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ABSTRACT
Low-rank Matrix Factorization (MF) methods provide one
of the simplest and most effective approaches to collabo-
rative filtering. This paper is the first to investigate the
problem of efficient retrieval of recommendations in a MF
framework. We reduce the retrieval in a MF model to an
apparently simple task of finding the maximum dot-product
for the user vector over the set of item vectors. However,
the problem of efficiently finding the maximum dot-product
in the general case has never been studied to the best of our
knowledge. To this end, we propose two techniques for ef-
ficient search – (i) We index the item vectors in a binary
spatial-partitioning metric tree and use a simple branch-
and-bound algorithm with a novel bounding scheme to ef-
ficiently obtain exact solutions. (ii) We use spherical clus-
tering to index the users on the basis of their preferences
and pre-compute recommendations only for the representa-
tive user of each cluster to obtain extremely efficient ap-
proximate solutions. We obtain a theoretical error bound
which determines the quality of any approximate result and
use it to control the approximation. Both these simple
techniques are fairly independent of each other and hence
are easily combined to further improve recommendation re-
trieval efficiency. We evaluate our algorithms on real-world
collaborative-filtering datasets, demonstrating more than×7
speedup (with respect to the naive linear search) for the ex-
act solution and over ×250 speedup for approximate solu-
tions by combining both techniques.
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1. INTRODUCTION
Recommender systems based on Matrix Factorization (MF)

models have repeatedly demonstrated better accuracy than
other methods such as nearest neighbor models and restricted
Boltzmann machines [1, 8]. However, large scale MF models
for real world recommender systems (e.g., [5, 12, 7]) run into
a difficulty rarely discussed in the academic literature – the
computational cost of finding the top-rated items for every
user in the system once the model has been trained.

In MF models, the predicted rating of a user for an item
boils down to a dot-product between two vectors represent-
ing the user and the item (we will discuss this explicitly in
section 2). Constructing the entire #USERS × #ITEMS
preference matrix (or even just for the top-rated items for
every user) requires heavy computational (and space) re-
sources. For example, the recently published Yahoo! Mu-
sic dataset [8] has 1,000,990 users and 624,961 music items.
Generating the optimal recommendations in this dataset re-
quires over 6 × 1012 dot-products using a naive algorithm.
A 50-dimensional model required 134 hours (over 5 days) to
find optimal recommendations for all the users1. In terms
of storage, saving the whole preference matrix requires over
5TB of disk-space. Moreover, this dataset of 106 users is
just a small sample of the actual Yahoo! Music dataset and
the problem worsens with larger numbers.

The problem of finding the maximum dot-product for a
given query p (in this case, a user) over a set of points S (in
this case, the items) is to find the point q ∈ S such that:

p⊤q = max
qi∈S

p⊤qi. (1)

Surprisingly, we did not find any technique to efficiently
solve this problem; a linear search over the set of points
appears to be the state-of-the-art! Moreover, the number of
queries in our application is very high (possibly higher than
the number of points). The focus of our paper is to develop
algorithms to solve (1) for multiple queries more efficiently
than the linear-search algorithm. Our contributions are:

• A simple branch-and-bound algorithm on a tree index
with a novel bound to solve the exact problem.

• An approximate scheme that pre-computes solutions for
certain representative queries and uses these solutions
for the new queries. This makes the retrieval process ex-
tremely efficient. The representative queries are obtained
by clustering the available queries.

• A theoretical error bound which determines the quality
of the approximate results for a new query and is used to
control the approximation by adaptively rejecting overly

1Using an Intel Xeon (E7320) CPU running at 2.13GHz.



(theoretically) inaccurate solutions and recomputing ex-
act solutions for the query.

Parallelization.
The computational cost of recommendation retrieval can

be mitigated by parallelization. One possible way of par-
allelizing involves dividing the users across cores/machines
– each worker can compute the recommendations for a sin-
gle user (or a small set of users). However, this is wasteful
in resources and requires complex setups. Moreover, this
form of parallelization does not mitigate the high latency of
computing recommendations for a single user. Map-reduce
parallelization can reduce the single user latency. However,
a single map-reduce can at best take O(

√
#ITEMS) time

for the retrieval task of a single user.
Our proposed techniques are orthogonal to paralleliza-

tion, and can be parallelized to improve the scalability. The
branch-and-bound algorithm reduces single query latency
(and can have O(log(#ITEMS)) retrieval time). Our ap-
proximate scheme reduces the number of users by only choos-
ing a small set of representative users.

Efficient Retrieval Algorithms.
The problem of efficient Retrieval of Recommendations

(RoR) in collaborative filtering has been previously stud-
ied. Large-scale recommender systems use techniques like
min-hash clustering of users, probabilistic latent semantic
indexing, and co-visitation counts to achieve fair scalabil-
ity [5]. A more recent method based on multidimensional
scaling embeds both the users and items in a common Eu-
clidean space [11], reducing the retrieval task to the problem
of k-nearest-neighbor search. The plethora of algorithms
for nearest-neighbor search can then be used for efficient
RoR. While these methods show significant improvements
in retrieval times, they deviate from the more accurate MF
framework. Our proposed methods are the first efficient re-
trieval algorithms in the MF framework.

This paper.
In section 2, we introduce the MF framework and reduce

the task of RoR to a relatively simpler task of finding the
best-matched items with respect to the dot-product of their
representative vectors with the vector representing the user.
Section 3 contrasts this dot-product based best matching
problem to existing best matching problems in literature.
In section 4, we index the items as a Metric tree and then
propose a novel branch-and-bound algorithm to efficiently
obtain the exact top predicted preferences for a single user.
To obtain further scalability, section 5 presents an approxi-
mated method by clustering users with“similar tastes”. The
efficiency is obtained by pre-computing the top recommen-
dations for the representative users (the cluster centers). We
also present the theoretical worst-case error bound used to
control the approximation. For further improvement, we
combine both techniques and evaluate our proposed meth-
ods in section 6 on prominent collaborative filtering datasets.

Notation.
We reserve special indexing letters for distinguishing users

from items: for users u and v, and for items i and j. A rating
rui indicates the rating given by user u to item i. We denote
by θx,y the angle between the vectors x and y at the origin.
Finally, we denote the l2-norm of a vector x as ∥x∥.

2. MATRIX FACTORIZATION
In MF models, each user u is associated with a user-traits

vector pu ∈ RD, and each item i with an item-traits vector
qi ∈ RD. Predicted ratings are obtained using the rule:

r̂ui = µ+ bi + bu + p⊤u qi, (2)

where µ is the overall mean rating value and bi and bu are
scalers that represent the item and user biases respectively.

A user bias models a user’s tendency to rate on a higher
or lower scale than the average rater, while the item bias
captures the extent of the item popularity. The user’s trait
vector pu represents the user’s preferences or “taste”. Sim-
ilarly, the item’s traits vector represent the item’s latent
characteristics. The dot-product p⊤u qi is the personalization
component which captures user’s u affinity to item i.

A significant strength of MF models is their natural ability
to easily incorporate additional information. For example,
temporal dynamics and taxonomy components can be easily
incorporated into the MF model [6]. In such models the pre-
diction equation takes a more complex form. Without loss of
generality, we will only discuss the basic model (equation 2).
However, the more complex models have more parameters
which are usually additive. Hence, the proposed reduction
can be easily extended and applied to these model as well.
In fact, we use one such complex MF model (described in
[6]) for evaluating our proposed methods.

Training.
There are various techniques for training MFmodels. Gen-

erally a cost function is defined on the prediction error (e.g.,
RMSE) and optimization is followed by Stochastic Gradient
Descent or an Alternating Least Squares algorithm. The
reader is referred to [13] for more details on those learn-
ing techniques. The training produces estimates of the MF
model parameters (the trait vectors and the biases). Given
these parameters, we will demonstrate that the user’s pref-
erence for any item can be reduced to a simple dot-product.

2.1 Reduction of RoR
RoR in a trained MF model involves finding the set of K

items for a user u with maximum predicted ratings. Equa-
tion 2 implies that for a given user u, ordering the items is
independent of µ and the user’s bias bu. Thus, we can ignore
these parameters without affecting the preferred ordering of
the items and obtain an effective rating:

r̃ui = bi + p⊤u qi. (3)

It is important to note that this is only applicable during the
RoR phase (after the training). Ignoring these components
during the training will inevitably result in poor accuracy.

By appending the item bias to the item vector, the effec-
tive rating (equation 3) reduces to a simple dot-product:

r̃ui = p̃⊤u q̃i = ∥p̃u∥ ∥q̃i∥ cos (θp̃u,q̃i) , (4)

where p̃u = [p⊤u 1]⊤, q̃i = [q⊤i bi]
⊤ and θp̃u,q̃i is the angle

between p̃u and q̃i at the origin.
Equation 4 implies that for a given user p̃u, the items

ordering is independent of the norm ∥p̃u∥ and only depends
on the user vector through the angle θp̃u,q̃i . Hence, without
loss of generality, we normalize the user vector to a unit
vector p̄u = p̃u/ ∥p̃u∥ to further simplify equation 4 to:

r̄ui = p̄⊤u q̃i = ∥q̃i∥ cos (θp̄u,q̃i) . (5)

Note that while we normalize the concatenated user vectors,
the concatenated item vectors can not be normalized without
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Figure 1: The most popular musical tracks and gen-
res in the Yahoo! Music dataset are embedded into
a 2-dimensional. The open cone suggests the region
of highly preferred items for the user (her logo is
at the center of the cone). Note how the learned
embedding separates Rock and similar items from
Hip-Hop and similar items. The low dimensional-
ity (which is required for a visualization), causes a
small number of items to be wrongly folded near less
related items (e.g., Bob Marley).

loss of accuracy. If the item vectors were normalized, the
RoR problem would have been reduced to the well studied
nearest neighbor search (as explained in section 3). How-
ever, such a normalization will introduce a distortion on the
balance between the original item trait vector and the item
bias which constitute the concatenated vector q̃i. This would
evidently result in an incorrect solution.
Denoting the concatenated user and item vectors as pu

and qi respectively, and the effective rating for the task of
retrieval as rui, RoR reduces to the following task: Given a
user query pu, we want to find an item qi ∈ S such that:

p⊤u qi = max
q∈S

p⊤u q (6)

Hence the RoR task is equivalent to the problem of finding
the best-match for a query in a set of points with respect to
the dot-product (described in equation 1). A very simplistic
visualization of this task is depicted in Figure 1. For the
given user, the best recommendations (in this case songs) lie
within the open cone around the user vector (maximizing the
cos (θpu,qi) term) and are as far as possible from the origin
(maximizing the ∥qi∥ term).

3. ALGORITHMS FOR
FINDING BEST-MATCHES

Efficiently finding the best match using the dot-product
(equation 6) appears to be very similar to much existing
work in the literature. Finding the best match with re-
spect to the Euclidean (or more generally Lp) distance is
the widely studied problem of nearest-neighbor search in
metric spaces [4]. The nearest-neighbor search problem (in
metric space) can be solved approximately with the popular

Locality-sensitive hashing (LSH) method [9]. LSH has been
extended to other forms of similarity functions (as opposed
to the distance as a dissimilarity function) like the cosine
similarity [3]. In this section, we show that the problem
stated in equation 6 is different from these existing prob-
lems.

Nearest-neighbor Search in Metric Space.
The problem of finding the nearest-neighbor in this setting

is to find a point qi ∈ S for a query pu such that:

qi = argmin
q∈S
∥pu − q∥2 = argmax

q∈S

(
p⊤u q − ∥q∥2 /2

)
̸= argmax

q∈S
p⊤u q (unless ∥q∥2 = const ∀ q ∈ S).

If all the points in S are normalized to the same length, then
the problem of finding the best match with respect to the
dot-product is equivalent to the problem of nearest-neighbor
search in any metric space. However, without this restric-
tion, the two problems can yield very different answers.

Cosine similarity.
Finding the best match with respect to the cosine simi-

larity is to find a point qi ∈ S for a query pu such that

qi = argmax
q∈S

p⊤u q/(∥pu∥ ∥q∥) = argmax
q∈S

p⊤u q/ ∥q∥

̸= argmax
q∈S

p⊤u q (unless ∥q∥ = const ∀ q ∈ S).

As in the previous case, the best match with cosine similar-
ity is the best match with dot-products if all the points in
the set S are normalized to the same length. Under gen-
eral conditions, the best matches with these two similarity
functions can be very different.

Locality-sensitive Hashing.
LSH involves constructing hashing functions h which sat-

isfy the following for any pair of points q, p ∈ RD:

Pr[h(q) = h(p)] = sim(q, p), (7)

where sim(q, p) ∈ [0, 1] is the similarity function of inter-
est. For our situation, we can scale our dataset such that
∀ q ∈ S, ∥q∥ ≤ 1 and assume that the data is in the first
quadrant (such as in non-negative matrix factorization mod-
els [19]). In that case, sim(q, p) = q⊤p ∈ [0, 1] is our simi-
larity function of interest.

For any similarity function to admit a locality sensitive
hash function family (as defined in equation 7), the distance
function d(q, p) = 1 − sim(q, p) must satisfy the triangle
inequality (Lemma 1 in [3]). However, the distance function
d(q, p) = 1 − q⊤p does not satisfy the triangle inequality.
Hence LSH cannot be applied to the dot-product similarity
function even in restricted domains (the first quadrant).

3.1 Why is finding the maximum dot-products
harder?

Unlike the distance functions in metric space, dot-products
do not induce any form of triangle inequality (even under
some assumptions as mentioned in the previous section).
Moreover, this lack of any induced triangle inequality causes
the similarity function induced by the dot-products to have
no admissible family of locality sensitive hashing functions.
Any modification to the similarity function to conform to
widely used similarity functions (like Euclidean distance or
Cosine-similarity) will create inaccurate results.



Moreover, dot-products lack the basic property of coinci-
dence – the self similarity is highest. For example, the Eu-
clidean distance of a point to itself is 0; the cosine-similarity
of a point to itself is 1. The dot-product of a point q to
itself is ∥q∥2. There can possibly be many other points

vi (i = 1, 2, . . .) in the set such that q⊤vi > ∥q∥2.
Without any assumptions, this problem of obtaining the

best match with respect to the dot-product is inherently
harder than the previously addressed similar problems. This
is possibly the reason why there is no existing work for this
problem without any restrictions on the domain.

4. FAST EXACT RETRIEVAL
USING METRIC TREES

In this section, we describe metric trees and develop a
novel bound to use with a simple branch-and-bound algo-
rithm to provide the first method to efficiently obtain the
exact best-matches with respect to the dot-products.

4.1 Metric Trees
Metric trees [16] are binary space-partitioning trees that

are widely used for the task of indexing datasets in Eu-
clidean spaces. The space is partitioned into overlapping
hyper-spheres (balls) containing the points (figure 2). We
use a simple metric tree construction heuristic that tries to
approximately pick a pair of pivot points farthest apart from
each other [15]2, and splits the data by assigning points to
their closest pivot. The tree T is built hierarchically and
each node in the tree is defined by the mean of the data in
that node (T.center) and the radius of the ball around the
mean enclosing the points in the node (T.radius). The tree
has leaves of size at most N0. The splitting and the recur-
sive tree construction algorithm is presented in Algorithms
1 & 2.
The tree is space efficient since every node only stores the

indices of the item vectors instead of the item vectors them-
selves. Hence the matrix for the items is never duplicated.
Another implementation optimization is that the vectors in
the items’ matrix are sorted in place (during the tree con-
struction) such that all the items in the same node are ar-
ranged serially in the matrix. This avoids random memory
access while accessing all the items in the same leaf node.

1

Figure 2: Metric-trees – note that while all the
points in a child node lie also inside the parent ball,
the child ball itself does not necessarily lie within
the parent ball.

4.2 Branch-and-bound algorithm
Metric trees are used for efficient nearest neighbor search

and are fairly scalable in moderately high dimensions [15,

2The intuition behind this heuristic is that these 2 points
farthest from each other might lie in the principal direction
(the direction of the principal eigenvector of the data).

Algorithm 1 MakeMetricTreeSplit(Data S)

Pick a random point x ∈ S
A← argmaxx′∈S ∥x− x′∥
B ← argmaxx′∈S ∥A− x′∥
w← (B −A)

b← − 1
2

(
∥B∥2 − ∥A∥2

)
return (w, b)

Algorithm 2 MakeMetricTree(Set of items S)

Input – Set S
Output – Tree Q
Q.S ← S
Q.center← mean(S)
Q.radius← maxqi∈S ∥T.center− qi∥
if |S| ≤ N0 then

// Leaf node
return Q

else
// else split the set
(w, b)← MakeMetricTreeSplit(S)
Sl ← {qi ∈ S : w⊤qi + b ≤ 0}
Sr ← S \ Sl
Q.left← MakeMetricTree(Sl)
Q.right← MakeMetricTree(Sr)
return Q

end if

Figure 3: Metric-tree Construction: The object Q.S
denotes the set of items in the node Q, Q.center
denotes the Euclidean mean of the items in the node
Q and Q.radius denotes the minimum radius of the
ball centered around Q.center enclosing all the items
in the node Q.

14]. The search employs a depth-first branch-and-bound al-
gorithm. A nearest-neighbor query is answered by traversing
the tree in a depth-first manner– going down the node closer
to the query first and bounding the minimum possible dis-
tance to items in other branches with the triangle-inequality.
If this branch is farther away than the current neighbor can-
didate, the branch is removed from computation.

Since the triangle inequality does not hold for the dot-
product, we present a novel analytical upper bound for the
maximum possible dot-product of a user vectors with points
(in this case, items) in a ball. We then employ a similar
branch-and-bound algorithm for the purposes of searching
for the K-highest dot-products (as opposed to the minimum
pairwise distance in K-nearest-neighbor search).

4.2.1 Bounding with a ball
Let Br

qc be the ball of items centered around qc with radius
r. Suppose that q∗ is the best possible recommendation in
the ball Br

qc for the user represented by the vector pu, and r∗

be the Euclidean distance between the ball center qc and the
best possible recommendation q∗ (by definition, r∗ ≤ r). Let
θ be the angle between the vector q⃗c and the vector ⃗qcq∗,
θpu,qc and θq∗,qc be the angles between the vector q⃗c and
vectors p⃗u and q⃗∗ respectively (see figure 4). The distance
of q∗ from qc is r∗ sin θ and the length of the projection of
q∗ onto qc is ∥qc∥+ r∗ cos θ. Therefore we have:

∥q∗∥ =
√

(∥qc∥+ r∗ cos θ)2 + (r∗ sin θ)2, (8)

cos θq∗,qc =
∥qc∥+ r∗ cos θ

∥q∗∥ , sin θq∗,qc =
r∗ sin θ

∥q∗∥ . (9)
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Figure 4: Bounding with a ball

Let θpu,q∗ be the angle between the vectors p⃗u and q⃗∗. This
gives the following inequality regarding the angle between
the user and the best possible recommendation (we assume
that the angles lie in the range of [−π,+π] instead of the
usual [0, 2π]) :

|θpu,q∗ | ≥ |θpu,qc − θq∗,qc |,

which implies

cos θpu,q∗ ≤ cos(θpu,qc − θq∗,qc), (10)

since cos(·) is monotonically decreasing in the range [0, π].
Using this equality we obtain the following bound for the
highest possible affinity between the user and any item within
that ball:

max
qi∈Br

qc

p⊤u qi = p⊤u q
∗(by assumption)

= ∥pu∥ ∥q∗∥ cos θpu,q∗

≤ ∥pu∥ ∥q∗∥ cos(θpu,qc − θq∗,qc),

where the last inequality follows from equation 10. Substi-
tuting equations 8 & 9 in the above inequality, we have

max
qi∈Br

qc

p⊤u qi ≤ ∥pu∥ (cos θpu,qc(∥qc∥+ r∗ cos θ)

+ sin θpu,qc(r
∗ sin θ))

≤ ||pu||max
θ

(cos θpu,qc(∥qc∥+ r∗ cos θ)

+ sin θpu,qc(r
∗ sin θ))

= ||pu|| (cos θpu,qc(∥qc∥+ r∗ cos θpu,qc)

+ sin θpu,qc(r
∗ sin θpu,qc))

≤ ||pu|| (cos θpu,qc(∥qc∥+ r cos θpu,qc)

+ sin θpu,qc(r sin θpu,qc))

(since r∗ ≤ r).

The second inequality comes from the definition of maxi-
mum, and the next equality comes from maximizing over θ
giving us the optimal value for θ = θpu,qc . Simplifying the
final inequality gives us the following upper bound:

max
qi∈Br

qc

p⊤u qi ≤ p⊤u qc + r ∥pu∥ . (11)

Algorithm 3 SearchMetricTree(User pu, Item Tree Node
Q)

if pu.ub < p⊤u Q.center +Q.radius · ∥pu∥ then
// This node has potential
if isLeaf (Q) then

for each qi ∈ Q.S do
if p⊤u qi > pu.ub then

q′ ← arg min
q∈pu.candidates

p⊤u q

pu.candidates← {pu.candidates \ {q′}} ∪ {qi}
pu.ub← min

q∈pu.candidates
p⊤u q

end if
end for

else
// best depth first traversal
Il ← p⊤u Q.left.center; Ir ← p⊤u Q.right.center;
if Il ≤ Ir then

SearchMetricTree(pu, Q.right);
SearchMetricTree(pu, Q.left);

else
SearchMetricTree(pu, Q.left);
SearchMetricTree(pu, Q.right);

end if
end if

end if
// Else the node is pruned from computation
return;

Algorithm 4 FindExactRecommendations(User pu, Item
Tree Node Q)

pu.ub← 0;
pu.candidates← ∅;
SearchMetricTree(pu, Q);
return pu.candidates;

Figure 5: Metric-tree Search: The object
pu.candidates contains the set of current best K can-
didate items and pu.ub denotes the lowest affinity
between the user and its current best candidates.

4.2.2 The Algorithm
Using this upper bound (11) for the maximum possible

dot-product, we present the depth-first branch-and-bound
algorithm to search for the K-highest dot-products in Al-
gorithm 3. The algorithm begins at the root of the tree of
items. At each subsequent step, the algorithm is at a tree
node. Using the bound in equation 11, the algorithm checks
if the best possible item in this node is any better than the
current best candidates for the user. If the check fails, this
branch of the tree is not explored any more. Otherwise,
the algorithm recursively traverses the tree, exploring the
branch with the better potential candidates in a depth-first
manner. If the node is a leaf, the algorithm just finds the
best candidates within the leaf with the simple naive search.
This algorithm ensures that the exact solution (i.e., the best
candidates) is returned by the end of the algorithm.

Theoretical Runtime Bounds.
We do not have any runtime guarantees for the algorithm

presented in this section. However, we can conjecture pos-
sible runtime bounds. If the metric-tree constructed with
Algorithm 2 has a depth of O(log |Q|) (where Q is the set
of items), then the runtime bound for the construction of
the tree is O(D|Q| log |Q|) (since you only require O(D|Q|)



operations at each level of the tree and D is the dimension-
ality of the data). During the tree-search algorithm (Alg.
4), let us assume that the user visits L leaves. If L is much
smaller and in fact independent of the number of items |Q|,
we can say that the runtime bound for the search process for
a single user is O(DL log |Q|). However, if L depends on |Q|
as well, then the best possible runtime bound is O(D|Q|).
Since algorithm 2 does not enforce that the splits be bal-

anced, it is quite possible that the depth of the tree might
end up being O(|Q|), in which case, the worst case runtime
for the search process is O(D|Q|). However, in practice, the
tree depths have been seen to be way less than O(|Q|).

5. FAST APPROXIMATE RETRIEVAL
BY CLUSTERING USERS

The efficiency of the exact algorithm can be limited, and
some applications may require even faster retrieval while al-
lowing for some suboptimal recommendations. To this end,
we propose a scheme to cluster the users into cones of sim-
ilar “taste”, pre-compute the recommendations for the cone
centers (representative user tastes), and use these recom-
mendations as approximate recommendations for incoming
users with tastes similar to some existing user cluster.
Equation 5 specifies that the user preferences depend only

on the angle (direction) of the corresponding user vectors.
The smoothness of the cosine function implies that two users
with vectors in similar directions will have very similar pref-
erences. Hence, we partition the space into cones that ag-
gregate users with similar taste. Let Pc be a set of cone
centers where each pc ∈ Pc is a unit vector. The direction of
pc is the taste of the cone which can be used to pre-compute
recommendations for the users in that cone.
For a new user query pu, its best cone p∗c is:

p∗c ← arg max
pc∈Pc

p⊤u pc

After finding p∗c we retrieve the pre-computed recommen-
dations of p∗c as the approximated recommendations for pu.
Figure 6 depicts a user’s vector pu and its best cone’s vector
p∗c . If ∆, the angle between pu and p∗c , is small enough, then
the approximated recommendations will be close to the op-
timal recommendations. The speedup is achieved since the
number of cones is much smaller than the number of users or
items, thus finding p∗c is significantly easier than computing
the exact recommendations for each user .
The approximation is controlled by using an upper bound

on the relative approximation error in terms of ∆ (this is
presented in section 5.1). This bound evaluates the quality
of the approximation. By defining a threshold Tr on the
maximum acceptable error, we adaptively accept the pre-
calculated approximate results when the error is below the
threshold, or compute the exact results otherwise. The de-
tails of the approximate RoR algorithm are given in figure 7.
The threshold Tr introduces a tradeoff between speedup and
accuracy where maximal speedup is achieved when Tr =∞.

Choosing cones.
In general, one would like to choose a set of user clusters

(cones) which appropriately fits the distribution of possible
queries. This can be efficiently achieved by spherical cluster-
ing of the user vectors. Spherical clustering defines groups
of users with similar preferences or taste. Unit vectors in
the direction of the clusters’ centers define the cone centers.

Figure 6: Here pu is the user’s vector, p∗c is the cone’s
central direction, qi is the item’s vector and ∆ is the
angle between p∗u and pc.

Algorithm 5 PrepareCones(Users P , Items S)

Input – Set P , S
Output – User Cones Pc, Tree Q
Pc = ChooseCones(P );
Q = MakeMetricTree(S);
for all pc ∈ Pc do

pc.candidates = FindExactRecommendations(pc, Q);
end for

Algorithm 6 FindApproxRecommendations(User pu, User
Cones Pc, Threshold Tr, Item Tree Q)

p∗c ← arg max
pc∈Pc

p⊤u pc;

ErrorBound = ComputeErrorBound(p∗c , pu);
if ErrorBound ≤ Tr then

return p∗c .candidates;
else

return FindExactRecommendations(pu, Q);
end if

Figure 7: Approximate RoR: The subroutine
ChooseCones chooses a set of cones that fits the set
of user vectors P in the dataset. Then, the optimal
recommendations are computed for each cone’s cen-
ter using the metric tree of section 4.
In FindApproxRecommendations, the subroutine
ComputeErrorBound computes the error bound ac-
cording to equation 14. The approximated recom-
mendations are used for every query with an error
bound below the error threshold Tr, otherwise exact
recommendations are computed.

We chose spherical clustering because of its computational
efficiency. Furthermore, the clustering already assigns the
user vectors into cones and there is no need to search for the
best matching cone for the existing users.

A requirement for a good clustering is that ∆ < π
2
. Oth-

erwise the dot-product between the user and an item in the
direction of the cone’s center can be negative, which implies
that the user does not like the items that fit the cone’s vec-
tor. Note that clustering assumes the presence of groups of
users common tastes. This is a very natural assumption in
every collaborative filtering algorithm.



5.1 Relative Error Bound
In this subsection we present a theoretical error bound on

the relative approximation error for any user. This is used by
the adaptive algorithm to control the approximation error.
The vector qi in figure 6 depicts an item’s vector that was

chosen as an optimal recommendation based on the cluster’s
center p∗c . Intuitively, as ∆ decreases, the approximation er-
ror should decrease as well. We define the approximation
error err = exp − real as the difference between the ex-
pected rating based on the cluster exp = q⊤i p∗c and the real
dot-product with the user’s trait vector real = q⊤i pu. The
relative error is then:

err

exp
=

exp− real

exp
= 1− real

exp
(12)

We assume here that for every cone exp > 0; otherwise
it means that there are no fitting recommendation for that
cone, which is very unlikely and we never encountered this3.
Since we want the worst-case bound, we ignore the case

where real > exp since this situation means that the affinity
between pu and qi is better than expected. Hence, assuming
that real < exp, we have the following:

real

exp
=
∥qi∥ cos (θpu,qi)

∥qi∥ cos
(
θp∗c ,qi

) ≥ cos
(
θp∗c ,qi +∆

)
cos

(
θp∗c ,qi

) (13)

The inequality follows from the fact that θp∗c ,qi ≤
π
2
(because

exp ≥ 0) and ∆ ≤ π
2
(a requirement of the clustering). Since

cos(·) is monotonically decreasing in the range [0, π], we get
cos (θpu,qi) ≥ cos

(
θp∗c ,qi +∆

)
. Substituting (13) into (12)

we get the following upper bound on the relative error:

err

exp
≤ 1−

cos
(
θp∗c ,qi +∆

)
cos

(
θp∗c ,qi

) (14)

Note that this bound is a tight bound. Namely, when ∆→ 0
we get err → 0.

6. EXPERIMENTS
We begin this section by presenting the datasets and the

evaluation metric used. Then we present the results of the
exact RoR algorithm (section 4). In the following subsec-
tion, we present the performance of the approximate RoR
method (section 5), demonstrating its efficiency-error trade-
off. Finally, as a thought experiment, we also present the
inaccuracies introduced by using existing best-match algo-
rithms (nearest-neighbor search in Euclidean space and best-
match with respect to cosine similarity) for the task of RoR.

Datasets.
We used the following publicly available datasets:

1. MovieLens – It consists of 1,000,206 ratings of 3,952
movies by 6,040 users. Ratings are integers in the
range 1-5, and the dataset is 95.81% sparse.

2. Netflix [2] – It consists of 100,480,507 ratings of 17,770
movies by 480,189 users. The ratings in Netflix are on
a scale of 1-5 as well, and the dataset is 98.82% sparse.

3. Yahoo! Music [8] – This dataset is the largest of the
three consisting of 252,800,275 ratings of 624,961 music
items by 1,000,990 users. The ratings are on a scale of
0-100 and the dataset is 99.96% sparse.

3Even if exp < 0 it is still possible to bound the error by
following a very similar process to the one shown here.

Currently the Yahoo! Music dataset is the largest publicly
available collaborative filtering dataset. Both our algorithms
perform best on this dataset. In fact, in most of our eval-
uations the results seems to improve with the size of the
dataset. This is expected as overhead times become negli-
gible when the number of queries (users) increase. All the
above datasets were in fact sampled from real datasets which
were possibly much larger. It is therefore likely that the re-
sults presented in this paper will further improve when the
proposed algorithms are implemented in real world systems.

For the MovieLens and Netflix datasets, we built and
trained a basic MF model (equation 2) using stochastic gra-
dient descent minimization of the mean squared error. For
the Yahoo! Music dataset, we used the model presented in
[6] that incorporates music taxonomy and temporal effects.
All models have 50-dimensional vectors to represent the user
and item traits. The root mean squared errors of these three
models were 0.839 in MovieLens, 0.899 in Netflix, and 22.592
in Yahoo! Music.

We quantify the improvement of an algorithm A over an-
other (baseline) algorithm A0 by the following term:

SpeedupA0
(A) =

Time taken by Algorithm A0

Time taken by Algorithm A
. (15)

Since there are no efficient search algorithms for maximum
dot-products, our baseline is a naive algorithm that searches
over all items to find the best recommendations for every
user. We denote by Tnaive the time taken by the naive al-
gorithm. It is obvious that

Tnaive = Θ(#USERS×#ITEMS×D),

where D is the dimensionality of the vector (here D = 50).
As expected, the naive algorithm is extremely time con-

suming. For example, the baseline execution time for re-
trieving optimal recommendations for the Yahoo! Music
dataset is 135.1 hours4 (over 5 days). The mean latency for a
single user query is 0.482 seconds. Using our proposed com-
bined method (figure 7), we achieve up to ×258.08 speedup,
which is equivalent to just 31.4 minutes for the entire compu-
tation or an average single user latency of 1.87 milliseconds.
It is important to note that while the overall computation
time can also be reduced by means of parallelization, the
latency for a single user might be harder to improve upon.

Implementation Details.
We used the Cluto clustering toolkit [10] for spherical clus-

tering of the user vectors. We used 500, 1000, and 2000
clusters (cones) for the MovieLens, Netflix and Yahoo! Music
respectively, because these values showed a good balance be-
tween performance and speedup. In Alg. 2, we used N0 = 2
in all our experiments. In general, these parameters can be
optimized using a cross-validation process.

6.1 Exact RoR
The time taken by the exact algorithm of Section 4 can

be broken up into two parts as follows:

Texact = Ttree building + Ttree search,

where Ttree building is the time taken by Alg. 2 to build
the tree on the set of item vectors, and Ttree search is the
total time taken by all the users to find their respective best

4Using an Intel Xeon (E7320) CPU running at 2.13GHz



Dataset K = 1 K = 5 K = 10 K = 50

MovieLens 3.01 1.82 1.73 1.21
Netflix 2.87 2.39 1.95 1.31
Yahoo! Music 7.26 5.25 4.7 3.01

Table 1: Speedups of Alg. 3 over naive search for
different number of top recommendations (K).

recommendations using Alg. 3. The speedup is therefore:

Speedupnaive(exact) =
Tnaive

Texact
. (16)

We present the speedups obtained for different numbers of
top recommendations in Table 1. The results indicate that
the exact algorithm can be up to ×7 faster than the naive
algorithm. Another advantage of this method is its space
efficiency – only the tree (which consists solely of point-
ers) has to be stored. The complete (#USERS×#ITEMS)
user-preference matrix does not have to be stored and the
recommendations for a user can be obtained when required.
An important thing to note is that the tree-building task

is extremely time efficient – for example, for the Yahoo!
Music dataset, the time taken to build the metric-tree on
the set of items (of size 624961×50) was less than 16 seconds
(the time required to load the whole data into memory took
more than 40 seconds!). The tree-building process is a one-
time cost which is amortized by the more expensive tree-
search process. Moreover, new items can be easily added to
this metric-tree index5. Nevertheless, we include the tree-
building times in our computation for completeness.
It is important to note that the search time increases with

K (the number of top recommendations returned). This is
because the bound for the best recommendations for the
user (pu.ub in Alg. 3) becomes smaller with increasing K
(Line 8 in Alg. 3). This increases the number of nodes that
have potential (Line 1 in Alg. 3), hence also increasing the
number of leaves finally visited.
However, some applications may require more than just

the top 50 items. In that case, the tree-based exact search
does not provide any significant improvement over the naive
algorithm. Therefore, we present further improvements in
computational performance in the next subsection with the
proposed approximate algorithm.

6.2 Approximate RoR
The time taken by the approximate algorithm of Section 5

can be broken up into four parts as follows:

Tapprox = Tclustering + Ttree building

+ Tsearch cones + Tsearch queries,

where Tclustering is the time taken by the clustering al-
gorithm, Ttree building is the metric-tree-construction time,
Tsearch cones is the search time for optimal recommendations
for all the cones and Tsearch queries is the time taken to com-
pute exact recommendations for queries that are above the
threshold. The speedup of the approximate algorithm is:

Speedupnaive(approx) =
Tnaive

Tapprox
. (17)

We define two terms to quantify the quality of the top K rec-
ommendations retrieved by the approximated method. The
first quantity (Precision) denotes how similar the approxi-
mate recommendations are to the actual top K recommen-

5Efficient item insertion is inherent to tree data structures.

MovieLens
Threshold 0.25 0.5 0.75 ∞
K=1 x2.49 x7.26 x9.02 x9.25
K=5 x1.6 x5.68 x7.66 x7.94
K=10 x1.52 x5.5 x7.49 x7.78
K=50 x0.89 x3.82 x7.73 x6.04

Netflix
Threshold 0.25 0.5 0.75 ∞
K=1 x2.69 x5.65 x12.61 x17.29
K=5 x2.48 x5.3 x12.27 x17.26
K=10 x1.93 x4.29 x11.15 x17.18
K=50 x1.19 x2.81 x8.89 x16.97
K=500 x1.04 x2.5 x8.28 x16.89

Yahoo! Music
Threshold 0.25 0.5 0.75 ∞
K=1 x10.49 x19.7 x150.87 x258.08
K=5 x7.67 x14.54 x128.46 x251.27
K=10 x6.88 x13.08 x120.77 x248.46
K=50 x4.45 x8.53 x91.78 x234.6
K=500 x1.49 x2.89 x39.1 x178.64

Table 2: Speedups of Alg. 6 over the naive algorithm
for different values of K and the error threshold.

dations (which are retrieved by the naive approach):

Precision(K) , meanu

{
|Lrec(u) ∩ Lopt(u)|

K

}
, (18)

where Lrec(u) and Lopt(u) are the lists of the top K ap-
proximate and the top K optimal recommendations for the
user u, respectively. Our evaluation metrics only care about
the items at the top of the approximated and optimal lists
(Lrec(u) and Lopt(u)). In that case there is no real meaning
to compute Recall because its natural definition would be
identical to the Precision.

In addition, we define a secondary metric (MedianRank)
which denotes the preference of the approximated recom-
mendations with respect to the rest of the items:

MedianRank(K) , median {∪uRank(Lrec(u))} , (19)

where the function Rank(L(u)) returns a list of the opti-
mal ranks for the items in L(u) for user u (for example,
Rank(Lopt(u)) = {1, 2, . . . ,K − 1,K}).

A high value for Precision implies that the approximate
recommendations are very similar to the optimal recommen-
dations, and a low value of MedianRank implies that the
approximate recommendations are highly preferred by the
users. In many practical applications, it is very likely to have
a low value for Precision as well as for MedianRank. This
implies that the items recommended by the approximate al-
gorithm are generally different from the optimal items for
the users, but the items recommended are still very highly
preferred by the users.

The speedups of the approximate algorithm for differ-
ent values of the error bound threshold are summarized in
Table 2. The results indicate that the approximate RoR
method can be up to ×258 faster than the naive approach.
The approximation quality for different levels of speedup is
depicted in figures 8 & 9.

Figure 8 shows the tradeoff between precision and speedup
achieved by using different values of the error bound thresh-
old. When the threshold is high, the approximated result is
less likely to be rejected. In this case, the precision is lower,
speedup is higher, and performance is better for higher val-
ues of K. The latter is a result of the fact that precision
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Figure 8: Precision(K) of Lrec vs. speedup of the approximate algorithm. The error bound threshold defines
a tradeoff between high precision to high speedup. We used higher values of K for datasets with more items.

1 

3 

6 

26 

2 

5 

8 

31 

3 

6 

9 

33 

0

5

10

15

20

25

30

35

K=1 K=5 K=10 K=50

M
e

d
ia

n
 R

a
n

k
 

T=0.25

T=0.5

T=inf

(a) MovieLens

1 
3 

6 

26 

1 

5 

9 

36 

7 

15 

21 

58 

0

10

20

30

40

50

60

70

K=1 K=5 K=10 K=50

M
e

d
ia

n
 R

a
n

k
 

T=0.25

T=0.5

T=inf

(b) Netflix

1 6 
27 

263 

1 8 

37 

328 

6 
25 

86 

542 

0

100

200

300

400

500

600

K=1 K=10 K=50 K=500

M
e

d
ia

n
 R

a
n

k
 

T=0.25

T=0.5

T=inf

(c) Yahoo! Music

Figure 9: MedianRank(K) of the adaptive algorithm for different values of the error bound threshold. Speedup
values can be retrieved from table 2.

in a finite set is easier to achieve as K is higher. When the
threshold is low, the approximated result is more likely to
be rejected. In this case, the precision is higher, speedup is
lower, and performance is better when K is lower. The lat-
ter is a result of the fact that we are more likely to fall back
to using the metric tree and the fact that the tree performs
worse on higher values of K (as explained earlier).
Figure 9 presents the MedianRank for different values of

K and different values of the error bound threshold. Speedup
values can be retrieved from table 2. We see that even
when Precison values are low (e.g., when Tr = ∞) the
MedianRank values are also relatively low, which indicate
that the approximated recommendations are still highly pre-
ferred by the users.

6.3 Existing Best-Match Algorithms

Dataset K = 1 K = 5 K = 10 K = 50 K = 100

MovieLens 0.4 0.54 0.59 0.72 0.77
Netflix 0.19 0.24 0.28 0.35 0.39
Y! Music 0.055 0.08 0.08 0.112 0.133

Table 3: Precision of the top (K) best matches with
respect to the l2 distance

In this subsection we find the top recommendations for a
user with respect to the Euclidean (l2) distance and with re-
spect to the cosine similarity. The first returns the K items
closest to the user (in terms of the l2 distance), and the sec-
ond returns the K items making the smallest angles with

Dataset K = 1 K = 5 K = 10 K = 50 K = 100

MovieLens 0.05 0.12 0.16 0.35 0.46
Netflix 0.14 0.24 0.31 0.48 0.56
Y! Music 0.004 0.01 0.014 0.033 0.047

Table 4: Precision of the top (K) best matches with
respect to the cosine similarity

the user at the origin (hence returning best matches with
respect to the cosine similarity). The reason for this experi-
ment is to demonstrate that existing nearest-neighbor search
algorithms (like LSH) cannot be applied directly to the task
of RoR in the existing MF framework without introducing
high levels of error.

Tables 3 & 4 report the precision of the exact best-matches
obtained with respect to Euclidean distance and cosine sim-
ilarity respectively. As expected from our discussion in sec-
tion 3, the precision of these results are very low (especially
on the larger Yahoo! Music dataset). Contrasting these
numbers to the precision of the approximate solutions ob-
tained from Alg. 6 (figure 8), we see that our approximate
algorithm performs as accurately (if not better) with signifi-
cant amount of speedup. For example, for the Yahoo! Music
data set with K = 50, the best-matches with l2 distance and
cosine similarity have a precision of 0.112 and 0.033 respec-
tively. In contrast, our proposed algorithm shows a speedup
of about ×200 while achieving a precision level of around
0.4 (figure 8(c)).

It is important to note that these returned recommenda-



tions in both cases (l2 distance and cosine-similarity) are the
exact best-matches with respect to their corresponding sense
of similarity. If the exact results are so inaccurate (in terms
of recommendation quality), it is hard to expect good results
once approximate techniques for these best-match problems
like LSH is used. This indicates that any form of modifi-
cation done to the RoR task in MF framework (equation
1 and hence equation 6) to fit into existing best-matching
problems can introduce a high level of inaccuracies.

7. CONCLUSIONS
In this paper we address the problem of efficient retrieval

of recommendations (RoR) within the MF framework. This
problem is inherent in a myriad of online services and re-
quires added attention with the current influx of users (and
items) on the internet. The RoR task in MF frameworks
can be formulated as finding best matches with respect to
the dot-product similarity measure. However, there are no
known solutions to this problem. We thus present an exact
and an approximate novel algorithms to improve the scala-
bility of this task. Efficient algorithms to find the maximum
dot-product can possibly have impacts beyond the realm of
collaborative filtering.
The exact method uses an existing indexing scheme to in-

dex the set of items, and the branch-and-bound algorithm
with a novel bounding scheme to provide significant speedup
(over ×7 faster) over the naive algorithm, while having min-
imal space requirements. It can be easily adapted to include
new items (or new users) into the system. However, being an
exact algorithm, it shows limited improvement in computa-
tional performance. Hence we relax the problem of RoR and
present an approximate algorithm based on the novel idea of
grouping the users using spherical-cones. The method sub-
sequently stores the best recommendations of each of the
cone centers as the approximate best recommendations for
all the users within that cluster. This method shows much
better scalability (up to ×258 speedup) with the trade-off
of deviating from the otimal list of recommendations. How-
ever, we demonstrate that even when precision is low, the
approximated items are still highly preferred by the users.
MF based models have demonstrated impressive perfor-

mance in terms of scalability at training time as well as pre-
dictive accuracy. However, less accurate algorithms are often
used in large scale web-services. This may be attributed to
the computational bottleneck of retrieval of the recommen-
dations. Long latency times are unacceptable in online ser-
vices, and pre-computing recommendations to all the users
is expensive in terms of computational time as well as stor-
age. The methods presented in this paper alleviate this last
obstacle, making the MF framework more approachable to
large scale recommender-systems. This paper also gives the
system’s architects a choice of an exact algorithm with sig-
nificant but limited scalability or an approximate algorithm
with a favorable trade-off between quality and scalability.
The problem of fast RoR discussed in this paper inspired

the solution to the general problem of fast maximum inner-
product search [17]. Possible extensions of this work will
be to develop approximate algorithms with user-specified
bounded approximation. For example, the system can ap-
proximate the retrieval task to obtain anyK-recommendations
from among the best τ -recommendations where K < τ (sim-
ilar to the approximation of the nearest-neighbor search
problem in [18]).
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