
Runtime Variability for Dynamic Reconfiguration in
Wireless Sensor Network Product Lines

Oscar Ortiz, Ana Belen Garcia Rafael Capilla Jan Bosch Mike Hinchey

ABSTRACT
Runtime variability is a key technique for the success of Dynamic
Software Product Lines (DSPLs), as certain application demand
reconfiguration of system features and execution plans at runtime.
In this emerging research work we address the problem of
dynamic changes in feature models in sensor networks product
families, where nodes of the network demand dynamic
reconfiguration at post-deployment time.

1. INTRODUCTION
A Software Product Line (SPL) maximizes reuse by exploiting
both the common and variable aspects of systems; system features
are described in the architecture using a complementary
representation model called a feature model [1] [2]. The structural
variability, often seen as orthogonal to other software artifacts,
shows a hierarchy of a system's features which are bound to
concrete values at different binding times [3] [4].

Today, the ever increasing complexity of software systems
demands more and more runtime capabilities (e.g., SOA
applications) that enable speedy reaction to new context
conditions and better support for evolution of products. Many
software systems that require adaptation to changing
environments (e.g., self-adaptable and self-healing systems [5],
[6] autonomic computing [7], [8], ubiquitous systems, robotics,
etc.), need the activation/deactivation of system features [9]
autonomously. One domain where runtime concerns play an
important role is that of Wireless Sensor and Actuator Networks -
WSANs). A WSAN encompasses a set of interconnected sensors
and actuators that react at runtime to environmental changes and

other contextual information. Different sensor networks are of
major interest for DSPLs such as we highlight in this work.

This position paper describes a runtime variability mechanism
able to modify the structural variability of a WSAN dynamic
software product line. More specifically, we address the problem
of modifying structural variability at runtime when systems using
context information need to change their current configuration,
and we use a novel mechanism that helps to modify system
variants dynamically. The reminder of this article is organized as
follows: In section 2 we describe the major characteristics and
challenges of sensor networks, focusing on software issues that
can be described using a DSPL. In section 3 we describe a
runtime variability approach. Section 4 outlines a motivating
example of a sensor network product family that uses a runtime
variability mechanism. Section 5 addresses related work and in
section 6 we draw conclusions and describe future work.

2. WIRELESS SENSOR AND ACTUATOR
NETWORKS FAlVflLIES
In this section we describe the main characteristics of WSANs and
how they can be modeled as a product family. In addition, we
focus on those WSAN features that are susceptible to being
managed by a DSPL approach. Generally speaking, a WSAN is
composed of a potentially large number of small (resource-
constrained) nodes — called motes, sensor nodes, or simply
sensors — that sense, actuate, process and communicate in order
to provide functionality that is not usually obtainable any other
way. They are naturally embedded in the real world, and thus one
of their main advantages is that they behave in a strongly context-
aware manner, sometimes in places where humans or other type
of systems cannot be present because of accessibility, scalability
or safety reasons [10].

We describe in the following bullet points those issues that
become more significant for dynamic reconfiguration in WSANs
(for more details see [10], [11], [12] and [13]):

• Strong energy restrictions. This is caused by the fact that in
many cases the nodes operate on batteries (possibly
combined with some form of energy harvesting) and the
global network has to survive for a long period of time
before it ultimately stops working. Nodes operating on mains
do not have this restriction, although there may be a mix of
both types of devices in the same network. Frequently, the
activity that mostly consumes a node's energy is wireless
communication (see, for instance, [14]), and this may lead to
the need for dynamic changes in the communication
parameters and roles of specific nodes according to the
distribution of the energy in the network.

• Distribution. WSAN are distributed systems by nature,
something that may affect runtime variability in the sense
that changing features at runtime may involve modifications
in several nodes, often implying some form of multi-hop
communication of the new code or modules. As stated in the
previous bullet, energy restrictions may call for carefully
designed dynamic reconfiguration processes.

• Unattended (autonomous) operation. As nodes can be
deployed in physically inaccessible or dangerous areas,
automatic ways to evolve the network (e.g., adding a new
functionality or feature) are needed.

• Heterogeneity. In a WSAN the nodes can be different (e.g.,
different sensors) and exhibit different features (e.g., the
logical communication topology may be cluster-based, so
that a subset of the nodes will act as cluster heads and have
more sophisticated routing tasks). More complex
functionality may require more energy consumption that
should be placed in less-constrained nodes if possible. Such
distribution of functionality can be dynamic because the
energy depletion of the nodes may not be equally fast.

• Software adaptability. Since WSANs usually have to survive
with no (or minimal) changes in deployed hardware for long
periods of time, it is possible that dynamic software changes
have to be performed during their runtime life. These
changes may be triggered by very dynamic occurrences (e.g.,
a failure in some nodes or a fluctuation in a context
parameter that make it advisable to change the network
operation) or by less-frequent events such as the conscious
decision to add, modify or remove a certain functionality.

• Self-* properties. Self-healing, self-management and
resilience are examples of non-functional features that are
expected from a WSAN. As a typical example of this, when
a node fails, the network must be capable of reasonably
continuing performing its tasks if possible, which might
require dynamic reconfiguration.

2.1 Dynamic reconfiguration in WSANs
Today, a WSAN mixes context-aware properties, autonomic
computing, and smart devices to sense environmental conditions
and react using a set of actuators. There have been recent
approaches that tackle the problem of using context information to
engineer a DSPL. Clear examples come from the autonomic
computing field, where system features are reconfigured
dynamically in the context of a DSPL for autonomic homes and to
enhance self-management capabilities as well [15]. Another
example of the use of autonomic computing, this time specifically
for evolving Wireless Body Sensor Networks , can be found in
[16].

WSANs demand reconfiguration activities at runtime, as
previously stated. Moreover, a reconfiguration normally involves
changes in specific parts of the code. This is why, in order to save
energy, some proposals use a component-based framework that
allows the dynamic reconfiguration of nodes by changing, adding
or deleting specific components instead of the complete software

Wireless Body Sensor Networks (sometimes also called
"Wireless Body Area Networks") are composed of wearable
sensors and devices that are located on a person's body in order,
for instance, to monitor and control his/her health and
physiological status.

image ([17], [18]). This reconfiguration activity needs to transmit
only a subset of all the application components, which is easier
when components are loosely coupled. The aforementioned
proposals provide a tool for dynamic reconfiguration, but they do
not establish a systematic relationship between the components
and the system features. The existence of these proposals provides
a basis on which to build our model, which would ease the task of
automatically reconfiguring the WSAN in an energy-aware
manner (i.e., communicating and changing only the required
software components).

Other related work uses feature models to describe WSAN
evolvable products (e.g. [19] describes an ambient assisted living
case study, and in [15] the authors propose a DSPL representation
for autonomic homes). There are also authors that have developed
a feature model tool specific for WSANs [20]. In [21], the authors
describe middleware services for the dynamic reconfiguration of a
WSN. They use feature models extended with context parameters
capable of triggering a set of pre-defined reconfiguration plans.
However, they do not include the possibility of changing system
features at runtime, and all the possible reconfiguration plans have
to be previously uploaded into the network nodes.

Our proposal models WSANs as a SPL which includes dynamic
features that require runtime changes. Hence DSPL solutions can
be used to deal with runtime reconfiguration problems.

2.2 Featuring WSAN Product Families
There are many aspects in a WSAN that may be considered as
complete products by themselves, ranging from the hardware
nodes, to the radio transceiver or processor microchips,
sensors/actuators, operating systems, routing algorithm and
protocols, middleware approaches, and up to the application-
related functionalities. Some of these may not substantially differ
from other cyber-physical systems.

However, in this work we focus on those properties that a whole
WSAN product may expose to the designer of a particular
application. For instance, a particular WSAN product family may
be "indoor efficiency & comfort systems". Specific products of
this family may be used to build a smart home application or a
smart office application. Other examples of WSAN product
families are "outdoor fire detection systems" and "indoor smart
environmental and guidance systems". The complete WSAN, seen
as a product itself, presents the important functional and non­
functional requirements previously described, which make them a
challenging area for applying the DSPL concept. We expect that
our work will be beneficial for the automation of the
reconfiguration of these systems without disregarding any of the
important restrictions.

We propose to describe WSAN families using a feature model
that encompasses the following main characteristics, (see
Figure 1):

• Communication: By definition, any WSAN has to
communicate something (measurements to the sink,
commands to specific nodes, alarms, etc.). From the point of
view of the user (the designer of a specific application), both
the communication type (when the communication takes
place) and the type of node identities (how we address the
source and destination of a piece of information) are highly
significant. We identified three features under
"Communication type" features. "Periodical" means that the
communicated information (e.g., a sensor measurement) is
sent with a fixed frequency. This is useful, for instance, to an
application that needs the histogram of temperatures in an

Figure 1. A Wireless Sensor Actuator Network feature model.

area obtained in periodic 5-minute samples. However, if we
are only interested in receiving the temperature reading when
it exceeds a certain threshold, then an "Event-based"
communication type is adequate. "On demand" represents
the ability of asking a specific node (or group of nodes) to
provide some information, and will usually be triggered by
the management system. Under the "Nodes identities"
feature we include "Location based" (the ability of sending
information to the nodes that comply with some position-
related parameter, such as "all nodes inside the North-East
portion of an area"), "Address based" (where each node or
group of nodes has a numerical address, whether IPv6 or any
other type), and "Name based" (encompassing other logical
naming of the nodes that may be instrumented by the routing
protocol, such as "all the nodes that measure humidity").

Measurement: Any context information that is of interest to
an application has to be sensed using the appropriate sensors.
There are myriads of different sensors; we have included in
Figure 1 a sample of some usual measurements. We found it
relevant to include any form of voluntary user input as a
specific case of a "measurement", since this information can
be treated basically as an input taken from the WSAN
environment. Common examples come from the user stating
some personal preferences (such as "only children-adequate
content") or the ability for pressing a button to trigger a
health alarm. Both "User input" and "Vital signs" may
require people to have wearable or portable devices (nodes).
It is also noteworthy that the battery level, even if related to
the internals of the node, is also considered by us as a
measurement that may have to be taken into account to
trigger some reconfiguration tasks.

Actuation: This feature includes any action that modifies one
or several physical parameters of the environment. We
identify three main types of actuation, as can be seen in
Figure 1. (i) "Alarm", whether "Acoustic" or "Visual", is
self-explanatory, (ii) With "User output" we mean any type
of information offered to people, in a human-understandable
format. This may be taken as a reciprocal of the previously

mentioned "User input" feature under "Measurement", (iii)
Finally, a typical "Appliance operation" example is the
operation of the HVAC system in order to enhance the
comfort or the safety of people. Another example is
"Displacement", a specific form of actuation consisting of
mechanically moving a node or device (not to be confused
with the externally-sourced mobility that occurs when a
person carries a node, for instance).

• Localization: Some applications are location-aware, at least
for some of their functionality. There is the possibility of
manually establishing the location information in fixed nodes
("Fixed (static)" feature) but also of having radio-based
algorithms or devices that provide the location information
for a node. "GPS-based" localization is only available
outdoors, while "Beacon-based" localization requires some
fixed nodes placed in known positions to wirelessly
communicate with the nodes we want to locate. "RFID-
based" localization relies on the proximity of the target to a
specific known fixed location. Especially challenging is the
tracking of moving nodes or objects, because the position has
to be dynamically updated with enough granularity and
frequency.

Each feature of our proposed WSAN feature model is related to a
concrete set of software and hardware modules that are in charge
of actually implementing the related functionality. For instance,
"Temperature" is a property that requires that some hardware
modules be present (specifically temperature sensors in at least a
subset of the nodes) and some basic software modules be
implemented (usually some basic operating system function group
that provides access to sensor readings). Other properties may
imply not only a more numerous set of hardware and software
modules but also some kind of distributed logic. An example of
this is the "Multicast" feature (one of the "Communication" sub­
tree leaves). In order to have multicast communication, it is
necessary that the nodes have the notion of their address
pertaining to multicast groups, and equally importantly, a
multicast routing protocol has to be in place in a consistent
manner in all nodes. As any non-trivial routing protocol, this is a
classic example of distributed functionality.

There are also restrictions that apply to the properties of this
FODA model. To give an example, the communication-related
"Location-based" property (that means the capability of
addressing one or a set of nodes by their location in order to send
information to them) requires that at least one form of
"Localization" is activated in the corresponding WSAN product.

One example of a run-time dynamically reconfigurable variant is
the addition of a novel type of measurement provoked by an
upgrade or addition of nodes with a new type of sensor, which
may require the deployment, activation, and configuration for that
sensor. Another example is the activation of a communication
property;, e.g., "Event-based". In this case, it is most likely
necessary to deploy, configure and activate a new module in all
the nodes that in a distributed manner implements a publish-
subscribe-like interaction model. This module will be also related
and interacting inside each node with pre-existing modules such
as those in charge of certain sensor readings.

3. A RUNTIME VARIABILITY MODEL
FOR DSPLs
In this section we describe which runtime changes at the variant
level we manage in order to support the dynamic reconfiguration
of the structural variability of a WSAN. Dealing with open
variability models where variants can be added, changed, or
removed is not easy, as it is impossible to foresee all unexpected
variations in a system. Therefore unexpected variability must be
supported in a controlled way to predict the evolution of the
DSPL under certain conditions (e.g.: a DSPL provides a runtime
variability mechanism which allows, for instance, the inclusion of
variants that satisfy certain requirements, or activate and
deactivate features during system execution in order to react to
different context conditions). Predicting variability in a controlled
way helps to anticipate that certain changes in the variability
model can be supported without a complete redesign and re-
implementation of the product features.

As the modification of variation points requires more human
intervention in most cases, and it can be automated only in limited
situations, we will focus on the modification of variants at
runtime. We are aware that changing variation points is also a
design problem, as by now it cannot be fully automated, but we do
not focus in this work on how much automation a SPL needs to
become a DSPL. Hence we support the following three scenarios:

• Adding a variant implies that we need to define in which
place of the feature model the variant will be added, and if it
will belong to an existing variation point. The logical
formulas in the feature model must be modified accordingly
to the new variant. In addition, we need to check the existing
constraint rules when the new variant is added (e.g., mainly
require and exclude rules) to detect potential
incompatibilities. In addition, we should know if the type of
the new variant (e.g.: string, numerical, Boolean), often used
to define the allowed values, is compatible with the types of
related variants (e.g., the new variant is added to an existing
variation point).

• Removing a variant means that the variant will be dropped
from the logical formula that connects the variant in the
feature model. Also, constraint rules must be revisited when
removing a variant.

• Changing a variant may imply in its simplest form just
changing their values, while in a more complex situation it
could mean moving the variant to a different location in the
feature model. In this case, moving variants from one place

to another, we can implement such operation as a removal
task followed by an addition task of the variant.

3.1 Super-types Enabling Runtime
Variability Changes
In order to support the aforementioned scenarios, we introduce the
notion of a Super-type (ST). Using super-types in system features
we capture the essence of variation points as we can group
variants under the same or a compatible super-type or specific
category. Super-types encompass the basic types (i.e., Boolean,
string, integer) commonly used by system features and enable a
superseding category for those features that share some common
functionality (e.g., features describing ambient measurements may
be labeled with an "Ambient" super-type). Therefore, we define
and use the notion of supertype with the following purpose:

• Provide a superseding taxonomy over the
aforementioned basic types, where system features
defined in a variability model can be assigned to one or
several super-types.

• Each DSPL for a given application domain can define
its own super-types (e.g., multimedia, security) to
allocate specific system functionality.

• Our use of the super-types to change the variants can be
dynamic, as we can compare the super-type of a new or
existing feature to add, remove, or replace a feature
which has the same or a compatible super-type.

While basic types of variants define the type of allowed values for
a specific system option, super-types group variants that
encompass a related functionality. In addition, super-types can be
used to filter out and to visualize only a subset of the feature
model, in particular when the number of variants exceeds the
visualization capabilities of the screen. In our model, we define a
variant enabled with super-types as:

Variant (Vj) = (^ . . .Van] , T, [ST1...STn]J

where each variant (V;) representing a system feature has several
allowed values (Va;) that can be organized in different ways (e.g.:
ranges, lists), poses a type (T), and belongs to one or several
compatible super-types (ST). In section 6 we show an example
where a subset of WSAN features are organized into one or
several super-types.

3.2 Prototype Software
As a proof of concept, we introduced the notion of super-types
into an existing prototype tool called VMWT (Variability
Modeling Web Tool [22]) developed at the Rey Juan Carlos
University in 2007. We implemented a specific module called
Alter Product Runtime Mechanism (APRM), which simulates the
runtime changes performed over a feature model. Basically, the
APRM module checks the super-type of the variants when a
runtime change is needed and modifies the structural variability.
To achieve this, the APRM builds a parallel environment where
the changes are applied in a secured form without affecting the
main system during its execution, and uses replicated data without
affecting its normal functioning. After all changes have been
applied, the APRM incorporates the new data into the real
environment. The APRM module stores in a database the features
and their relationships and it uses an array to build and
dynamically re-build the changes performed over the variants.
Because new features may fit several super-types at the same
time, we need policies to know the exact point where these

features will be anchored. As a WSAN could add a new node to
the network with features supporting new functionality, variants
can be inserted dynamically if they possess the same or a
compatible super-type with the existing features; as in other cases
a new super-type must be defined before including the variant.

Removal operations of variants are easier because we only need to
run automatic scripts to check potential inconsistencies in the
dependency rules once we drop the variant in the feature model.
Changing the values of variants can be simply done by uploading
dynamically a configuration file, while moving a variant to a
different location is performed as a removal operation followed by
an adding operation.

Moreover, adding new variants may introduce new requires,
excludes, and operational dependencies (closer to runtime
concerns [9]) between the new variant and the existing ones. This
task can be done automatically by uploading dynamic
configuration files containing new rules, but we need to run
scripts for checking and detecting potential inconsistencies in the
new feature model. To leverage the degree of automation when
we prove the correctness of the new feature model, DSPL
designers can pre-check the dependency rules that will be
uploaded automatically before variants are modified. In the
APRM tool we can simulate the inclusion of rules that are
introduced manually by an operator, and see the effects over an
existing or modified feature model.

4. MOTIVATING EXAMPLE
As a motivating example to preliminarily test our proposal, we
describe in this section a case for an "indoor smart environmental
and guidance systems" product family (Figure 2) derived from the
feature model shown in Figure 1. We also show in Figure 2 those
active features for a specific WSAN museum guidance product.
The summary of the high-level features included in the FODA
related to the "indoor smart environmental and guidance systems"
product family is as follows:

• Communication: With the exception of "Name-based" and
"Anycast", all the other features from the general WSAN

FODA may be useful in products of this family.
• Measurement: Ambient measurements are of potential use

for products of this family, as are user preferences (both may
affect the guidance advice to be provided to the users).
Presence detection may be also interesting.

• Actuation: Alarms, Appliance operation (basically for
enhancing comfort) and User output (for providing the
guidance advice to human users) are significant in this
family.

• Localization: This product family requires the localization of
some mobile nodes, which will be probably carried by
people, and the presence of fixed nodes that may act as
beacons and have fixed known positions.

As shown in Figure 2, the specific museum guidance product has
some of its features active while others remain deactivated. For
example, guidance instructions are only given in audio form, and
ambient measurements are sensed and communicated in a periodic
manner. In Table 1 we show an example where a subset of the
WSAN product family features are organized into one or several
super-types. Later we exemplify how this definition may be useful
for runtime variability.

All ambient measurements (Temperature, Smoke, Humidity, and
Light) belong to the "Ambient" ST. Besides, both "Temperature"
and "Smoke" may be used to raise alarms (e.g., a measurement
with an abnormally high value may be the symptom of a fire), and
consequently they also belong to the "Security" ST. Regarding the
dynamic reconfiguration capabilities of our WSAN we provide
the following two scenarios of use:

Scenario 1: The first example is an upgrade of the museum
guidance product that consists of immediately triggering events
when any ambient measurement exceeds configurable thresholds
(so that we do not have to wait until the next period to know about
a potentially dangerous condition). This requires the activation of
the (currently inactive) "Event-based" variant, which should
eventually cause the upgrading (or activation) of specific software
modules inside the nodes to implement a publish-subscribe
communication mode. Also, the properties of the features

Figure 2. "Indoor smart environmental and guidance systems" WSAN product family.
Darker blue boxes are the active features for the Museum Guidance product.

pertaining to the "Ambient" ST have to be modified and the
appropriate thresholds have to be set. Again, this will cause some
appropriate updates to the software at the nodes. Here we are
assuming that the features contain properties or attributes that are
subject to runtime variability, being the threshold values part of
these possible attributes. Figure 3 contains a pseudo-code
representation of this runtime variant modification.

{Activate_Feature(Comm_type. Event-based)} AND
{For all Features in "Ambient" ST: Configure threshold
values}

Figure 3. Events trigger for ambient measurements

Table 1. Example of super-types in a WSAN product family

Feature(s) Type(T) Super-types (STs)

Temperature,
Smoke

Range of numerical
values

Ambient, Security

Humidity, Light
Range of numerical

values
Ambient

Scenario 2: The second example is related to the addition of new
hardware: pollen sensors, useful for warning people with allergies.
In this case a new variant has to be added to the feature model,
called "Pollen", which should be placed under "Measurement" in
the FODA tree shown in Figure 2. This new feature will be
assigned to the "Ambient" ST, something that will automatically
allow for its placement in the correct variation point of the tree
and cause the configuration of the corresponding thresholds (if the
upgrade from the previous example is already in place).

In order to support the aforementioned scenarios, once we derive
the WSAN feature model of Figure 2, we simulated the runtime
changes in the feature model using the APRM tool for scenario 2
to add a new variant or system feature by checking its super-type.

5. RELATED WORK
Dynamic Software Product Lines (DSPLs) constitute an emerging
approach that uses runtime variability mechanisms [23] to deal
with the dynamicity of changing features and dynamic
reconfiguration requests in order to adapt systems to varying
conditions. In Dynamic Software Product Lines, family members
often need to evolve or be reconfigured after deployment. Hence,
in the era of post-deployment, many runtime concerns must be
addressed at the customer side (e.g., mobile software feature
reconfiguration) or autonomously by systems that need to adapt
themselves to new requirements and context conditions (e.g.,
robots). Therefore, runtime architectures must support the
reconfiguration of system features and, if needed, modify the
structural variability dynamically. There are some recent
experiences with the use of DSPLs in various application domains
such as SOA (e.g.: [24] [25] [26] [27]) while others exploit
context-awareness properties to manage the information at
runtime. All these approaches rely on runtime architectures able to
manage the dynamicity of changing system features at execution
time.

In traditional SPL approaches, software variability (i.e., the
structural variability of a set of related systems) was modeled and
used statically by the product line process. With the advent of
dynamic software product lines, variability is managed
dynamically at runtime, and runtime models attempt to manage
and change variants during system execution. Some of these
changes refer to the activation and deactivation of system features

while more sophisticated approaches can add, remove, or modify
variants in the feature model. In [26] the authors state many of the
challenges concerning the introduction of runtime variability
mechanisms that are used by DSPLs. Automating and validating
runtime variability is hard,, and open variability models must be
flexible enough to support better the evolution of software
products and post-deployment changes, including runtime binding
and rebinding tasks. To date, few experiences have dealt with
changing variants at runtime [28] [29] [30] [31] [32]. The
modification of variants at runtime often requires some kind of
meta-information or reflective technology to support the inclusion
and removal of variants automatically or semi-automatically, but
changing variation points dynamically is not supported by current
approaches as human intervention is needed to decide on the
logical formulas connecting their variants. Other attempts use
compositional approaches to support feature reconfiguration at
runtime [33]. Also, in [34], three different strategies rely on the
Common Variability Language (CVL) [35] are used for
implementing variability transformations and synthesis in smart-
home systems. The CVL language includes constructs to compose
three types of substitutions according to the type of alternatives
able to perform reconfiguration activities of the base model.
Rebinding and reconfiguring variability models with moderate
effort is, therefore, a major issue, and tools to evaluate the effect
of dynamic reconfigurations and the changes in the state of
features are needed [36].

Finally, the notion of context variability shares some similarities
with our work. In [37] the authors combine goals models with
contextual information for product line derivation. They state that
context can be a main factor for determining the products to
derive, and context information can be incorporated in variability
models. In [38] context variability is used for multiple product
lines, and the authors suggest a context variability model
associated to an existing feature model to constraint the variability
model. Contexts are used as general classifiers in which the
product is used. Our approach uses the super-types as a taxonomy
of features, but we do not duplicate the existing feature model and
we do not introduce new relationships, as in [38]. Also, context
features are used differently and the authors in [38] do not suggest
the automation of changes in the feature model, as they focus on
product derivation rather than on changing the structural
variability dynamically.

6. CONCLUSIONS AND FUTURE WORK
One of the main conclusions we can draw from this emerging
work is that system families using context-aware information that
require runtime changes are quite suitable to be described using a
DSPL. Like other related systems, WSAN families can be
described using features models but highlight those runtime
characteristics that require the support of dynamic variability.

The proposed super-type-enabled runtime variability mechanism
extends previous feature models and provides a simple way to
manage and change variants dynamically using the notion of
super-types. These super-types enable a classification of high-
level system properties and functionality that can be used to filter
out and select only the specific functionalities that require to be
changed dynamically. Hence, variants modified at execution time
offer a flexible solution for WSANs that change their nodes or
current configuration at runtime. One aspect that may hamper the
full automation of changing variants at runtime is the need to
check on-line mode constraints and dependency rules in the
feature model when, for instance, a new variant or super-type is
added dynamically. The APRM prototype simulates runtime

changes in the structural variability where system features can be
bound at runtime and post-deployment time in a DSPL.

For future work, we are working on new prototype software that
integrates the APRM module into an existing system in order to
automate the runtime changes required by WSANs. In addition,
we plan to include the reconfiguration functionality described in
scenario 1, as this is only supported by the APRM software in a
limited way. Finally, more theoretical work has to be done
regarding the proposed approach, and especially to provide a
meta-model linking the notion of super-type with other typical
elements of DSPLs and variability models (e.g., features). A
software architecture showing all these concepts together is
planned.

7. ACKNOWLEDGEMENTS
This work has been partially funded by the Spanish Ministry of
Economy and Competitiveness (Ministerio de Economia y
Competitividad), in the framework of the project "Accessible
wearable device platform for smart environments" (Ref
TEC2011-28397) and in part by Science Foundation Ireland grant
10/CE/I1855 to Lero—the Irish Software Engineering Research
Centre (www.lero.ie). We also thank Alejandro Sanchez for his
work in the development of the APRM tool in the Rey Juan
Carlos University. Oscar Ortiz and Ana Belen Garcia are
members of the R&D centre "Centro de Investigation en
Tecnologias Software y Sistemas Multimedia para la
Sostenibilidad (CITSEM)" and of the Department of Telematic
Engineering and Architectures (Departamento de Ingenieria y
Arquitecturas Telematicas - DIATEL, UPM).

8. REFERENCES
[1] K. Pohl, G. Bockle, F. van der Linden, Software Product

Line Engineering Foundations, Principles, and Techniques.
Springer Verlag, 2005.

[2] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson,
"Feature-Oriented Domain Analysis (FODA) Feasibility
Study," Software Engineering Institute, Carnegie Mellon
University, Tech. Rep. CMU/SEI-90-TR-21, 1990.

[3] A. van der Hoek, "Design-time product line architectures for
anytime variability," Science of Computer Programming.
Special Issue on Software Variability Management, vol. 53,
no. 3, pp. 285-304, 2004.

[4] C. Eisner, G Botterweck, D. Lohmann, W. Schroder-
Prekshat, Variability in Time - Product Line Variability and
Evolution Revisited. 4 International Workshop on
Modelling Variability of Software-intensive Systems
(VaMoS 2010), Essen, Germany, 131-137, 2010.

[5] D. Garlan, S.W., Cheng, A.C., Huang, B. R., Schemed, P.
Steenkiste, Rainbow: Architecture-Based Self-Adaptation
with Reusable Infrastructure. IEEE Computer 37(10), 46-54,
2004.

[6] J.C. Georgas, A. van der Hoek, R.N. taylor, Using
Architectural Models to Manage and Visualize Runtime
Adaptation, IEEE Computer 42(10), 52-60, 2009.

[7] J. O. Kephart, D. M. Chess. The vision of autonomic
computing. Computer, 36(l):41-50, 2003.

[8] C. Cetina, Pau Giner, J. Fons, V. Pelechano, Autonomic
Computing Through Reuse of Variability Models at
Runtime: The Case of Smart Homes, IEEE Computer 42(10),
37-43, 2009.

[9] J. Lee, and K. Kang, Feature Dependency Analysis for
Product Line Component Design, International Conference
on Software Reuse, LNCS 3107 Springer-Verlag, pp. 69-85,
2004.

[10] I. F. Akyildiz, et al. "Wireless Sensor Networks: A Survey."
Computer Networks?,?, (2002): 393-422.

[11] M. Turon. "MOTE-VIEW: A Sensor Network Monitoring
and Management Tool". Proceedings of the 2nd IEEE
workshop on Embedded Networked Sensors. Washington,
DC, USA: IEEE Computer Society, 2005. 11-17.

[12] European Research Cluster on the Internet of Things.
"Internet of Things Strategic Research Roadmap". 2011.
Available online: http://www.internet-of-things-
research.eu/pdf/IoT_Cluster_Strategic_Research_Agenda_20
ll .pdf

[13] G Karsai, et al. "Evolving Embedded Systems." Computer
43.5(2010): 34-40.

[14] A. Bachir, M. Dohler, T. Watteyne, K.K. Leung. "MAC
Essentials for Wireless Sensor Networks". IEEE
Communications Surveys & Tutorials. Volume: 12, Issue: 2.
2010. Pp. 2 2 2 - 2 4 8 .

[15] C. Cetina, P. Trinidad, V. Pelechano. Mass Customization
along Lifecycle of Autonomic Homes. In: Proceedings of 3 r

Dynamic Software Product Lines (DSPL), Limerick, Ireland,
2009.

[16] G Fortino, S. Galzarano, and A. Liotta. "An Autonomic
Plane for Wireless Body Sensor Networks". Computing,
Networking and Communications (ICNC), 2012
International Conference on. 2012. 94-98.

[17] D. Hughes, et al. "LooCI: A Loosely-Coupled Component
Infrastructure for Networked Embedded Systems".
Proceedings of the 7th International Conference on
Advances in Mobile Computing and Multimedia. Kuala
Lumpur, Malaysia. New York, NY, USA: ACM , 2009. 195-
203.

[18] A. Taherkordi, et al. "Optimizing Sensor Network
Reprogramming Via in-Situ Reconfigurable Components."
ACM Transactions on Sensor Networks 9.2 (2013): 1-37.
Available online: http://hal.inria.fr/docs/00/65/87/48/PDF/Re
moWare_TOSN.pdf

[19] T. Patzke, L. Vajda, A. Torok. Evolving heterogeneous
wireless sensor networks - an assisted living case study.
Varga, A.K.: Regional Conference on Embedded and
Ambient Systems, RCEAS 2007. Proceedings. Selected
Papers: 22-24 November 2007, Budapest. Budapest, 2008,
pp. 89-93.

[20] P. Boonma and J. Suzuki. Model-driven performance
engineering for wireless sensor networks with feature
modeling and event calculus. In Proceedings of the 3rd
workshop on Biologically inspired algorithms for distributed
systems (BADS '11). ACM, New York, NY, USA, 17-24,
2011.

[21] N. Gamez, L. Fuentes, and M. Aragiiez. Autonomic
Computing Driven by Feature Models and Architecture in
FamiWare. Eds. Ivica Crnkovic, Volker Gruhn, and Matthias
Book. 6903 Vol. Springer Berlin / Heidelberg, 2011. Lecture
Notes in Computer Science.

[22] R. Capilla, A. Sanchez, J.C. Duenas, An Analysis of
Variability Modeling and Management Tools for Product

http://www.lero.ie
http://www.internet-of-things
http://hal.inria.fr/docs/00/65/87/48/PDF/Re

Line Development. In proceedings of the Software and
Services Variability Management Workshop: Concepts.
Techniques, and Tools. Helsinki University of Technology.
Helsinki, Finland, April 19-20, 32-47, 2007.

[23] S. Hallsteinsen, M. Hinchey, S. Park and K. Schmid,
Dynamic Software Product Lines, IEEE Computer 41(4), 93-
95, 2008.

[24] S. Hallsteinsen, S. Jiang, and R. Sanders, Dynamic Software
Product Lines in Service Oriented Computing, In:
Proceedings of 3 r Dynamic Software Product Lines (DSPL),
Limerick, Ireland, 2009.

[25] H. Gommaa, K. Hashimoto, Dynamic Software Adaptation
for Service-Oriented Product Lines, 15 International
Software Product Line Conference (SPLC), ACM DL, 2011.

[26] P. Istoan, G. Nain, G. Perrouin, J-M. Jezequel. Dynamic
Software Product Lines for Service-based Systems. 9
International Conference on Computer and Information
Technology, 193-198, ACM DL, 2009.

[27] H. Shokry, M. Ali Babar. Dynamic Software Product Line
Architectures Using Service-based Computing for
Automotive Systems. 2n International Workshop on
Dynamic Software Product Lines (SPLC-DSPL 2008), 53-
58, 2008.

[28] R. Capilla, J. Bosch. The Promise and Challenge of Runtime
Variability. IEEE Computer 44(12), 93-95, 2011.

[29] M. Goedicke, C. Kollmann, U. Zdun, Designing Runtime
Variation Points in Product Line Architectures: three cases.
Science of Computer Programming 53(3), 353-380, 2004.

[30] A. Helleboogh, D. Weyns, K. Schmid, T. Holvoet, K.
Scheltfhout, W. van Betsbrugge, Adding Variants on-the-fly:
Modeling Meta-Variability in Dynamic Software Product
Lines. Proceedings of 3 r International Workshop on
Dynamic Software Product Lines (DSPL 2009), San
Francisco, California, USA, 2009.

[31] N. Bencomo, G. Blair, C. Flores, P., Sawyer, Reflective
Component-based Technologies to Support Dynamic
Variability, In 2n International Workshop on Variability
Modelling of Software-intensive Systems (VAMOS 2008),
Essen, Germany, 141-150,2008.

[32] R. Froschauer, A. Zoitl, P. Griinbacher, Development and
Adaptation of IEC 61499 Automation and Control
Applications with Runtime Variability Models, 7th IEEE
International Conference on Industrial Informatics (INDIN
2009), 905-901,2009.

[33] F. Damiani, I. Schaefer. Dynamic Delta-Oriented
Programming. 5 International Workshop on Dynamic
Software Product Lines (DSPL), 2011.

[34] C. Cetina, 0 . Haugen, X. Zhang, F. Fleurey, V. Pelechano,
Strategies for variability transformation at run-time. SPLC
2009, San Francisco, California, USA, ACM Proceedings
Series 446, 61-70,2009.

[35] 0 . Haugen, B. Moller-Pedersen, J. Oldevik, G. K. Olsen, and
A. Svendsen. Adding standardized variability to domain
specific languages. In B. Geppert and K. Pohl, editors,
Software Product Lines, 12th International Conference,
SPLC 2008, Proceedings, volume 1, pages 139-148,
Limerick, Ireland, 2008.

[36] C. Cetina, P. Giner, J. Fons, V. Pelechano, Designing and
Prototyping Dynamic Software Product Lines: Techniques
and Guidelines. SPLC 2010, Springer-Verlag LNCS 6287,
331-345,2010.

[37] R. Ali, R. ChitChyan, P. Giorgini, Context for Goal-level
Product Line Derivation, Procedings of 3 r International
Workshop on Dynamic Software Product Lines (DSPL
2009), San Francisco, California, USA, 2009.

[38] H. Hartmann, T. Trew, Using Feature Diagrams with Context
Variability to model Multiple Product Lines for Software
Supply Chains, 12 International Software Product Line
Conference, 12-21,2008.

