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ABSTRACT 
Runtime variability is a key technique for the success of Dynamic 
Software Product Lines (DSPLs), as certain application demand 
reconfiguration of system features and execution plans at runtime. 
In this emerging research work we address the problem of 
dynamic changes in feature models in sensor networks product 
families, where nodes of the network demand dynamic 
reconfiguration at post-deployment time. 

1. INTRODUCTION 
A Software Product Line (SPL) maximizes reuse by exploiting 
both the common and variable aspects of systems; system features 
are described in the architecture using a complementary 
representation model called a feature model [1] [2]. The structural 
variability, often seen as orthogonal to other software artifacts, 
shows a hierarchy of a system's features which are bound to 
concrete values at different binding times [3] [4]. 

Today, the ever increasing complexity of software systems 
demands more and more runtime capabilities (e.g., SOA 
applications) that enable speedy reaction to new context 
conditions and better support for evolution of products. Many 
software systems that require adaptation to changing 
environments (e.g., self-adaptable and self-healing systems [5], 
[6] autonomic computing [7], [8], ubiquitous systems, robotics, 
etc.), need the activation/deactivation of system features [9] 
autonomously. One domain where runtime concerns play an 
important role is that of Wireless Sensor and Actuator Networks -
WSANs). A WSAN encompasses a set of interconnected sensors 
and actuators that react at runtime to environmental changes and 

other contextual information. Different sensor networks are of 
major interest for DSPLs such as we highlight in this work. 

This position paper describes a runtime variability mechanism 
able to modify the structural variability of a WSAN dynamic 
software product line. More specifically, we address the problem 
of modifying structural variability at runtime when systems using 
context information need to change their current configuration, 
and we use a novel mechanism that helps to modify system 
variants dynamically. The reminder of this article is organized as 
follows: In section 2 we describe the major characteristics and 
challenges of sensor networks, focusing on software issues that 
can be described using a DSPL. In section 3 we describe a 
runtime variability approach. Section 4 outlines a motivating 
example of a sensor network product family that uses a runtime 
variability mechanism. Section 5 addresses related work and in 
section 6 we draw conclusions and describe future work. 

2. WIRELESS SENSOR AND ACTUATOR 
NETWORKS FAlVflLIES 
In this section we describe the main characteristics of WSANs and 
how they can be modeled as a product family. In addition, we 
focus on those WSAN features that are susceptible to being 
managed by a DSPL approach. Generally speaking, a WSAN is 
composed of a potentially large number of small (resource-
constrained) nodes — called motes, sensor nodes, or simply 
sensors — that sense, actuate, process and communicate in order 
to provide functionality that is not usually obtainable any other 
way. They are naturally embedded in the real world, and thus one 
of their main advantages is that they behave in a strongly context-
aware manner, sometimes in places where humans or other type 
of systems cannot be present because of accessibility, scalability 
or safety reasons [10]. 

We describe in the following bullet points those issues that 
become more significant for dynamic reconfiguration in WSANs 
(for more details see [10], [11], [12] and [13]): 

• Strong energy restrictions. This is caused by the fact that in 
many cases the nodes operate on batteries (possibly 
combined with some form of energy harvesting) and the 
global network has to survive for a long period of time 
before it ultimately stops working. Nodes operating on mains 
do not have this restriction, although there may be a mix of 
both types of devices in the same network. Frequently, the 
activity that mostly consumes a node's energy is wireless 
communication (see, for instance, [14]), and this may lead to 
the need for dynamic changes in the communication 
parameters and roles of specific nodes according to the 
distribution of the energy in the network. 



• Distribution. WSAN are distributed systems by nature, 
something that may affect runtime variability in the sense 
that changing features at runtime may involve modifications 
in several nodes, often implying some form of multi-hop 
communication of the new code or modules. As stated in the 
previous bullet, energy restrictions may call for carefully 
designed dynamic reconfiguration processes. 

• Unattended (autonomous) operation. As nodes can be 
deployed in physically inaccessible or dangerous areas, 
automatic ways to evolve the network (e.g., adding a new 
functionality or feature) are needed. 

• Heterogeneity. In a WSAN the nodes can be different (e.g., 
different sensors) and exhibit different features (e.g., the 
logical communication topology may be cluster-based, so 
that a subset of the nodes will act as cluster heads and have 
more sophisticated routing tasks). More complex 
functionality may require more energy consumption that 
should be placed in less-constrained nodes if possible. Such 
distribution of functionality can be dynamic because the 
energy depletion of the nodes may not be equally fast. 

• Software adaptability. Since WSANs usually have to survive 
with no (or minimal) changes in deployed hardware for long 
periods of time, it is possible that dynamic software changes 
have to be performed during their runtime life. These 
changes may be triggered by very dynamic occurrences (e.g., 
a failure in some nodes or a fluctuation in a context 
parameter that make it advisable to change the network 
operation) or by less-frequent events such as the conscious 
decision to add, modify or remove a certain functionality. 

• Self-* properties. Self-healing, self-management and 
resilience are examples of non-functional features that are 
expected from a WSAN. As a typical example of this, when 
a node fails, the network must be capable of reasonably 
continuing performing its tasks if possible, which might 
require dynamic reconfiguration. 

2.1 Dynamic reconfiguration in WSANs 
Today, a WSAN mixes context-aware properties, autonomic 
computing, and smart devices to sense environmental conditions 
and react using a set of actuators. There have been recent 
approaches that tackle the problem of using context information to 
engineer a DSPL. Clear examples come from the autonomic 
computing field, where system features are reconfigured 
dynamically in the context of a DSPL for autonomic homes and to 
enhance self-management capabilities as well [15]. Another 
example of the use of autonomic computing, this time specifically 
for evolving Wireless Body Sensor Networks , can be found in 
[16]. 

WSANs demand reconfiguration activities at runtime, as 
previously stated. Moreover, a reconfiguration normally involves 
changes in specific parts of the code. This is why, in order to save 
energy, some proposals use a component-based framework that 
allows the dynamic reconfiguration of nodes by changing, adding 
or deleting specific components instead of the complete software 

Wireless Body Sensor Networks (sometimes also called 
"Wireless Body Area Networks") are composed of wearable 
sensors and devices that are located on a person's body in order, 
for instance, to monitor and control his/her health and 
physiological status. 

image ([17], [18]). This reconfiguration activity needs to transmit 
only a subset of all the application components, which is easier 
when components are loosely coupled. The aforementioned 
proposals provide a tool for dynamic reconfiguration, but they do 
not establish a systematic relationship between the components 
and the system features. The existence of these proposals provides 
a basis on which to build our model, which would ease the task of 
automatically reconfiguring the WSAN in an energy-aware 
manner (i.e., communicating and changing only the required 
software components). 

Other related work uses feature models to describe WSAN 
evolvable products (e.g. [19] describes an ambient assisted living 
case study, and in [15] the authors propose a DSPL representation 
for autonomic homes). There are also authors that have developed 
a feature model tool specific for WSANs [20]. In [21], the authors 
describe middleware services for the dynamic reconfiguration of a 
WSN. They use feature models extended with context parameters 
capable of triggering a set of pre-defined reconfiguration plans. 
However, they do not include the possibility of changing system 
features at runtime, and all the possible reconfiguration plans have 
to be previously uploaded into the network nodes. 

Our proposal models WSANs as a SPL which includes dynamic 
features that require runtime changes. Hence DSPL solutions can 
be used to deal with runtime reconfiguration problems. 

2.2 Featuring WSAN Product Families 
There are many aspects in a WSAN that may be considered as 
complete products by themselves, ranging from the hardware 
nodes, to the radio transceiver or processor microchips, 
sensors/actuators, operating systems, routing algorithm and 
protocols, middleware approaches, and up to the application-
related functionalities. Some of these may not substantially differ 
from other cyber-physical systems. 

However, in this work we focus on those properties that a whole 
WSAN product may expose to the designer of a particular 
application. For instance, a particular WSAN product family may 
be "indoor efficiency & comfort systems". Specific products of 
this family may be used to build a smart home application or a 
smart office application. Other examples of WSAN product 
families are "outdoor fire detection systems" and "indoor smart 
environmental and guidance systems". The complete WSAN, seen 
as a product itself, presents the important functional and non­
functional requirements previously described, which make them a 
challenging area for applying the DSPL concept. We expect that 
our work will be beneficial for the automation of the 
reconfiguration of these systems without disregarding any of the 
important restrictions. 

We propose to describe WSAN families using a feature model 
that encompasses the following main characteristics, (see 
Figure 1): 

• Communication: By definition, any WSAN has to 
communicate something (measurements to the sink, 
commands to specific nodes, alarms, etc.). From the point of 
view of the user (the designer of a specific application), both 
the communication type (when the communication takes 
place) and the type of node identities (how we address the 
source and destination of a piece of information) are highly 
significant. We identified three features under 
"Communication type" features. "Periodical" means that the 
communicated information (e.g., a sensor measurement) is 
sent with a fixed frequency. This is useful, for instance, to an 
application that needs the histogram of temperatures in an 



Figure 1. A Wireless Sensor Actuator Network feature model. 

area obtained in periodic 5-minute samples. However, if we 
are only interested in receiving the temperature reading when 
it exceeds a certain threshold, then an "Event-based" 
communication type is adequate. "On demand" represents 
the ability of asking a specific node (or group of nodes) to 
provide some information, and will usually be triggered by 
the management system. Under the "Nodes identities" 
feature we include "Location based" (the ability of sending 
information to the nodes that comply with some position-
related parameter, such as "all nodes inside the North-East 
portion of an area"), "Address based" (where each node or 
group of nodes has a numerical address, whether IPv6 or any 
other type), and "Name based" (encompassing other logical 
naming of the nodes that may be instrumented by the routing 
protocol, such as "all the nodes that measure humidity"). 

Measurement: Any context information that is of interest to 
an application has to be sensed using the appropriate sensors. 
There are myriads of different sensors; we have included in 
Figure 1 a sample of some usual measurements. We found it 
relevant to include any form of voluntary user input as a 
specific case of a "measurement", since this information can 
be treated basically as an input taken from the WSAN 
environment. Common examples come from the user stating 
some personal preferences (such as "only children-adequate 
content") or the ability for pressing a button to trigger a 
health alarm. Both "User input" and "Vital signs" may 
require people to have wearable or portable devices (nodes). 
It is also noteworthy that the battery level, even if related to 
the internals of the node, is also considered by us as a 
measurement that may have to be taken into account to 
trigger some reconfiguration tasks. 

Actuation: This feature includes any action that modifies one 
or several physical parameters of the environment. We 
identify three main types of actuation, as can be seen in 
Figure 1. (i) "Alarm", whether "Acoustic" or "Visual", is 
self-explanatory, (ii) With "User output" we mean any type 
of information offered to people, in a human-understandable 
format. This may be taken as a reciprocal of the previously 

mentioned "User input" feature under "Measurement", (iii) 
Finally, a typical "Appliance operation" example is the 
operation of the HVAC system in order to enhance the 
comfort or the safety of people. Another example is 
"Displacement", a specific form of actuation consisting of 
mechanically moving a node or device (not to be confused 
with the externally-sourced mobility that occurs when a 
person carries a node, for instance). 

• Localization: Some applications are location-aware, at least 
for some of their functionality. There is the possibility of 
manually establishing the location information in fixed nodes 
("Fixed (static)" feature) but also of having radio-based 
algorithms or devices that provide the location information 
for a node. "GPS-based" localization is only available 
outdoors, while "Beacon-based" localization requires some 
fixed nodes placed in known positions to wirelessly 
communicate with the nodes we want to locate. "RFID-
based" localization relies on the proximity of the target to a 
specific known fixed location. Especially challenging is the 
tracking of moving nodes or objects, because the position has 
to be dynamically updated with enough granularity and 
frequency. 

Each feature of our proposed WSAN feature model is related to a 
concrete set of software and hardware modules that are in charge 
of actually implementing the related functionality. For instance, 
"Temperature" is a property that requires that some hardware 
modules be present (specifically temperature sensors in at least a 
subset of the nodes) and some basic software modules be 
implemented (usually some basic operating system function group 
that provides access to sensor readings). Other properties may 
imply not only a more numerous set of hardware and software 
modules but also some kind of distributed logic. An example of 
this is the "Multicast" feature (one of the "Communication" sub­
tree leaves). In order to have multicast communication, it is 
necessary that the nodes have the notion of their address 
pertaining to multicast groups, and equally importantly, a 
multicast routing protocol has to be in place in a consistent 
manner in all nodes. As any non-trivial routing protocol, this is a 
classic example of distributed functionality. 



There are also restrictions that apply to the properties of this 
FODA model. To give an example, the communication-related 
"Location-based" property (that means the capability of 
addressing one or a set of nodes by their location in order to send 
information to them) requires that at least one form of 
"Localization" is activated in the corresponding WSAN product. 

One example of a run-time dynamically reconfigurable variant is 
the addition of a novel type of measurement provoked by an 
upgrade or addition of nodes with a new type of sensor, which 
may require the deployment, activation, and configuration for that 
sensor. Another example is the activation of a communication 
property;, e.g., "Event-based". In this case, it is most likely 
necessary to deploy, configure and activate a new module in all 
the nodes that in a distributed manner implements a publish-
subscribe-like interaction model. This module will be also related 
and interacting inside each node with pre-existing modules such 
as those in charge of certain sensor readings. 

3. A RUNTIME VARIABILITY MODEL 
FOR DSPLs 
In this section we describe which runtime changes at the variant 
level we manage in order to support the dynamic reconfiguration 
of the structural variability of a WSAN. Dealing with open 
variability models where variants can be added, changed, or 
removed is not easy, as it is impossible to foresee all unexpected 
variations in a system. Therefore unexpected variability must be 
supported in a controlled way to predict the evolution of the 
DSPL under certain conditions (e.g.: a DSPL provides a runtime 
variability mechanism which allows, for instance, the inclusion of 
variants that satisfy certain requirements, or activate and 
deactivate features during system execution in order to react to 
different context conditions). Predicting variability in a controlled 
way helps to anticipate that certain changes in the variability 
model can be supported without a complete redesign and re-
implementation of the product features. 

As the modification of variation points requires more human 
intervention in most cases, and it can be automated only in limited 
situations, we will focus on the modification of variants at 
runtime. We are aware that changing variation points is also a 
design problem, as by now it cannot be fully automated, but we do 
not focus in this work on how much automation a SPL needs to 
become a DSPL. Hence we support the following three scenarios: 

• Adding a variant implies that we need to define in which 
place of the feature model the variant will be added, and if it 
will belong to an existing variation point. The logical 
formulas in the feature model must be modified accordingly 
to the new variant. In addition, we need to check the existing 
constraint rules when the new variant is added (e.g., mainly 
require and exclude rules) to detect potential 
incompatibilities. In addition, we should know if the type of 
the new variant (e.g.: string, numerical, Boolean), often used 
to define the allowed values, is compatible with the types of 
related variants (e.g., the new variant is added to an existing 
variation point). 

• Removing a variant means that the variant will be dropped 
from the logical formula that connects the variant in the 
feature model. Also, constraint rules must be revisited when 
removing a variant. 

• Changing a variant may imply in its simplest form just 
changing their values, while in a more complex situation it 
could mean moving the variant to a different location in the 
feature model. In this case, moving variants from one place 

to another, we can implement such operation as a removal 
task followed by an addition task of the variant. 

3.1 Super-types Enabling Runtime 
Variability Changes 
In order to support the aforementioned scenarios, we introduce the 
notion of a Super-type (ST). Using super-types in system features 
we capture the essence of variation points as we can group 
variants under the same or a compatible super-type or specific 
category. Super-types encompass the basic types (i.e., Boolean, 
string, integer) commonly used by system features and enable a 
superseding category for those features that share some common 
functionality (e.g., features describing ambient measurements may 
be labeled with an "Ambient" super-type). Therefore, we define 
and use the notion of supertype with the following purpose: 

• Provide a superseding taxonomy over the 
aforementioned basic types, where system features 
defined in a variability model can be assigned to one or 
several super-types. 

• Each DSPL for a given application domain can define 
its own super-types (e.g., multimedia, security) to 
allocate specific system functionality. 

• Our use of the super-types to change the variants can be 
dynamic, as we can compare the super-type of a new or 
existing feature to add, remove, or replace a feature 
which has the same or a compatible super-type. 

While basic types of variants define the type of allowed values for 
a specific system option, super-types group variants that 
encompass a related functionality. In addition, super-types can be 
used to filter out and to visualize only a subset of the feature 
model, in particular when the number of variants exceeds the 
visualization capabilities of the screen. In our model, we define a 
variant enabled with super-types as: 

Variant (Vj) = (^ . . .Van] , T, [ST1...STn]J 

where each variant (V;) representing a system feature has several 
allowed values (Va;) that can be organized in different ways (e.g.: 
ranges, lists), poses a type (T), and belongs to one or several 
compatible super-types (ST). In section 6 we show an example 
where a subset of WSAN features are organized into one or 
several super-types. 

3.2 Prototype Software 
As a proof of concept, we introduced the notion of super-types 
into an existing prototype tool called VMWT (Variability 
Modeling Web Tool [22]) developed at the Rey Juan Carlos 
University in 2007. We implemented a specific module called 
Alter Product Runtime Mechanism (APRM), which simulates the 
runtime changes performed over a feature model. Basically, the 
APRM module checks the super-type of the variants when a 
runtime change is needed and modifies the structural variability. 
To achieve this, the APRM builds a parallel environment where 
the changes are applied in a secured form without affecting the 
main system during its execution, and uses replicated data without 
affecting its normal functioning. After all changes have been 
applied, the APRM incorporates the new data into the real 
environment. The APRM module stores in a database the features 
and their relationships and it uses an array to build and 
dynamically re-build the changes performed over the variants. 
Because new features may fit several super-types at the same 
time, we need policies to know the exact point where these 



features will be anchored. As a WSAN could add a new node to 
the network with features supporting new functionality, variants 
can be inserted dynamically if they possess the same or a 
compatible super-type with the existing features; as in other cases 
a new super-type must be defined before including the variant. 

Removal operations of variants are easier because we only need to 
run automatic scripts to check potential inconsistencies in the 
dependency rules once we drop the variant in the feature model. 
Changing the values of variants can be simply done by uploading 
dynamically a configuration file, while moving a variant to a 
different location is performed as a removal operation followed by 
an adding operation. 

Moreover, adding new variants may introduce new requires, 
excludes, and operational dependencies (closer to runtime 
concerns [9]) between the new variant and the existing ones. This 
task can be done automatically by uploading dynamic 
configuration files containing new rules, but we need to run 
scripts for checking and detecting potential inconsistencies in the 
new feature model. To leverage the degree of automation when 
we prove the correctness of the new feature model, DSPL 
designers can pre-check the dependency rules that will be 
uploaded automatically before variants are modified. In the 
APRM tool we can simulate the inclusion of rules that are 
introduced manually by an operator, and see the effects over an 
existing or modified feature model. 

4. MOTIVATING EXAMPLE 
As a motivating example to preliminarily test our proposal, we 
describe in this section a case for an "indoor smart environmental 
and guidance systems" product family (Figure 2) derived from the 
feature model shown in Figure 1. We also show in Figure 2 those 
active features for a specific WSAN museum guidance product. 
The summary of the high-level features included in the FODA 
related to the "indoor smart environmental and guidance systems" 
product family is as follows: 

• Communication: With the exception of "Name-based" and 
"Anycast", all the other features from the general WSAN 

FODA may be useful in products of this family. 
• Measurement: Ambient measurements are of potential use 

for products of this family, as are user preferences (both may 
affect the guidance advice to be provided to the users). 
Presence detection may be also interesting. 

• Actuation: Alarms, Appliance operation (basically for 
enhancing comfort) and User output (for providing the 
guidance advice to human users) are significant in this 
family. 

• Localization: This product family requires the localization of 
some mobile nodes, which will be probably carried by 
people, and the presence of fixed nodes that may act as 
beacons and have fixed known positions. 

As shown in Figure 2, the specific museum guidance product has 
some of its features active while others remain deactivated. For 
example, guidance instructions are only given in audio form, and 
ambient measurements are sensed and communicated in a periodic 
manner. In Table 1 we show an example where a subset of the 
WSAN product family features are organized into one or several 
super-types. Later we exemplify how this definition may be useful 
for runtime variability. 

All ambient measurements (Temperature, Smoke, Humidity, and 
Light) belong to the "Ambient" ST. Besides, both "Temperature" 
and "Smoke" may be used to raise alarms (e.g., a measurement 
with an abnormally high value may be the symptom of a fire), and 
consequently they also belong to the "Security" ST. Regarding the 
dynamic reconfiguration capabilities of our WSAN we provide 
the following two scenarios of use: 

Scenario 1: The first example is an upgrade of the museum 
guidance product that consists of immediately triggering events 
when any ambient measurement exceeds configurable thresholds 
(so that we do not have to wait until the next period to know about 
a potentially dangerous condition). This requires the activation of 
the (currently inactive) "Event-based" variant, which should 
eventually cause the upgrading (or activation) of specific software 
modules inside the nodes to implement a publish-subscribe 
communication mode. Also, the properties of the features 

Figure 2. "Indoor smart environmental and guidance systems" WSAN product family. 
Darker blue boxes are the active features for the Museum Guidance product. 



pertaining to the "Ambient" ST have to be modified and the 
appropriate thresholds have to be set. Again, this will cause some 
appropriate updates to the software at the nodes. Here we are 
assuming that the features contain properties or attributes that are 
subject to runtime variability, being the threshold values part of 
these possible attributes. Figure 3 contains a pseudo-code 
representation of this runtime variant modification. 

{Activate_Feature(Comm_type. Event-based)} AND 
{For all Features in "Ambient" ST: Configure threshold 
values}  

Figure 3. Events trigger for ambient measurements 

Table 1. Example of super-types in a WSAN product family 

Feature(s) Type(T) Super-types (STs) 

Temperature, 
Smoke 

Range of numerical 
values 

Ambient, Security 

Humidity, Light 
Range of numerical 

values 
Ambient 

Scenario 2: The second example is related to the addition of new 
hardware: pollen sensors, useful for warning people with allergies. 
In this case a new variant has to be added to the feature model, 
called "Pollen", which should be placed under "Measurement" in 
the FODA tree shown in Figure 2. This new feature will be 
assigned to the "Ambient" ST, something that will automatically 
allow for its placement in the correct variation point of the tree 
and cause the configuration of the corresponding thresholds (if the 
upgrade from the previous example is already in place). 

In order to support the aforementioned scenarios, once we derive 
the WSAN feature model of Figure 2, we simulated the runtime 
changes in the feature model using the APRM tool for scenario 2 
to add a new variant or system feature by checking its super-type. 

5. RELATED WORK 
Dynamic Software Product Lines (DSPLs) constitute an emerging 
approach that uses runtime variability mechanisms [23] to deal 
with the dynamicity of changing features and dynamic 
reconfiguration requests in order to adapt systems to varying 
conditions. In Dynamic Software Product Lines, family members 
often need to evolve or be reconfigured after deployment. Hence, 
in the era of post-deployment, many runtime concerns must be 
addressed at the customer side (e.g., mobile software feature 
reconfiguration) or autonomously by systems that need to adapt 
themselves to new requirements and context conditions (e.g., 
robots). Therefore, runtime architectures must support the 
reconfiguration of system features and, if needed, modify the 
structural variability dynamically. There are some recent 
experiences with the use of DSPLs in various application domains 
such as SOA (e.g.: [24] [25] [26] [27]) while others exploit 
context-awareness properties to manage the information at 
runtime. All these approaches rely on runtime architectures able to 
manage the dynamicity of changing system features at execution 
time. 

In traditional SPL approaches, software variability (i.e., the 
structural variability of a set of related systems) was modeled and 
used statically by the product line process. With the advent of 
dynamic software product lines, variability is managed 
dynamically at runtime, and runtime models attempt to manage 
and change variants during system execution. Some of these 
changes refer to the activation and deactivation of system features 

while more sophisticated approaches can add, remove, or modify 
variants in the feature model. In [26] the authors state many of the 
challenges concerning the introduction of runtime variability 
mechanisms that are used by DSPLs. Automating and validating 
runtime variability is hard,, and open variability models must be 
flexible enough to support better the evolution of software 
products and post-deployment changes, including runtime binding 
and rebinding tasks. To date, few experiences have dealt with 
changing variants at runtime [28] [29] [30] [31] [32]. The 
modification of variants at runtime often requires some kind of 
meta-information or reflective technology to support the inclusion 
and removal of variants automatically or semi-automatically, but 
changing variation points dynamically is not supported by current 
approaches as human intervention is needed to decide on the 
logical formulas connecting their variants. Other attempts use 
compositional approaches to support feature reconfiguration at 
runtime [33]. Also, in [34], three different strategies rely on the 
Common Variability Language (CVL) [35] are used for 
implementing variability transformations and synthesis in smart-
home systems. The CVL language includes constructs to compose 
three types of substitutions according to the type of alternatives 
able to perform reconfiguration activities of the base model. 
Rebinding and reconfiguring variability models with moderate 
effort is, therefore, a major issue, and tools to evaluate the effect 
of dynamic reconfigurations and the changes in the state of 
features are needed [36]. 

Finally, the notion of context variability shares some similarities 
with our work. In [37] the authors combine goals models with 
contextual information for product line derivation. They state that 
context can be a main factor for determining the products to 
derive, and context information can be incorporated in variability 
models. In [38] context variability is used for multiple product 
lines, and the authors suggest a context variability model 
associated to an existing feature model to constraint the variability 
model. Contexts are used as general classifiers in which the 
product is used. Our approach uses the super-types as a taxonomy 
of features, but we do not duplicate the existing feature model and 
we do not introduce new relationships, as in [38]. Also, context 
features are used differently and the authors in [38] do not suggest 
the automation of changes in the feature model, as they focus on 
product derivation rather than on changing the structural 
variability dynamically. 

6. CONCLUSIONS AND FUTURE WORK 
One of the main conclusions we can draw from this emerging 
work is that system families using context-aware information that 
require runtime changes are quite suitable to be described using a 
DSPL. Like other related systems, WSAN families can be 
described using features models but highlight those runtime 
characteristics that require the support of dynamic variability. 

The proposed super-type-enabled runtime variability mechanism 
extends previous feature models and provides a simple way to 
manage and change variants dynamically using the notion of 
super-types. These super-types enable a classification of high-
level system properties and functionality that can be used to filter 
out and select only the specific functionalities that require to be 
changed dynamically. Hence, variants modified at execution time 
offer a flexible solution for WSANs that change their nodes or 
current configuration at runtime. One aspect that may hamper the 
full automation of changing variants at runtime is the need to 
check on-line mode constraints and dependency rules in the 
feature model when, for instance, a new variant or super-type is 
added dynamically. The APRM prototype simulates runtime 



changes in the structural variability where system features can be 
bound at runtime and post-deployment time in a DSPL. 

For future work, we are working on new prototype software that 
integrates the APRM module into an existing system in order to 
automate the runtime changes required by WSANs. In addition, 
we plan to include the reconfiguration functionality described in 
scenario 1, as this is only supported by the APRM software in a 
limited way. Finally, more theoretical work has to be done 
regarding the proposed approach, and especially to provide a 
meta-model linking the notion of super-type with other typical 
elements of DSPLs and variability models (e.g., features). A 
software architecture showing all these concepts together is 
planned. 
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