
HAL Id: hal-00765596
https://inria.hal.science/hal-00765596v1

Submitted on 14 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Knowledge Continuous Integration Process (K-CIP)
Hala Skaf-Molli, Emmanuel Desmontils, Emmanuel Nauer, Gérôme Canals,

Amélie Cordier, Marie Lefevre, Pascal Molli, Yannick Toussaint

To cite this version:
Hala Skaf-Molli, Emmanuel Desmontils, Emmanuel Nauer, Gérôme Canals, Amélie Cordier, et al..
Knowledge Continuous Integration Process (K-CIP). WWW 2012 - SWCS’12 Workshop - 21st World
Wide Web Conference - Semantic Web Collaborative Spaces workshop, Apr 2012, Lyon, France.
pp.1075-1082. �hal-00765596�

https://inria.hal.science/hal-00765596v1
https://hal.archives-ouvertes.fr


Knowledge Continuous Integration Process (K-CIP)

Hala Skaf-Molli
LINA – Université de Nantes

2 rue de la Houssinière
BP92208, F-44300 Nantes

Cedex 3, France
hala.skaf@univ-nantes.fr

Emmanuel Desmontils
LINA – Université de Nantes

2 rue de la Houssinière
BP92208, F-44300 Nantes

Cedex 3, France
emmanuel.desmontils@univ-

nantes.fr

Emmanuel Nauer
LORIA – Université de

Lorraine, BP 239,
F-54506,

Vandœuvre-lès-Nancy,
CEDEX, France

emmanuel.nauer@loria.fr
Gérôme Canals

LORIA – Université de
Lorraine, BP 239,

F-54506,
Vandœuvre-lès-Nancy,

CEDEX, France
gerome.canals@loria.fr

Amélie Cordier
Université de Lyon

Université de Lyon 1, LIRIS
UMR5205, F-69622, France

amelie.cordier@liris.cnrs.fr

Marie Lefevre
Université de Lyon

Université de Lyon 1, LIRIS
UMR5205, F-69622, France

marie.lefevre@liris.cnrs.fr

ABSTRACT
Social semantic web creates read/write spaces where users
and smart agents collaborate to produce knowledge readable
by humans and machines. An important issue concerns the
ontology evolution and evaluation in man-machine collabo-
ration. How to perform a change on ontologies in a social
semantic space that currently uses these ontologies through
requests ? In this paper, we propose to implement a contin-
uous knowledge integration process named K-CIP. We take
advantage of man-machine collaboration to transform feed-
back of people into tests. This paper presents how K-CIP
can be deployed to allow fruitful man-machine collaboration
in the context of the WikiTaaable system.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
H.0 [Information Systems Applications]: General; D.2.5
[Testing and Debugging]: Testing tools, Tracing

General Terms
Theory, Verification

Keywords
Ontology, Continuous Integration process, Semantic Wiki,
Knowledge Management

1. INTRODUCTION
Social semantic web [17] opened interesting perspectives

for man-machine collaboration [12, 20]. It created read/write
spaces where users and smart agents can collaborate to im-
prove and maintain knowledge readable by humans and ma-
chines. Humans can write documents assisted with smart
agents that gather informations from linked data [6] such as

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2012 Companion, April 16–20, 2012, Lyon, France.
ACM 978-1-4503-1230-1/12/04.

Zemanta1. Smart agents can perform complex queries on
structured knowledge extracted from social tools as DBPe-
dia [2].

Ontologies are the backbone of semantic web and what-
ever the semantics is – model theoretic versus linked data
[11] – ontologies are not an end per se; they are dedicated
to a task and contribute to the foundation of reasoning sys-
tems. However, there is no unique way for expressing any
piece of knowledge: an inference is valid if it follows some
basic rules in logic and, as well, if it helps in reaching the
goals the application is designed for. From the social seman-
tic web point of view, if ontologies are playing a fundamental
role, most of the time, they cannot be modified in the so-
cial space, or more precisely, not in the same social space
than the one used by people. Extracted Wikipedia ontolo-
gies such as DBPedia2 [2] or YAGO [16] cannot be modified
directly by Wikipedians. Indeed, a change in the ontology
may induce a great change in the application results. This
problem is clearly observable in semantic wikis [18] where a
user can change a type definition and break all queries or
inferences that use this definition. In that way, evaluation
of an ontology overpasses the completeness and soundness
question and raises the fundamental problem of ontology
evolution and evaluation in man-machine collaboration.

In this paper, we propose to implement a continuous knowl-
edge building process named K-CIP. Community control
processes such as wiki or social networks are quite conve-
nient for updating or enriching the ontologies. Each user
may contribute to information, knowledge construction and
regulation. Users are guided by the results of the appli-
cations at a given time to make changes which allow new
inferences or block some others in the next version. We
take advantage of man-machine collaboration to transform
feedback of users into tests. These tests allow to evaluate
ontology changes in term of user satisfaction. The global
change process is obtained by running synchronization pro-
tocol on a network of knowledge bases. One node of the
network represents the blessed knowledge base where users

1http://www.zemanta.com/
2http://dbpedia.org/

WWW 2012 – SWCS'12 Workshop April 16–20, 2012, Lyon, France

1075



are using the system and where interactions are collected as
tests. Next, ontology changes can be performed on an iso-
lated node of the network and then propagated to any node
of the network. In order to setup continuous integration,
a node represents the continuous integration server where
tests are gathered and run against ontology changes. If test
results are acceptable then ontology changes are propagated
back to blessed knowledge base. If failed, proposed ontology
changes are cancelled.

This paper presents how K-CIP can be deployed to al-
low fruitful man-machine collaboration in the context of the
WikiTaaable system [4]. It is organized as follows. Sec-
tion 2 presents related works. Section 3 shows a motivating
example. Section 4 gives an overview of the tests system.
Section 5 details the K-CIP process. The last section con-
cludes the paper and points future works.

2. STATE OF THE ART
The engineering of ontologies is a central concern in knowl-

edge engineering. Many tools have been proposed to im-
prove ontologies development. Most of these tools (as Pro-
tégé [1]) are designed for centralized usage without social col-
laboration process. However, some collaborative approaches
have been proposed.

Co4 [9] defines sharing protocols based on peer-reviewing
for finding consensual knowledge; the result is a hierarchy of
knowledge bases (KBs), the uppermost ones containing the
most consensual knowledge while the lowermost ones are
private KBs of contributing users. Co4 supports only hi-
erarchical collaboration and does not support autonomous
participants. In addition, it does not allow to represent any
kind of processes like an integration processes for instance.
Reaching consensual knowledge is not always an easy issue,
especially when autonomous participants can enrich knowl-
edge from different sources.

DILIGENT [19] is a methodology focusing on ontology
management in distributed environments. It is based on
roles and activities. Domain experts build a first basic on-
tology, then the users have to extend this ontology. Experts
must validate users proposals before integrating them into
the ontology. Such a system is a kind of validation process
for building formal knowledge. As opposed to the K-CIP
process, which evaluates an ontology automatically through
its application process, in DILIGENT, domain experts val-
idate the proposal and there are no automatic tests to vali-
date them.

OntoWiki[3] is a tool dedicated to support agile and col-
laborative knowledge engineering. This tool provides cen-
tralized collaborative management of an ontology. Changes
are tracked and identified. Finally, a rating system allows
the community to validate the resulting ontology.

Beyond ontological engineering tools, we are also inter-
ested in Continuous Integration process [10] (CI). This is an
agile software engineering process aiming at shortening the
integration of software. The principle is to allow the devel-
oper to make many small updates (and this is even recom-
mended). Each update is subject to a set of unit tests then
this update is integrated into the whole software. Next, one
or more phases of integration tests (according to their time
cost) are processed to ensure the consistent development of
the software. A notification system allows the developer to
know the state of integration. In case of failure, he/she is
quickly notified so that corrections are made quickly.

Figure 1: Ontology changes in a continuous integra-
tion process

The goal of the K-CIP approach described in this paper is
to provide such features for ontology engineering in a social
and distributed context. For that, we draw inspiration from
continuous integration and agile programming.

3. MOTIVATING SCENARIO AND ILLUS-
TRATION OF THE APPROACH

In the context of the Kolflow project, our goal is to develop
a social semantic space where humans and smart agents can
collaborate to build efficient reasoning systems. One way
to improve the efficiency of reasoning systems is to enhance
the quality of the knowledge they use. Our goal in this
paper is to show that we can apply agile software develop-
ment techniques to ontology engineering. More precisely, we
transpose the continuous integration (CI) process to the on-
tology engineering. This approach allows us to consider the
ontology development as an agile distributed collaborative
development process as it is shown in Fig. 1.

In this approach, each knowledge engineers (peers) de-
velops a part of the ontology and makes local verifications
(with a set of unit tests). Every time he/she commits a
new set of modifications, the dedicated server automatically
launches an integration build to validate the changes and
to test the consistency of the ontology. A set of integration
tests is used to perform the validation. After this step, the
server notifies the peer of the result. The peer immediately
knows if the changes that he/she committed has been suc-
cessfully integrated or not. Therefore, checking integration

WWW 2012 – SWCS'12 Workshop April 16–20, 2012, Lyon, France

1076



becomes as easy as checking software code. Using an au-
tomated integration server does not only makes integration
easy, but also guarantees that the ontology is consistent.
There is no danger for knowledge engineers to forget to vali-
date their changes. In addition, even if each peer has a par-
tial view of the ontology, the CI process integrates all the
views and verifies the consistency of the resulting ontology.
Finally, the community of knowledge engineers accepts or
not changes according to the functional point of view of the
system. Such a phase corresponds to the phase of functional
testing in software development.

Integration tests ensure to keep a maximum of ”good”
properties in the ontology. The main difficulty in this ap-
proach is the development of tests (design and build). There-
fore, we need ways to gather tests as easily as possible. We
argue that tests can be collected using social exchanges.
These exchanges can be supported by centralized or dis-
tributed architectures. In this paper, we propose to use a
distributed architecture, and we use DSMW as a support
for this architecture [15, 14].

To illustrate our work, we have taken our examples in the
cooking domain. For this, we present the system Taaable
and the semantic wiki WikiTaaable. In the following, we
show how, thanks to K-CIP, we can help knowledge engi-
neers to improve the knowledge contained in WikiTaaable.

DSMW.
The Distributed Semantic Media Wiki is an extension to

Semantic MediaWiki (SMW) [13]. It allows to create a net-
work of SMW servers that share common semantic wiki
pages. DSMW manages the propagation and the integra-
tion of changes issued on one SMW server to remote servers
on the network. The system ensures the consistency of the
whole set of replicated pages. DSMW users can create and
edit semantically annotated wiki pages as with a regular
SMW server. Then they can manage page changes as a soft-
ware developer does with source code using a distributed
version control system. They can work in isolation while
editing pages and semantic annotation on a single server.
Then they can publish part or all of her own changes by
pushing them to DSMW public feeds. They can also sub-
scribe to any remote public DSMW feeds, pull changes from
remote servers and integrate them to the local pages. The
DSMW extension adds two main features to SMW: an op-
timistic replication algorithm, and an ontology to manage
changes, publication and integration of changes sets.

Taaable and WikiTaaable .
Taaable is a web-based application that solve cooking

problems. When a user asks for ”a dessert with rice and figs”
to Taaable, the system returns dessert recipes containing
rice and figs. If Taaable does not have this kind of recipe
in his cookbook, it builds one by adapting an existing recipe.
For example :

Taaable can retrieve a dessert recipe with rice
and mangoes, and recommend the user to replace
mangoes by figs to obtain a recipe with rice and
figs.

For this, Taaable relies not only on its cookbook, but
also on a set of adaptation knowledge. The reasoning is
performed by a dedicated case-based reasoning engine.

All the knowledge used by Taaable is represented in a
semantic wiki called WikiTaaable [4]. In the current imple-
mentation of the system, we use DSMW as the wiki engine
for WikiTaaable. WikiTaaable allows users to visualize
the knowledge used in the system and to navigate in the
recipe book. The same tool is also used to display recipes
and adaptation recommended by Taaable.

In the current version of the system, users can directly edit
the knowledge via the interface of WikiTaaable. However,
this can be very dangerous because users, even the most
experienced, may not necessarily perceive the impact of their
changes throughout the system. To illustrate this, consider
a simple example :

We consider that Taaable has the recipe for
fruit syrup, and is able to adapt the recipe for
any fruit. Now suppose that a user decides to
classify the tomato as a fruit. Without know-
ing it, it opens the possibility to create tomato
syrup, which is not necessarily desirable.

To avoid such situations to occur, we propose a mechanism
to test the impact of a modification of knowledge on the out-
put of a system before permanently integrating the modified
knowledge in the base. By doing so, we facilitate the process
of maintenance and evolution of knowledge, which improves
the overall system quality.

4. TESTS SYSTEM
Our K-CIP approach relies on tests that can be applied to

the system. Testing the system consists in running queries
and evaluating their results each time a modification of the
system is introduced. Tests are expressed as assertions about
the result of a query. Test assertions are typically written by
the developers of the system and users that introduce modi-
fications. Test data (i.e. queries and their expected results)
are collected through the feedback given by end users of the
system and stored in the feedback database.

The architecture for collecting test data from users, and
for running tests is given in Fig. 2. This architecture is
described in the context of Taaable.

(1) Users interacts with Taaable. Taaable proposes
recipes and their possible adaptations. An adaptation is
a pair (C,M), where C is a case and M a set of modifications
to apply on the case. In Taaable, C is a recipe and M is
a set of substitutions of ingredients {im} → {jn}, meaning
that the set of ingredients {im} has to be replaced by the
set of ingredients {jn} in this recipe. For each modifica-
tion proposed by the system, users can evaluate through the
Taaable interface, if it is relevant or not.

(2) Then, we feed a database with the evaluated adapta-
tions: For Taaable, an adaptation is relevant (resp. irrel-
evant) for a user if the user agrees that the modification of
recipe by a set of substitutions works (resp. does not work).
So, an evaluated adaptation A is an adaptation associated
with a positive or negative evaluation.

(3) a user is asked to evaluate if an adaptation is relevant
or not and thus, the set of relevant answers or the set of
irrelevant answers associated to a query evolves.

(4) In addition, when users modify the ontology, (5) non-
regression test-processes are triggered. This process (6) uses
the feedback database which stores, for a query Q, the sets
of relevant, irrelevant or non evaluated answers. These sets

WWW 2012 – SWCS'12 Workshop April 16–20, 2012, Lyon, France

1077



Figure 2: Architecture for collecting and running tests above the Taaable system

are used by ”non regression test” processes to evaluate asser-
tions about the state of the system. This enables the system
to guarantee that ontology modifications are acceptable (in
case of successful test) or not (when some tests fails). In this
last case, the modifications are cancelled and a notification
is sent to the author. An complementary approach could
be to implement some user interactions, as it is for example
done in [8], [5].

4.1 Defining tests
A test T is defined as

• a query QT ;

• a set AT of assertions {Ai} evaluated against the result
RQ produced by the query QT when the test is ran.

A test T is said to be successful if all assertions {Ai} in
AT are evaluated to true. Assertions in AT are typically
written using three particular data sets that come from the
feedback database:

• R+: the set of answers considered as relevant for QT ;

• R−: the set of answers considered as irrelevant for QT ;

• R?: the set of answers for which no relevant informa-
tion is available;

Assertions are then defined as logical expressions using set
operations on RQ, R+, R−,R?.

4.2 Writing tests
As defined just above, tests are written by defining asser-

tions about the results of a given query.
These tests are written and ran to guarantee that a mod-

ification of the ontology does not alter the system behavior.
This is done by selecting queries and their expected results
from the feedback database and evaluating assertions that
compare their effective result to compare with the expected
one.

Typical assertions that can be checked are the following:

Assert( R+⊆ RQ ) : all the expected answers R+are in the
resultRQ, useful to ensure that a modification does not
reduce the set of positive answers for a query;

Assert( R+= RQ ) : the result RQ is exactly the set of
expected answers R+;

Assert( RQ ∩ R−= ∅) : none of the unwanted answers are
in the result; useful to ensure that a modification does
not introduce unwanted results for a query.

It is also possible to write assertions that compare sets
cardinals:

Assert(| R+∩ RQ | > | R−∩ RQ |) : there is more positive
answers than unwanted answers;

Assert(| R+∩ RQ | > | R?∩ RQ |) : there is more positive
answers than undetermined answers in the result of
the query ; useful to check that a modification does
not introduce irrelevant noise in the result of a query;

Assert(
|R+∩RQ|
|R+|

≥ α) : the query produces at least α% of

the expected answers.

4.3 Collecting Test data
In our architecture, we plan to store tests in a wiki. These

tests could be written manually by experts and users, e.g.
by listing, for a given query, the expected relevant/irrelevant
results. However, this option is very time consuming. This
is the reason why –and this is an originality of this work– we
propose an approach to automatically collect test by gath-
ering user feedback.

In the Taaable interface, illustrated in figure 3, we can
see that the interface allows users to evaluate a recipe adap-
tation by saying if the adaptation is ”OK” or not. So, when
a user evaluates an adaptation as being relevant (by clicking
on ”OK”) the recipe returned and adapted by Taaable can
be added to R+of the test T (Q, R+, R−, R?) where Q is the
query which has been used for querying Taaable. In the
same way, R−increases when a user evaluates an adaptation
as being irrelevant.

WWW 2012 – SWCS'12 Workshop April 16–20, 2012, Lyon, France

1078



Figure 3: The Taaable interface. Queried for a dessert dish, with rice and fig, Taaable proposes to replace
mango by fig. After viewing the adapted recipe, the user can give feedback about the substitution (”OK” or
”not OK”).

Figure 4: K-CIP overview using DSMW and Wiki-
Taaable

5. PROCESS SUPPORT
To illustrate the K-CIP process, we use a distributed se-

mantic wiki (DSMW) populated with WikiTaaable data.
Therefore, DSMW is used to represent the ontology used by
Taaable. DSMW allows the deployment of different pro-
cesses. Figure 4 presents an architecture deployed in DSMW
that allows a knowledge integration process. The process
follows these steps:

• Each user has his/her own version of the ontology
on his/her own instance of DSMW (”Personal Wiki”)
which represent knowledge nodes [7] composing the on-
tology.

• The different versions of the ontology are combined
and tested on an integration server based on an in-
stance of DSMW (”Integration Wiki”). On the Inte-
gration Wiki, the test is performed by an intelligent
agent. This autonomous agent merge ontologies and
run the set of integration tests.

• A set of dedicated wikis (”Expert Wiki”) enables the
community to discuss over the proposed solution (the
ontology with all personal versions integrated). Each
Expert Wiki (over DSMW server) can be seen as a
view of the main ontology depending on the topics ad-
dressed by each one.

WWW 2012 – SWCS'12 Workshop April 16–20, 2012, Lyon, France

1079



Figure 5: Detailed process of a modification of an
ontology

• Once a consensus is reached (the functional phase is
validated), a standard and public version of the on-
tology is published on a read only public Wiki (”Main
Wiki”).

In the following, we present a scenario where a user (Mary)
modifies an ontology. We use this scenario to illustrate the
K-CIP process described above.

Ontology Management.
Mary modifies the ontology of her personal wiki ”Personal

Wiki 1” (Fig. 5). O is the initial ontology and O′ is the new
ontology obtained by a set of modifications on O. Later,
Mary pushes her modifications to the integration Wiki (1)
that integrates them in the main ontology and implements
the verification campaign with tests. Two cases are possible:

• Tests failure, in this case, the integration wiki informs
Mary (2’) and explains the reasons for the rejection of
its proposal.

• Tests success, in this case the proposed amendments
are accepted and O′ is pushed over the expert wiki (2).

In the latter case, the experts group of the community
validates O′. If rejected, the author is notified (3’). Oth-
erwise, accepted changes are pushed to the public wiki (3)
and users can get it (4). The experts group can only vali-
dates or refuses the proposal. No changes are made at this
step. Each time a failure happens, a procedure to cancel the
edition is enabled.

Tests Management.
Tests are a very important part of K-CIP. Building tests

for an ontology follows two ways : the first way is reusing
previous tests of O which are still valid for O′ and the second
way is adding new tests specifically for O′.

A successful test for O can be a successful one for O′.
However, depending on the type of test, the properties (like
the sets of responses relevant, irrelevant and unknown) can
evolve. Therefore, a maintenance phase of tests is useful
after updating an ontology. Tests are then made avail-
able to the community through the Expert Wikis, in or-
der to validate tests updates (like adjusting the different

Figure 6: Setting up tests

sets). Once validated, changes are updated in the Integra-
tion Wiki. Some tests can be finally rejected by the com-
munity, the authors are then informed.

Second, any contributor can create a new test (Fig. 6).
He/she therefore develops the test by proposing a query,
specifying the characteristics of the test and building the sets
of the accepted and rejected answers. Once in a satisfactory
condition, he/she pushes his/her test to the integration wiki
(1). Tests are validated by the expert community (as in the
previous case) (2) and integrated in the verification wiki (3)
or not. In case of rejection, explanations are suggested to
the author of the test (3’ - 4).

6. CONCLUSION AND FUTURE WORK
Nowadays, ontology evaluation remains a major challenge

for knowledge-based systems. We argue that a collaborative
environment implementing a K-CIP is a real advance to go
beyond completeness and soundness checking or any formal
approach which only consider the ontology.

This paper describes the K-CIP process, a continuous pro-
cess for enriching and updating ontologies dedicated to a
specified task. Impacts of ontology changes on the task
are evaluated by a set of tests. In this particular case, the
Taaable project, a case-based reasoning system on cook-
ing, is used for experiment. This work is conducted within
the Kolflow Project which aims at building a social semantic
space where humans and intelligent agents can collaborate
to achieve various tasks.

Formalization, implementation and experiments have still
to be completed.

In addition, several situations remain to be explored. For
example, when a modification is rejected by a user or by a
community of users, nothing is done yet. Taking into ac-
count situations of rejection by users is an important per-
spective to this work. We are particularly interested in two
situations that can cause a bad feedback from users.

The first situation is the situation where different users
disagree on a situation, but where everyone wants to keep
his point of view. In such a situation, it becomes neces-
sary to manage in parallel several versions of a resources,
while ensuring that the overall system will continue to work
properly. A new challenges is then to implement processes

WWW 2012 – SWCS'12 Workshop April 16–20, 2012, Lyon, France

1080



capable of reasoning in the presence of inconsistent knowl-
edge.

The second situation on which we focus is the ”regression”
situation. What happens if a change undermines a result
that was obtained in the past? Should we consider that the
context has changed and that the result obtained in the past
is no longer valid? Or should we consider that the proposed
modification entails a system regression and therefore, that
it should not be applied? To address this problem, we plan
to implement a mechanism inspired by the non-regression
tests, combined with a strategy of interaction with users to
enable them to drive the tests.

These situations are just two examples of the many prob-
lems raised by the implementation of collaborative social
space that we intend to explore in the project Kolflow. More-
over, K-CIP opens new challenges we are currently studying.

One of these new challenges is to help the user in better
understanding how to enrich the ontology in order to make
the overall system progresses. As the final task acts as a
black box, there could be discord between user intuition for
updating the ontology and the evolution of the task during
the tests. Implementing a good tracking systems could lead
to the definition of a recommendation system to help the
user.

Another challenge is suggested by [11] who highlights that
semantic web swings between formal model theoretic seman-
tics and a “light” semantics suggested by open-linked data
approaches. Completeness and soundness constraints on the
ontology could be released to prior task efficiency, enabling,
for example, computation of competing solutions which cor-
respond to different interpretation of the ontology.

Thus, social semantic spaces where humans and intelli-
gent agents can collaborate to achieve various tasks is very
promising for ontology-based system development, making
them more flexible and avoiding ontology obsolescence.

7. ACKNOWLEDGMENTS
This work is supported by the French National Research

agency (ANR) through the KolFlow project (code: ANR-10-
CONTINT-025), part of the CONTINT research program.

8. ADDITIONAL AUTHORS
Pascal Molli,
LINA Université de Nantes
2 rue de la Houssinière, BP92208,
F-44300 Nantes Cedex 3,
France
pascal.molli@univ-nantes.fr

and
Yannick Toussaint,
INRIA – LORIA,
BP 239, F-54506 Vandœuvre-lès-Nancy, CEDEX,
France
yannick.toussaint@loria.fr

9. REFERENCES
[1] The Protégé Ontology Editor and Knowledge

Acquisition System. http://protege.stanford.edu/,
2003.

[2] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann,
R. Cyganiak, and Z. Ives. Dbpedia: A nucleus for a

web of open data. The Semantic Web, 4825:722–735,
Jan 2007.

[3] S. Auer, S. Dietzold, J. Lehmann, and T. Riechert.
OntoWiki: A tool for social, semantic collaboration.
In N. F. Noy, H. Alani, G. Stumme, P. Mika, Y. Sure,
and D. Vrandecic, editors, Proceedings of the
Workshop on Social and Collaborative Construction of
Structured Knowledge (CKC 2007) at the 16th
International World Wide Web Conference
(WWW2007) Banff, Canada, May 8, 2007, volume
273 of CEUR Workshop Proceedings. CEUR-WS.org,
2007.

[4] F. Badra, J. Cojan, A. Cordier, J. Lieber,
T. Meilender, A. Mille, P. Molli, E. Nauer, A. Napoli,
H. Skaf-Molli, and Y. Toussaint. Knowledge
acquisition and discovery for the textual case-based
cooking system WIKITAAABLE. In S. J. Delany,
editor, 8th International Conference on Case-Based
Reasoning - ICCBR 2009, Workshop Proceedings,
pages 249–258, Seattle, United States, July 2009.

[5] F. Badra, A. Cordier, and J. Lieber. Opportunistic
Adaptation Knowledge Discovery. In Springer, editor,
8th International Conference on Case-Based
Reasoning (ICCBR 2009), pages 60–74, July 2009.

[6] T. Berners-Lee. Linked data-the story so far.
International Journal on Semantic Web and
Information Systems, 5(3):1–22, 2009.

[7] M. Bonifacio, P. Bouquet, and R. Cuel. Knowledge
nodes: the building blocks of a distributed approach
to knowledge management. Journal of Universal
Computer Science, 8(6):652–661, Jan 2002.

[8] A. Cordier. Interactive and Opportunistic Knowledge
Acquisition in Case-Based Reasoning. Thèse de
doctorat en informatique, Université Lyon 1, Nov.
2008.

[9] J. Euzenat. Corporate memory through cooperative
creation of knowledge bases and hyper-documents. In
Proc. 10th workshop on knowledge acquisition (KAW),
Banff (CA), pages (36)1–18, 1996.

[10] M. Fowler and M. Foemmel. Continuous integration,
http://martinfowler.com/articles/continuousintegration.html,
2005.

[11] P. Hitzler and F. van Harmelen. A reasonable
semantic web. Semantic Web, 1(1):39–44, 2010.

[12] R. Hoffmann, S. Amershi, K. Patel, F. Wu, J. Fogarty,
and D. S. Weld. Amplifying community content
creation with mixed initiative information extraction.
In Proceedings of the 27th international conference on
Human factors in computing systems, CHI ’09, pages
1849–1858, New York, NY, USA, 2009. ACM.

[13] M. Krötzsch, D. Vrandecic, M. Völkel, H. Haller, and
R. Studer. Semantic wikipedia. Journal of Web
Semantics, 5:251–261, December 2007.

[14] H. Skaf-Molli, G. Canals, and P. Molli. DSMW: a
distributed infrastructure for the cooperative edition
of semantic wiki documents. In A. Antonacopoulos,
M. Gormish, and R. Ingold, editors, ACM Symposium
on Document Engineering (DocEng 2010), pages
185–186, Manchester, Royaume-Uni, 2010. ACM.

[15] H. Skaf-Molli, G. Canals, and P. Molli. DSMW:
Distributed Semantic MediaWiki. In L. Aroyo,
G. Antoniou, E. Hyvönen, A. ten Teije,

WWW 2012 – SWCS'12 Workshop April 16–20, 2012, Lyon, France

1081



H. Stuckenschmidt, L. Cabral, and T. Tudorache,
editors, 7th Extended Semantic Web Conference
(ESCW 2010), volume 6089 of Lecture Notes in
Computer Science, Heraklion, Grèce, 2010. Springer.

[16] F. Suchanek, G. Kasneci, and G. Weikum. Yago: A
large ontology from wikipedia and wordnet. Web
Semantics: Science, Services and Agents on the World
Wide Web, 6(3):203–217, 2008.

[17] Tom and Gruber. Collective knowledge systems:
Where the social web meets the semantic web. Web
Semantics: Science, Services and Agents on the World
Wide Web, 6(1):4 – 13, 2008. Semantic Web and Web
2.0.

[18] M. Völkel, M. Krötzsch, D. Vrandecic, H. Haller, and
R. Studer. Semantic wikipedia. In Proceedings of the
15th international conference on World Wide Web,
WWW ’06, pages 585–594, New York, NY, USA,
2006. ACM.

[19] D. Vrandecic, S. Pinto, C. Tempich, and Y. Sure. The
diligent knowledge processes. Journal of Knowledge
Management, 9(5):85–96, 2005.

[20] F. Wu and D. S. Weld. Autonomously semantifying
wikipedia. In Proceedings of the sixteenth ACM
conference on Conference on information and
knowledge management, CIKM ’07, pages 41–50, New
York, NY, USA, 2007. ACM.

WWW 2012 – SWCS'12 Workshop April 16–20, 2012, Lyon, France

1082




