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ABSTRACT
Emotion recognition in real-life conditions faces several chal-
lenging factors, which most studies on emotion recognition
do not consider. Such factors include background noise,
varying recording levels, and acoustic properties of the en-
vironment, for example. This paper presents a systematic
evaluation of the influence of background noise of various
types and SNRs, as well as recording level variations on the
performance of automatic emotion recognition from speech.
Both, natural and spontaneous as well as acted/prototypical
emotions are considered. Besides the well known influence
of additive noise, a significant influence of the recording level
on the recognition performance is observed. Multi-condition
learning with various noise types and recording levels is pro-
posed as a way to increase robustness of methods based on
standard acoustic feature sets and commonly used classi-
fiers. It is compared to matched conditions learning and is
found to be almost on par for many settings.
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1. INTRODUCTION
Recently, a shift in emotion recognition research from

working with controlled, lab-recorded data to more natural-
istic data is observed. Challenges at INTERSPEECH from
2009 to 2011 literally challenged participants with highly
naturalistic data for tasks ranging from identification of emo-
tions all the way to identification of speaker states such as
intoxication or sleepiness [12]. The reported results are still
low, however. Even human agreement on these data-sets is
far from perfect, indicating the difficulty of the task and the
fuzziness of emotions.

When we want to use affect recognition technology in a
live system, either a research demonstrator or a commer-
cial product, robustness and high accuracies are a key fac-
tor. For achieving this goal, there are two main factors to
consider: (a) optimising the classification performance on
given data-sets, and (b) making the system robust to fac-
tors, such as background noise. For (a), an optimal choice of
features and classifiers are the main research topics, which
are dealt with extensively in many other studies such as the
INTERSPEECH Challenge contributions. However, experi-
ence has shown, that often a system highly optimised for one
data-set or task does not perform too well in cross data-set
evaluations (cf. [14]), or when external factors such as the
environment or the recording equipment change. Thus, we
investigate issue (b) – the influence of background noise and
level variations – in this paper.

Section 2 gives an overview on related work, section 3 de-
scribes our experiments and the proposed method of multi-
condition training to build more robust models, section 4
describes the three corpora used for evaluations, and section
5 includes a discussion of the obtained results. A conclusion
is drawn in section 6.

2. RELATED WORK
Compared to the large amount of work that has been pub-

lished on optimising feature sets (e. g., [7]), fusing of modal-
ities (e. g., [5]), and choice of classifiers (e. g., [4]) for affect
recognition, few people have investigated the influence of
additive noise, and none – to our best knowledge – the ef-
fect of level variations. Some work exists on the influence of
the environment, specifically the reverberation caused by it
(e. g., [15] and [8]).

The effects of additive noise were first investigated on
a broad scale on three publicly available databases in [9].
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No speaker independent evaluation was performed, however,
and features specific to the noise type were selected. A simi-
lar study has been performed for noise types occurring in an
in-car environment in [11]. Another report on in-car emo-
tion recognition dealing with the effects of in-car noises, such
as engine and road noise, is presented in [3]. Weninger et.
al, present a method of improving recognition performance
in noisy and reverberated settings by using Non-Negative
Matrix Factorisation (NMF) based acoustic features in [15].

3. EXPERIMENTS
None of the methods referenced in section 2 have investi-

gated the influence of recording level variations within the
test set as well as extensive multi-condition training. Many
studies from the ASR field deal with the topic of robust-
ness and background noise, however the findings cannot be
transferred to emotion recognition in most cases, as emotion
recognition uses different types of features and a different
approach to modelling. Low-level signal enhancement and
noise reduction can be used in both fields, however this shall
not be part of this study.

In previous studies typically matched conditions learning
is used, which refers to training on data that is corrupted
with the same noise type and Signal-to-Noise Ratio (SNR)
as the test data. This is an unrealistic setting for a real-
world application, as the noise type in many cases is not
known when designing the system and training the mod-
els. Mismatched conditions training refers to training on
the original, clean data and testing on noisy data. It inves-
tigates the performance of a generic model in varying noise
conditions. A third alternative is multi-condition training,
which combines benefits from matched and mismatched con-
ditions training. Multiple copies of the data overlaid with
different noise types at various SNRs are used during train-
ing. Thus, a generic model is generated, which is expected
to work well in a variety of noise types. [15] investigates
multi-condition learning and reports good performance on
children’s emotional speech from the FAU AIBO corpus.

In this paper, in addition to an extensive study on the in-
flucence of additive noise under mismatched, matched, and
multi-condition learning, we evaluate the influence of record-
ing level variations for the first time. While the recording
level plays a non-significant role in ASR, the correct record-
ning level is a major factor for the success of current emotion
recognition systems. Level variations (scaling of the audio
samples) by applying a gain of -20 dB to +10 dB are inves-
tigated without noise overlay. We would like to note at this
point that this evaluation might seem unnecessary, if the
recording level was normalised. However, this requires nor-
malisation of the recording level of speech parts only. This is
a non-trivial task if reverberation and esp. background noise
are present.

Further, we overlay five noise types without scaling the
original audio: babble noise, street noise, office noise, white
noise, and music. For babble and street noise we use the
Aurora noise samples (cf. [6]). The office noise consists of
typical sounds occurring in a busy office environment, such
as typing, printer machines, writing, beep sounds, and occa-
sional talk in the background. The noise samples have been
sampled from YouTubeTM videos which were recorded in of-
fice environments. The music noise type has been compiled
from a mix of instrumental classic and pop music snippets
(no vocals).

Our noise samples have lengths which vary from 1 (street
noise) to 47 minutes (office noise). When overlaying an audio
chunk with noise a random region of the noise sample is se-
lected, and scaled accordingly to match the desired SNR be-
fore adding it to the audio chunk. The SNRs are computed

based on Root Mean Square (RMS) amplitudes A
(rms)
sig and

A
(rms)
noise of signal and noise chunks, respectively, according to

the following equation:

SNR = 20 log10

A
(rms)
sig

A
(rms)
noise

(1)

Six SNR levels are investigated: -5 dB, 0 dB, 5 dB, 10 dB,
20 dB, 30 dB.

In section 5 we provide and discuss results for matched
conditions training, mismatched conditions training, and multi-
condition training. Multi-condition training in general refers
to the fact that a classifier is trained with target data (e.g.
emotional speech sentences), which is repeated in the train-
ing material with different conditions applied to it, such as
various background noise types or recording level variations.
The multi-condition training approach chosen in this paper
differs slightly from the one applied in [15]. Weninger et. al
create duplicates of the data at all investigated SNRs and for
all noise types. In contrast, we synthesise the training data
by tripling the amount of original data, applying a random
gain between -20 dB and +5 dB to each instance (sentence,
phrase), and then adding randomly chosen noise samples
from all noise types at random SNRs from the range of 0 dB
to 60 dB. 5% of the instances are not overlaid with noise.

All evaluations are performed in a speaker independent
manner by leave-one-speaker-out (LOSO) cross validation.
We use the INTERSPEECH 2011 Speaker State Challenge
acoustic feature set [12] and extract the features with openS-
MILE [2]. The feature set consists of 4,368 audio features,
which are statistical functionals of an exhaustive set of low-
level audio descriptors, such as loudness, fundamental fre-
quency, voice quality, Mel Frequency Cepstral Coefficients
(MFCC), etc. We use linear kernel Support Vector Ma-
chines (SVM) as classifier. The linear kernel allows for fast
processing even in a high dimensional space, which is im-
portant for live emotion recognition. Results are reported
in terms of unweighted average recall rate (UAR), which is
the unweighted average of the per-class recall rates.

4. DATABASES
To asses the influence of additive noise and audio gain

on different tasks, we present experimental results on three
databases: (a) the Berlin Emotional Speech-Database (EmoDB)
[1], (b) an acted telephone speech anger corpus, and (c) the
TUM Audio-Visual Interest Corpus (AVIC) [10].

The choice of EmoDB is motivated by the fact that of-
ten models trained on small, acted data sets which contain
prototypical emotions, perform well in cross-validation ex-
periments on the same corpus [13], but show bad perfor-
mance when evaluated cross-corpus [14] or when used in a
live system. The anger database was chosen to asses the
effect of audio gain on the discrimination performance be-
tween neutral and angry speech. AVIC was chosen to asses
the effects of noise and scaling in a natural environment for
spontaneous affect.

We briefly describe each of the data sets in the ongoing:
EmoDB is a well known set chosen to test the effectiveness of
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emotion classification. The studio recorded database covers
seven emotions: anger, boredom, disgust, fear, joy, neutral,
and sadness. The spoken content is pre-defined by ten emo-
tionally neutral German sentences. Ten (five female) pro-
fessional actors speak these sentences multiple times. While
the whole set comprises around 900 utterances, only 494
phrases are marked as minimum 60 % natural and minimum
80 % assignable by 20 subjects in a listening experiment.
84.3 % mean accuracy – for identifying the 7 emotions –
is the result of this perception study on this limited ‘more
prototypical’ set. As this set is usually used in the manifold
works reporting results on the corpus we restrict ourselves
to this selection, as well. The 494 phrases have a combined
recording length of approx. 23 minutes.

The TUM AVIC corpus contains recordings of person-
alised commercial product presentations. A product pre-
senter leads each one of 21 subjects (10 female) through
an English commercial presentation. The level of interest
is annotated for every sub-speaker turn reaching from bore-
dom (subject is bored with listening and talking about the
topic, very passive, does not follow the discourse; this state
is also referred to as level of interest (loi) 1, i.e. loi1), over
neutral (subject follows and participates in the discourse, it
can not be recognised, if she/he is interested or indifferent
in the topic; loi2) to joyful interaction (strong wish of the
subject to talk and learn more about the topic; loi3). Addi-
tionally, the spoken content and non-linguistic vocalisations
are labeled in the AVIC set, however, not used in this study.

For our evaluation we consider all 3,002 phrases (approx.
108 minutes recording time), in contrast to only 996 phrases
with high inter-labeler agreement as e. g. employed in [10].
However, we select a sub-sampled and re-sampled subset of
these 3k phrases to eliminate problems caused by the uneven
distribution of instances over the three interest levels. The
sub-set is created by first sub-sampling the instances with a
maximum number of 250 per class and the up-sampling the
minority classes with a bias to an even distribution using
the re-sampling algorithm implemented in the WEKA data
mining toolkit [16]. 243 instances of loi1, 264 of loi2, and
233 of loi3 are retained.

# length (m:s)
Anger 319 57:07

Neutral 341 58:33

Table 1: Number of instances and combined record-
ing length for each class in the Anger database.

The Anger database is a private database, which contains
telephone quality speech recordings where callers were asked
to speak a single English sentence in a neutral and in an
acted way multiple times over a land-line telephone connec-
tion. There are 9 speakers in total, 4 female and 5 male. The
number of instances for each class and the recording times
are given in table 1. Unfortunately, the database is not
publicly available for research. The mean sentence length
is 10.5 seconds, the minimum length is 4.1 seconds and the
maximum length 25.3 seconds.

5. RESULTS
The obtained results are summarised in table 4 for noise

corruption and in table 2 for recording level variations. The

UAR [%] gain/dB
-20 -10 -5 0 +5 +10

EmoDB (mi) 77.8 78.1 79.8 80.6 79.6 66.5
EmoDB (ma) 81.3 79.9 79.8 80.6 80.7 79.2
EmoDB (mu) 78.2 78.3 77.0 78.1 77.5 75.8
Anger (mi) 71.1 71.4 70.1 81.7 62.9 56.7
Anger (ma) 79.3 82.3 81.5 81.7 82.8 82.0
Anger (mu) 80.9 79.5 80.6 69.5 80.0 80.0
AVIC (mi) 46.0 45.2 48.8 59.4 53.2 51.7
AVIC (ma) 59.2 59.1 57.8 59.4 57.5 60.1
AVIC (mu) 58.0 58.5 59.4 56.5 59.2 58.8

Table 2: Results with gain applied to test partitions
to simulate varying recording levels. Unweighted
Average Recall (UAR) for leave-one-speaker-out
cross validation. Training splits with original audio
(mismatched condition, mi), audio with gain applied
(matched condition, ma), and noise corrupted and
scaled audio with all noise types (multi-condition,
mu).

results in table 4 are an average of the individual results of
the noise types. They show the general performance degra-
dation for each data-set and each of the three training meth-
ods (mismatched condition (mi), matched condition (ma),
and multi-condition (mu) training). The result for clean
training and testing is given in the 0 dB column in table 2
for mi and ma evaluation (identical).

By looking at the mi results, we can see that recogni-
tion performance is heavily affected by additive noise at
low SNRs. The effect is much greater as was reported in
[9], which could be related to the use of non-hierarchical
functionals as features in this paper and the fact that [9]
did not perform speaker independent evaluation with leave-
one-speaker-out cross validation. At -5 dB SNR the UAR
for EmoDB and Anger drop to almost chance level (14.3%
and 50% respectively). Performance on AVIC degrades sub-
stantially too, however it is still well above chance level
(33.3%). A possible explanation is that AVIC contains a
minimal amount of background noise and level variations in
the training data. EmoDB, for example, has been recorded
under studio conditions and the sentences have been nor-
malised to RMS amplitude 1.0, therefore no level variations
are present in the training set.

For SNRs of 5 dB and higher multi-condition training per-
forms almost as well as matched conditions training, whereby
clean training performs significantly worse (on a level of
0.01). Multi-condition training performance could be fur-
ther improved for lower SNRs, if data with such SNRs was
included in the training set (in our setting the lowest is 0 dB).

Applying a gain to the test data does affect the recogni-
tion performance (cf. table 2), but not as strongly as ad-
ditive noise. The effect is strongest for AVIC (-13.4% for
-20 dB gain on test partitions compared to unmodified test
partitions) and the Anger database (-25% for +10 dB gain
on test compared to unmodified data). A 14.1% decrease is
observed for +10 dB gain on EmoDB, however only a 1% de-
crease for +5 dB is observed. We attribute the large decrease
to non-linear distortions introduced through clipping when
scaling by the 10 dB factor, as the original (0 dB) samples
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are already normalised to the maximum peak amplitude.
AVIC and Anger databases are recorded at lower levels.

Table 3 shows the confusion matrices for AVIC for LOSO
evaluation on the unmodified audio, and -20 and +10 gain
applied to the test splits. For the low gain test split (-20 dB)
the distinguishability for separating loi3 from loi1 and loi2
decreases, while the distinguishability between loi1 and loi2
does not seem to be affected so much. This can be inter-
preted in a way that energy/loudness is an important fea-
ture for discriminating interested from neutral speech, while
pitch and spectral characteristics are more important for
neutral vs. boredom. For the high gain test split (+10 dB)
the classifier shows a bias towards loi3. This bias is stronger
for loi2 instances than for loi1 instances.

For multi-condition training a noteable decrease in per-
formance for 0 dB gain is observable for Anger and AVIC
compared to all other gain settings. The only explanation
for this behaviour is that the muli-condition training data
contains too little actual clean examples at 0 dB gain.

UAR [%] SNR/dB
-5 0 +5 +10 +20 +30

EmoDB (mi) 16.4 17.7 23.5 32.9 54.7 71.0
EmoDB (ma) 74.6 77.0 78.1 79.5 81.6 80.2
EmoDB (mu) 45.2 65.1 72.7 74.9 78.1 78.7
Anger (mi) 56.9 59.7 62.3 65.7 62.9 63.1
Anger (ma) 74.6 77.0 78.1 79.5 81.6 80.2
Anger (mu) 68.7 74.6 77.8 79.6 81.6 81.5
AVIC (mi) 44.5 47.5 49.2 51.2 52.0 51.6
AVIC (ma) 56.3 57.4 58.2 59.0 59.1 58.5
AVIC (mu) 47.3 53.2 55.7 58.3 57.9 58.9

Table 4: Results for testing on noise corrupted au-
dio with SNRs from -5 dB to 30 dB. Unweighted Av-
erage Recall (UAR) for leave-one-speaker-out cross
validation. Training on original audio (mismatched
condition, mi), noise corrupted audio (matched con-
dition, ma), and noise corrupted and scaled audio
with all noise types (multi-condition, mu).

Table 5 shows detailed results for each noise type on the
AVIC set. As expected, for matched conditions training we
see least variation in the results (min. 54.3 % UAR, max.
63.0 % UAR). Noteably, there is even an increase in perfor-
mance over the clean case for some settings. This is most ev-
ident for white noise at an SNR of 30dB. This suggests that
adding a small amount of white noise to the training data
might improve generalisation performance. Besides that we
cannot see a clear, significant trend as to which noise type
affects the performance most over all SNRs. However, for
both multi-condition and mismatched-condition training, we
observe that noise types which degrade performance a lot at
low SNRs seem to have the inverse effect at high SNRs (see
white noise vs. babble noise).

6. CONCLUSION
We have evaluated the effects of additive noise on au-

tomatic affect recognition performance of naturalistic and
acted affect. In contrast to previous work we chose a broad
variety of emotional content. Moreover, this paper is the
first to investigate the effect of recording level variation on

UAR [%] SNR/dB
-5 0 5 10 20 30

Clean training (mismatched condition):
babble 48.3 48.8 50.3 49.6 52.2 49.8
music 49.0 47.9 49.4 53.6 50.5 51.6
office 41.8 46.9 46.7 48.9 53.5 53.0
street 48.8 52.4 50.0 49.6 52.5 51.1
white 34.7 41.5 49.7 54.5 51.3 52.3
Matched condition training:
babble 55.7 60.7 58.7 57.9 58.3 56.2
music 57.1 57.5 59.0 58.8 61.4 58.2
office 54.3 58.1 60.1 58.7 58.2 58.5
street 54.4 56.1 56.6 61.3 59.3 56.5
white 59.3 54.5 56.4 58.3 58.1 63.0
Multi-condition training:
babble 54.8 56.9 52.6 57.8 57.9 57.2
music 48.8 52.3 56.8 60.6 59.8 58.9
office 44.2 49.9 58.7 57.7 58.4 58.6
street 50.3 55.3 53.2 56.5 56.9 59.6
white 38.5 51.4 57.1 58.8 56.3 60.3

Table 5: Detailed results for clean, matched con-
dition, and multi-condition training with 5 noise
types and 6 SNR levels. Unweighted Average Re-
call (UAR) for all noise types and SNRs on AVIC.
Leave-one-speaker-out cross validation. For compar-
ison: clean result = 59.4 % UAR.

the recognition performance. We propose a method for
robust multi-condition training of a single, robust model,
which is able to deal with additive noise and varying record-
ing gain. For SNRs of 5 dB or higher the performance of
our multi-condition approach is almost on par with matched
conditions training. A significant effect of the recording gain
on recognition performance was found for the naturalistic
data-set (TUM AVIC), and the task of anger detection. This
effect is almost completely eliminated by multi-condition
training.

Future work will deal with extending the multi-condition
learning approach to reverberation effects and more diverse
noise types, as well as an in-depth analysis of which acoustic
features are most affected by noise and recording level. This
paper helps to better understand the influence of some ex-
ternal factors commonly encountered when building a real-
world, speaker independent emotion and affect recognition
system from given data-sets and successfully proposed an
approach to build more robust models by synthesising new
training data.
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