
An Image Compositing Solution At Scale

Ken Moreland,‡ Wesley Kendall,∗ Tom Peterka,† and Jian Huang∗
‡Sandia National Laboratory

∗University of Tennessee, Knoxville
†Argonne National Laboratory

ABSTRACT
The only proven method for performing distributed-memory
parallel rendering at large scales, tens of thousands of nodes,
is a class of algorithms called sort last. The fundamental
operation of sort-last parallel rendering is an image com-
posite, which combines a collection of images generated
independently on each node into a single blended image.
Over the years numerous image compositing algorithms have
been proposed as well as several enhancements and render-
ing modes to these core algorithms. However, the testing
of these image compositing algorithms has been with an
arbitrary set of enhancements, if any are applied at all.
In this paper we take a leading production-quality image-
compositing framework, IceT, and use it as a testing frame-
work for the leading image compositing algorithms of today.
As we scale IceT to ever increasing job sizes, we consider the
image compositing systems holistically, incorporate numer-
ous optimizations, and discover several improvements to the
process never considered before. We conclude by demon-
strating our solution on 64K cores of the Intrepid Blue-
Gene/P at Argonne National Laboratories.

Categories and Subject Descriptors
I.3.1 [Computer Graphics]: Hardware Architecture—
Parallel processing

Keywords
Image compositing; Parallel scientific visualization

1. INTRODUCTION
The staggering growth in HPC capability and scale of par-

allelism is rapidly redefining the standard of “large scale”
and reshaping priorities in today’s large-scale parallel vi-
sualization. Driven by use cases such as in-situ analysis,
co-processing, and recent constraints in building specialized
visualization clusters [5], the demand to compute visualiza-
tion on leadership class systems is gaining popularity. It is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

expected that parallel rendering algorithms must soon run
efficiently at the same scale as simulation, to 10,000s and
100,000s of cores today, and billions of cores in the future.

Sort-last parallel rendering is the only proven way of par-
allel rendering at scale, but its image compositing step re-
quires a complex global reduction, which is a well-known
bottleneck for any parallel computing at scale. In fact, the
global reduction is the bottleneck; as all other local stages
of parallel rendering algorithms often scale very well.

Whereas previous research considers rendering on the or-
der of 100s of processes, recent efforts scaled algorithms to
over 10,000 processes [6,22]. Furthermore, to get around I/O
bottlenecks, it is now more common to have visualization
run in-situ with simulation [10, 13, 30, 33]. These increased
demands on sort-last rendering have spawned a resurgence
in image compositing research. Recent studies led to the
creation of new image compositing algorithms [20, 34], and
new compositing enhancements [8]. Although each of these
studies improve the state of the art in image compositing, all
involve locally built algorithm implementations that contain
some isolated subset of enhancements.

In this work we created a software solution for parallel
image compositing at scale. In doing so, we evaluated and
benchmarked leading algorithms, enhancements, and devel-
oped novel functionalities needed in a complete solution.
This collection and integration of parallel image compositing
technologies enabled us to consider sort-last parallel render-
ing as a whole as it is used in real applications. Through this
study, we discover bottlenecks in the sort-last parallel ren-
dering process and provide novel solutions for them. More
importantly, we identify practical bounds of image composit-
ing performance and report evidence that indicate image
collection as the most fruitful direction of future research of
parallel rendering at scale.

Our solution also includes the following novel contribu-
tions.

• A new zero-copy image interlacing algorithm that re-
quires no image copying to reconstruct the final image
• A new telescoping algorithm that dramatically im-

proves the performance on arbitrary process counts
• An optimization to the compositing order of existing

algorithms that minimizes pixel copying
• An optimization to the collection operation at the end

of image compositing algorithms
• A unified and reproducible benchmark that compares

algorithms using all of these optimizations

Besides achieving scalability up to 64K cores — the largest
ever reported in literature — our solution is already under

beta release through the production-quality software frame-
work of IceT. It is the culmination of our team’s research
in image compositing, immediately deployable at scale to
impact computational science of today.

2. PREVIOUS WORK
Although many aspects of parallel rendering have changed

since the sorting classification of parallel rendering algo-
rithms was introduced [14], these classifications are still used
today because they accurately characterize and predict the
scaling performance of these algorithms. When rendering on
a hundred or more distributed nodes, the most efficient class
of algorithm is sort last. Sort last scales extremely well with
respect to the number of processes and size of the geometry
being rendered. The main contributing factor to sort last’s
overhead, the size of the image being rendered, is fixed by
the display that we are using [31].

The main characteristic of sort-last parallel rendering is
that geometry is statically partitioned; processes each in-
dependently render images using only their local partition,
and these images are composited together by blending or
comparing pixels. Consequently, it is the behavior of this
compositing operation that determines the overall efficiency
of sort-last parallel rendering.

2.1 Basic Parallel Compositing Algorithms
Over the years researchers have designed several varia-

tions of the image compositing algorithm. One of the oldest
and simplest algorithms that is still in wide use is direct
send [17,18]. Direct send assigns each process a unique par-
tition of the image to be rendered. After the local geometry
is rendered, each process sends each pixel fragment directly
to the process responsible for compositing it. Each process
then collects pixel fragments from all other processes and
combines them to form its partition of the image. Although
direct send is efficient in the amount of data it transfers, the
number of messages it generates grows quadratically with
the number of processes. Thus, for large numbers of pro-
cesses the network can get overwhelmed by many small mes-
sages.

One of the most popular image compositing algorithms is
binary swap [11,12]. Binary swap executes in rounds. Dur-
ing a round, each process pairs up with another process, the
image is split in half, the paired processes exchange image
halves, and each process composites the pixel fragments for
the half of the image it received. After log2 n rounds, where
n is the number of processes, each process holds a unique
fully-composited partition of the image. Binary swap uses
fewer messages than direct send: n log2 n total messages
with only n messages at a time (assuming minimal over-
lap between rounds). Because the bisection bandwidth of
a cluster interconnect generally grows with respect to the
number of nodes, the bandwidth requirements on the net-
work remain relatively fixed.

One of the problems with binary swap is that it requires a
number of processes equal to a power of two. The simplest
solution in dealing with other process counts is to fold the
images into a group of the correct size. Create the largest
group possible with a power of two, and then send the image
data from those processes outside the group to a process
inside the group. Those processes outside the group sit idle
while those inside the group continue on to composite the
image. This approach has inefficiencies because processes

have to sit idle during most of the computation. The 2-
3 swap algorithm [34] takes a different approach. It relaxes
binary swap such that processes can be grouped into pairs of
two (like binary swap) or sets of three (unlike binary swap).
Using these groups of two or three, 2-3 swap can decompose
any number of processes into groups, and in this way all
processes can take part in compositing at all times.

Radix-k [20] is a combination of binary swap and direct
send. Radix-k first factors the number of processes into a
series of what are called k values. In a sequence of rounds,
one per k value, radix-k partitions the processes into groups
of size k and performs a direct send within each group. The
next round recurses into processes with the same partition
until all k values are used and each process has a unique
partition. Radix-k is equivalent to direct send when it has
one round with a k value equal to the number of processes.
Radix-k is equivalent to binary swap when it has log2 n
rounds with all k values equal to two.

Radix-k further improves on binary swap by overlapping
data transfers with computation. When receiving data from
multiple processes, which happens whenever k is greater
than two, radix-k can begin compositing pixels as soon as
the first message is received while other messages are still
in transit. Yet radix-k retains binary swap’s ability to limit
the total number of messages sent. Radix-k is also able to
handle process groups that are not powers of two because
the k value for each round can be any factor. That said, if
the number of processes factors into large prime numbers,
the performance can degrade to that of direct send.

2.2 Compositing Enhancements
A näıve implementation of sort-last image compositing

will consider every pixel fragment from every process partic-
ipating. However, in almost all practical use cases the data
being rendered is, or at least can be, partitioned spatially.
When each process has geometry in a confined spatial region,
there is a great deal of empty space in the original rendered
images. A pragmatic image compositing algorithm takes
advantage of these empty spaces in two ways. First, the
pixels in these empty regions will be removed from commu-
nication, thus making better use of available network band-
width. Second, the empty regions are not considered in the
composite operation, which reduces the overall computation
performed.

There are two standard approaches for tracking the “ac-
tive” pixels (those that have been rendered to) and “inac-
tive” pixels (those over empty regions). The first method is
to track bounding boxes around geometry. Typically, a box
around the geometry in each process is projected to screen
space to define the region of pixels that likely have geom-
etry rendered to them. (The boxes are often expanded to
axis aligned bounding boxes to simplify management.) Only
the pixels in this region are read, transferred, and compos-
ited. Ma et al. [12] show that in the common case tracking
bounding boxes reduces the total number of pixels transmit-
ted from O(np) to O(n1/3p), where n and p are the number
of processes and pixels, respectively.

The second approach for tracking active and inactive pix-
els is to use run-length encoding [2]. A generic run-length
encoder will look for run lengths of any repeated value. How-
ever, when compositing images the active pixels tend to have
run lengths of 1, so run-length encoding can actually hurt in
these regions. Thus, a better approach is to use active pixel

encoding, which classifies the pixels as either active or inac-
tive and provides run lengths for continuous regions of any
active pixels. Moreland et al. [16] show that this encoding
is both effective and never adds to the data size even in the
worst pathological cases. Active pixel encoding improves on
region boxes by tightly identifying active and inactive pixels.
There is a greater overhead incurred by searching through
the image for inactive pixels, but this overhead is mitigated
by considering the bounding boxes during the initial encod-
ing [32].

Although active pixel encoding almost always improves
the performance of compositing, it does introduce an issue
of load balancing. As images are partitioned, some regions
will have more active pixels than others. By balancing the
active pixels assigned to regions, the parallel compositing
becomes better load balanced and performance can improve
even further.

The most straightforward way of balancing active pixels
is to interlace the images [14, 29].1 An image is interlaced
by rearranging regions of pixels, commonly scanlines, in a
different order. This reordering of pixels is designed such
that when the images are later partitioned, each partition
gets pixels from all over the images. Consequently, regions
with many active pixels are distributed to all the partitions.

The SLIC algorithm [28] integrates the direct-send algo-
rithm with inactive pixel skipping and image interlacing.
It finds areas of geometry overlap by projecting bounding
boxes to screen space. SLIC then breaks scanlines by areas
of overlap and uses a simple hashing function to assign these
scanline fragments to processes. The hash function provides
load balancing and the tracking of overlap limits the total
number of messages to O(n4/3), where n is the number of
processes, which is better than the original direct send but
worse than binary swap or radix-k.

One problem with image interlacing is that the pixels in
the fully composited region must be rearranged once again
into the correct order. This added overhead can remove
the performance gains of the load balancing. To get around
this problem, Kendall et al. [8] propose a method in which
the partitioning for the radix-k algorithm is adjusted so
that each partition has the same amount of active pixels.
Although Kendall’s algorithm improves load balancing, it
also adds overhead in readjusting partitions for consistency
amongst all processes.

Most sort-last algorithms rely on a static partitioning
of the data, which removes any need to transfer geome-
try amongst processes but does not guarantee an even dis-
tribution of active pixels amongst processes. Hybrid algo-
rithms [25] use dynamic partitioning of the data to collect
geometry by screen region based on the current projection.
Hybrid algorithms reduce the compositing time at the ex-
pense of redistributing geometry, which means the effective-
ness of the technique is dependent on the amount of ge-
ometry being rendered. Other approaches propose ensur-
ing empty space regions using static partitions with replica-
tion [24].

3. SOFTWARE FRAMEWORK AND TAR-
GETED PLATFORMS

1Other literature uses the term interleave, but we feel the
word interlace is more descriptive.

The Image Composition Engine for Tiles (IceT) is a high-
performance sort-last parallel rendering library [15]. Al-
though originally created to capture sort-last rendering al-
gorithms for tiled displays [16], IceT also works effectively
for smaller single image displays.

IceT contains several image compositing algorithms, and
its internal architecture makes it straightforward to add new
algorithms. It also optimizes the compositing process by
tracking the projection of geometry and compressing images
through run-length encoding. IceT also supports multiple
rendering modes allowing both color blending for volume
rendering and z-buffer comparisons for opaque geometries.

IceT is used in multiple production products like Par-
aView [27] and VisIt [1] and has been used to achieve record-
breaking rendering rates. As such, IceT is an excellent code
base for creating, testing, and comparing image compositing
algorithms. It already contains routines for efficiently cap-
turing, compressing, and compositing images. It also con-
tains efficient existing algorithms to compare new ones with.
Furthermore, any optimizations or new algorithms added to
IceT can be applied to existing production software.

The experiments we run for this paper are encapsulated in
IceT’s testing suite under the SimpleTiming test. This test
evenly partitions volume-wise a cube of space amongst pro-
cesses. Each process renders a hexahedron filling the space
it is assigned as a proxy geometry for the rendering. We
use this proxy rendering to simplify compiling and porting,
which should be particularly useful for anyone wishing to
repeat these experiments. In any case, the rendering time
is discarded as we are interested only in the compositing
overhead. Figure 1 shows an example of images rendered
by SimpleTiming. For each SimpleTiming test we render
101 frames at pseudorandom viewpoints, always using the
same seed for consistency between experiments. The time
for the first frame is thrown out of any average because it
contains added overhead of memory allocations not included
in subsequent frames.

Figure 1: Examples of images rendered in our experiments.

Most of the experiments reported in this paper were run
on Argonne National Laboratory’s Intrepid Blue Gene/P
computer [26]. Intrepid comprises a total of 40,960 nodes,
each containing four cores. Each experiment was run in
one of two modes. The first mode, Symmetric Multipro-
cessing (SMP), runs a single MPI process on each Intrepid
node. The intention of the mode is to run multiple threads
to use all four cores, but in our experiments we run a sin-
gle thread using only one core. The second mode, Virtual
Node (VN), runs four MPI processes on each Intrepid node.
It treats each core on the node as a distributed memory
process even though it is possible to share memory. Data
transfers amongst the processes within a single node still

require explicit MPI memory passing although the under-
lying MPI layer bypasses the network infrastructure in this
case. We consider both running modes because both are
commonly used today and each places differing demands on
the underlying subsystems.

4. COMPOSITING ORDER
During our integration of radix-k into IceT, we discov-

ered that the compositing order of incoming images could
make a significant performance difference. In our initial im-
plementation of radix-k, we got dramatically different re-
sults than those reported by Kendall et al. [8]. Rather than
getting improved performance with radix-k, we saw worse
performance. Deeper inspection revealed that although our
radix-k implementation was properly overlapping commu-
nication with compositing computations, the computations
took longer with larger values of k.

This increase in compositing time is caused by a change in
the order that images are composited together. The order in
which images are composited within a round is not specified
in the original radix-k algorithm; however, generally images
are composited in the order they are received and accumu-
lated in a single buffer, as demonstrated in Figure 2a. The
issue is that composited images grow with respect to the
non-overlapping pixels in each image. Pixels that do not
overlap are simply copied to the output. In the example of
compositing images for a radix-k round of k = 8 given in
Figure 2a, non-overlapping pixels in the leftmost images are
copied up to seven times before the final image is produced.
In contrast, binary swap performs the equivalent composites
in a tree-like order as shown in Figure 2b, and no pixel needs
to be copied more than three times.

(a) Accumulative Order (b) Tree Order

Figure 2: Two possible orders for compositing eight images.
Boxes represent images and arrows indicate how two images
are composited together to form a third image.

Given this observation, we made two independent im-
provements to the radix-k algorithm. The first improvement
speeds-up the compositing computation. Specifically, run
lengths of non-overlapping pixels to be copied are collected
and copied in blocks rather than independently casting and
copying each pixel value one at a time, as was done before.
The second improvement constrains the compositing to fol-
low the specific tree composite order. That is, rather than
composite an incoming image whenever possible, force the
compositing to happen in an order like that in Figure 2b.
This constraint may cause radix-k to wait longer for incom-
ing images, but the overhead is more than compensated for
by the improved blending performance.

Results of these performance improvements are indepen-
dently shown in Figure 3. The improvements in compositing
computation lower the overall compositing time and reduce
the pixel-copying overhead of larger k values. The change

binary
s wap

radix-k 4 radix-k 8 radix-k 16 radix-k 32 radix-k 64 radix-k 128
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

A
ve

ra
ge

 C
om

po
si

te
 T

im
e

(s
ec

)

Original Composite, Accumulative Order

Original Composite, Tree Order

Faster Composite, Accumulative Order

Faster Composite, Tree Order

Figure 3: Comparative performance of radix-k with im-
proved compositing computation and changing the order of
compositing. All runs were performed on 2048 nodes of In-
trepid in SMP mode generating images with 2048 × 2048
pixels and transparent blending.

in composite ordering removes the extra overhead of pixel-
copying and maximizes the performance of larger k values.

5. MINIMAL-COPY IMAGE INTERLACE
The major problem encountered with sparse parallel im-

age compositing is that it introduces load imbalance, which
limits the improvements attained by compressing images. A
straightforward approach to balance the compositing work
is to interlace the images [14,29]. Interlacing basically shuf-
fles the pixels in the image such that any region of the im-
age with more compositing work is divided and distributed
amongst the processes.

Interlacing incurs overhead in two places during parallel
compositing. The first overhead is the shuffling of pixels be-
fore any compositing or message transfers take place. This
overhead tends to be low because it occurs when images are
their most sparse and the work is distributed amongst all
the processes. The second overhead is the reshuffling after
compositing completes to restore the proper order of the pix-
els. This second shuffling is substantial as it happens when
images are at their most full and the maximum amount of
pixels must be copied. Furthermore, because pixels must
be shuffled over the entire image, this reshuffling must hap-
pen after image data is collected on a single process. Thus,
the reshuffling happens on a single process while all others
remain idle.

Here we provide an interlacing algorithm that completely
avoids the needs for this second reshuffling. The algorithm
is based on the simple observation that at the completion
of either binary swap or radix-k, each process contains a
partition of the final image. If we arrange our initial shuffling
such that each of the partitions remain a contiguous set of
pixels, then we do not need the final reshuffling at all.

Our minimal-copy image interlacing is demonstrated in
Figure 4. Rather than picking arbitrary partitions, such as
scan lines, to interlace, our interlacing uses the partitions
that binary swap or radix-k will create anyway. The par-
titions are reordered by reversing the bits of their indices,
which creates a van der Corpt sequence to maximize the
distance between adjacent blocks [9]. The image with the
interlaced block is composited as normal. Each resulting im-

Interlace Partitions

Composite

Figure 4: Pixel shuffling in minimal-copy image interlacing.

256 P roces s es

bi
na

ry
 s

w
ap

ra
di

x-
k

4

ra
di

x-
k

8

ra
di

x-
k

16

ra
di

x-
k

32

ra
di

x-
k

64

ra
di

x-
k

12
8

ra
di

x-
k

25
6

2048 P roces s es

bi
na

ry
 s

w
ap

ra
di

x-
k

4

ra
di

x-
k

8

ra
di

x-
k

16

ra
di

x-
k

32

ra
di

x-
k

64

ra
di

x-
k

12
8

ra
di

x-
k

25
6

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

C
om

po
si

te
 T

im
e

(s
ec

)

no
n-

in
te

rla
ce

d
in

te
rla

ce
d

Figure 5: Comparative performance of radix-k with and
without image interlacing. The composite time for each
frame is represented as a horizontal line in the plot. All
runs were on Intrepid in SMP mode.

age partition is already intact, it is only the implicit offsets
that need to be adjusted.

Figure 5 compares the compositing performance without
(blue) and with (orange) image interlacing. Image interlac-
ing both reduces the overall time to composite and reduces
the variability between different viewports. Figure 6 com-
pares Jumpshot logs of compositing with and without im-
age interlacing on 64 processes using radix-k with k = 16.
Jumpshot is a profiling tool that shows time on the horizon-
tal axis and processes as rows on the vertical axis [4]. With
image interlacing, the compositing work is better balanced
and less time is spent waiting for messages. The overhead
to initially interlace the images is minuscule compared to
the time savings, and the overhead of reshuffling after com-
positing, as required by Takeuchi et al. [29], or repartitioning
during compositing, as required by Kendall et al. [8], is no
longer necessary.

6. TELESCOPING COMPOSITING
A well known problem with binary swap is its inability to

deal well with processor counts that are not a power of two.
A simple and common technique to apply binary swap to
an arbitrary count of processes is folding. Folding finds the

0.0 0.05 0.1

N
on

-In
te

rla
ce

d
In

te
rla

ce
d

Time (seconds)

Figure 6: Jumpshot logs demonstrating the effect of
minimal-copy image interlacing. The cyan color denotes
the blending operation whereas the salmon and red indicate
communication and waiting on messages. Green represents
the encoding and splitting of images, and the dark blue is
the time spent interlacing.

largest count of processes that is a power of two and forms
a group of that size. Any process outside of this group (of
which there are always fewer than inside the group) sends
its entire image to one process inside the group where it
is blended with the local image. The processes inside the
power-of-two group composite normally while the remaining
processes remain idle. Yu et al. [34] show that there is a
performance penalty for folding.

2-3 swap [34] augments binary swap by grouping processes
in either twos or threes in each round rather than exclusively
twos. Because groups of two and three divide images differ-
ently, intermediate steps between rounds repartition images
and send data to ensure that all processes have image parti-
tions on the same boundaries. Radix-k also supports process
counts that are not a power of two by forming groups that
are any factor of the process count. This approach works
well if the process count has small factors, but is inefficient
for counts with large factors (as demonstrated by the results
given in Figure 9, which concur with observations of Peterka
et al. [22] for direct send).

We provide an alternative algorithm called telescoping for
supporting arbitrary process counts. Our telescoping algo-
rithm provides a simpler indexing and partitioning scheme
than 2-3 swap and can be applied to most base parallel com-
positing algorithms. We demonstrate telescoping to both
binary swap and radix-k. Telescoping works similarly to
folding except instead of sending images before composit-
ing, images are sent afterward to minimize idle time.

The TelescopingComposite algorithm is listed in Fig-
ure 7 and works as follows. At the onset, the algorithm
finds the largest process subgroup that is a power of two.
Of the remaining processes, it again finds the largest power-
of-two subgroup. This is repeated until all processes belong

TelescopingComposite(image, communicator)

1 commSize ← size(image)

2 mainSize ← 2blog2 commSizec � Largest power of two less than or equal to commSize
3 remaining ← commSize −mainSize
4 mainGroup ← subset of communicator of size mainSize
5 remainingGroup ← compliment of mainGroup
6 if Rank(communicator) ∈ mainGroup

then � I belong to the main group.
7 {compositedImage, compositedPartition} ← BasicComposite(image, mainGroup)
8 if remaining > 0

then � Need to retrieve image
9 sender ← process in remainingGroup holding partition corresponding to compositedPartition

10 telescopedImage ← Receive(sender)
11 compositedImage ← Blend(compositedImage, telescopedImage)
12 return {compositedImage, compositedPartition}

else � I belong to the remaining group.
13 {compositedImage, compositedPartition} ← TelescopingComposite(image, mainGroup)
14 if compositedImage 6= ∅

then � Still have image data to send.
15 receiverSet ← all processes in mainGroup holding a partition corresponding to compositedImage
16 for each receiver ∈ receiverSet

do
17 imagePiece ← section of compositedImage matching the image piece in receiver
18 Send(receiver , compositedImage)
19 return {∅, ∅} � Have no image, return nil.

Figure 7: Algorithm to apply telescoping to an existing parallel image compositing function (BasicComposite).

to some group that has a power of two size (where we con-
sider a group of size 1 to be a power of two equal to 20). The
TelescopingComposite procedure finds groups by recur-
sively calling itself. The algorithm then independently and
concurrently runs a parallel image compositing (such as bi-
nary swap or radix-k) on each group.

We now assume that each instance of the parallel image
compositing produces an image evenly partitioned amongst
all processes. Most parallel image compositing algorithms
(including binary swap and radix-k) satisfy this criterion.
To complete the image compositing, processes in the smaller
groups send their partitions to those in the next larger group,
starting with the smallest group. The second smallest group
receives image data from the smallest, blends this data to its
local image data, and sends the results to the third small-
est group. This continues until the largest group receives
and blends image data from the second largest, at which
point the composite is complete. Figure 8 demonstrates the
communication pattern of the telescoping algorithm.

Composite

Composite

Figure 8: Augmenting an algorithm to composite on a num-
ber of processes that is not a power of two.

Although the sending of image data across groups hap-
pens sequentially (from smallest to largest), the overhead is
minimal. In binary swap and radix-k, smaller process groups
have fewer rounds and therefore usually finish earlier. Thus,
by the time the largest groups finish their “local” compos-
ite, the image data from the next smallest group is usually
waiting in an MPI buffer.

Telescoping is most efficient (and easiest to implement)
when the partition boundaries of a process group of one size
align with those of other process groups. The image parti-
tioning algorithm in IceT ensures this consistent partitioning
by first computing the regions for partitions of the largest
group and then combining regions for smaller groups. A sec-
ond criterion of running telescoping efficiently is that it is
necessary for a smaller group to know where each partition
will be in the larger group and vice versa. This second cri-
terion is hidden in lines 9 and 15 of the TelescopingCom-
posite procedure. As this partition indexing is a necessary
part of the implementation of binary swap or radix-k, deter-
mining the same indices for telescoping is trivial. It is also
trivial to use telescoping with the minimal-copy image inter-
lacing described in Section 5 since the resulting partitions
are the same as those for compositing the largest process
group.

Figures 9 and 10 report the performance of binary swap
and radix-k on Intrepid with and without telescoping. Un-
like the other data given in this paper, these measurements
come from the averaging of 10 frames rather than 100 due to
the large number of measurements we took. Figure 9 demon-
strates that the original radix-k performs well for some pro-
cess counts but poorly for others. Figure 10 shows an over-
head for folding binary swap analogous to that reported by
Yu et al. [34]. Telescoping makes both algorithms perform
reasonably consistently for all process counts.

200 400 600 800 1000 1200 1400 1600 1800 2000
Number of P roces s es

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

A
ve

ra
ge

 C
om

po
si

te
 T

im
e

(s
ec

)

Radix-k

Radix-k
Telescoping

Binary Swap
Folded

Binary Swap
Telescoping

Figure 9: Comparison of telescoping and non-telescoping
versions of binary swap and radix-k (favoring k = 32) on
Intrepid in SMP mode.

200 400 600 800 1000 1200 1400 1600 1800 2000
Number of P roces s es

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

A
ve

ra
ge

 C
om

po
si

te
 T

im
e

(s
ec

)

Radix-k

Radix-k
Telescoping

Binary Swap
Folded

Binary Swap
Telescoping

Figure 10: Comparison of telescoping and non-telescoping
versions of binary swap and radix-k (favoring k = 32) on
Intrepid in SMP mode. The data are the same as those in
Figure 9, but the vertical axis is scaled to see detail in the
telescoping algorithms.

2K 3K 4K 5K 6K 7K 8K
Number of P roces s es

0.00

0.01

0.02

0.03

0.04

0.05

0.06

A
ve

ra
ge

 C
om

po
si

te
 T

im
e

(s
ec

)

Radix-k
Telescoping

Binary Swap
Folded

Binary Swap
Telescoping

Figure 11: Comparison of telescoping and non-telescoping
versions of binary swap and telescoping version of radix-k
(favoring k = 32) on Intrepid in VN mode.

Figure 11 shows the data for the same experiment sched-
uled on Intrepid in VN mode to larger process counts (and
again using 10 frames per measurement). Values for radix-k
without telescoping are not shown because the frame times
are too long to measure in the amount of processor time
we have available. We did, however, record times for the
largest process counts where we expect the worst behavior.
Our longest average measurement with unaltered radix-k is
12.88 seconds per frame for 8191 processes (which is, unsur-
prisingly, the largest prime number of processes for which we
ran). The same compositing using the telescoping version of
radix-k took only about 0.05 seconds per frame.

We also note some telescoping radix-k measurements in
VN mode that are anomalous compared to other process
counts (although consistent for all frames of that run). Note
the blue spikes in Figure 11. The largest such spike is 0.55
seconds per frame at 4097 processes. We are not sure why
these spikes occur, but we observe that they happen when a
small process group has to send images to a much larger pro-
cess group. Since these spikes only occur with radix-k and in
VN mode, we suspect that this telescoping communication
is happening at the same time as the larger group’s radix-k
communication, and the two interfere with each other. This
is explained by the fact that in VN mode four processes
share a single network interface controller, which must seri-
alize incoming and outgoing messages.

7. IMAGE COLLECTION
As previously mentioned, parallel compositing algorithms

finish with image data partitioned amongst the processes.
Although the compositing is technically finished at this
point, it is of little practical use if it is split into thousands of
pieces and distributed across nodes. Real use cases require
the images to be collected in some way. For example, Par-
aView collects the image to the root node and then sends it
over a socket to a GUI on the user’s client desktop [3].

S MP Mode VN Mode

25
6

51
2

10
24

20
48

40
96

81
92 25

6

51
2

10
24

20
48

40
96

81
92

0.01

0.02

0.05

0.1

0.2

0.5

1

2

Ti
m

e
(s

ec
)

Number of P roces s es

Composite Only

Composite + Collect

Composite Only

Composite + Collect

Figure 12: Compositing times on Intrepid when considering
time to collect image fragments into single image. All times
are given for binary swap.

Because the collection of the image is so important in
practice, it is proper to also measure its effect when scal-
ing the image compositing algorithm. Figure 12 compares
compositing times with and without image collection using
an MPI Gatherv operation. Although the numbers given

here are only given for binary swap, the variance between
versions is minor compared to the overhead of collection.

Clearly the MPI Gatherv collect is not scaling as well with
respect to the rest of the compositing algorithm. To make
the collection more efficient, we propose limiting the number
of partitions created in the parallel compositing algorithm
with a simple change to the binary swap and radix-k algo-
rithms. The algorithms proceed in rounds as before. As long
as the total number of partitions created remains under a
specified threshold, images are split and swapped as normal.
However, when this threshold of partitions is reached, im-
ages are no longer split. Instead, one process collects all the
image data from other processes in the group. The collec-
tion process continues while the other processes drop out.
Figure 13 demonstrates two rounds of binary swap with one
of the rounds collecting to reduce the number of partitions.
Collection in radix-k works the same except that k images
are collected.

Normal Swap
Round

Collect
Round

Figure 13: Reducing the number of partitions created by
four process in binary swap to two partitions by collecting
in the second round.

Because this change causes processes to sit idle, it makes
the compositing less efficient but potentially makes the col-
lection more efficient. Collecting rather than splitting im-
ages is only useful to the point where the improvements in
collection outweigh the added inefficiencies in compositing.
We should also note that limiting the number of partitions
creates limits the number of partitions used in the minimal-
copy image interlacing described in Section 5, but since our
reduced image partitions only contain a few scan lines, the
effect is minimal. Limiting the number of partitions also
changes the indexing in the TelescopingComposite algo-
rithm (listed in Figure 7) and adds a condition for when the
internally called BasicComposite returns a null image.

Figure 14 demonstrates the effects of limiting the number
of partitions on the binary swap algorithm (radix-k with
various values for k is measured in the following section).
Due to limits in processor allocation, we have not tested
SMP mode with 8192 nodes, but other measurements sug-
gest that the results will be comparable to VN mode with
8192 cores.

Our best composite + collect measurements in Figure 12
occur at 512 partitions, so we limited the maximum number
of partitions to 256 and up. Limiting the number of par-
titions to collect clearly benefits the overall time for larger
process counts. Our optimal number of partitions is in the
256–512 range.

8. SCALING STUDY
For our final experiment, we observe the rendering sys-

tem with all the improvements discussed in this paper (ex-

S MP Mode VN Mode

51
2

10
24

20
48

40
96 51

2

10
24

20
48

40
96

81
92

0.1

0.2

0.5

1

2

A
ve

ra
ge

 C
om

po
si

te
 +

 C
ol

le
ct

 T
im

e
(s

ec
)

Number of P roces s es

256 Partitions
512 Partitions

1024 Partitions

2048 Partitions

4096 Partitions

8192 Partitions

256 Partitions

512 Partitions

1024 Partitions

2048 Partitions

4096 Partitions

Figure 14: Compositing times on Intrepid when considering
the time to collect image fragments into a single image and
the total number of partitions is limited by collecting within
rounds rather than splitting. All times are given for binary
swap.

cept telescoping because we only considered powers of two)
scaled up to massive process counts. Figure 15 summarizes
the results. Keep in mind that these timings include col-
lecting image partitions into a single image, a necessary but
expensive operation that is often overlooked. All runs come
from Intrepid scheduled in VN mode. For all runs we set the
maximum number of partitions to 512 although the actual
number of partitions is smaller with values of k that do not
factor 512 evenly.

For most runs, radix-k with k = 32 and k = 64 are signif-
icantly slower than the others. This is not an effect of the
radix-k algorithm itself but rather the maximum number of
partitions that we used. For example, two rounds of radix-
k with k = 32 create 32 × 32 = 1024 partitions, which is
above our threshold. Thus, the partition threshold is actu-
ally throttled back to 32, which results in slower compositing
that is not compensated by faster collecting.

Our results show an increase in overall time for the largest
process counts. This increase is primarily caused by an
increase in collection times despite our limits on the total
number of partitions as is demonstrated in Figure 16. Nev-
ertheless, we are able to completely composite and collect
an image on 65,536 cores in less than 0.12 seconds for trans-
parent images (using floating point colors) and in less than
0.075 seconds for opaque images (using 8-bit fixed point col-
ors and floating point depths).

9. CONCLUSIONS
In this paper we describe several optimizations to image

compositing for sort-last parallel rendering. We also demon-
strate our completed system on some of the largest process
counts to date. Our findings show that image compositing
continues to be a viable parallel rendering option on the
largest computers today. These data also suggest a path for
future research.

The design of new fundamental compositing algorithms in
addition to binary swap, radix-k, and others is probably un-
necessary. In our observations, the performance difference
between binary swap and the various factorings of radix-k

Number of P roces s es

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18
A

ve
ra

ge
 C

om
po

si
te

 +
 C

ol
le

ct
 T

im
e

(s
ec

)

Radix-k 4

Binary Swap
Radix-k 8
Radix-k 16

Radix-k 32

Radix-k 64

(a) Transparent Geometry

Number of P roces s es

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

0.00
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

A
ve

ra
ge

 C
om

po
si

te
 +

 C
ol

le
ct

 T
im

e
(s

ec
)

Radix-k 4

Binary Swap
Radix-k 8

Radix-k 16

Radix-k 32

Radix-k 64

(b) Opaque Geometry

Figure 15: Performance of binary swap and several versions
of radix-k on Intrepid up to 65,536 cores. Transparent ren-
dering uses 4 floats (16 bytes) per pixel, and opaque render-
ing uses 4 bytes + 1 float (8 bytes) per pixel.

Number of P roces s es

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

Ti
m

e
(s

ec
)

Co
m

po
si

te
Co

lle
ct

(a) Transparent Geometry

Number of P roces s es

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Ti
m

e
(s

ec
)

Co
m

po
si

te
Co

lle
ct

(b) Opaque Geometry

Figure 16: Performance of radix-k with k = 8 on Intrepid
up to 65,536 cores. Total time is divided into compositing
and collection.

are small compared to the other optimizations of the system
such as sparse pixel encoding, load balancing, and image
collection. In fact, we find image collection to be the largest
overhead currently in our rendering system. Addressing im-
age collection is one of the most promising avenues of future
research.

Another fruitful area of research is better methods to take
advantage of multi-core processors. Although it is reason-
able to ignore the shared memory between the four cores
on Intrepid, future computers will have many more cores
per node. Some introductory work has analyzed the be-
havior of image compositing in shared-memory architec-
tures [7, 19, 21, 23], but further refinement is required to
take advantage of the hybrid distributed memory plus shared
memory architecture of large systems and to evolve the com-
positing as architectures and rendering algorithms change.

10. ACKNOWLEDGMENTS
Funding for this work was provided by the SciDAC Insti-

tute for Ultrascale Visualization and by the Advanced Sim-
ulation and Computing Program of the National Nuclear
Security Administration. Sandia National Laboratories is a
multi-program laboratory operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation,
for the U.S. Department of Energy’s National Nuclear Secu-
rity Administration. This research used resources of the Ar-
gonne Leadership Computing Facility at Argonne National
Laboratory, which is supported by the Office of Science of
the U.S. Department of Energy under contract DE-AC02-
06CH11357.

11. REFERENCES
[1] VisIt user’s manual. Technical Report

UCRL-SM-220449, Lawrence Livermore National
Laboratory, October 2005.

[2] J. Ahrens and J. Painter. Efficient sort-last renering
using compression-based image compositing. In Second
Eurographics Workshop on Parallel Graphics and
Visualization, September 1998.

[3] A. Cedilnik, B. Geveci, K. Moreland, J. Ahrens, and
J. Farve. Remote large data visualization in the
ParaView framework. In Eurographics Parallel
Graphics and Visualization 2006, pages 163–170, May
2006.

[4] A. Chan, W. Gropp, and E. Lusk. An efficient format
for nearly constant-time access to arbitrary time
intervals in large trace files. Scientific Programming,
16(2–3):155–165, 2008.

[5] H. Childs. Architectural challenges and solutions for
petascale postprocessing. Journal of Physics:
Conference Series, 78(012012), 2007.
DOI=10.1088/1742-6596/78/1/012012.

[6] H. Childs, D. Pugmire, S. Ahern, B. Whitlock,
M. Howison, Prabhat, G. H. Weber, and E. W.
Bethel. Extreme scaling of production visualization
software on diverse architectures. IEEE Computer
Graphics and Applications, 30(3):22–31, May/June
2010. DOI=10.1109/MCG.2010.51.

[7] M. Howison, E. Bethel, and H. Childs. MPI-hybrid
parallelism for volume rendering on large, multi-core
systems. In Eurographics Symposium on Parallel
Graphics and Visualization, May 2010.

[8] W. Kendall, T. Peterka, J. Huang, H.-W. Shen, and
R. Ross. Accelerating and benchmarking radix-k
image compositing at large scale. In Eurographics
Symposium on Parallel Graphics and Visualization
(EGPGV), May 2010.

[9] S. M. LaValle. Planning Algorithms. Cambridge
University Press, 2006.

[10] K.-L. Ma. In situ visualization at extreme scale:
Challenges and opportunities. IEEE Computer
Graphics and Applications, 29(6):14–19,
November/December 2009.
DOI=10.1109/MCG.2009.120.

[11] K.-L. Ma, J. S. Painter, C. D. Hansen, and M. F.
Krogh. A data distributed, parallel algorithm for
ray-traced volume rendering. In Proceedings of the
1993 Symposium on Parallel Rendering, pages 15–22,
1993. DOI=10.1145/166181.166183.

[12] K.-L. Ma, J. S. Painter, C. D. Hansen, and M. F.
Krogh. Parallel volume rendering using binary-swap
compositing. IEEE Computer Graphics and
Applications, 14(4):59–68, July/August 1994.
DOI=10.1109/38.291532.

[13] K.-L. Ma, C. Wang, H. Yu, K. Moreland, J. Huang,
and R. Ross. Next-generation visualization
technologies: Enabling discoveries at extreme scale.
SciDAC Review, (12):12–21, Spring 2009.

[14] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs. A
sorting classification of parallel rendering. IEEE
Computer Graphics and Applications, pages 23–32,
July 1994.

[15] K. Moreland. IceT users’ guide and reference, version
2.0. Technical Report SAND2010-7451, Sandia
National Laboratories, January 2011.

[16] K. Moreland, B. Wylie, and C. Pavlakos. Sort-last
parallel rendering for viewing extremely large data
sets on tile displays. In Proceedings of the IEEE 2001
Symposium on Parallel and Large-Data Visualization
and Graphics, pages 85–92, October 2001.

[17] U. Neumann. Parallel volume-rendering algorithm
performance on mesh-connected multicomputers. In
Proceedings of the 1993 Symposium on Parallel
Rendering, pages 97–104, 1993.
DOI=10.1145/166181.166196.

[18] U. Neumann. Communication costs for parallel
volume-rendering algorithms. IEEE Computer
Graphics and Applications, 14(4):49–58, July 1994.
DOI=10.1109/38.291531.

[19] B. Nouanesengsy, J. Ahrens, J. Woodring, and H.-W.
Shen. Revisiting parallel rendering for shared memory
machines. In Eurographics Symposium on Parallel
Graphics and Visualization 2011, April 2011.

[20] T. Peterka, D. Goodell, R. Ross, H.-W. Shen, and
R. Thakur. A configurable algorithm for parallel
image-compositing applications. In Proceedings of the
Conference on High Performance Computing
Networking, Storage and Analysis (SC ’09), November
2009. DOI=10.1145/1654059.1654064.

[21] T. Peterka, R. Ross, H. Yu, K.-L. Ma, W. Kendall,
and J. Huang. Assessing improvements in the parallel
volume rendering pipeline at large scale. In
Proceedings of SC 08 Ultrascale Visualization
Workshop, 2008.

[22] T. Peterka, H. Yu, R. Ross, K.-L. Ma, and R. Latham.
End-to-end study of parallel volume rendering on the
IBM Blue Gene/P. In International Conference on
Parallel Processing (ICPP ’09), pages 566–573,
September 2009. DOI=10.1109/ICPP.2009.27.

[23] E. Reinhard and C. Hansen. A comparison of parallel
compositing techniques on shared memory
architectures. In Proceedings of the Third Eurographics
Workshop on Parallel Graphics and Visualization,
pages 115–123, September 2000.

[24] R. Samanta, T. Funkhouser, and K. Li. Parallel
rendering with k-way replication. In 2001 Symposium
on Parallel and Large-Data Visualization and
Graphics, pages 75–84, October 2001.

[25] R. Samanta, T. Funkhouser, K. Li, and J. P. Singh.
Hybrid sort-first and sort-last parallel rendering with
a cluster of PCs. In Proceedings of the ACM
SIGGRAPH/Eurographics Workshop on Graphics
Hardware, pages 97–108, 2000.

[26] C. Sosa and B. Knudson. IBM System Blue Gene
Solution: Blue Gene/P Application Development. IBM
Redbooks, fourth edition, August 2009. ISBN
0738433330.

[27] A. H. Squillacote. The ParaView Guide: A Parallel
Visualization Application. Kitware Inc., 2007. ISBN
1-930934-21-1.

[28] A. Stompel, K.-L. Ma, E. B. Lum, J. Ahrens, and
J. Patchett. SLIC: Scheduled linear image compositing
for parallel volume rendering. In Proceedings IEEE
Symposium on Parallel and Large-Data Visualization
and Graphics (PVG 2003), pages 33–40, October 2003.

[29] A. Takeuchi, F. Ino, and K. Hagihara. An
improvement on binary-swap compositing for sort-last
parallel rendering. In Proceedings of the 2003 ACM
Symposium on Applied Computing, pages 996–1002,
2003. DOI=10.1145/952532.952728.

[30] T. Tu, H. Yu, L. Ramirez-Guzman, J. Bielak,
O. Ghattas, K.-L. Ma, and D. R. O’Hallaron. From
mesh generation to scientific visualization: An
end-to-end approach to parallel supercomputing. In
Proceedings of the 2006 ACM/IEEE conference on
Supercomputing, 2006.

[31] B. Wylie, C. Pavlakos, V. Lewis, and K. Moreland.
Scalable rendering on PC clusters. IEEE Computer
Graphics and Applications, 21(4):62–70, July/August
2001.

[32] D.-L. Yang, J.-C. Yu, and Y.-C. Chung. Efficient
compositing methods for the sort-last-sparse parallel
volume rendering system on distributed memory
multicomputers. In 1999 International Conference on
Parallel Processing, pages 200–207, 1999.

[33] H. Yu, C. Wang, R. W. Grout, J. H. Chen, and K.-L.
Ma. In situ visualization for large-scale combustion
simulations. IEEE Computer Graphics and
Applications, 30(3):45–57, May/June 2010.
DOI=10.1109/MCG.2010.55.

[34] H. Yu, C. Wang, and K.-L. Ma. Massively parallel
volume rendering using 2-3 swap image compositing.
In Proceedings of the 2008 ACM/IEEE Conference on
Supercomputing, November 2008.
DOI=10.1145/1413370.1413419.

	Introduction
	Previous Work
	Basic Parallel Compositing Algorithms
	Compositing Enhancements

	Software Framework and Targeted Platforms
	Compositing Order
	Minimal-Copy Image Interlace
	Telescoping Compositing
	Image Collection
	Scaling Study
	Conclusions
	Acknowledgments
	References

