Nb +Ba)

[g(d,Na∪Nb)+(d+1)(log d+g(d−1,Na)+g(d−1,Nb)] ).

We conclude the appendix by computing the complexities when
there are no blockers through the vertices impacted by a local op-
eration. The time complexity corresponding to Algorithm 1, an-
swering if an edge ab in K meets the link condition is O(1). The
time complexity corresponding to Algorithm 2 which builds a rep-
resentation of the link of a vertex v, is O( N2

v logNN (v) ). For
Algorithm 3 which tests whether a simplex σ belongs to a sub-
complex of K, we get O( (♯σ)2 logNσ ) and updating the set of
blockers takes O( NaNb logNN (a) ) (or O( NaNb logNN (b) )).
These complexities give a good picture of the practical behavior
of the simplification process when the number of blockers remains
sufficiently small.
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