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Abstract
A recent trend in object oriented programming languages is the use
Access Permissions (AP) as abstraction to control concurrent exe-
cutions. AP define a protocol specifying how different references
can access the mutable state of objects. Although AP simplify the
task of writing concurrent code, an unsystematic use of permissions
in the program can lead to subtle problems. This paper presents
a Linear Concurrent Constraint (lcc) approach to verify AP an-
notated programs. We model AP as constraints (i.e., formulas in
logic) in an underlying constraint system, and we use entailment
of constraints to faithfully model the flow of AP in the program.
We verify relevant properties about programs by taking advantage
of the declarative interpretation of lcc agents as formulas in lin-
ear logic. Properties include deadlock detection, program correct-
ness (whether programs adhere to their AP specifications or not),
and the ability of methods to run concurrently. We show that those
properties are decidable and we present a complexity analysis of
finding such proofs. We implemented our verification and analysis
approach as the Alcove tool, which is available on-line.

Categories and Subject Descriptors F.3.1 [Specifying and Verify-
ing and Reasoning about Programs]: Logics of programs; D.3.2
[Language Classifications]: Constraint and logic languages. Con-
current, distributed, and parallel languages.

General Terms Theory, Verification, Concurrency

Keywords Concurrent Constraint Programming, Access Permis-
sions, Linear Logic, Verification

1. Introduction
Reasoning about concurrent programs is much harder than rea-
soning about sequential ones. Programmers often find themselves
overwhelmed by the many subtle cases of thread interaction they
must be aware of so as to decide whether a concurrent program is
correct or not. Also, the need of finding the right level of thread
atomicity, avoiding race conditions, coping with mutual exclusion
requirements, guaranteeing deadlock freeness, make it very hard

to design reliable concurrent software. Furthermore, the attempt to
find errors through testing is doomed to failure because of the non-
determinism caused by thread scheduling.

This complexity of concurrent software is aggravated when soft-
ware designers, wishing to take advantage of object oriented (OO)
design strategies, use OO languages to write concurrent programs.
The distribution of state in objects that might have multiple refer-
ences (aliases), probing or modifying concurrently their local con-
tents, contributes significantly to the complexity of sound concur-
rent program design. This potential data race situation occurs when
a reading and a writing trace both access a shared memory location.
This should be considered a program error since it gives rise to in-
consistent executions paths. To cope with this problem, a simple
strategy is to wrap each object access up in an atomic block. How-
ever, this negatively affects program performance. A better strategy
would be for the programmer to lock just those objects that are ac-
tually shared among threads. It is very hard, however, to figure out
which objects are to be shared and what locations are really pro-
tected by the locks simply by looking at the program text.

Languages like Æminium [18] and Plaid [19] propose a differ-
ent strategy to concurrency based on access permissions (AP) [5]
to objects. AP are descriptions about how various references to an
object can coexist. They permit a direct control about the access
to the mutable state of an object. Making the access to a shared
mutable state explicit facilitates verification and it also permits par-
allelization of code. For instance, a unique AP, which describes the
case when only one reference to a given object exists, enforces ab-
sence of interference and simplifies verification. On the other hand,
a shared AP, which describes the case when an object may be ac-
cessed and modified by multiple references, allows for concurrent
executions and makes verification trickier.

Although AP greatly help to devise static strategies for correct
concurrent sharing of objects, the interactions resulting from dy-
namic bindings (e.g., aliasing of variables) might still lead to subtle
difficulties. Indeed, it may happen that apparently correct permis-
sions assignments in simple programs lead to deadlocks.

We propose a Linear Concurrent Constraint (lcc) [7] program-
ming approach to the verification of AP annotated programs. In
our approach, programs are interpreted as lcc agents that use con-
straints to keep information about AP, object references, object
fields, and method calls. We use constraint entailment to verify
compliance of methods and arguments to their AP based signa-
tures. Furthermore, by exploiting the declarative view of lcc agents
as logical formulas, we are able to analyze and verify programs.
The proposed program verification includes (1) deadlock detection;
(2) whether it is possible for methods to be executed concurrently
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1 class stats {...}
2 class collection {
3 collection() none(this)⇒ unq(this) {...}
4 sort() unq(this)⇒ unq(this) {...}
5 print() imm(this)⇒ imm(this) {...}
6 compStats(stats s) imm(this), unq(s)⇒

imm(this), unq(s) {...}
7 removeDuplicates() unq(this)⇒ unq(this){...}}
8 main() {
9 let collection c, stats s in

10 c := new collection()
11 s := new stats()
12 c.sort()
13 c.print()
14 c.compStats(s)
15 c.removeDuplicates()
16 end }

Figure 1. Example of an Æminium program.

or not; and (3) whether annotations adhere to the intended seman-
tics associated with AP or not.

The contributions of the this paper are four-fold (1) the defini-
tion of an elegant lcc semantics of AP for an object oriented con-
current programming language; (2) the definition of a decidable
efficient verification procedure of non-recursive programs; (3) a
complexity analysis of the effort required to verify a program; and
(4) the implementation of the Alcove tool that automates our veri-
fication approach.

The rest of the paper is organized as follows. Section 2 presents
the syntax of the AP based language used here and recalls lcc.
Section 3 presents the model of AP as lcc agents. We also show
how the proposed model is a runnable specification that allows
users to observe the flow of program permissions. We implemented
this models as the Alcove LCC Animator. Section 4 describes our
approach to verify programs and its implementation as the Alcove
LL prover. It also presents a complexity analysis about the proposed
verification. Section 5 concludes the paper.

2. Preliminaries
2.1 Programs Syntax
Access permissions (AP) are abstractions describing how objects
are accessed. Assume a variable x that points to the object o.
The unique permission unq states that x is the sole reference to
object o. The shared permission shr provides x with reading and
modifying access to object o, which allows other references to o
(called aliases) to exist and to read from it or to modify it. The
immutable permission imm provides x with read-only access to o,
and allows any other reference to object o to exist and to read from
it. If x points to null, the permission none represents the fact that x
is a null reference and it has no permission to access any object.

Figure 1 shows a program (taken and slightly modified from
[18]) that operates over a collection of elements. Starting at line 8,
the program creates an object of type collection at Line 10 and an
object of type stats at line 11. The program sorts the collection
c at line 12, and prints it at line 13. It computes some statistics
at line 14, and removes duplicates from the collection at line 15.
Lines 3-7 declare the signatures for the methods. The signature
of class collection constructor returns a unique reference to a
new collection at line 3. Methods sort and removeDuplicates
require a unique reference to the collection to exist and to return a
unique permission to it. Method compStats requires and returns

an immutable (read-only) AP to the collection c and a unique AP
to the parameter s.

Given these method signatures, the AP flow for the program is
computed. Permissions can be produced and consumed. Hence, the
unique permission returned by the constructor of class collection
is consumed by the call of sort. Once this method terminates,
the unique permission is restored and split into two immutable
permissions, and methods print and compStats can be executed
concurrently. Once both methods have finished their execution, the
immutable access permissions are joined back into a unique access
permission, and the method removeDuplicates can be executed.

The analyses presented in this paper considers a subset of Æ-
minium [18], a concurrent-by-default object oriented programming
language based on the above idea of AP (see Figure 2). Methods
specify the required permissions for the caller (p(this)) and for
each argument (p(y)) as well as the permissions restored to the
environment when the method terminates (p′(this) and p′(y)).
Similarly for class constructors (CTR). We assume that in a call
to a method (or constructor), the actual parameters are references
(i.e., variables, object fields or this) and not arbitrary expressions.
Since we have parameters by reference, we assume that the returned
type is void and we omit it in the signature. For assignments we
allow only statements of the form rl := rr , where the right and left
hand side are references. Notice that we do not lose generality by
imposing these syntactic restrictions since it is possible to unfold
more general expressions by using local variables.

2.2 Linear ccp
Concurrent Constraint Programming (ccp) [17] is a model for con-
currency that combines the traditional operational view of process
calculi with a declarative view based on logic. This allows ccp to
benefit from the large set of reasoning techniques of both process
calculi and logic. Agents in ccp interact with each other by telling
and asking information represented as constraints to a global store.

The basic constructs (processes) in ccp are: (1) the tell agent c,
which adds the constraint c to the store, thus making it available
to the other processes. Once a constraint is added, it cannot be
removed from the store (i.e., the store grows monotonically). And
(2), the ask process c→ P , which queries if c can be deduced from
the information in the current store; if so, the agent behaves like P ,
otherwise, it remains blocked until more information is added to
the store. In this way, ask processes define a simple and powerful
synchronization mechanism based on entailment of constraints.

Linear Concurrent Constraint (lcc) [7] is a ccp-based calculus
that considers constraint systems built from a fragment of Girard’s
intuitionistic linear logic (ILL) [8]. The move to a linear discipline
permits ask agents to consume information (i.e., constraints) from
the store.

Definition 1 (Linear Constraint Systems [7]). A linear constraint
system is a pair (C,`) where C is a set of formulas (linear con-
straints) built from a signature Σ ( a set of function and relation
symbols), a denumerable set of variables V and the following ILL
operators: multiplicative conjunction (⊗) and its neutral element
(1), the existential quantifier (∃), the exponential bang (!) and the
constant top (>). Let ∆ be a (possibly empty) subset of C×C defin-
ing the non-logical axioms of the constraint system (i.e, a theory).
Then the entailment relation ` is the least set containing ∆ and
closed by the rules of ILL (see Figure 3).

We shall use c, c′, d, d′... to denote elements in C. We recall
that ! c represents the arbitrary duplication of the resource c. The
entailment d ` cmeans that the information c can be deduced from
the information represented by d.
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(programs) P ::= 〈CL main〉
(class decl.) CL ::= class cname { F M }
(field decl.) F ::= cname fname

(method decl.) M ::= meth(cname y) p(this), p(y) ⇒ p′(this), p′(y) {s}
CTR ::= cname(cname y) none(this), p(y) ⇒ p′(this), p′(y) {s}

(main) main ::= main() {s}
(references) r ::= x | x.fname | this
(statements) s ::= let cname x in s end | rl := rr | x.meth(r) | x := new cname(r) | s1 s2 ... sn
(permissions) p ::= unq | shr | imm

Figure 2. Reduced Syntax of Æminium programs. x denotes a sequence of variables x1, ...., xn. This notation is similarly used for other
syntactic categories.

c ` c ` 1 Γ ` >

Γ ` c
Γ, 1 ` c

Γ, c1, c2 ` c
Γ, c1 ⊗ c2 ` c

Γ ` c1 ∆ ` c2
Γ,∆ ` c1 ⊗ c2

Γ ` c[t/x]

Γ ` ∃x.c
Γ, c ` d x /∈ fv(Γ, d)

Γ, ∃x.c ` d
Γ, c ` d
Γ, ! c ` d

Γ ` d
Γ, ! c ` d

Γ, ! c, ! c ` d
Γ, ! c ` d

! Γ ` d
! Γ `! d

Figure 3. Rules for the 1,⊗, ∃, ! fragment of the Intuitionistic
Linear Logic (ILL). fv(A) denotes the set of free variables of
formula A. Γ,∆ denote set of formulas.

The Language of Processes. Similar to other ccp-based calculi,
lcc, in addition to tell and ask agents, provides constructs for par-
allel composition, hidden of variables, non-deterministic choices
and process definitions and calls.

Definition 2 (lcc agents [7]). Agents in lcc are built from con-
straints in the underlying linear constraint system, following the
syntax below.

P,Q, ... ::= c | ∀x(c→ P ) | P ‖ Q | ∃x(P ) | P +Q | p(x)

Tell Agent. Given a store d, the tell agent c adds c to d producing
the new store d⊗ c.

Linear ask agent. Let d be the current store and θ be the substi-
tution [t/x] for some list of terms t. If d entails d′ ⊗ cθ for some
d′ (i.e., d ` d′ ⊗ cθ ), the ask agent ∀x(c → P ) consumes cθ
and executes Pθ under the new store d′. If c (the guard) cannot
be deduced from d, the ask agent blocks until more information
is added to the store. If the sequence of variables x is empty then
∀x(c→ P ) is written as c→ P .

Parallel Composition. P ‖ Q stands for the interleaved parallel
execution of agents P and Q, possibly communicating through
shared variables in the store. Given a finite set of indexes I =
{1, 2, ..., n}, instead of P1 ‖ P2 ‖ ... ‖ Pn, we write

∏
i∈I

Pi.

Locality. The agent ∃x(P ) behaves like P and binds the variable
x to be local to it.

Non-deterministic choice. The process P1 + ... + Pn non-
deterministically chooses one Pi for execution whenever Pi can
evolve (one-step guarded choice). The chosen alternative precludes
the others. We assume here that each Pi is an ask agent. Hence, the

agent
∑
i∈I
∀xi(ci → Pi) evolves into Pj [tj/xj ] whenever the store

entails cj [tj/xj ] for some j ∈ I . Otherwise, the agent blocks until
more information is added to the store.

Procedure Calls. Assume a process declaration:

p(x)
∆
= P

where all free variables of P are in the set of pairwise distinct
variables x. The agent p(y) evolves into P [y/x].

We assume that “⊗” has a higher precedence than “→”, hence
c1 ⊗ c2 → c′1 ⊗ c′2 should be read as (c1 ⊗ c2) → (c′1 ⊗ c′2).
Furthermore, “! ” has a tighter binding than ⊗ so we understand
! c1 ⊗ c2 as (! c1) ⊗ c2. For the rest of the operators we shall
explicitly use parenthesis to avoid confusions.

In the following example we show how lcc agents evolve. We
shall use 〈P, c〉 → 〈P ′, c′〉 to denote that the agent P under store
c evolves into the agent P ′ producing the store c′. The reader may
refer to [7] for a complete account of the lcc operational semantics.

Example 2.1 (Consuming Permissions). Let’s assume that we
have a constraint system with a ternary predicate ref(·), con-
stant symbols unq and shr and equipped with the axiom: ∆ =
ref(x, o, unq) ` ref(x, o, shr). Let’s assume also a process
R = P ‖ Q such that

P = ref(x, o, unq)
Q = ∀y(ref(x, y, shr)→ Q′)

From the initial store > (true), Q cannot deduce its guard and it
remains blocked. Hence, P evolves by executing the tell agents
ref(x, o, unq):

〈R,>〉 → 〈Q,>⊗ ref(x, o, unq)〉
Afterwards, the store>⊗ref(x, o, unq) is strong enough to entail
the guard ofQ by using the axiom ∆. We thus observe the following
transition:

〈Q,>⊗ ref(x, o, unq)〉 → 〈Q′[o/y],>〉
Roughly speaking, P adds to the store the information required
to state that x points to o and has a unique permission to o (i.e.,
ref(x, o, unq)). By using ∆, from ref(x, o, unq) we can deduce
ref(x, o, shr), i.e., the unique permission of x can be downgraded
to a share permission on o. Thereafter, Q consumes this infor-
mation, leading to the store > where the agent Q′[o/y] is exe-
cuted.

We finish this section by introducing the derived operator P ;Q
that delays the execution of Q until the “end” of the execution of
P . This will be useful for the model we present in the forthcoming
sections. Let z, w,w′ be variables that do not occur either in P or
in Q and sync(·) be an uninterpreted predicate symbol. The pro-
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cess P ;Q can be defined as ∃z(C[[P ]]z ‖ sync(z)→ Q) where

C[[c]]z = c⊗ sync(z)
C[[∀y(c→ P )]]z = ∀y(c→ C[[P ]]z)
C[[P ‖ R]]z = ∃w,w′(C[[P ]]w ‖ C[[R]]w′ ‖

sync(w)⊗ sync(w′)→ sync(z))
C[[P + R]]z = C[[P ]]z + C[[R]]z
C[[∃y(P )]]z = ∃y(C[[P ]]z)
C[[p(x)]]z = p(x, z)

Intuitively C[[P ]]z adds the constraint sync(z) when it terminates.
Then, the ask agent sync(z)→ Q reduces to Q. Notice for exam-
ple that in a parallel composition P ‖ R, we wait for both P and
R to finish and then, the constraint sync(z) is emitted. As we shall
see, we only use calls and process definitions when modeling alias-
ing of variables and Æminium constructs and methods declarations.
Hence, in Section 3.2 we shall rewrite the signature of a process
definition p(y) as p(y, w)

∆
= P . Then, the call p(x, z) evolves into

P [x/y, z/w] that later adds the constraint sync(z) when needed to
synchronize with the rest of the processes.

3. A LCC Interpretation of AP
Our lcc interpretation of access permissions in Æminium pro-
grams assumes a constraint system with the following axioms,
predicate and constant symbols:

Permissions: We assume the set of constant symbols PER =
{unq, shr, imm, none} in order to represent the permissions in-
troduced in Section 2.1.

References and Fields: We use the predicate symbol ref(x, o, p)
(x points to object o with permission p ∈ PER), field(x, o, field)
(x points to o.field), sync(z) (synchronizing on variable z) and
ct(o, n) (there are n references pointing to o). For the last con-
straint, we also assume the constant 0 (zero) and the successor
function s(·). Furthermore, we assume the constants nil (null
reference) and cname fname for each field “fname” of class
“cname”.

Non-logical axioms: We assume the following axioms:

downgrade1 : ref(x, o, unq) ` ref(x, o, shr)
downgrade2 : ref(x, o, unq) ` ref(x, o, imm)
upgrade1 : ref(x, o, shr)⊗ ct(o, s(0))

` ref(x, o, unq)⊗ ct(o, s(0))
upgrade2 : ref(x, o, imm)⊗ ct(o, s(0))

` ref(x, o, unq)⊗ ct(o, s(0))

The axiom downgrade1 (resp. downgrade2) transforms a unique
permission into a share (resp. immutable) permission. The axiom
upgrade1 (resp. upgrade2) builds a unique permission from a
share (resp. immutable) permission. Hence, to be able to upgrade
a permission to unique, the reference x needs to be the unique
reference with share or immutable permission to the pointed object
o. Conversions from share permissions into immutable and vice
versa require first to upgrade the permission to unique and then,
apply the appropriate downgrade axiom.

3.1 Modeling Statements.
We interpret Æminium statements through the function S[[s]]z that
given a statement s returns an lcc agent that synchronizes with
the rest of the program by adding the constraint sync(z) to the
store. We assume (by renaming variables if necessary) that z does
not occur in s. In the following we define S[[s]]z for each type of
statement in Figure 2.

Local variables in Æminium are defined as local agents in lcc.
The local variable x points to nil with no permissions.

(RLOC) S[[let x in s end]]z = ∃x(ref(x,nil , none);S[[s]]z)

For the assignment x := y, we define the rule:

(RALIAS) S[[x := y]]z = assg(x, y, z)

where

assg(x, y, z)
∆
= drop(x); gain(x, y); sync(z)

drop(x)
def
= ∀o, n((ref(x, nil, none)→ >) +∑
p∈PER\{none}

ref(x, o, p)⊗ ct(o, s(n))→ ct(o, n))

gain(x, y)
def
=

ref(y,nil , none)→ ref(x,nil , none)⊗ ref(y,nil , none)
+ ∀o, n((ref(y, o, unq)⊗ ct(o, s(0))→

ref(y, o, shr)⊗ ref(x, o, shr)⊗ ct(o, s(s(0))))
+ (ref(y, o, shr)⊗ ct(o, n)→
ref(y, o, shr)⊗ ref(x, o, shr)⊗ ct(o, s(n)))

+ (ref(y, o, imm)⊗ ct(o, n)→
ref(y, o, imm)⊗ ref(x, o, imm)⊗ ct(o, s(n)))

Here, the variable x loses its permission to the pointed object
o, and the object o has one less reference pointing to it (Definition
drop1). Thereafter, x and y point to the same object and the per-
mission of y is split between x and y (Definition gain) as follows:
if y has a unique permission to o, this permission is split into two
share permissions, one for x and one for y. If y has a share (resp.
immutable) permission to o, then both x and y will have a share
(resp. immutable) permission to o after the assignment. Recall that
ask agents consume their guard when evolving. Therefore, we add
back the permission for y in the right-hand side of the rule. Finally,
once the permission to y is split, the constraint sync(z) is added to
the store to synchronize with the rest of the program.

If the variable x points to the object o of class cname, then
the field fname of o can be accessed by the variable u when-
ever field(u, o, cname fname) holds. Intuitively, u points to
o.fname and then a constraint ref(u, o′, p) enforces o.fname
to point to o′ with permission p. As we shall show later, the model
of constructors adds the constraint ! field(u, o, cname fname)
to establish the connection between objects and their fields. The
model of the assignment S[[x.fname := y]] is thus obtained from
that of S[[u := y]]:

(RALIASF)
S[[x.f := y]]z=∀u, o, p( ref(x, o, p)⊗ field(u, o, cname f)

→ (ref(x, o, p);S[[u := y]]z))

The models for the statements S[[x.fname := y.fname]]z and
S[[x := y.fname]]z are similar and thus omitted.

For the composition of statements {s1 s2 ... sn}, the agent
modeling si runs in parallel with the other agents once the agent
modeling the statement si−1 adds the constraint sync(zi−1). After
the execution of the statement sn, the constraint sync(z) is added
to the store to synchronize with the rest of the program.

(RCOMP)
S[[{s1 ... si ... sn}]]z = ∃z1, ...zn(S[[s1]]z1 ‖

sync(z1)→ S[[s2]]z2 ‖ ... ‖
sync(zn−1)→ S[[sn]]zn ‖
sync(zn)→ sync(z))

Method calls and Object instantiation. For the sake of sim-
plicity, we write methods and constructors using functional nota-

1 Definitions (def= ) must be understood as shorthands.
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tion rather than object-oriented notation. For instance, x.meth(y)
is written as cname meth(x, y) when x is an object of type
cname. Similarly, the expression x := new cname(y) is writ-
ten as cname cname(x, y). As we shall see, for each method
of the form meth(x, y) in class cname, we shall generate a
process definition cname meth(x, y, z)

∆
= P . The Æminium

statement cname meth(x, y) is then modeled as the lcc call
cname meth(x, y, z). This thus triggers the execution of the body
of the method. Notice that we add the variable z as last parameter
to be able to synchronize with the rest of the program.

(RCALL) S[[x.meth(y)]]z = cname meth(x, y1, .., yn, z)
if x is of type cname

The model of an object initialization is defined similarly:

(RNEW) S[[x := new cname(y)]]z = cname cname(x, y, z)

3.2 Modeling Class Definitions.
The model of method declarations and constructors is given by the
functionD[[·]]. Hence, a method definitionMD of the class cname
of the form

meth(cname x, classy y) p(x), p(y)⇒ p′(x), p′(y) {s}

is modeled as a process definition:

(RMDEF) D[[MD]] = cname meth(x, y, z)
∆
= PM

Recall that the first parameter x of the method represents the object
caller this and the last parameter z is used for synchronization.
The body of the definition PM models the behavior of the method
as follows:

PM
def
= ∀o, ot, n, nt(consume; ∃y′, x′(params ; sync(z);PB))

where m = |y| is the number of parameters of the method and
|o| = |n| = m. The process PM first consumes the required
permissions from the parameters y and from the caller x. If the
required permission is share or immutable, those permissions are
restored to allow concurrent executions in the environment that
called the method. Unique and none permissions are consumed to
later be transferred to the body of the method:

consume
def
=

∏
i∈1..m

consumeyi ; consumex

consumeyi
def
= ref(yi, oi, pi)⊗ ct(oi, ni)→

ref(yi, oi, pi)⊗ ct(oi, s(ni)) if pi ∈ {shr,imm}
consumeyi

def
= ref(yi, oi, pi)→ > if pi ∈ {unq, none}

Definition consumex is similar to that of consumeyi but it consid-
ers the variable x, the object ot and the permission p.

Once the permissions are consumed according to the signature
of the method, the agent PM creates local variables y′ and x′ to
replace the formal parameters (y) and the caller (x) by the actual
parameters:

params
def
= ref(x′, ot, p)⊗

⊗
i∈1..m

ref(y′i, oi, pi)

At this point, PM adds sync(z) to release the program control.
Thereafter the body of the method can be executed. This is done by
modeling the statement s as the agent PB where ŝ denotes s after
replacing yi by y′i and x by x′:

PB
def
= ∃z′(S[[ŝ]]z′ ; sync(z′)→ (r env(x : p, x′ : p′) ‖∏

i∈1..m

r env(yi : pi, y
′
i : p′i)))

Once the execution of s releases the control (i.e., it adds sync(z′)
to the store), the references and permissions of the local variables

created to handle the parameters are consumed and restored to the
environment according to:

r env(x : p, x′ : p′)
def
= ∀o′, n(ref(x′, o′, p′)⊗ ct(o′, s(n))→

ct(o′, n)) if p, p′ ∈ {imm, shr}
r env(x : p, x′ : p′)

def
= ∀o′(ref(x′, o′, p′)→

ref(x, o′, p′)) if p ∈ {unq, none}
r env(x : p, x′ : p′)

def
= ∀o, n, o′((ref(x, o, p)⊗ ct(o, s(n))→

ct(o, n));
ref(x′, o′, p′)→ ref(x, o′, p′))
if p ∈ {shr, imm}, p′ ∈ {unq, none}

Let us give some intuition about the cases considered in the def-
initions above. Recall that consume duplicates the shr and imm
permissions for the variables internal to the method. Then, we only
need to consume such permissions and decrease the number of
references pointing to object o′. As for unq and none as input
permissions, consume transfers such permissions to the local vari-
ables and consumes the external references. Then, r env needs
to restore the external reference and consume the local one (the
number of references pointing to o′ remains the same). When the
method changes the input permission from share or immutable into
a unique or none, we need to consume first the external reference.
Then, we transfer the internal permission and reference to the ex-
ternal variable.

A constructor CD of the form

cname(cname x, classy y) none(x), p(y)⇒ p′(x), p′(y) {s}
is modeled similarly as a method definition:

(RCDEF)D[[CD]] = cname(x, y, z)
∆
= PC

PC
def
= ∀o(consume′;

∃y′, x′, onew(params′;
∃u(fields-init ;
∃z′(S[[ŝ]]z′ ; sync(z′)→ (r env(x : p, x′ : p′) ‖∏

i∈1..m

r env(yi : pi, y
′
i : p′i)))))

; sync(z))

Here consume′ is similar to consume but with ot = nil, i.e., x in
x := new cname(y) is restricted to be a null reference. Definition
params′ is similar to params except that it considers p = unq, i.e.
x′ has a unique permission to onew. Furthermore, params′ adds
ct(onew, s(0)) to the store. Class fields are initialized to nil and
the link between the variable ui and the field onew.fi is established:

fields-init
def
=

! field(u1, onew, cname f1)⊗ ref(u1,nil , none)⊗ ...⊗
! field(uk, onew, cname fk)⊗ ref(uk,nil , none)

Finally, notice that the synchronization constraint sync(z) is added
only in the end of the rule since the constructor needs to be fully
executed before returning the new reference.

The following example shows how the proposed model works.

Example 3.1 (Access Permission Flow). Assume the class defi-
nitions stats and collection in Figure 1 and the following main
body written in functional notation.

1 let collection c, stats s in
2 collection collection(c); //c := new collection()
3 stats stats(s); //s := new stats()
4 collection compStats(c, s); //c.compStats(s)
5 collection removeDuplicates(c); //c.rDup() end

The lcc agent modeling the statement in line 2 performs the call
collection collection(c, z1), which triggers the execution of the
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body of the constructor collection (see Rules RCDEF and RCALL

). Variable z1 is the local variable used to synchronize with the
rest of the program (see Rule RCOMP). Once the agents modeling
the statements in lines 2 and 3 are executed, the store below is
observed.

∃c, s, oc, os(ref(c, oc, unq)⊗ ref(s, os, unq)⊗
ct(oc, s(0))⊗ ct(os, s(0)))

Hence, c (resp. s) points to oc (resp. os) with a unique permis-
sion. Since collection compStats(c, s) requires c to have an im-
mutable permission to oc, the axiom downgrade1 is used to en-
tail the guard of consume in the definition of the method (see Rule
RMDEF). Let c′ be the representation of c inside the method (see
params in Rule RMDEF). We notice that when the body of the
method is being executed, both c and c′ have an immutable per-
mission to oc. Before executing the body of method compStats,
the constraint sync(z1) is added so as to allow possibly concur-
rent executions in the main body. The agent modeling the state-
ment in line 5 can be then executed. However, this call requires c
to have a unique permission to oc which is not possible since the
axiom upgrade1 requires that c is the sole reference to oc. Hence,
the guard consume for this call is delayed (synchronized) until the
permission on c′ is consumed and restored to the environment (see
definition r env). We then observe that statements in lines 4 and 5
are executed sequentially due to the way permissions evolve.

3.3 The Model as a Runnable Specification
ccp-based models can be regarded as runnable specifications, and
so we can observe how permissions evolve during program ex-
ecution by running the underlying lcc model. We implemented
an interpreter of lcc on top of the Mozart system (http://
www.mozart-oz.org/). This interpreter uses records (Mozart
data structures) to represent lcc linear constraints. The store
was modeled as a multiset of records, and the entailment of
constraints for universally quantified asks was implemented via
record unification. On top of this interpreter, we implemented a
parser that takes an Æminium program and generates the cor-
responding lcc agents. The lcc agent is then executed and a
program trace is generated. The interpreter and the parser have
been integrated into Alcove (Æminium Linear COnstraints VEri-
fier) LCC Animator, a PHP application freely available at http:
//escher.puj.edu.co/~caolarte/alcove/. The URL further
includes the examples presented in this section.

Example 3.2 (Trace of Access Permissions). The program in Ex-
ample 3.1 generates the following trace:

[init(collection_collection [c1 z9])]
[running(collection_collection [c1 z9])]
[init(stats_stats [s2 z10])]
[running(stats_stats [s2 z10])]
[init(collection_compstats [c1 s2 z11])]
[running(collection_compstats [c1 s2 z11])]
[init(collection_removeduplicates [c1 z13])
running(collection_compstats [c1 s2 z11])]

[running(collection_removeduplicates [c1 z13])]

c1(obj:ot16 objfields:none per:unq)
s2(obj:ot27 objfields:none per:unq)

Output init(collection collection [c1 z9]) represents
the call to a method (recall that parameter z is used for syn-
chronization purposes). If a method is currently being executed,
the constraint running(collection collection [c1 z9])
is present in the store. Notice that the execution of the method
collection removeduplicates is delayed until the end of the
execution of collection compstats (i.e., the store does not con-
tain simultaneously both running(collection compstats)

and running(collection removeduplicates)) as explained
in Example 3.1. The last two lines of the trace show that both c
and s ends with a unique permission to objects ot16 and ot27
respectively 2

Example 3.3 (Deadlock Detection). Let us assume now the class
definitions in Figure 1 and the following main:

1 let collection c, stats s, stats svar in
2 collection collection(c); //c := new collection()
3 stats stats(s); //s := new stats()
4 svar := s;
5 collection compStats(c, s); //c.compStats(s)
6 end

This code aliases svar and s after the assignment svar := s,
so that they share the same permission afterwards. Therefore, s
cannot recover the unique permission to execute the statement
collection compStats(c, s), thus leading to a permission dead-
lock. This bug is detected by Alcove:

[init(collection_collection [c1 z10])]
[running(collection_collection [c1 z10])]
[init(stats_stats [s2 z11])]
[running(stats_stats [s2 z11])]
[init(collection_compstats [c1 s2 z14])]
c1(obj:ot17 objfields:none per:imm)
svar9(obj:ot28 objfields:none per:shr)
s2(obj:ot28 objfields:none per:shr)
Error: Permissions for collection_compstats(c1 s2 z14)

could not be obtained.

We notice that in the trace above, the call to the method
compstats is invoked (init) but the method was not executed
(running). Furthermore, both s and svar have a share permis-
sion on the pointed object.

4. Verification Techniques
Besides playing the role of executable specifications, ccp-based
models can be declaratively interpreted as formulas in logic (see
e.g., [17]). This section provides additional mechanisms and tools
for verifying properties of access-permission based programs.
More concretely, we take the lcc agents generated by the Al-
cove LCC Animator and translate them into a linear logic (LL)
formula. Then, a property specified in LL is verified with the Al-
cove LL Prover, a bespoken theorem prover implemented on top of
λ-Prolog [14] based on the prover described in [9].

4.1 Agents as Formulas
In lcc, processes are not only agents that evolve according to the
rules of the underlying operational semantics, but also are formulas
in linear logic [8]. The logical interpretation of lcc is defined with
the aid of a function L[[·]] defined as [7]:

L[[c]] = c
L[[p(x)]] = p(x)
L[[P ‖ Q]] = L[[Q]]⊗ L[[P ]]
L[[P +Q]] = L[[Q]]NL[[P ]]
L[[∀x(c→ P )]] = ∀x(c( L[[P ]])
L[[∃x(P )]] = ∃x(L[[P ]]).

where N is the linear additive conjunction and ( is the linear
implication. The first step of our approach for the verification
of programs consists in interpreting the lcc model in Section 3
as a LL formula according to function L[[·]]. Furthermore, pro-
cess definitions of the form p(x)

∆
= P (i.e., assignment and con-

structor and method definitions) are transformed into a LL clause

2 The numbers that follow the variable names are generated each time a
local variable is created to avoid clash of names.

6 2012/11/4



∀x.p(x) ( P . We shall call these clauses definition clauses and
they are stored together with the axioms of the constraint system
(upgrade and downgrade):

ref(x, o, unq) ( ref(x, o, shr).
ref(x, o, unq) ( ref(x, o, imm).
ref(x, o, shr)⊗ ct(o, s(0)) ( ref(x, o, unq)⊗ ct(o, s(0)).
ref(x, o, imm)⊗ ct(o, s(0)) ( ref(x, o, unq)⊗ ct(o, s(0)).

into a theory ∆. Example 4.1 illustrates this translation. Observe
that, in what follows, we present a simplified version of the trans-
lation where the empty synchronizations were omitted.

Example 4.1 (Agents as formulas). Assume the program in Ex-
ample 3.3. The predicate collection collection(x, z) for the con-
structor is built from Rule RCDEF, giving rise to the following (uni-
versally quantified) definition clause:

col collection(x, z) ( ∃w1(ref(x, nil, none) ( sync(w1)⊗
sync(w1)(∃x′, onew, w2(ref(x′,onew,unq)⊗ct(onew, s(0))⊗

sync(w2) ⊗
sync(w2) ( ∃w3∀o′(ref(x′,o′,unq) ( ref(x, o′, unq)⊗

sync(w3) ⊗
sync(w3) ( sync(z))))).

The interpretation for methods is obtained similarly by follow-
ing the rule RMDEF.

The assignment of variables is encoded by the predicate
assg(x, y, z) resulting from the translation of the Rule RALIAS:

assg(x, y, z) (
∃z1, z2(∀o, n((ref(x, o, none) ( >⊗ sync(z1)N

ref(x, o, unq)⊗ ct(o, s(n)) ( ct(o, n)⊗sync(z1)N
ref(x, o, shr)⊗ ct(o, s(n)) ( ct(o, n)⊗sync(z1)N
ref(x, o, imm)⊗ ct(o, s(n)) ( ct(o, n)⊗sync(z1))⊗

sync(z1) (ref(y,nil , none) (
ref(x,nil , none)⊗ ref(y,nil , none)⊗ sync(z2))N
(∀o, n(ref(y, o, unq)⊗ ct(o, s(0)) ( ref(y, o,shr)⊗
ref(x, o, shr)⊗ ct(o, s(s(0)))⊗ sync(z2)N
ref(y, o, shr)⊗ ct(o, n) ( ref(y, o, shr)⊗
ref(x, o, shr)⊗ ct(o, s(n))⊗ sync(z2)N
ref(y, o, imm)⊗ ct(o, n) ( ref(y, o, imm)⊗
ref(x, o, imm)⊗ ct(o, s(n))⊗ sync(z2)))⊗
sync(z2) ( sync(z)).

Hence, for this example, the theory ∆ would contain the defi-
nition clauses for collection collection, stats stats, assig and
collection compStats, together with axioms for upgrading and
downgrading permissions.
Let A be the lcc agent related to the main program. Then,

F = ∃c, s, svar, z, z1, z2, z3, z4, z5(ref(c,nil , none)⊗
ref(s,nil , none)⊗ ref(svar,nil , none)⊗ sync(z1)⊗
sync(z1) ( collection collection(c, z2)⊗
sync(z2) ( stats stats(s, z3)⊗
sync(z3) ( assig(svar, s, z4)⊗
sync(z4) ( collection compStats(c, s, z5)⊗

sync(z5) ( sync(z)).

corresponds to L[[A]] (see Rules RCOMP, RNEW, RCALL and
RALIAS in Section 3).

4.2 Linear Logic as a Framework for Verifying Access
Permission Properties

Assume the translation L[[A]] as described in Example 4.1, produc-
ing a theory ∆ and a formula F . In order to verify a certain property
T , specified by a LL formula T , we test if the sequent ! ∆, F ` T is
provable. In this section, we will give an estimate of the complexity
of finding such a proof.

First of all, observe that the fragment of ILL needed for en-
coding access permissions is given by the following grammar for
guards G, processes P and properties T :

G := A | G⊗G
P := ∀x.G( P | P ⊗ P | ∃x.P | PNP |

!(∀x.p(x) ( P ) | 1 | > |!A | A
T := ∃x.T | G.

where A is an atomic formula. Notice that this grammar is well
defined, since the left context in the sequent ! ∆, F ` T will be
formed by P formulas, the right context will have only T formulas.
Besides, implications on the left can only introduce guards on the
right side of a sequent and G ⊂ T 3.

We note that classical and intuitionistic provability coincide for
this fragment, since the right side of sequents are composed by
existentially quantified Horn clauses.

The fragment described above is undecidable in general, due to
the presence of processes declarations [13]. It turns out that Æmi-
nium applications dealt in the present paper are such that process
declarations p(x) do not have circular recursive calls. More pre-
cisely, in an Æminium program, there is no a sequence of methods
or constructs of the form m1,m2, · · ·mn such that mi calls mi+1

and mn calls m1. Hence, if a method m1 calls m2, we can syntac-
tically expand the body of m2 into the body of m1. Therefore, it
is straightforward to see that provability in the resulting LL trans-
lation is decidable (see Theorem 4.1). It is worth mentioning that
the analyses presented here could be enhanced in order to deal with
mutual recursive calls and some types of controlled recursion, as
in [16] (see more in Section 5).

Complexity Analysis. We will show now how to measure the
complexity of proofs in our system. It is worth noticing that Alcove
LL Prover actually uses the proposed measure as a limit on the
proof search.

For reasoning about complexity of proofs in LL we need to
use a proof system for it where proof search can be controlled and
measured. We thus move from ILL to the focused classical linear
logic system in one sided sequent style (LLF) [12]4. In a nutshell,
moving into the classical setting means adding the connectives
? (exponential dual to !) and ⊕,O (additive and multiplicative
versions of the disjunction) together with their neutral elements, 0
and ⊥ respectively. One sided means moving from sequents of the
shape ! ∆, F ` T into sequents of the form ` ?∆⊥, P⊥, T , where
negation is a logical connective that has only atomic scope: if B is
a general formula then B⊥ denotes the result of moving negations
inward until it has only atomic scope. We shall call literal an atomic
formula or its negation. For convenience, the clause B ( C will
be represented by the formula B⊥OC.

Intuitively, the focusing discipline organizes proofs into two al-
ternating phases, called negative and positive phases. In the neg-
ative phase, all (invertible) rules over the connectives of negative
polarity (∀,O,N, ?,⊥,>) are applied eagerly, while in the posi-
tive phase a formula of positive polarity (∃,⊗,⊕, !, 0, 1) is focused
on and its positive subformulas are eagerly introduced.

Thus, on searching for proofs in focused systems, the only non-
deterministic step is the one choosing the positive formula to focus
on from the context. This determines completely the complexity of
a proof in LLF and justifies the next definitions.

3 On examining a proof bottom-up, decomposing the implication on the
sequent Γ1,Γ2, B ( C ` D will produce the premises Γ1, C ` D
and Γ2 ` B. Hence it is important to guarantee that B is a T formula.
4 As already noted, provability in the fragment used here is the same in
intuitionistic and classical settings.
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Definition 3 (Proof Depth). Let Π be a proof in LLF. The depth
of Π is the maximum number of decisions over focused formulas
along any path in Π from the root.

Definition 4 (Degree of a positive formula). The degree of a pos-
itive formula is the maximum number of nested alternating polari-
ties in it.

The next lemma shows the relation between depth of deriva-
tions in LLF and degree of a formula. The proof is discharged by
structural induction.

Lemma 4.1. Decomposing a focused positive formula F of degree
n into its literal or purely positive subformulas gives rise to a
derivation of depth dn

2
e.

Example 4.2 (Degree of a formula). Consider the negation of the
definition clause for collection collection(x, z) in Example 4.1:

col collection(x, z)⊗ ∀w1(ref(x, nil, none)⊗sync(w1)⊥O
sync(w1)⊗∀x′,onew, w2(ref(x′,onew,unq)⊥Oct(onew, s(0))⊥

Osync(w2)⊥O
sync(w2)⊗ ∀w3∃o′(ref(x′, o′, unq)⊗ ref(x, o′, unq)⊥O

sync(w3)⊥O
sync(w3)⊗ sync(z)⊥)))).

The degree of such a formula is 10. Hence the depth of decom-
posing the formula above into its literal or purely positive subfor-
mulas is 10/2 = 5.

We will now proceed with a careful complexity analysis of all
the formulas produced by the specification of Æminium programs.
The calculation of the complexity is done by counting the changes
of nested polarities, which are produced mostly by synchroniza-
tions.

• If cname method(x, y, z) ( P is a definition clause (DC)
in ∆, its negation cname method(x, y, z) ⊗ P⊥ is a positive
formula of degree at most 11 +n+m where m is the length of
y and n is the degree of the formula encoding the body of the
constructor, i.e., S[[ŝ]]⊥z′ .
• If cname(x, y, z) ( P is a DC in ∆, its negation is a positive

formula of degree at most 12 +n+m where m is the length of
y and n is the degree of S[[ŝ]]⊥z′ .
• If assig(y, x, z) ( P is a DC in ∆, its negation is a positive

formula of degree at most 5.
• For any formula F interpreting an Æminium main program

with n statement calls, F⊥ is a negative formula whose biggest
positive subformula has degree at most (2n + 1) + m where
m is the sum of the degrees of all negated definition clauses
corresponding to the statement calls in F .
• The negated upgrade (resp. downgrade) axiom is a positive

formula of degree 1 (resp. degree 0).

The next theorem determines the complexity of the provability
of sequents given by specification of Æminium programs.

Theorem 4.1 (Complexity). Let ∆ be a theory containing the defi-
nition clauses for method and constructor definitions, the definition
of assig and the upgrade and downgrade axioms. Let F be the for-
mula interpreting the main program and T a formula interpreting
a property to be proven. It is decidable whether or not the sequent
` ?∆⊥, F⊥, T is provable. In fact, if such a sequent is provable,
then its proof is bounded in LLF by the depth d k

2
ewhere k = degree

F⊥.

Proof. As noted before, as there are no circular recursive defini-
tions, we may assume that the heads of definition clauses in ∆ do

not contain calls for other statements, i.e., the code of such calls can
be directly written as part of the head. Hence, focusing over defi-
nition clauses is completely determined by the calls in F⊥. Due to
the synchronization procedure, proving a sequent in Æminium is
equivalent to decompose its formulas completely. Therefore, the
complexity of the proof of the sequent ` ?∆⊥, F⊥, T is com-
pletely determined by the degree of F⊥ since T is a purely positive
formula, hence having degree 0.

In the following, we explain our verification technique for three
properties.

Deadlock Detection. Consider Example 3.3. We already showed
that this code leads to a deadlock since the variable s cannot up-
grade its unique permission to execute collection compStats(c, s).
We are then interested in providing a proof to the programmer
showing that the code leads to a deadlock. For doing this, let
Def be the definition of the method collection compStats and
the constructor collection collection, st be the statement in the
main program and A be the lcc agent A = ∃z(D[[Def ]] ‖
(S[[st]]z ‖ sync(z) → ok)). This agent adds the constraint
ok only when the process S[[st]]z adds sync(z). According to
the definition of S[[·]] and D[[·]], this happens only when the call
collection compStats(c, s) is able to successfully consume the
permissions required for the method (see Rule RMDEF). The trans-
lation L[[A]] will give rise to the theory ∆ and the formula F de-
scribed in Example 4.1. Let F ′ = F ⊗ sync(z) ( ok. The verifi-
cation technique consists in showing that the sequent ! ∆, F ′ ` ok
is not provable. This verification is done automatically by using
Alcove-Prover, a theorem prover for LLF developed in λ-Prolog
and integrated to the tool described in Section 3.3. Basically, we
look for proofs with depth less or equal to 19, given by the depth of
F ′. If the prover fails, that means there is no proof for the sequent
above.

The URL of the Alcove tool includes the output of the theorem
prover and the lcc interpreter for this example. It is worth notic-
ing that the lcc interpreter only computes a possible trace of the
program while the theorem prover gives a guarantee that a certain
property is verified or not by the program. The use of “animators”
and provers is complementary. Existing formal models for system
construction, such as the Rodin ([1]) tool for the event B model-
ing language, usually include both. The idea is that by using the
animator the user gain a global understanding of the behavior of
the program before attempting the proof of more precise desirable
properties. This usually avoids frustrations in trying to figure out
corrections of the model to discharge unproved properties.

Concurrency Analysis. Assume now the Example in Figure 1. For
the method collection print assume that we define D′[[·]] as D[[·]]
but replacing sync(z) with “sync(z); beginprint(z)” and adding
“; beginprint(z) → endprint(z)” in Rule RMDEF. Similarly for
method collection compStats. This will allow us to specify when
a method starts its execution and when it terminates.

Let A = ∃z(D′[[Def ]] ‖ S[[st]]z) where st corresponds to the
main method. One can prove the linear logic sequent

L[[A]] ` ∃z1, z2(beginprint(z1)⊗ begincompStats(z2))⊗>

The provability of such a sequent means that the statements
collection print(c) and collection compStats(c, s) may be ex-
ecuted in parallel.

Verifying a Method Specification Finally, assume that we add the
field “a” in class collection and the method:

m1() unq(this)⇒ unq(this) {this.a := this}
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Assume also that m1 is called in the main body. The signature
of m1 requires that the unique permission to the caller must be
restored to the environment. Nevertheless, the implementation of
the method splits the unique permission into a share permissions
for the field a and another for the caller (Rule RALIAS). Then, the
axiom upgrade1 cannot be used to recover the unique permission
and the ask agent in definition r env remains blocked. An analysis
similar to that of deadlocks will warn the programmer about this.

5. Concluding Remarks
We presented an approach to verify programs annotated with
access-permissions. We use lcc to verify properties related to con-
currency. Hence, program statements are modeled as lcc agents
that faithfully represent statement permissions flow. The declar-
ative reading of lcc agents as formulae in Linear Logic permits
the use of theorem provers to verify properties such as deadlocks,
the ability to run in parallel, and whether programs are correct
with respect to access permission specifications. Central to our
verification approach is the synchronization mechanism based on
constraints and the logical interpretation of lcc. Ours is certainly
a novel application for ccp that opens a new window for the auto-
matic verification of (object-oriented) concurrent programs.

We automated our verification approach as the Alcove tool that
implements a simulator and a prover. The simulator serves to ani-
mate a program by observing the evolution of its permissions. The
simulator issues a message if a program blocks. It is therefore a
useful companion for a verifier. A good strategy for understanding
the behavior of a concurrent program is to run the simulator first
to observe the global program behavior and then to run the prover
to verify additional properties. We used the Alcove tool to verify
the examples presented in this paper and also to verify properties
about ordering of method invocations for a critical zone manage-
ment system (see Appendix A). The reader can find these and other
examples at the Alcove tool web-site.

Related and Future work. ccp-based calculi have been exten-
sively used to reason about concurrent systems. The work in [10]
proposes a timed-ccp model for role-based access control in dis-
tributed systems. The authors combine constraint reasoning and
temporal logic model-checking to reason about when a resource
(e.g. a directory in a file system) can be accessed.

Languages like Æminium [18] and Plaid [19] offer a series of
guarantees such as (1) absence of AP usage protocol violation at
run time; (2) when a program has deterministic results and (3)
whether programs are free of race conditions on the abstract state
of the objects [3, 4]. Our verification technique is complementary
to those works since we have shown that well-typed programs (i.e.,
they follow the usage protocol of AP) can lead to a blockage.

The constraint system we propose to model the downgrade and
upgrade of axioms was inspired by the work of fractional permis-
sions in [4] (see also [3]). Fractional in this setting means that an
AP can be split into several more relaxed permissions and then
joined back to form a more restrictive permission. For instance, a
unique permission can be split into two share permissions of weight
k/2. Therefore, to recover a unique permission, it is necessary to
have two k/2-share permissions. The constraint system described
in this paper keeps explicitly the information about the fractions by
means of the predicate ct(·).

Chalice [11] is a program verifier for OO concurrent programs
that uses permissions to control memory accesses. Unlike Æmi-
nium and Plaid, concurrency in Chalice is explicitly stated by the
user by means of execution threads.

AP annotations in concurrent-by-default OO languages can be
enhanced with the notion of typestates [2, 3]. Typestates describe
abstract states in the form of state-machines, thus defining a usage

protocol (or contract) of objects. For instance, consider the class
File with states opened and closed. The signature of the method
open can be specified as the agent unq(this)⊗ closed(this)→
unq(this)⊗opened(this). The general idea is to verify whether
a program follows correctly the usage protocol defined by the class.
For example, calling the method read on a closed file leads to an
error. Typestates then impose certain order in which methods can
be called. The approach our paper defines can be straightforwardly
extended to deal with typestates annotations, thus widening its
applicability.

The work in [18] and [15] define more specific systems and
rules for access permissions to deal respectively with group permis-
sions and borrowing permissions. A group permission represents
an abstract collection of objects and allows programmers to define
containers that share the same permissions to an object. The ap-
proach of borrowing permissions aims at dealing more effectively
with local variable aliasing, and how permissions flow from the en-
vironment to method formal parameters. Considering these systems
in Alcove amounts to refine our model of permissions in Section 3.
Verification techniques should remain the same.

We intend to relax the restriction about recursion imposed on
Æminium programs for obtaining a decidable analysis. More pre-
cisely, we plan to translate more involving AP based programs with
controlled recursion. This can be done by finding systems with a
stratified set of definition clauses, hence allowing well formed re-
cursion in the processes declarations. This shall allow us to take
into account constructors like iterators in the source program.

Finally, we plan to undertake a case study on the verification
of a commercial multi-task threaded application that has been used
for massively parallelising computational tasks [6].
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A. Critical Zone Management System
Assume the class definitions for a critical zone management system
in Figure 4. There are three classes, lock, process and cs. Each
critical section has a private lock managed by an object of the class
cs. When a process wants to enter a critical section, it tries first to
invoke method acq of the cs manager. If successful, the process
obtains a lock (i.e. an object of class lock) that it uses then to
enter the critical zone. When the process wants to leave the critical
zone, it invokes the method release. This releases ownership of
the critical section lock.

Method acq has three parameters: this, the cs manager, b the
process wanting to enter the critical zone and l, a field of b that will
hold the lock of the cs supplied by the manager. Since this has
unique permission, only one reference to the manager object can
exist for acq to be invoked. The body of method acq stores the lock
in l and a reference to the manager in field s1 or s2 of b, depending
on whether the lock for cs1 or for cs2 is requested. Storing this
reference to the manager implies that it can no longer have unique
permission, so the output permission for this becomes shared.
Moreover, l holds now the only reference to the private lock of
the manager, so its output permission becomes unique. The effect
is that field lock1 or lock2 of object b uniquely acquires the
section lock. The method enter requires a unique permission on
the lock. This ensures that only one process has a reference to the
lock at any given time when entering the critical section. Method
release restores conditions as they were before invocation to acq,
i.e. the manager regains the unique permission and stores a unique
reference to its private lock. Process fields loose the lock and the
reference to the manager.

Assume now the following main code:

class lock {
lock() none(this) => unq(this) {};
enter(b) unq(this), shr(b) => unq(this), shr(b){} }

class process{
attrs lock lock1, lock lock2, cs cs1, cs cs2;
process() none(this) => unq(this) {} }

class cs {
attrs lock mylock;
cs() none(this) => unq(this) {

this.mylock := new lock()};
acq1(process b, lock l) unq(this), shr(b), none(l)

=> shr(this),shr(b),unq(l) {
l := this.mylock;
b.cs1 := this;
this.mylock := null };

acq2(process b, lock l) unq(this), shr(b), none(l)
=> shr(this),shr(b),unq(l){

l := this.mylock;
b.cs2 := this;
this.mylock := null };

release1(lock a, process b) shr(this),unq(a),shr(b)
=>unq(this),none(a),shr(b){

this.mylock := a;
b.cs1 := null;
a := null };

release2(lock a, process b) shr(this),unq(a),shr(b)
=> unq(this),none(a),shr(b) {

this.mylock := a;
b.cs2 := null;
a := null } }

Figure 4. Class definitions for a critical zone management system.

main () { let cs x, cs w, process y, process z in
x:= new cs(); w := new cs();
y := new process(); z := new process();
x.acq1(y, y.lock1); y.lock1.enter(y);
w.acq2(z, z.lock2); z.lock2.enter(z) ;
x.acq1(z, z.lock1); z.lock1.enter(z);
w.acq2(y, y.lock2); y.lock2.enter(y); }

where there are two section manager objects, x for cs1 and w for
cs2. There are also two processes, y and z. Consider the situation
where y acquires the lock from x (i.e. for cs1) by invoking the
method acq1(x, y, y.lock1) and enters cs1. Then z acquires
the lock from w (i.e. for cs2) by invoking acq2(w, z, z.lock2)
and enters cs2. Now, z tries to acquire the lock from x by invoking
acq1(x,z, z.lock1), but this is not possible because x has no
longer unique permission and execution blocks. The output of
Alcove for this program is:

Error: The end of the program could not be reached.
Error: The perm. for cs_acq1( x1 z12 __f__lock1121 z24 )

could not be obtained.

Consider now the program where processes leave the critical
section before attempting to acquire another lock:

main () { let cs x, cs w, process y, process z in
x:= new cs(); w := new cs();
y := new process(); z := new process();
x.acq1(y, y.lock1); y.lock1.enter(y);
w.acq2(z, z.lock2); z.lock2.enter(z) ;
x.release1(y.lock1, y);
x.acq1(z, z.lock1); z.lock1.enter(z);
w.release2(z.lock2, z);
w.acq2(y, y.lock2); y.lock2.enter(y);
x.release1(z.lock1, z); w.release2(y.lock2, y); }

In this case, all invocations run without blockage and Alcove
successfully finishes the analysis.
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