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ABSTRACT

In this paper, we investigate the highly reliable subgraph problem,
which arises in the context of uncertain graphs. This problem at-
tempts to identify all induced subgraphs for which the probability
of connectivity being maintained under uncertainty is higher than
a given threshold. This problem arises in a wide range of network
applications, such as protein-complex discovery, network routing,
and social network analysis. Since exact discovery may be compu-
tationally intractable, we introduce a novel sampling scheme which
enables approximate discovery of highly reliable subgraphs with
high probability. Furthermore, we transform the core mining task
into a new frequent cohesive set problem in deterministic graphs.
Such transformation enables the development of an efficient two-
stage approach which combines novel peeling techniques for max-
imal set discovery with depth-first search for further enumeration.
We demonstrate the effectiveness and efficiency of the proposed
algorithms on real and synthetic data sets.
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1. INTRODUCTION

Networks have evolved into a unified conceptual abstract to model
both natural and man-made complex systems such as the web, so-
cial networks, and cellular systems. Such networks often have in-
herent uncertainty. In a telecommunication or electrical network,
a link can be unreliable and may fail with certain probability [11,
31]. In a protein interaction network, the pairwise interaction is
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derived from (approximate) statistical models [4, 3, 21]; in a so-
cial network, trust and influence issues may impact the likelihood
of social interactions [12, 26, 1]. The uncertain graph model is a
convenient framework to address such scenarios [30, 38, 41, 40,
39] in a unified way. In this model, each edge is associated with
an edge existence probability to quantify the likelihood that this
edge exists in the graph. An uncertain graph is also referred to as a
probabilistic graph [2, 17].

It is evident that the connectivity of the network is a complex
probabilistic function of the network topology and edge uncertainty.
Such problems are notoriously difficult [34, 5] because of the com-
binatorially large number of possible instantiations of an uncertain
graph. For example, even the simple problem of pairwise vertex
reachability, which can be easily computed in linear time in deter-
ministic graphs, becomes a # P-complete problem in the uncertain
scenario [5]. The network reliability problem [10] is a general-
ization of pairwise reachability, in which the goal is to determine
the probability that all pairs of nodes are reachable from one an-
other. In other words, network reliability measures the probability
that the entire graph remains connected under uncertainty. The ba-
sic reachability problem is also referred to as two-terminal network
reliability and the latter problem is referred to as all-terminal net-
work reliability, which is also # P-complete [5]. As we will see,
the reliable subgraph problem addressed in this paper is an even
further generalization of these problems, as it relates to subgraph
discovery satisfying the reliability property. Network reliability al-
gorithms have numerous applications in communication networks
[11, 31], biological networks [3], and social networks [33, 35].

This paper uses a pattern mining approach towards reliable sub-
graph discovery, which is independent of specific sets of vertices.
We address the problem of determining all highly reliable sets of
vertices for which the induced subgraphs have network reliability
above a user-specified threshold. The problem of discovering all
highly reliable subgraphs can be found in a wide range of network
applications. In a protein-protein interaction network, the highly
reliable subgraphs can be used for identifying the core of protein
complexes [3]. In a telecommunication network, the highly reliable
subgraphs can serve as the basic constructs to help connect a source
and a destination [29]. In social networks with edge uncertainty,
highly reliable subgraphs can help discover cohesive groups [35].
The highly reliable subgraph problem on uncertain networks can be
considered analogous to dense component mining in the determin-
istic scenario [28]. However, the combination of network topology
and edge probabilities make this problem much more challenging,
because a structurally dense component with low probability edges
may not be reliable, and vice versa. In general, the subtle effects
of different levels of uncertainty in different structural portions of
the network need to be addressed by any algorithm for reliable sub-
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Figure 1: Running Example

graph mining. In order to address these goals, we make the follow-
ing contributions in this paper:

1. We introduce and formally define the problem of discovering all
highly reliable subgraphs in uncertain graphs (Section 2).

2. We propose a sampling scheme, which enables approximate
discovery of highly reliable subgraphs with guaranteed probabilis-
tic accuracy. We transform the uncertain graph mining problem
into a new frequent cohesive set discovery problem in deterministic
graphs (Section 3).

3. We present a two-stage approach to discover all frequent cohe-
sive sets. The algorithm combines an efficient top-down peeling
approach in the first stage (to discover all maximal frequent cohe-
sive sets) with a fast depth-first-search (DFS) mining procedure to
discover the remaining non-maximal frequent cohesive sets (Sec-
tion 4).

4. We demonstrate the effectiveness and efficiency of the proposed
algorithms on real and synthetic data sets (Section 5).

2. PROBLEM FORMULATION

We denote an uncertain directed graphby G = (V, E, P), where
V is a set of vertices, E is a set of edges, and P : E — (0,1] isa
function that determines the probability of existence of edge e in the
graph. It is assumed that the uncertainty variables of different edges
are independent of one another, though our approach also applies
in principle to the conditional probability model [30], as long as
a computational method for generating appropriate samples of the
uncertain graph is available.

A possible graph G = (Vg, Eq) of an uncertain graph G is
a deterministic graph which is a possible outcome of the random
variables representing the edges of the probabilistic graph G. We
denote the possible graph by G C G. The graph G contains a sub-
set of edges of G. In other words, we have EF¢ C G. The total
number of such possible graphs is 2%/, because for each edge, we
have two cases as to whether or not that edge is present in the graph.
The probability of sampling the graph G from the random variables
representing the uncertain graph G is given by the following sam-
pling or realization probability Pr[G]:

PriGl= [] nle) ] (1—p(e).

e€Eg e€EE\Eg

We present an example of an uncertain graph G and its possible

realization G in Figure 1. The uncertain graph G has 2'° pos-
sible outcomes, and the sampling probability of (i1 is defined as
follows:

Pr[Gl} = p(a, b)p(b, e)p(c, d)p(c, f)p(d, f)(]- - p(“’v C)) X
(1 —p(a,d))(1 —p(d,e))(L - ple,g))(1 — p(f,g)) = 0.00254016

The network reliability [10] measures the likelihood that the
entire graph is connected and can be formally defined as follows:

DEFINITION 1. (Network Reliability) Given an uncertain graph
G = (V, E, P), its network reliability R[G] is defined as the prob-

ability that its sampled realizations remain connected. This proba-
bility can be mathematically quantified as follows:

R[G] = Z I(GQ) - Pr|G], where I(G) is an indicator function,
GLg

if G is connected ;
otherwise

The definition can be easily generalized to the induced subgraph
G[Vs] for a subset of vertices Vs, C V:

R[G[V:]] = > L(G[V:]) - Pr[G], where G[V.] is the induced
GLg

subgraph of V. For simplicity, we also refer to R[G[V]] as the
subgraph reliability with respect to V.

Next, we introduce the problem of discovering all highly reliable
subgraphs in an uncertain graph:

DEFINITION 2. (Highly Reliable Subgraph (HRS) Problem)
Given an uncertain graph G = (V, E, P) and a reliability thresh-
old a € [0,1], determine all induced subgraphs whose network
reliability is at least c.

In other words, we have R[G[V;]] > «a. The resulting set is
denoted by S.. We make the important observation that the down-
ward closure property does not hold for reliable subgraphs:

LEMMA 1. Given an uncertain graph G and two subsets Vs and
VI where Vs O VY, we cannot claim either R[G[Vs]] > R[G[VY]]
or R[G[Vi]] < R[G[V/]].

For instance, in the uncertain graph G depicted in Figure 1,
R[G/{c,d, f}]] = 0.902 > R[G[{d, f}]] = 0.9 and we have
R[G[{b,e, g}]] = 0.2 < R[G[{e, g}]] = 0.5. The lack of down-
ward closure creates a challenge from an algorithmic perspective.

In addition, we can use a simple property of the uncertain graph
in order to preprocess it and drop some of the edges in order to re-
duce computational complexity. This property is as follows: Given
an uncertain graph G = (V, E, P) and a reliability threshold «,
Jor an induced subgraph G[Vs| of G, if there is an edge cut C C
E(G[Vs]) in G[V5] (removing all edges in C' makes G[Vs] discon-
nected), such that p(C) = > .o ple) < a, then R[G[V{]] < a.
Given this, we can further observe the following:

LEMMA 2. (Edge-Cut Lemma) Given an uncertain graph G =
(V, E, P) and a reliability threshold «, for any edge cut C' in G,
C C E which breaks the uncertain graph into two parts G[Vi]
and G[Vo] Vi UVa = Vand C C Vi x Vo), then if p(C) =
> ecc P(€), then, for any high reliable subgraph (HRS) G[V], ei-
ther we have Vs C Vi or Vs C Va. In other words, there is no HRS
GV with Ve N Vi #£ G and Vs N Va 2 (.

The implication of this lemma is that if for any cut C' in uncer-
tain graph G with p(C') < «, then, we can safely drop all the edges
in C without missing any HRS. Clearly, this reduces the number of
candidate sets. However, finding all such cuts with value at most
« is computationally prohibitive. In this work, we apply a simple
linear min-cut algorithm [32] starting from each vertex in the un-
certain graph in order to drop edges. This algorithm starts from
an arbitrary vertex (a single vertex set) in a graph, and then itera-
tively selects a vertex most tightly connected to the current set of
vertices and add it into the set until we find a cut C' with p(C') less
than «. At this point, we drop all the edges in the cut. We utilize



this procedure to preprocess the uncertain graph G by repeating the
procedure for all vertices.

We note that all singleton vertex sets are always highly reliable,
and a pair of vertices is a highly reliable set if and only if they are
connected by an edge with probability at least . Therefore, we will
focus on the interesting case of finding all highly reliable vertex
sets in S, with set size no less than 3. Finally, since each induced
subgraph is uniquely determined by its vertex set, we report only
vertex sets in Sq, and interchangeably use the terms “vertex sets”
and “induced subgraphs” in this paper.

3. SAMPLING APPROXIMATION SCHEME

Since the network reliability problem is #P-complete, the gener-
alized problem studied in this paper is at least as intractable. The
methods available for exact determination of subgraph reliability
are designed for cases where graphs are very small (tens of vertices
at most) [31]. We note that the problem of subgraph reliability
estimation and subgraph pattern discovery have different levels of
difficulty in terms of solvability. The former problem can of course
be partially addressed by allowing approximate estimation through
Monte-Carlo sampling; however we will see that it continues to be
a challenge to avoid uncontrolled false positives or negatives in the
pattern discovery version of the problem. The sampling approach
for subgraph reliability estimation is as follows:

(1) We first sample N possible graphs, G1,G2,--- ,Gn of G ac-
cording to edge probability function P; and (2) for any subset of
vertices Vs, we compute the indicator function 1(G;[Vs]) (whether
the induced subgraph G;[Vy] itself is a connected component) for
each sample graph G;. Given this, the sampling estimator (ﬁ[g Al
of the subgraph reliability is as follows:

275\7:1 I(Gi [VS])

R[G[V.]] ~ R[G[V.]] = ~

The sampling estimator R[G[V.]] is an unbiased estimator of the

subgraph reliability, i.e., E(R[G[Vs]]) = R[G[V5]]. More impor-
tantly, by applying the Chernoff-Hoeffding Bound [9, 19], we can
determine whether an induced subgraph is highly reliable with high
probability:

LEMMA 3. With sample size N > 6% In %, for any subset of
vertices Ve, Pr(|R[G[V:]] — R[G[V:]]| > €) < 6.

We would naturally like to use this approach for determining the
highly reliable set So. However, from a set mining perspective, it
is hard to probabilistically control the number of false positives or
negatives. This is because the use of sampling to determine the re-
liability of an induced subgraph is a multiple hypothesis test, and
it is inherently difficult to provide guarantees in such cases [6, 7].
Some recent results have shown how to effectively use multiple
hypothesis tests for the special case of the frequent pattern min-
ing problem [15, 27], but these methods cannot be used to provide
guarantees for our problem.

To deal with this challenge, we utilize two sets to approximate
Sa: (a) the first set S which tries to maximize the recall of discov-
ering highly reliable subgraphs, (b) the second set S which tries
to maximize the precision of discovery. These two sets provide
flexible and complementary choices for different applications. In
cases where we do not wish to miss any highly reliable subgraphs
(false negatives), the first set can be used, and then false positives
can be filtered out. If the application is designed for discovering
some of the very highly reliable subgraphs, the second set is more
helpful. When the two sets are similar, it is evident that it is pos-
sible to achieve both high precision and recall. We will design an
approach which achieves this goal.

Sampling-based Approach for Highly Reliable Set Discovery:
Our sampling-based approach utilizes additional parameters € and
0 for controlling the discovery results. The approach consists of
two steps:

Step 1: Sample N1 = 6% In % possible graphs of G, denoted as
dataset D1, discovering all induced subgraphs G[Vs] with reliabil-
ity ﬁ[g[vs]] > a — e using Ny sampled graphs:

S = {GIVJ]RIG[V:]] > a — ¢}
Step 2: Sample No = 6% In %5\ possible graphs of G, denoted as
dataset D3, discovering all induced subgraphs G[V5] with reliabil-

ity ﬁ[g[Vs” > o+ ¢ using No sampled graphs and G[Vs] € S:
S={GIV.IRGIV:]] > a+ €} NS

We make the following observations about this approach.

THEOREM 1. (Precision and Recall) The sets S and S pro-
duced by the sampling procedure have the following properties:

1. The expected fraction of missed highly reliable subgraphs is

at most 8. In other words, we have E(%) <94

2. With probability at least 1 — 0, all induced subgraph in
are highly reliable subgraphs: Pr(NG[Vs] € S, R[G[Vs]
a)>1—06and Pr(|SNS.|/|S|=1)>1-4;

3. With probability at least 1 — 8, the precision of S is no less
than 8 = & (S C 5): Pr(|SanS|/IS| = 8) 2 1 -4
When (3 is close to 1, the two sets become similar and the
precision increases;

S
>

4. The expected fraction of missed highly reliable subgraphs in
S is no higher than § +1 — 8+ 68/|S| ~ § +1 — B:
B8y <64+1-B+068/[S|~ 5+ 1~ B When B is
close to 1, the expected false negative rate is small.

We omit the detailed proofs since these are direct applications of
the Chernoft-Hoeffding bounds. It is evident from Theorem 1 that
0 is directly responsible for controlling the precision and recall of
the reliable subgraph discovery algorithm. The parameter € needs
further explanation. Though it does not directly appear in the preci-
sion and recall formulas, it helps to control the difference between
'S and S. In other words, when e decreases, 3 tends to increase.
However, since the required sample sizes N1 and N> are inversely
related to the square of €, it may be important to balance between
computational cost and approximation quality. We will examine
these tradeoffs in detail in the experimental section.

An important observation is that the precision and recall are con-
trolled in this approach by different probabilistic criteria. Specifi-
cally, in order to control recall, the expected false negative rate is
applied instead of the standard Bonferroni correction for multiple
comparison [15]. This is because of the difficulty in determining
the size of the result set S,. To deal with this problem, we simply
employ the expected false negative rate in the first step. Once we
have a candidate set S, we are able to utilize a more strict Bon-
ferroni correction approach [15] in the second step for controlling
precision. It is important to remember that the approach (and the
corresponding theoretical results) can be applied to an uncertain
graph in which edge probabilities are not independent, as long as
appropriate samples of the graph can be generated. For this pur-
pose, an independent set of possible graphs can be generated from
the uncertain graph by a Gibbs sampler or a Markov Chain Monte
Carlo technique [30].

Discovering Frequent Cohesive Sets: The aforementioned sam-
pling approximation scheme results in a new graph mining prob-
lem, which we call the Frequent Cohesive Set (FCS) problem:



DEFINITION 3. (Frequent Cohesive Set Problem) Given a graph

G and a subset of vertices Vs C V|G|, if its induced subgraph
G|Vs] forms one connected component, then Vs is referred to as a
cohesive set in G. Given a set of graphs D = {G1,G2,--- ,Gn}
with vertices V(G1) = V(G2) = --- = V(Gn) = V and a
minimal support threshold 0, a frequent cohesive set (FSC) is any
subset of vertices Vs C 'V that is a cohesive set in at least 0 - N
graphs.

In order to be consistent with the problem of highly reliable sub-
graph discovery, we denote the frequency of Vs being cohesive as
R[V;]. In addition, the maximal frequent cohesive set (MFCS)
problem identifies all frequent cohesive sets in D, for which none
of their supersets are cohesive. In the aforementioned sampling ap-
proach, the first step is the key, and it is needed to solve the MFCS
problem. Specifically, the dataset D, consists of N1 graphs (Step
1 in the sampling approach), and the generation of the approximate
set S corresponds to the discovery of all frequent cohesive sets in
D; with minimum support § = o — e. Once we have determined
'S, we only need to determine whether each of the vertex sets is fre-
quently cohesive in the new sampling dataset D2 (Step 2). Since
connectivity can be checked for each induced subgraph in linear
time [20], this can be done rather quickly. Due to the simplicity of
the second step, we omit further discussion and focus on the first
step of discovering all frequent cohesive sets in a graph database.

Interestingly, to the best of our knowledge, this problem has not
been studied before. The closest is Yan et al.’s work [36] on min-
ing closed frequent subgraphs with connectivity constraints. The
main difference is that in our problem, there is no isomorphism re-
quirement on the induced subgraphs, a fact which can be leveraged
towards more efficient algorithm design. In the next section, we
will introduce an efficient method for mining all the FCS in a large
graph database. Finally, we note that it is possible to generalize the
cohesive set with additional connectivity constraints, in a manner
similar to [36]. For instance, each induced subgraph may not only
be connected, but k-connected as well. Our algorithm can be gen-
eralized to handle such constraints as well. However, this is beyond
the scope of the present work.

4. MINING FREQUENT COHESIVE SETS

The frequent cohesive set problem is similar to the highly re-
liable subgraph problem, in that it also lacks the downward clo-
sure property (Lemma 1). This creates an algorithmic challenge
for the pattern mining process. In order to address this challenge,
we develop a novel two-stage mining algorithm. In the first stage,
a novel top-down peeling process is employed to iteratively refine
patterns to make them converge into maximal frequent cohesive
sets (MFCS) (Subsections 4.1 and 4.2). In the second stage, we
perform a DFS mining process which utilizes the MFCS as the
boundary to prune the search space for discovering all the non-
maximal frequent cohesive sets (Subsection 4.3). We will now de-
scribe these different stages.

4.1 Peeling Algorithm for MFCS

In this subsection, we describe a novel and efficient algorithm
for mining the maximal frequent cohesive sets (MFCS). We refer
to our approach as the peeling algorithm, because we work from
supersets to subsets during pattern discovery, as patterns are be-
ing iteratively refined (or peeled). Clearly, a successful peeling ap-
proach requires two main properties: (a) We need to dicover the
initial patterns containing all the MFCS. (b) We need an effective
peeling approach in order to converge to the correct MFCS. In the
following, we address these two key issues and provide details of
the peeling algorithm.

Relaxation Approach: In order to discover the initial patterns
which contain all the maximal frequent cohesive sets (MFCS), we
relax the cohesive condition on a vertex set by allowing connectiv-
ity through vertices outside the set. This relaxed problem also turns
out to be easier to solve because it satisfies the downward closure
property. Specifically, we introduce the maximal frequent linked
sets (MFLS) problem, which allows connectivity of a vertex set not
just through the induced subgraph itself, but other vertices as well.

DEFINITION 4. (Maximal Frequent Linked Set Problem) 4
subset of vertices Vs C V|G| in graph G is said to be a linked
set if it belongs to a connected component in G. Given a graph
database D = {G1,G2,--- ,Gn} with V(G1) = V(G2) =
-+ = V(GnN) = V and a minimum support threshold 0, a sub-
set of vertices Vs C V is referred to as a frequent linked set, if'it
is a linked set in at least 0 - N graphs.

The frequency of V5 being linked in D is denoted as f{L[VS].
The maximal frequent linked set problem tries to identify all the
frequent linked sets in D, such that any superset of these sets is
not frequently linked. A frequent linked set relaxes the cohesive
constraint by not requiring the set to be connected only through the
vertices (and edges) of the induced subgraph. It is easy to see that
any frequent cohesive set must be a frequent linked set, though the
reverse is not necessarily true. Consequently, if Vs is a maximal
frequent cohesive set (MFCS), then there must be a maximal fre-
quent linked set (MFLS) V|, such that V| O V. Thus, the set of all
MFLS can naturally serve as the initial pattern set which forms an
“upper bound” on all MFCS. Furthermore, unlike the FCS problem,
the relaxed MFLS problem has the down-closure property, which
allows efficient discovery.

Discovering all MFLS is surprisingly simple, because we can
reduce it to the classical maximal frequent itemset problem [14],
for which many efficient algorithms are available. Specifically, the
transformation procedure which converts the graph database D into
a transactional database 7" is as follows:

For each graph G; € D, find all its connected components, i.e.,
Gi = Cin UCi2 U --- U CCip. Output the vertex set of each
connected component as an independent transaction, i.e., T =

TU{V[Ca],V[Ci], -, V[Ci]} (T = 0 initially).

LEMMA 4. The set of all maximal frequent itemsets (MFI) in'T
with minimum support 0 is equivalent to maximal frequent linked
sets (MFLS) in D with the same minimum support level.

Note that the transformation process can be achieved very quickly
[20], since it has linear computational complexity with respect to
the size of the graph database. Thus, the question is how we can
refine these MFLS to produce the final set of all maximal frequent
cohesive itemsets (MFCS). Next, we discuss how this initial set can
be peeled.

Naive Peeling: The basic idea of peeling is as follows. For each
initially discovered maximal frequent linked set (MFLS) m in D,
we keep refining it in order to convert it to a (maximal) frequent
cohesive set (FCS). Specifically, if m is not a frequent cohesive set,
we first effectively peel the graph database so that it contains only
vertices in m. In other words, to refine m, we only work on the
partial graph database D[m] = {Gi[m], G2[m], - ,Gn[m]},
which contains only the induced subgraph of m for each graph in
D. Note that once we peel the graphs so that they contain only
vertex set m, they may become disconnected (since they are likely
to be linked through other vertices in the graph). Then, we can
discover all the maximal frequent linked sets (MFLS) on the par-
tial graph database D|[m] using the earlier method. Thus, we can



recursively perform this process until all maximal frequent linked
sets (MFLS) converge into the frequent cohesive sets.

Algorithm 1 Peeling(D, mfls, MFCS)

Parameter: D: the graph database D = {G1,G2--- ,GN};
Parameter: m fls: the intermediate maximal frequent linked sets;
Parameter: M F'C'S: the final maximal frequent cohesive sets;

1: for each m € mfls do

2: ifR[m|D[m]] > 6 {if m is a frequent cohesive set} then

3: if Aim’ € MFCS A'm/ D m then

4: MFCS + prune(MFCS U {m}); {maximal patterns}

5: end if

6:  else

7: T <« transform(D[m]) {transform graph database to transac-
tional database};

8: mfls’ < MFI(T,0) {maximal frequent itemsets};

9: Peeling(D, mfls', MFCS),

10:  endif

11: end for

Algorithm 1 sketches the peeling process. The input is the initial
MFLS discovered using the aforementioned MFI mining approach.
Then, we invoke the peeling algorithm. In the loop (Lines 1 to 13),
we iteratively visit each maximal frequent linked set m in m fls.
If m is indeed a frequent cohesive set (R[m|D[m]] > 6), we try
to add it in the result set M F'C'S (Lines 3 to 5) where the prune
procedure enforces the maximal constraint. If not, we perform the
refinement process described in lines 8 — 10. In other words, we
discover the maximal frequent linked sets in D[m]. We recursively
perform peeling for all newly discovered MFLS (Line 11).

THEOREM 2. (Correctness of Peeling) The Peeling algorithm
(Algorithm 1) can discover all maximal frequent cohesive sets from
graph database D with minimum support 0.

The proof of the theorem is omitted for simplicity. Note that
the peeling process requires us to recursively invoke the pattern
discovery algorithm on smaller sets. It is important to remember
that later invocations of the MFI procedure are typically on trans-
actions of much smaller length. This is therefore typically very
fast at lower levels of the recursion. Furthermore, the cost to com-
pute R[m|D[m]] and transform a graph database to a transactional
database requires a simple DFS scan of D[m] [20], which is a com-
paratively very small overhead to MFI mining. Nevertheless, the
naive peeling algorithm may redundantly re-examine the same in-
termediate frequent linked sets (MFLS) multiple times. For ex-
ample, when two MFLS overlap along a large number of vertices,
then their individual peeling processes may produce the same in-
termediate MFLS. The recursion could then create a combinational
explosion, the bulk of which is redundant processing. This needs to
be controlled in order to enable more efficient and practical pattern
discovery. In the following, we will present a number of elegant
methods to avoid duplicate work, and significantly speed up the
peeling algorithm.

4.2 Fast Peeling Algorithm

In order to speed up vertex pattern generation, we use the meth-
ods of layered peeling and transaction reduction. We discuss them
below.

Layered Peeling: This technique focuses on reducing the process-
ing of redundant intermediate patterns. The basic idea is that in-
stead of performing the recursive peeling of each individual inter-
mediate pattern, we employ a layered peeling strategy. For an ini-
tial set of patterns in the first layer, we peel them all together to
produce another set of intermediate patterns in the second layer.

We then perform the same peeling process for the new set of in-
termediate patterns. If the new patterns (frequent linked sets) are
frequent cohesive sets, we remove them from the new layer. More
importantly, each layer is composed of only maximal patterns. This
is based on the following observation:

LEMMA 5. Given two frequent linked sets m and m’, if m C
m/, then the maximal frequent cohesive sets (MFCS) contained by
m, denoted as M FCS(m), must be contained in MFCS(m').
Furthermore, assuming a pattern T is already known to be a FCS,
then in the new layer, if it contains an intermediate pattern which
is the subset of T\, then, the intermediate pattern can be pruned
without missing any MFCS.

This property ensures that it is sufficient to work only with maxi-

mal linked sets without losing information. This allows each unique
intermediate pattern to be peeled only once when it is necessary for
new maximal frequent cohesive set discovery. In addition, for the
latter statement, if m is such an intermediate pattern m C 7T, then
m cannot produce any new MFCS. Using our running example in
Figure 1 with 100 sampling graphs and 6 = 0.5, we need three lay-
ers to discover all the MFCS. In the first layer which includes all
the initial MFLS in G, we have four: {a, b, ¢,d, f},{a,¢c,d, f, g},
{c,d,e, f,g}, and {a,c,d, f,e}. Then, in the second layer, we
have three MFCS {c, d, e, [}, {a,c,d, f}, and {a, b}, and two in-
termediate patterns (MFLS) {d, e, f, ¢} and {c,d, f,g}. Finally,
in the third layer, from the last two intermediate patterns, we found
one MFCS {e, g} and two new intermediate patterns {c, d, f} and
{d,e, f}. Since we already knew {a, ¢, d, f} is a MFCS, we can
prune {¢, d, f} from the new layer. Similarly, we can prune {d, e, f}
because of {d, e, f, g}. Thus, the third layer becomes empty and
we already have found all the MFLS.
Transaction Reduction: In the method discussed above, we en-
sure that patterns in a given layer do not contain one another. How-
ever, this does not account for the fact that patterns which are pro-
duced in lower layers may be subsets of those produced in earlier
layers. Therefore, in order to further speed up the peeling algo-
rithm, we would like to prevent such non-maximal patterns from
being generated in the first place. The following lemma provides
an important tool for achieving this.

LEMMA 6. Let us assume that the patterns in the current layer
L are visited sequentially. Let P C L include those patterns which
have already been visited (peeled) at any given time point. Let Vi
be the vertex set of a connected component Csj in G;[m], where
m € L has not been peeled. If there is another pattern (frequent
linked sets) m' which has been processed (peeled) (m' € P) and
Vij € m, then we can safely drop Vij in the transactional database
transformed from D|m] without losing any potential maximal fre-
quent cohesive sets in D.

The same dropping condition can be applied for any discovered
(maximal) frequent cohesive sets in D. If any transaction is a subset
of a (maximal) frequent cohesive set in D, we can also safely drop
it. This is because transactions such as V;; cannot contribute to any
new MFCS, and can only help generate patterns which are subsets
of patterns which have already been visited. Thus, dropping such
transactions in the first place can help prevent the generation of un-
necessary patterns. In addition, such transaction reduction can also
help reduce the computational cost, because it results in a smaller
database for MFL.

Overall Algorithm: Algorithm 2 depicts the fast peeling process.
Initially, L contains all the maximal frequent linked sets in D (Line



1). Then we iteratively visit each element m of L in decreasing or-
der of pattern size. This order is chosen in order to maximize the ef-
ficiency of search space pruning. This is based on Lemma 6. We try
to add those frequent cohesive patterns into the result set M F'C'S
(line 6 to 10), where prune maintains the maximal constraint for
MFCS. For those that are not frequent cohesive sets, transRe-
duc produces and reduces the transactions which are contained by
patterns in P or M F'C'S (Line 11) according to Lemma 6. This
reduced database 7" is used to generate the intermediate patterns
mfls’ (Line 13). These are merged into L’ by the prune procedure
to maintain the maximal constraint(Line 14). Finally, the new layer
will be processed (Line 17) until there are no new patterns to be
generated.

Algorithm 2 FastPeeling(D))

Parameter: D: the graph database D = {G1,G2--- ,Gn}; {Step I:
generating initial patterns}

l: L + MFI(transform|[D],0) {L: existing layer};

2: L' < 0 {L': new layer}; M FCS <« () {the result set};

3: while L # 0 do

4: P « () {already peeled patterns in L}

5:  for each m € L {decreasing order of the pattern size} do

6: if R[m|D[m]] > 0 {if m is a frequent cohesive set} then

7: if fm’ € MFCS Am’ O m then

8: MFCS + prune(MFCSU{m});

9: end if

10: else

11: T «+ transReduce(D[m|, P U MFCS) {Lemma 6}

12: mfls' < MFI(T,0) {maximal frequent itemsets};

13: L' + prune(L’ Umfls"); {Lemma 5: maximal patterns}

14: end if

15: P+ PU{m};

16:  end for

17: L <+ prune(L’ U MFCS)\ MFCS {Lemma 5: pruning using
FCS}; L' « 0;

18: end while

The computational complexity of our algorithm is dominated by
the cost of mining Maximal Frequent Itemsets (MFI). Let the cost
of mining MFI in the transformed transactional database from the
entire graph database D be O(M FIp) (Line 1). For i-th layer L,
we can break it into the minimal number ¢; of batches, such that the
patterns are all disjoint with one another in each batch. Thus, we
can see the overall cost of each layer is bounded by O(c; M FIp).
If there are a total of k layers, then the total computational com-
plexity is O((Zf:1 ¢i)M F1Ip). However, since the transactional
database in each batch is typically much smaller than the first trans-
actional database (Line 1), the total cost of mining MFI for all lay-
ers is generally even smaller than the cost of MFI mining once at
the start (Line 1). We note the number of total layers is typically
quite small in practice. For example, in all our experiments, this
number was less than 5. Therefore, the total computational com-
plexity of the peeling approach is proportional to a single execution
of MFIp (or O(MFIp)). As we will show from the experimen-
tal results in Section 5, the overall computational time of peeling is
no higher than 2 times that of mining MFI in the first round.

4.3 DFS Mining for Non-Maximal FCS

While the previous section provides a way to discover maximal
patterns, we also need to discover all non-maximal frequent cohe-
sive sets. A naive approach would be to directly apply the peeling
algorithm to further discover the remaining sets. To do that, we can
explicitly remove each vertex from the (maximal) frequent cohe-
sive set to produce the intermediate patterns for further peeling. For
instance, for a (maximal) pattern {a, b, ¢, d}, we can generate new
intermediate patterns {b, ¢, d}, {a,c,d}, {a,b,d}, and {a,b, c}.

Clearly, this may significantly increase the number of times we
need to scan the graphs, and invoke the maximal frequent item-
set mining algorithm. The speedup techniques of Lemma 5 and
6 are also not directly applicable in this case. The key question
is whether we can leverage our knowledge of the maximal frequent
cohesive sets in order to enable discovery of the non-maximal ones.
In the following, we provide a positive answer to this question by
amortizing the discovery across different maximal patterns.

The basic idea of our mining algorithm is that we perform a DFS
traversal on G to enumerate any connected vertex sets in V' which
are contained by at least one MFCS being covered in the peeling
algorithm. Then, for each of these vertex sets, we perform an effi-
cient test to determine whether they are frequently cohesive. Since
there is a standard method for enumerating connected vertex sets
along the lines of enumerating cliques [23, 8], the main issue is
how we can efficiently control the enumeration boundary. Clearly,
we may simply test whether each discovered vertex set is contained
by a MFCS, but such a test can be rather costly [37]. Therefore, we
next discuss how to speed up this test.

Fast Subset Checking: Each MFCS is assigned a unique ID, and
each vertex in the uncertain graph is associated with a list that
records the IDs of each MFCS containing it. Furthermore, each
enumerating vertex set maintains a list which is the intersection of
the lists from its individual vertices. In other words, the list records
all the MFCS which contain the vertex set. Importantly, this list can
be maintained in an incremental fashion. We also note that when
the list for a vertex set is empty, it is implied that no MFCS contains
it.

Fast Connectivity Test: In order to test whether a vertex set Vs is
frequently cohesive, the straightforward method would be to di-
rectly check the connectivity of each induced subgraph G1[Vs],
G2[Vi], --+ ,GN[Vs]. An observation which enables convenient
speedup is as follows: For a fully connected induced subgraph, if a
new vertex is added and it is adjacent to at least one vertex in the
subgraph, then the new subgraph is also connected.

This implies that we can use a binary vector to record whether

each induced subgraph of the current vertex set is connected, and
then we can apply it to test whether its immediate expansion by one
vertex is connected. It is only when the induced subgraph is not
fully connected that we need to traverse its immediate expansion in
order to determine its connectivity.
Algorithm Description: Algorithm 3 describes a DFS mining pro-
cedure in order to discover all non-maximal frequent cohesive sets.
First, we note that parameters v, Vs, N and Ex are the standard pa-
rameters for enumerating the connected vertex sets in a graph [23,
8]: v is the newly expanded vertex in the current connected ver-
tex set Vs in uncertain graph G; N records all the neighbors of V,
which can be possibly added into Vi; and Ex is the exclusion list
of vertices which should not be added into V; (a basic mechanism
to avoid the redundant enumeration of the same connected vertex
set in a graph). Ex typically records those vertices visited earlier
in the DFS enumeration order. The parameter /D is for the afore-
mentioned boundary test and vector C'on is for the fast connectivity
test.

For each newly expanded vertex set V, (to which vertex v was
newly added), Algorithm 3 first checks whether it is a FCS using
the fast connectivity test (Lines 1 to 10). Then, no matter whether
the vertex set is a FCS or not, each of its neighbors except those
in the exclusion list (avoid redundant enumeration) will be visited
(Line 11). This is a typical way for recursively enumerating the
connected vertex set. Specifically, 1D’ is the list recording all the
IDs of those MFCS containing Vi U{w} and it is maintained incre-
mentally (Line 12). Once a vertex w is visited, we put it immedi-



Algorithm 3 MiningNonMaximal(v, V5, I D, Con, N, Ex)

Parameter: v {the newly added edge-vertex in Vs }
Parameter: V; {the current vertex sets}
Parameter: /D {the IDs of maximal cohesive sets containing Vs }
Parameter: Con {the binary vector for connectivity}
Parameter: N {the neighbors of V;}
Parameter: Ex {exclusion list of vertices (already expanded)}
1: for each G; € D do

if R[V;] > 6 {using Con’ to compute} then

FCS + FCS U{Vs} {non-maximal frequent cohesive sets}
10: end if
11: for each w € N\ Ex do
12:  ID’ «+ ID N ID[w]; {MFCS containing Vs}
13:  Ez + EzxU{w};
14: i |ID'| > 1V (|ID'| = 1 AVs U {v} # MFCSinID') then
15: MiningNonMaximal(w, Vs U {v}, ID’, Con’,
Neighbor(w|G) UN, Ex);

2:  if Con[i] then

3: Con'[i] < (Neighbor(v|G;) N Vs) # 0;
4:  else

S: Con'[i] < Connected(G;[Vs));

6: end if

7: end for

8:

9:

16:  endif
17: end for
Procedure Main
: Ex + 0
: for each w € V\Exz do
Ex + ExU{w};
MiningNonMaximal(w, {w}, ID[w], 0, Neighbor(w|G), Ex);
end for

AR N

ately in the exclusion list so that the latter iteration will not visit it
again (Line 13). For each newly expanded vertex set, when either
its list /D’ is contained by at least two MFCS or is a strict subset of
the only MFCS (|ID’| = 1), we know it has not reached the bound-
ary yet and cannot be considered a candidate for non-maximal FCS
(Lines 14 — 15).

Note that the worst case computational complexity of this al-
gorithm is determined by the total number of connected vertex
subsets which are bounded by MFCS. For each connected vertex
set, we need to traverse each of its induced subgraphs in the graph
database. This has linear cost.

5. EXPERIMENTAL EVALUATION

In this section, we present experimental results studying the ac-
curacy and efficiency of our method. Specifically, we are interested
in the following two questions:

1. Accuracy: How well does the sampling approach approximate
the set of highly reliable subgraphs S, ? Recall that we utilize two
sets S and S (S D S) to approximate S, and these two sets are
designed to measure recall and precision respectively. When the
two sets are similar, they can provide accurate estimation of the S,
according to Theorem 1. In such cases, the precision and recall are
both high. It is easy to see that the fraction § = % provides a

good indicator for the accuracy of the sampling approach for ex-
perimental evaluation.

2. Efficiency: What is the performance in terms of overall running
time? As we mentioned before, the sampling approach consists of
two steps for (1) sampling dataset D, and for (2) sampling dataset
Ds.

In step (1), we need to discover all frequent cohesive sets (FCS)
from D;. Specifically, step (1) contains two stages: in the first
stage, we apply peeling (naive or fast) algorithms to discover all
maximal frequent cohesive set (MFCS); and in the second stage,
we utilize a DFS mining process using MFCS to discover all the

Table 1: 5(%) vs varying ¢ (0 = 0.01, « = 0.99)
[ € =0.030 [ ¢ =0.035 | ¢ =0.040 | ¢ =0.045 | € =0.050

Yeast 55.92 54.26 53.63 53.55 49.54
Fly 57.86 56.90 52.40 52.57 52.62
Mouse 98.65 99.10 99.10 99.10 99.10
Rat 100.00 100.00 100.00 100.00 100.00
DBLP 73.90 70.28 70.01 68.60 65.11

Table 2: 5(%) vs varying 6 (€ = 0.05, « = 0.99)
[ 5=0.01 | 5=0.008 | 6=0.006 | 6=0.004 | 6=0.002
Yeast 46.78 46.72 49.66 49.30 48.76
Fly 50.76 51.46 51.46 52.23 52.91
Mouse | 99.10 99.10 99.10 99.10 99.10
Rat 100.00 100.00 100.00 100.00 100.00
DBLP 65.49 66.73 67.42 65.32 66.23

remaining Non-Maximal FCS. Given this, we would like to under-
stand how the computational time is distributed between Steps (1)
and (2), and a quantification of the efficiency advantage of fast peel-
ing over the naive approach. Step (2) can be implemented much
more efficiently, because it requires us to only check membership
on Ds.

All algorithms were implemented using C++ and the Standard
Template Library (STL), and were conducted on a 2.0GHz Dual
Core AMD Opteron CPU with 4.0GB RAM running Linux.

5.1 Experimental Results on Real Datasets

In this subsection, we report our experimental results on five real
datasets: four protein-protein interaction (PPI) uncertain graphs
and one coauthor graph. The PPI datasets are integrated from Bi-
oGRID database and STRING databases, and are provided by the
author in [39]. The coauthorship network is derived from DBLP,
and is extracted from the dataset provided by the author in [30].
The summary of those datasets are listed in Figure 2, where the
last column avg(pe) indicates the average edge probability in the
uncertain graph.

In the first three groups of experiments, we focus on studying
how the accuracy indicator (3 is affected by the three user-defined
parameters, the reliability threshold «, the confidence level §, and
€ which directly relates to 5 (Section 3).

Varying e: In this experiment, we fix the reliability threshold «
and the confidence level § with & = 0.99 and 6 = 0.01 (99%
confidence), and we vary the € from 0.03 to 0.05. Table 1 reports
the variation of the accuracy indicator 5 with € on each dataset.
First, it is evident that /3 is always at least 50%, and in 3 out of 5
datasets (Mouse, Rat, and DBLP), 3 is generally much higher than
65%. The lowest values of 3 were obtained for the Yeast and Fly
data sets, but were still above or very close to 50%. Taking S as
the example, this simply suggests that at least half of the discovered
subgraphs in S are guaranteed to be highly reliable (> a = 0.99),
and the expected fraction of HRS being missed by S is no more
than 1%. The best performance was obtained on Mouse and Rat,
for which 5 was very close to 1. A detailed analysis shows that
most of the subgraphs discovered from these two datasets are very
small and their number is also small. They also seem to form a

Table 3: 5(%) vs varying o (€ = 0.05, = 0.01)
[[a=0.99 [ a=0.97 [ a=0.95 | a=0.93 | a=0.90

Yeast 48.64 9.25 5.25 52.94 80.92
Fly 51.27 41.87 30.92 52.77 63.69
Mouse 99.10 92.36 86.42 94.24 96.04
Rat 100.00 100.00 100.00 98.00 97.13
DBLP 65.51 53.82 45.64 68.13 83.84
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Table 4: Execution time(seconds) for real datasets (¢ =
0.05,6 = 0.01, « = 0.99)

NpeelDFS FpeelDFS
Step 1-p | Step 1-d | Step2 | Step 1-p | Step 1-d | Step 2
Yeast 30.03 3.05 47.23 0.99 2.88 44.71
Fly 437.08 22.76 209.90 23.28 19.22 180.95
Mouse 28.79 0.05 0.86 0.75 0.05 0.84
Rat 8.67 0.02 0.44 0.39 0.02 0.40
DBLP | 368.67 63.60 26.64 26.58 61.77 28.52

few small components. Thus, these small components are highly
reliable and are easily discovered without too many false positives.
Second, it is evident that 3 increases for lower values of €. This is
because reduced values of e lead to higher sample sizes, and also
because smaller e would result in more accurate thresholds for the
hypothesis test. In other words, o — € increases and v+ € decreases.
Thus, S tends to reduce and S tends to increase as ¢ reduces.
Varying ¢§: In this experiment, we fix the reliability threshold v and
parameter € (o = 0.99 and € = 0.05), and we vary ¢ from 0.01 to
0.002, which correspond to very high levels of confidence. Table 2
reports the accuracy indicator 8 with respect to different values of §
on each dataset. First, we can see that the overall accuracy indicator
3 is consistent with the first experiment, because it is usually larger
than 50%. Second, we observe that as & decreases (confidence level
1 — ¢ increases), (3 also tends to increase. However, the margin of
increase is relatively small. This is because the influence of § on
sample size is proportional to In(1/4), whereas the influence of €
on sample size is proportional to 1/¢?. Therefore, § has a much
smaller influence on the sample size. This also suggests that the
overall recall rate of S is quite consistent, because of our earlier
observation that the expected false negative rate is 9.

Varying «: In this experiment, we fix the confidence parameter §
and parameter ¢ (§ = 0.01 and ¢ = 0.05), and we vary the relia-
bility threshold o from 0.99 to 0.90. Table 3 reports the accuracy
indicator 3 with respect to the different « on each dataset. Interest-
ingly, we note that when « reduces, ( first decreases and then in-
creases. This reduction in 3 is particularly noticeable for the Yeast
data set, though it is moderate for all other data sets. The reason for
the decreasing-increasing trend seems related to the distribution of
highly reliable subgraphs. When « is very high (o = 0.99), both
S and S are quite small and also close. As « slightly decreases, S
(defined by threshold o + €) remains relatively stable, but .S (with
threshold v — €) can grow rather quickly. This results in a decrease
in 3. However, when « further decreases, the set S grows faster
than S. Therefore, the difference between them becomes smaller.
Execution Time: In this experiment, we study the computational
time of Steps 1 and 2, and compare the performance of naive peel-
ing and fast peeling. Specifically, we fix the parameters «, § and
€, and report the peeling time (discovering MFCS in Step 1), the
DFS mining time (discovering Non-maximal FCS in Step 1), and
the time in Step 2. We denote NpeelDFS to be the algorithm uti-

lizing the naive peeling (Algorithm 1) and FpeelDFS (Algorithm
2) to the algorithm utilizing the fast peeling. We can see that in
most of the cases, the peeling stage requires most of the computa-
tional time in NpeelDFS. The FpeelDFS algorithm is faster than the
naive peeling approach by more than one order of magnitude. Fur-
thermore, we observe that the overall computational times of Steps
1 and Step 2 become comparable in the case of the fast peeling
approach. Since the processing in Step 2 is rather straightforward
(checking whether a given subgraph is a FCS on the larger dataset
D), we do not consider further optimization of this step here.

5.2 Experimental Results on Synthetic Datasets

Here, we focus on studying the running time of our mining ap-
proach on synthetic datasets. Specifically, we utilize the block-
random graph model [24], which can generate both the Erdds-Rényi
random graph and Scale-free random graph, along with a speci-
fied community structure. The edge existence probability is uni-
formly generated between O and 1. We report the overall running
time of NpeelDFS and FpeelDFS, and their respective peeling time
(Npeel and Fpeel) in Step 1. The default parameters are o = 0.99,
0 = 0.01, and € = 0.05. Figure 3(a) reports the running time with
respect to the graph size as the the number of vertices change from
1000 to 3000 with the average edge density fixed at 1.5. Figure 3(b)
reports the running time with respect to the reliability threshold
varying from 0.95 to 0.99 on an uncertain graph with 1000 nodes
and edge density fixed to 1.5. Figure 3(c) reports the running time
with respect to the edge density varying from 1.8 to 3.5 on an un-
certain graph with 1000 nodes. Here, we can see that throughout
these experiments, the overall running time of the fast peeling based
approach FpeelDFS is much faster than that of the naive peeling
approach NpeelDFS. In addition, in most of the cases, it seems the
peeling time (discovering MFCS) is also a major component of the
overall running time.

6. RELATED WORK

The work closest to ours is the most reliable subgraph prob-
lem [16, 17, 25, 18]. Given a set of vertices, this problem tries
to remove K edges from the original graph so that the remaining
subgraph can maximize the probability of these vertices belonging
to one connected component. Thus, the highly reliable subgraph
(HRS) problem can be viewed as a generalization of the most re-
liable subgraph problem, because no initial set of vertices is spec-
ified. Furthermore, HRS also puts more constraints on vertex set
reliability, because it requires all vertices in each subgraph to be
fully connected, whereas the most reliable problem only requires
the targeted set of vertices in the subgraph to be connected. Be-
cause of these differences, the methods developed for most reliable
subgraph mining cannot be generalized to this new problem.

Mining uncertain graphs has recently attracted much attention
in the data mining and database research communities [30, 38, 39,
40]. Specifically, Zou et al. study mining frequent subgraphs [39]
and top k-cliques [40] in a single uncertain graph. Potamias et



al. study the k-Nearest Neighbor problem in uncertain graphs [30].
Yuan et al. study a new variant of the shortest path problem in an
uncertain graph [38], and Jin ef al. study the distance-constraint
reachability problem, a generalization of the classic two-terminal
reliability problem [22].

The frequent cohesive set (FCS) discovery problem studied in
this work is closely related to frequent pattern mining [13]. This
broad subfield has been extensively studied since its inception in
the early nineties. However, the frequent cohesive set (FCS) prob-
lem has not been studied before. Furthermore, we deviate from nat-
ural pattern mining approaches which focus on bottom-up strate-
gies (level-wise or pattern-growth). Here, we introduce a novel
peeling approach which enables top-down pattern discovery.

7. CONCLUSIONS AND SUMMARY

In this paper, we present a method for mining reliable subgraph
patterns in uncertain graphs. Such problems are extremely chal-
lenging in the uncertain scenario and tend to be # P-complete.
We present a probabilistic method for mining such reliable graphs
which retains efficiency and also provides probabilistic bounds for
accuracy. A novel peeling approach reduces the computational
complexity by carefully pruning of large portions of the massive
search space during the pattern discovery and exploration process.
We present experimental results illustrating the effectiveness and
efficiency of the method.
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