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Abstract
Oblivious RAM simulation is a method for achieving confidentiality and privacy in cloud computing

environments. It involves obscuring the access patterns to a remote storage so that the manager of that
storage cannot infer information about its contents. Existing solutions typically involve small amortized
overheads for achieving this goal, but nevertheless involve potentially huge variations in access times,
depending on when they occur. In this paper, we show how to de-amortize oblivious RAM simulations,
so that each access takes a worst-case bounded amount of time.

1 Introduction
In the cloud storage model, a user, Alice, remotely stores a large set of data with a remote server, Bob,
offloading her need to maintain her data. To achieve confidentiality from Bob, Alice should store her data in
encrypted form, but encryption alone is not enough, since information about her data may be leaked by the
pattern in which she accesses it.

Oblivious RAM simulation tackles this privacy-protection problem by hiding data access patterns from
Bob. Such solutions simulate a general random access machine (RAM) computation with respect to the
external storage, but they perform additional obfuscating accesses that hide the locations of requests. Re-
cently there has been a considerable amount of work on methods that optimize the access overhead, i.e.,
the number of additional accesses to the data repository per request to provide oblivious access (e.g.,
see [7, 6, 1, 12, 10, 2, 14, 5]). Nevertheless, existing oblivious RAM solutions still suffer from a worst-case
access overhead that can be as bad as Ω(n) for n data items. This worst-case overhead makes oblivious RAM
unsuitable in many practical scenarios, such as real-time systems and multi-user systems. For example,
consider a multi-user environment where a group of users share the same external storage: one of the users
has to make Ω(n) accesses in the worst case to make sure all accesses remain oblivious. And she may have
to spend this much time with each of her accesses. Thus, we are interested in this paper of de-amortized
solutions that have the same access overhead for every request.

1.1 The Oblivious RAM Model
An oblivious RAM (ORAM) is an interface between a client, Alice, and a data repository, Bob, whereby
Alice outsources the storage of n data items to Bob. When Alice makes a request for item x, she issues a
sequence of accesses to Bob’s data repository to retrieve x in such a way that Bob is unable to determine
which item is being accessed (any better than a random guess). Of course, there is a simple way for Alice
to obfuscate her requests—she could simply read all items from the data repository with each request (her
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Table 1: Comparison of Oblivious RAM simulation Methods.
Client

Memory
Server Storage

Overhead
Amortized Access

Overhead
Worst-Case

Access Overhead
Goldreich-Ostrovsky [5]

√
n O(1) O(n) O(

√
n log2 n) O(n log2 n)

Goldreich-Ostrovsky [5] log n O(1) O(n log n) O(log3 n) O(n log2 n)
Williams et al. [14] O(

√
n) O(n log n) O(log2 n) O(n log n)

Goodrich-Mitzenmacher [6] (1) O(1) O(n) O(log2 n) O(n)

Kushilevitz et al. [10] O(1) O(n) O(log2 n/ log log n) O(n)

Stefanov et al. [12] O(
√
n) O(n) O(log2 n) O(

√
n)

Goodrich-Mitzenmacher [6] (2) O(nν) O(n) O(log n) O(n)
Goodrich et al. [7] O(nν) O(n) O(log n) O(n)

Boneh et al. [1] O(
√
n log n) O(n) O(1) O(n log n)

De-amortized logn O(nτ ) O(n) O(logn) O(logn)
De-amortized

√
n O(1) O(n) O(

√
n log2 n) O(

√
n log2 n)

requested item x is sure to be in this collection). But such a solution has access overhead Θ(n); hence is
quite inefficient.

1.2 Related Prior Work
Prior work on oblivious RAM addresses the trade-off between the size of the client’s memory, the access
overhead, and the space overhead at the data repository, i.e., the additional space used beyond the n items.
Based on the assumptions about the client, oblivious RAM models can be split into stateless and stateful
solutions. A stateless oblivious RAM is not allowed to keep a state between requests and hence can be used
in a multi-user scenario. Stateful solutions assume Alice keeps information in a private storage (which she
maintains), which helps her perform her accesses obliviously in the remote storage.

Stateless oblivious RAM simulation was first proposed by Goldreich and Ostrovsky in [5], who present
a preliminary simple solution with O(

√
n log2 n) amortized access overhead, referred as the square-root

solution, and a more complex solution with O(log3 n) amortized access overhead. Goodrich and Mitzen-
macher [6] improve this result by giving a method with O(log2 n) amortized access overhead with high
probability. Recently Kushilevitz et al. [10] show that techniques from [6] can be extended to obtain
O(log2 n/ log log n) amortized access overhead. All the above methods are stateless and consider a private
memory of size O(1) for Alice, an overly restrictive assumption in practice.

Other solutions [7, 13, 14] improve the overall access overhead by assuming that a client has a workspace
of non-constant size. Williams and Sion [13] achieve O(log2 n) expected amortized access overhead and
O(n log n) space overhead with O(

√
n) private memory. Williams et al. [14] improve the method from

[13] to achieve O(log n log log n) amortized access overhead. Goodrich et al. [7] give an oblivious RAM
simulation method with O(log n) amortized access overhead given that a client has access to workspace of
size O(nν), for a given constant ν > 0.

Other recent papers provide stateful solutions, i.e., where a client maintains a state between requests
to the data repository in a non-constant sized private cache. A RAM simulation by Goodrich and Mitzen-
macher [6] achieves an overhead of O(log n) and uses a private cache of size O(nν), for any given fixed
constant ν > 0, which maintains a state. Boneh et al. [1] propose a scheme that achieves an amortized
overhead of O(1) but using a cache of size O(

√
n log n), which also maintains state.

Damgård et al. [2] and Goodrich et al. [7] present stateless oblivious RAM simulations without crypto-
graphic assumptions about the existence of random hash functions. Damgård et al. [2] show that amortized
access overhead of O(log3 n) is possible for oblivious RAM simulation without using random functions.
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Goodrich et al. [7] present a method with O(log2 n) amortized access overhead that also does not use
random functions.

To sum up, then, all the methods described above have amortized access overheads. (See Table 1 for the
comparison of ORAM simulations.) Indeed, even the most efficient previous solutions can incur an O(n)
overhead in the worst case for any given request. This is slightly improved in recent work by Stefanov et
al. [12], who give an oblivious RAM simulation that achieves an O(

√
n) access overhead in the worst case,

while having O(log2 n) amortized overhead complexity; hence, their solution is also amortized, but not as
inefficient as previous schemes on a per-access basis.

Oblivious RAM simulation has also been used to protect against traffic analysis in a networked file
system [15].

Kosaraju and Pop [9] give an overview of general de-amortization techniques. E.g., one of the tech-
niques, de-amortization via data duplication [3], maintains two copies of the data set: one for performing
the redistribution of the data and one for accesses. We cannot apply these general techniques to our problem,
however, since we also need to ensure the obliviousness of the de-amortized algorithm.

1.3 Our Results
We present two oblivious RAM simulations that achieve a sublinear access overhead on every request made
by the client to the data repository. The first is a de-amortized version of the square root solution originally
presented in [5]. This method has O(

√
n log2 n) access overhead in the worst case while using O(n) space

on the data repository and assuming O(1) workspace on the client side. We then de-amortize an efficient
oblivious RAM simulation by Goodrich et al. [7], that we refer to as the “log n hierarchical” solution. In
this solution, we achieve wost-case access overhead ofO(log n) and space overhead of O(n), assuming that
a client has access to a workspace of size O(nτ ), for any given fixed constant τ > 0.

2 Preliminaries
We assume that the client outsources n data items to a remote data repository that supports the following
access operations:

• read(i): return the content of location i;

• write(i , x ): write data item x to location i;

• copy(i, j, count): copy a memory block of size count from location i to location j.

The latter block-copy operation is not actually required by our methods but using it makes the algorithms
more intuitive.

We also assume that provider of the storage service, Bob, is an honest-but-curious adversary [4], in that
he correctly performs all operations and does not tamper with the data.

A data item is stored by Alice in the repository as the encryption of a pair (x, v), where x is the virtual
address of the item in the RAM and v is its value. Typically, oblivious RAM solutions use probabilistic
encryption to make sure that Bob cannot distinguish between reads and writes or track repeated accesses
to the same data item. Namely, Alice encrypts each data item that she writes to the data repository using a
probabilistic encryption scheme based on her private key. Also, Alice reencrypts and rewrites each data item
she accesses so that its encryption will change even if the data item is not modified. This technique ensures
that Bob is computationally unable to determine the plaintext of any memory cell from that cell’s contents
alone. Also, it is unfeasible for Bob to determine whether two memory cells store encryptions of the same
data item.
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Figure 1: Memory layout of the data repository during oblivious RAM simulation: (a) original version of
the square-root solution [5]; (b) our de-amortized version (Section 3.1).

2.1 Square-Root Solution
We first give an overview of the square-root oblivious RAM simulation method [5], which hasO(

√
n log2 n)

amortized access overhead. We give enough details about the method for a reader to understand our de-
amortized version provided in Section 3.1. Please refer to [5] for the full description.

The square-root solution uses storage space of size n + 2
√
n at the data repository. (See Figure 1(a).)

This space is split into a buffer, B, and a table, T . The buffer B has size
√
n and is used to cache the last√

n requests. Table T contains a pseudo-random permutation of the n data items and
√
n dummy items.

Each data item is associated with a key (virtual RAM address) x, x = 1, · · · , n and each dummy item
is given a key n + d where d = 1, · · · ,

√
n. All items in T are ordered according to a pseudo-random

permutation function π such that π(x) gives the location of the item with key x in T . (The full solution,
which uses a binary search, is omitted in our description since the overall complexity of the request is
O(
√
n).) The square-root ORAM simulation method is outlined in Algorithm 1. Note that table T has to be

rebuilt after every
√
n requests. The rebuild phase consists of obliviously replacing the items in T for which

there is a new instance inB, associating the keys of real and dummy items with tags from a new permutation

Algorithm 1 Oblivious RAM simulation using the square-root approach [5].
Generate pseudo-random permutation function π
Initialize table T by storing the n data items and

√
n dummy items according to permutation π

count← 1
while true do {process a request}
found ← false
Scan all the locations in buffer B. During the scan, if data item x is found, set found ← true .
if found then

Access location π(n+ count) in T {a dummy item}
else

Access location π(x) in T {data item x}
end if
Rewrite B, adding or replacing data item x
count← count+ 1
if count >

√
n then

Generate pseudo-random permutation function π′

Construct a new table T ′ with π′ using items in T and B.
clear B and set T ← T ′, π ← π′, and count← 1

end if
end while
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π′, and sorting items in T according to π′. The rebuild phase takes O(n log2 n) accesses. Since the rebuild
happens only once every

√
n requests, the amortized access overhead per request is O(

√
n log2 n): O(

√
n)

accesses for the request phase and O(
√
n log2 n) accesses for the rebuild phase.

Obliviousness: Requests are handled by scanning buffer B and accessing T . Due to the scheduled
rebuilds, data items are associated with new tags every

√
n requests. Between the rebuilds, unique locations

are accessed in T : either an item x is not present in the buffer and hence a unique location, π(x), is accessed,
or a unique dummy item, π(n+ count), is accessed.

2.2 logn Hierarchical Solution
We now describe the efficient oblivious RAM simulation by Goodrich et al. [7]. This method has O(log n)
amortized access overhead, O(n) space overhead at the repository, and client memory of size O(nν), where
ν is an arbitrary positive constant. This method is stateless and thus suitable for a multi-user scenario since
no client keeps a state between requests.

2.2.1 Cuckoo Hash Table

Since the method of [7] uses cuckoo hash tables, we give a short description of a cuckoo hash table. (See [11]
for more details.).

A cuckoo hash table for n items consists of two hash tables, T1 and T2 with two hash functions, h1 and
h2. Each hash table contains m = (1 + ε)n memory cells, with ε a (small) positive constant. An item with
key x is found either in location h1(x) in T1 or in h2(x) in T2. We say that a failure occurs when there are
only two possible locations for three keys x, y, z, i.e. h1(x) = h1(y) = h1(z) and h2(x) = h2(y) = h2(z).
In this case a stash, S, of constant size is used to keep items that did not find a place in tables T1 and T2. The
retrieval of an item now includes a scan of S, which takes O(1) time. Kirsch et al. [8] show that a cuckoo
hash table with a stash of size s overflows with probability O(1/ns+2).

Recently Goodrich and Mitzenmacher [6] showed that one can construct a cuckoo hash table of size n
with a stash of size s obliviously using O(n + s) accesses to the data repository and assuming access to
private workspace of size O(nν).

2.2.2 Oblivious Simulation

We are now ready to describe the oblivious RAM simulation by Goodrich et. al. [7]. The memory at the
data repository consists of a cache C for q data items, cuckoo hash tables T1, · · · , TL and a stash S. (See
Figure 2(a).) The size of the cache, q, is O(log n) and stash S has also size O(log n). Each table Ti has
size 2iq and L is the first integer i such that |TL| ≥ n, hence L is O(log n). Each cuckoo hash table Ti is
initialized with two hash functions, hi1 and hi2. Stash S is shared between all L tables and is large enough to
avoid overflows in tables T1, T2, · · · , TL with high probability [7].

On a request for item x, the client executes Algorithm 2. After q requests cache C becomes full and we
obliviously move elements from C to T1. The move consists of creating a new cuckoo hash table T1 from
the elements in C. The next time C becomes full, instead of moving C to T1, we move the items from C and
T1 to T2. Similarly, when we are about to move items to Ti for the second time, instead we move all items
from C, T1, . . . Ti−1 to the first empty table among Ti through TL. Oblivious construction of cuckoo hash
table Ti takes O(|Ti|) accesses to the data repository. Since table Ti is rebuilt every O(|Ti|) requests and
eventually every request causes O(log n) tables to be rebuilt, the amortized overhead is O(log n) accesses
per request.

Obliviousness: Scans and writes to cache C and stash S are oblivious since it is done sequentially.
Table Ti is accessed either according to a pseudo-random hash function or in random locations because

item x is found in an earlier level of the construction. Cache C and tables Tj , j < i are empty when Ti
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Algorithm 2 The request phase during oblivious RAM simulation with the log n hierarchical approach [7].
found← false
scan cache C and stash S. if x is found in one of them set found← true
for each level i, 1 ≤ i ≤ L do

if found is true access random locations in Ti.
else access locations hi1(x) and hi2(x) in Ti.
if x is found set found← true

end for
Remove x from S if x was found in S. Rewrite S.
Rewrite C, adding or replacing data item x.

is rebuilt and hence are used to cache items found in Ti. Since Ti is emptied and initialized with two new
pseudo-random hash functions as soon as levels above it become full, it is never accessed twice for the same
item. Hence, from the point of view of the adversary, Bob, accesses to Ti look random.

3 De-amortized ORAM Simulation
3.1 The Square Root Solution
In this section, we present an oblivious RAM simulation method with O(

√
n log2 n) access overhead in

the worst case. This method is based on the square-root approach originally proposed in [5], which has
O(n log2 n) worst-case access overhead and O(

√
n log2 n) amortized access overhead (see Section 2.1).

We present first the simple square-root solution, to demonstrate some of the ideas behind the more efficient
technique developed in Section 3.2. Note that only recently an oblivious RAM solution with sublinear
worst-case access overhead has been proposed [12].

Intuition: The most expensive step of the square-root approach is building a new table, where items
and dummy values are ordered using a new pseudo-random permutation. This step is executed every

√
n

requests and takes O(n log2 n) accesses. Our idea is to split the accesses for the rebuild into
√
n batches,

each with O(
√
n log2 n) accesses, and to execute each batch after processing a request so that the new table

is ready to be used after processing
√
n requests. We will show how this idea can be implemented while

preserving obliviousness and keeping the same asymptotic access overhead and storage overhead as the
original method.

Memory Layout: We organize the memory on the data repository into five areas. We make use of
two buffers, Bcur and Bprev, each of size

√
n. We also have two tables, Tcur and Tnext, each of size

n+
√
n. These tables are built using different pseudo-random permutations on the n data items outsourced

by the client and
√
n dummy values. Finally, we employ a workspace W of size n+ 2

√
n for constructing

incrementally the new table, Tnext, while the current table, Tcur, and the two buffers, Bcur and Bprev, are
being used to process requests. (See Figure 1(b) for illustration.)

Initialization: We split a sequence of requests into epochs, where an epoch consists of exactly
√
n

requests. Initially, buffers Bcur and Bprev are empty and each of the tables Tcur and Tnext contains the
n items and

√
n dummy items permuted according to a pseudo-random permutation, where Tcur uses

permutation π0 and Tnext uses permutation π1.
Processing an Epoch: During an epoch, buffer Bcur caches the

√
n items being requested in the current

epoch while buffer Bprev caches the
√
n items that were requested in the previous epoch. Thus, Bprev is

empty during the first epoch. Also, during an epoch, table Tcur is used for processing requests and workspace
W is used to build incrementally a new table, based on a new pseudo-random permutation.
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Algorithm 3 Oblivious RAM simulation with our de-amortized version of the square-root approach.
Generate pseudo-random permutation function πcur
Initialize table Tcur by storing the n data items and

√
n dummy items according to permutation πcur

Initialize W with n data items and
√
n dummy items

while true do {process the requests in an epoch}
Generate pseudo-random permutation function πnext
request count ← 1
while true do {process request for data item x}
found ← false
Scan all the locations in buffers Bcur and Bprev. During the scan, if data item x is found, set
found ← true .
if found then

Access location πcur(n+ request count) in Tcur {containing a dummy item}
else

Access location πcur(x) in Tcur {containing data item x}
end if
Rewrite Bcur, adding or replacing data item x
Execute the next batch of c

√
n log2 n accesses to workspace W to construct table Tnext using

permutation πnext
request count ← request count + 1
if request count >

√
n then

break {end of the epoch}
end if

end while
Copy the new table from W to Tnext
Copy Bcur to Bprev

Copy Tcur and Bcur to W
Empty Bcur

Copy Tnext to Tcur
πcur ← πnext

end while

Transitioning to the Next Epoch: At the end of an epoch, the new table is copied from W to Tnext.
Next, table Tcur and buffer Bcur are copied to W . Finally, table Tnext is copied to Tcur to accommodate the
requests from the next epoch. Also, we overwrite Bprev with items from Bcur and we empty Bcur.

Incremental Table Construction: The construction of the new table, Tnext in workspace W takes as
input Tcur and Bcur from the previous epoch. We say that the instance of a data item in Tcur is stale if there
is an instance of the same data item in Bcur. Using an algorithm from [5], we obliviously filter out the
stale instances of the data items and we construct a table for the set consisting of the n data items and

√
n

dummy items, storing them according to newly generated pseudo-random permutation. Since this algorithm
performs O(n log2 n) accesses to the data repository, we de-amortize it by splitting its sequence of accesses
to workspace W into

√
n batches of c

√
n log2 n accesses each, for some constant c > 0. The construction

of table Tnext starts at the beginning of the epoch and a batch of accesses is executed after processing each
request. Hence, the new table Tnext is ready by the end of the epoch.

Our oblivious RAM simulation algorithm based on the square-root approach is outlined in Algorithm 3
and its properties are summarized in Theorem 1.

7



Theorem 1. Our oblivious RAM simulation method based on the square-root approach has O(
√
n log2 n)

worst-case access overhead per request, O(
√
n) space overhead at the data repository, and O(1) client

memory, where n is the number of data items.

Proof. (SKETCH) The worst-case access overhead of each request is O(
√
n log2 n) since we scan two

buffers of size
√
n, access one table entry, and execute O(

√
n log2 n) accesses to perform one batch of

the table rebuild. Also, O(n) additional space is used at the server.
We now consider the obliviousness of our method. During each epoch, unique items are accessed in

table Tcur. Namely, if the requested data item is not found in the buffer, we access it in Tcur, else we
access a new dummy item in Tcur. Moreover, in the beginning of each epoch Tcur is initialized with a new
permutation over n items and

√
n dummy values.

The method is correct since the user is always returned the most up-to-date instance of the requested
item: if the requested data item was last requested in the current epoch then it is found in Bcur, else if it was
last requested in the previous epoch, it is found in Bprev, else Tcur has the latest instance.

Read/Write Data Repository: In Algorithm 3 we made an assumption that data repository allows us
to manage outsourced memory using copy operator. However, it is not required for execution of our de-
amortized method and achieving the same worst case overhead of O(

√
n log2 n). We provide only an

intuition behind this approach. If the data repository supports only read and write operations one can
alternate blocks of memory used for rebuild and for handling requests between the epochs, e.g. during
even numbered epochs Bcur is used to cache current requests while during odd epochs it serves as a buffer
of requests from the previous epoch.

3.2 The logn Hierarchical Solution
We now describe the de-amortization of the oblivious RAM simulation method presented in [7], which is
based on a hierarchical memory layout at the server and has O(log n) amortized access overhead. The
intuition behind the de-amortized version of this method is similar to the one we used in the square-root
solution (see Section 3.1): we incrementally rebuild tables while handling requests using previous versions
of tables and buffers. Requests are handled using two sets of buffers: one for items requested in the current
epoch and the other for items requested in the previous epoch. However, recall that the construction of [7]
has O(log n) buffers implemented as cuckoo hash tables. This complicates our task since now we need to
have a copy of each cuckoo hash table. Also due to the dynamic arrangement of the buffers, one buffer spills
into the next one and so on, we eventually need to constructO(log n) cuckoo hash tables during each epoch.

Memory Layout: Our memory layout at the data repository is schematically illustrated in Figure 2(b).
Extending the oblivious RAM data structure of [7] (see Section 2.2), we employ two caches, Ccur andCprev,
of size q = O(log n), one stash, S, of size O(log n), and 2L − 1 cuckoo hash tables T1, T ′1, T2, T

′
2, . . . ,

TL−1, T
′
L−1, TL where each Ti and T ′i has size 2iq and L is the smallest i such that 2iq ≥ n. We also keep a

workspace W for rebuilding cuckoo hash tables. The workspace stores the last 2Lq requested items in a list,
D. In addition, it contains L work areas for rebuilding cuckoo tables. The i-th work area consists of storage
space TWi , of size O(2iq), for a cuckoo hash table at level i and of overflow space SWi , of size O(log n), for
the corresponding stash.

Initialization: We build TL as a cuckoo hash table for the n data items and put into stash S any items
that did not fit. Both caches Ccur and Cprev and other tables Ti and T ′i (for i < L) are empty.

Processing an Epoch: In this section an epoch is defined as a sequence of q requests. During an epoch,
cache Ccur stores data items last requested in the current epoch and cache Cprev stores data items last
requested in the previous epoch. Thus, these caches play roles similar to those of buffers Bcur and Bprev in
Section 3.1. Each request is processed by scanning caches Ccur and Cprev, scanning stash S, and accessing
locations in tables T1, T ′1, T2, T ′2, . . ., TL−1, T ′L−1, TL. In addition, a batch of accesses is made to workspace

8
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Figure 2: Memory layout of the data repository during oblivious RAM simulation: (a) original version of
the log n hierarchical solution [7]; (b) our de-amortized version (Section 3.2).

W toward rebuilding its cuckoo tables. The incremental rebuilding process guarantees the completion of a
cuckoo table in TWi and its stash in SWi after 2i−1 epochs.

Incremental Construction of L Cuckoo Hash Tables: Recall that a cuckoo hash table Ti of size 2iq
can be constructed obliviously using 2iq accesses to the data repository and O(nν) private memory [6]. To
help us explain the concurrent oblivious rebuild of L cuckoo hash tables, we introduce a data structure I
that stores the set of indices of the cuckoo tables that need to be rebuilt in workspace W . Note that Queue
depends only on the number of requests made so far hence it can be computed in constant time. I starts
empty. After every 2i−1 epochs index i is added to I . When an index i is added to I a sequence of 2ibq
accesses is required for a rebuild of TWi , for some constant b > 0. After each request, the client executes 2b
accesses for each index in I so that the construction of table TWi is completed in 2i−1 epochs. Observe that
after the first 2i−1, epochs index i is always present in I . Moreover, after 2L−1 epochs indices 1, 2, . . . , L
are present in I and I does not change from then on. This also means that eventually all L tables are being
rebuilt during an epoch. (See Figure 3 for an illustration of the rebuilding process.) To accommodate L
concurrent rebuilds, we increase the requirement on the size of client’s private memory from O(nν) in [7]
to O(nτ ), for some fixed constants τ > ν and ν > 0.

Transitioning to the Next Epoch: We append items in Ccur to D, the list in workspace W that keeps
track of the 2Lq previously requested items. We then copy Ccur to Cprev and empty it. Hence Ccur can be
used to cache requests during the next epoch. We then check which tables are finished, i.e. TWi is finished
if the current number of epochs is a multiple of 2i−1 since TWi takes 2i−1 epochs for a rebuild. Each such
table TWi is then copied to either Ti or T ′i . If Ti and T ′i are both empty or both full TWi is copied to Ti, stash
SWi is merged with S and T ′i is cleared. If only Ti is full TWi is copied to T ′i , stash SWi is merged with S. If
TL, the table from the last level, is finished we clear first 2Lq items from D since all these items are now in
TL and no table from earlier levels requires them for a rebuild.
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Figure 3: Sequence of accesses during oblivious RAM simulation: (a) original version of the log n
hierarchical solution [7]; (b) our de-amortized version (Section 3.2). The size of the cache is denoted by q,
which is O(log n).

Stash Size: Goodrich et al. [7] show that a single stash of size O(log n) is enough to avoid overflows in
cuckoo hash tables T1, . . ., TL where Ti contains 2iq items. In our construction, we use a single stash S for
two collections of cuckoo hash tables. A single stash ensures that if item x happened to not fit into two tables
Ti and T ′j then only the most recent copy is present in S. One can view stash S as a joint stash between
tables T1, . . . , TL and T ′1, . . . , T

′
L−1. Suppose a stash of size s log n is used in the construction of [7], where

s > 1 is a constant. Then we set our stash S to be of size 2s log n, where the first s log n locations are used
for tables T1, . . . , TL and the remaining s log n locations for T ′1, . . . , T

′
L−1, with the additional constraint

that only unique items can be present in S. The latter constraint is enforced when we merge stash SWi of a
new table TWi with S.

Our oblivious RAM simulation algorithm based on the log n hierarchical approach is outlined in Algo-
rithm 4 and its properties are summarized in Theorem 2.

Theorem 2. Our oblivious RAM simulation method based on the log n hierarchical approach has O(log n)
worst-case access overhead per request, O(n) space overhead at the data repository, and O(nτ ) client
memory, where n is the number of data items and τ is any fixed positive constant.

Proof. (SKETCH) We first show that handling of each request using the above protocol takes O(log n)
accesses. Retrieving a data item takes O(log n) accesses since three blocks of size O(log n) are scanned
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Algorithm 4 Oblivious RAM simulation with our de-amortized version of the log n hierarchical approach.
Initialize TL and S with a cuckoo hash table with a stash using n data items.
I ← {}, request count ← 0
while true do

while true do {on request x}
found← false
Scan all the locations in caches Ccur and Cprev and stash S. During the scan, if data item x is
found, found ← true .
for each level i, 1 ≤ i ≤ L do

if i 6= L and T ′i is not empty
if found is true access random locations in T ′i .
else access locations hi

′
1 (x) and hi

′
2 (x) in T ′i .

if x is found, found← true.
if Ti is not empty
if found is true access random locations in Ti.
else access locations hi1(x) and hi2(x) in Ti.
if x is found, found← true.

end for
Rewrite Ccur, adding or replacing data item x.
if x is found in stash S remove x from S. Rewrite S.
for i ∈ I

Make next 2b accesses towards a rebuild of table TWi
request count ← request count + 1
if request count mod q = 0 then
{end of the epoch}
Copy Ccur to Cprev and append it to D.
Empty Ccur.
for i ∈ sorted decr order(I )

if request count mod 2i−1q = 0
if i = L

copy TWi to TL.
else if Ti and T ′i are both full or both empty

Empty T ′i and copy TWi to Ti.
else

copy TWi to T ′i .
Merge SWi and S.

for each level i, 1 ≤ i ≤ L
if request count mod 2i−1q = 0

Copy last 2i−1q items from D to TWi
if i 6∈ I
I ← I ∪ {i}.

if i = L
empty D.

end if
end while

end while
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and two accesses are made to 2L tables, where L is O(log n). The batch of accesses for table rebuilding
made after each request consists of 2b accesses for every table in I , where I has at most L indices and b is
a constant. The method clearly requires only O(n) space on the data repository. For every rebuild, we use
the method of [6] which requires O(nν), ν > 0, of client private memory. Since our method concurrently
makes O(log n) rebuilds O(nτ ) of private memory is required for τ > ν.

We now consider the obliviousness of the method. Table rebuilds remain oblivious since they follow a
predetermined schedule that depends on n and request count and are performed in the same way as in the
original ORAM construction in [7].

It remains to show that each request remains oblivious. Accesses to the caches, Ccur and Cprev, and
the stash, S, are oblivious since their memory locations are scanned (read and rewritten entirely) for each
request. Since accesses to table Ti depend on whether an item is found in T ′i we first show the obliviousness
of access sequence to T ′i . Observe that when T ′i is substituted with a new cuckoo hash table TWi cache Ccur

and all tables T ′j<i are empty. Since each table on level i can store up to 2i−1q items before it is emptied
there is space to remember the following number of requests:

q +
∑i−1

j=1 2j−1q = 2i−1q.
If an item is not found in previous levels, it is accessed according to pseudo-random hash functions hi

′
1

and hi
′
2 . Otherwise, T ′i is accessed in random locations. T ′i is cleared as soon as next table for this level, i.e.

next TWi , is ready. This happens 2i−1q requests after T ′i was last substituted with a new table. Hence, T ′i is
never accessed more than once for the same item.

An access to table Ti follows an access to T ′i and is random if an item is found in earlier tables or in T ′i .
Note that similarly to T ′i cache Ccur and all tables T ′j<i are empty when Ti is ready. Moreover T ′i is empty
as well. Hence, there is space to remember the following number of requests:

q +
∑i−1

j=1 2j−1q + 2i−1q = 2iq.
However, Ti is replaced with a new table every 2iq requests. Hence, no location is accessed more than

once in table Ti as well.
To prove the correctness of the method, we observe that the most current copies of the data items are

present in the caches or smaller tables. Moreover, table T ′i contains more recent requests than Ti and stash S
contains any items that did not fit in their corresponding tables. When newly constructed tables are moved
from W to the memory for handling requests, we merge the stash of larger tables with S first. In this case,
if the same item did not fit into more than one table, only the most recent copy is in S. Since we first scan
the caches, the stash and start accessing tables from smaller levels, with T ′i before Ti, our method returns to
the user the latest instance of the requested item.

Read/Write Data Repository: Similar to de-amortized version of square root solution from Section 3.1
we can relax the assumption of the interface that data repository provides us. If read and write are the only
supported operations we can alternate the blocks of memory used for rebuilds and for handling the requests
depending on the epoch count.

4 Conclusion
We have presented methods for oblivious RAM simulation with efficient worst-case access overhead. Our
methods are based on de-amortizing two known solutions, the square root approach and the log n hierar-
chical approach, which have efficient amortized access overhead but Ω(n) access overhead in the worst
case. For each of our methods, the worst-case access overhead per request is asymptotically equal to the
amortized access overhead of the solution it is based on. In particular, our log n hierarchical solution incurs
log n access overhead on every request.
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