
Dynamic Memory Allocation Policies for
Postings in Real-Time Twitter Search

Nima Asadi1, Jimmy Lin1, and Michael Busch2

1 University of Maryland, College Park 2 Twitter
nima@cs.umd.edu, jimmylin@umd.edu, @michibusch

ABSTRACT
We explore a real-time Twitter search application where
tweets are arriving at a rate of several thousands per sec-
ond. Real-time search demands that they be indexed and
searchable immediately, which leads to a number of imple-
mentation challenges. In this paper, we focus on one as-
pect: dynamic postings allocation policies for index struc-
tures that are completely held in main memory. The core
issue can be characterized as a “Goldilocks Problem”. Be-
cause memory remains today a scare resource, an allocation
policy that is too aggressive leads to inefficient utilization,
while a policy that is too conservative is slow and leads to
fragmented postings lists. We present a dynamic postings al-
location policy that allocates memory in increasingly-larger
“slices” from a small number of large, fixed pools of memory.
Through analytical models and experiments, we explore dif-
ferent settings that balance time (query evaluation speed)
and space (memory utilization).

1. INTRODUCTION
The rise of social media and other forms of user-generated

content challenges the traditional notion of search as operat-
ing on either static documents collections or document col-
lections that evolve slowly enough where periodically run-
ning a batch indexer (e.g., every hour) suffices. We focus
on real-time search in the context of Twitter: users demand
to know what’s happening right now, especially in response
to breaking news stories and other shared events such as
hurricanes in the northeastern United States, the death of
prominent figures, or televised political debates. For this,
they often turn to real-time search.

The context of this study is Twitter’s Earlybird retrieval
engine [2], which serves over two billion queries a day with an
average query latency of 50 ms. Usually, tweets are search-
able within 10 seconds after creation (most of the latency is
from the processing pipeline—tweet indexing itself takes less
than a millisecond). The service as a whole is of course a
complex, distributed system with many components. In this
paper, we focus on one aspect—dynamic memory allocation
policies for postings allocation.

A key feature of Earlybird is that it incrementally in-
dexes tweets as they are posted and makes them immedi-
ately searchable. The indexing process naturally requires al-
locating space for postings in a dynamic manner—we adopt
a zero-copy approach that yields non-contiguous postings
lists. The fundamental challenge boils down to a“Goldilocks
Problem”, since memory today remains a scarce resource. A
policy that is too aggressive in allocating memory for post-

ings leads to inefficient utilization, because much of the al-
located space will be empty. On the other hand, a policy
that is too conservative slows the system, since memory al-
location is a relatively costly operation and postings lists
will become fragmented. Ideally, we’d like to strike a bal-
ance between the two extreme and find a “sweet spot” that
balances speed with utilization.

We present a dynamic postings allocation policy that al-
locates increasingly-larger “slices” from a small number of
memory pools. The production system, which we previously
described in Busch et al. [2], deploys a particular instanti-
ation of a general framework, which we articulate for the
first time here. Until now, we have not thoroughly explored
alternative parameter settings in a rigorous and controlled
manner. Thus, the contribution of this paper is a detailed
study of the design space for dynamic postings allocation
in the context of our basic framework: we present both an
analytical model for estimating time and space costs, which
is subsequently validated by experiments on real data.

2. OPERATIONAL REQUIREMENTS
To set the stage, we begin by discussing differences and

similarities between real-time search and “traditional” (e.g.,
web) search. First, two similarities:

• Low-latency, high-throughput query evaluation. Users are
impatient and demand results quickly.

• In-memory indexes. The only practical way to achieve
necessary performance requirements is to maintain all in-
dex structures in memory.

There are important differences as well:

• Immediate data availability. In real-time search, docu-
ments arrive rapidly, and users expect content to be search-
able within seconds. This means that the indexer must
achieve both low latency and high throughput. This re-
quirement departs from common assumptions that index-
ing can be considered a batch operation. Although web
crawlers achieve high throughput, it is generally not ex-
pected that crawled content be indexed immediately—
an indexing delay of minutes to hours may be accept-
able. This allows efficient indexing with batch processing
frameworks such as MapReduce [7]. In contrast, real-time
search demands that documents be searchable in seconds.

• Shared mutable state. A real-time search engine must han-
dle shared mutable state in a multi-threaded execution
environment with concurrent indexing and retrieval op-
erations. In contrast, concurrency-related challenges are

ar
X

iv
:1

30
2.

53
02

v1
 [

cs
.I

R
]

 2
1

Fe
b

20
13

simpler to handle in web search: for example, it is pos-
sible to atomically “swap out” an old index with an up-
dated new index without service disruption. Such a design
would be impractical in real-time search.

• Dominance of the temporal signal. The nature of real-time
search means that temporal signals are important for rel-
evance ranking. This contrasts with web search, where
document timestamps have a relatively minor role in de-
termining relevance (news search being the obvious excep-
tion). This holds implications for how postings should be
organized in index structures.

3. BASELINE ARCHITECTURE
Twitter’s production real-time search service is a complex

distributed system spanning many machines, the details of
which are beyond the scope of this paper. In this study, we
specifically focus on Earlybird, which is the core retrieval
engine. For the purposes of this paper, Earlybird receives
boolean queries and returns tweets that satisfy the query,
sorted in reverse chronological order. No relevance scoring
is performed, which is, functionally speaking, handled by
another component. Incoming tweets are hash partitioned
across a number of replicated Earlybird instances, so that
each individual instance serves a fraction of all tweets.

To understand our contributions, it is necessary to first
provide some technical background. Here, we summarize
material presented in a previous paper [2], but refer the
reader to the original source for details.

3.1 Earlybird Overview
Earlybird is built on top of the open-source Lucene search

engine1 and adapted to meet the demands of real-time search
discussed in Section 2. The system is written completely in
Java, primarily for three reasons: to take advantage of the
existing Lucene Java codebase, to fit into Twitter’s JVM-
centric development environment, and to take advantage of
the easy-to-understand memory model for concurrency of-
fered by Java and the JVM. Although this decision poses
inherent challenges in terms of performance, with careful
engineering and memory management we believe it is possi-
ble to build systems that are comparable in performance to
those written in C/C++.

As with nearly all modern retrieval engines, Earlybird
maintains an inverted index: postings are maintained in for-
ward chronological order (most recent last) but are traversed
backwards (most recent first); this is accomplished by main-
taining a pointer to the current end of each postings list
(more details in the next section).

Earlybird supports a full boolean query language consist-
ing of conjunctions (ANDs), disjunctions (ORs), negations
(NOTs), and phrase queries. Results are returned in re-
verse chronological order, i.e., most recent first. Boolean
query evaluation is relatively straightforward, and in fact we
use Lucene query operators “out of the box”, e.g., conjunc-
tive queries correspond to postings intersections, disjunctive
queries correspond to unions, and phrase queries correspond
to intersections with positional constraints. Lucene provides
an abstraction for postings lists and traversing postings—we
provide an implementation for our custom indexes, and are
able to reuse existing Lucene query evaluation code.

1http://lucene.apache.org/

A particularly noteworthy aspect of Earlybird is the man-
ner in which it handles shared mutable state (concurrent in-
dex reads and writes) using lightweight memory barriers. As
this is not germane to the subject of this paper, we refer the
reader elsewhere [2] for details. However, it is worth men-
tioning that the general strategy for handling concurrency is
to limit the scope of data structures that hold shared muta-
ble state. This is accomplished as follows: each instance of
Earlybird manages multiple index segments (currently 12),
and each segment holds a relatively small number of tweets
(currently, 223 ∼ 8.4 million tweets). Ingested tweets first
fill up a segment before proceeding to the next one. There-
fore, at any given time, there is at most one index segment
actively being modified, whereas the remaining segments are
read-only. Once an index segment ceases to accept new
tweets, we can convert it from a write-friendly structure into
an optimized and compressed read-only structure.

Due to this design, our paper is only concerned with the
active index segment within an Earlybird instance: only for
that index do we need to allocate memory for postings dy-
namically. This is described in more detail next.

3.2 Active Index Segment
As we argued in Section 2, the dominance of the temporal

signal is a major distinguishing characteristic of real-time
search, compared to traditional (web) search. The implica-
tion of this is that it would be desirable to traverse postings
in reverse temporal order for query evaluation. Although
this is not an absolute requirement, such a traversal order is
the most convenient.

Following this reasoning further, it appears that existing
approaches to index structure organization are not appropri-
ate. The information retrieval literature discusses two types
of indexes: document sorted and frequency/impact sorted.
The latter seems unsuited for real-time search. What about
document-sorted indexes? If we assign document ids to new
tweets in ascending order, there are two obvious possibilities
when indexing new documents:

First, we could append new postings to the ends of post-
ings lists. However, this would require us to read postings
backwards to achieve a reverse chronological traversal order.
Unfortunately, this is not directly compatible with modern
index compression techniques. Typically, document ids are
converted into document gaps, or differences between con-
secutive document ids. These gaps are then compressed with
integer coding techniques such as γ codes, Rice codes, or
PForDelta [18, 19]. It would be tricky for gap-based com-
pression to support backwards traversal. Prefix-free codes
(γ and Rice codes) are meant to be decoded only in the for-
ward direction. More recent techniques such as PForDelta
are block-based, in that they code relatively large blocks
of integers (e.g., 128 document ids) at a time. Reconciling
this with the desire to have low-latency indexing would re-
quire additional complexity, although none of these issues
are technically insurmountable.

Alternatively, we could prepend new postings to the be-
ginnings of postings lists. This would allow us to read post-
ings in the forward direction and preserve a reverse chrono-
logical traversal order. However, this presents memory man-
agement challenges, i.e., how would space for new postings
be allocated? We are unaware of any work that has ex-
plored this strategy. Note that the näıve implementation
using linked lists would be hopelessly inefficient: linked list

traversal is slow due to the lack of reference locality and pre-
dictable memory access patterns. Furthermore, linked lists
have rather large memory footprints due to object overhead
and the need to store “next” pointers.

Based on the above analysis, it does not appear that real-
time search capabilities can be efficiently realized with ob-
vious extensions or adaptations of existing techniques.

Earlybird implements the following solution: each posting
is simply a 32-bit integer—24 bits are devoted to storing
the document id and 8 bits for the term position. Since
tweets are limited to 140 characters, 8 bits are sufficient to
hold term positions.2 Therefore, a list of postings is simply
an integer array, and indexing new documents involves in-
serting elements into a pre-allocated array. Postings traver-
sal in reverse chronological order corresponds to iterating
through the array backwards. This organization also al-
lows every array position to be a possible entry point for
postings traversal to evaluate queries. In addition, it al-
lows for binary search (to find a particular document id),
and doesn’t require any additional skip-pointers [13] to en-
able faster traversal through the postings lists. Finally, this
organization is cache friendly, since array traversal involves
linear memory scans and this predictable access pattern pro-
vides prefetch cues to the hardware.

In essence, the design punts on the problem of postings
compression—but we feel that this is a reasonable design
choice given its simplicity and the above advantages. Fur-
thermore, since the active index segment holds relatively few
tweets, a particular segment doesn’t spend much time in the
uncompressed state. Once an index segment stops accept-
ing new tweets, it is converted into an optimized read-only
structure: we apply a variant of PForDelta after reversing
the order of the postings.

Having provided adequate background, we finally arrive
at the heart of this paper: the allocation of space for post-
ings lists. Obviously, this process needs to be dynamic, since
postings list growth is only bounded by the size of the collec-
tion itself. There are a few challenges to overcome: postings
lists vary significantly in size, since term and document fre-
quencies are Zipfian (roughly). As a result, it is tricky to
choose the correct amount of memory to allocate for each
term’s postings (i.e., size of the integer array). Selecting a
value that is too large leads to inefficient memory utilization,
because most of the allocated space for storing postings will
be empty. On the other hand, selecting a value that is too
small leads to waste: time, obviously, for memory alloca-
tion (which is a relatively costly operation), but also space
because non-contiguous postings require pointers to chain
together (in the limit, allocating one posting at a time is
akin to a linked list). Furthermore, during postings traver-
sal, blocks that are too small result in suboptimal memory
access patterns (e.g., due to cache misses, lack of memory
prefetching, etc.). This is exactly the “Goldilocks Problem”
we described in the introduction.

Our approach to address these issues is to create four sep-
arate “pools” for holding postings. Conceptually, each pool
can be treated as an unbounded integer array. In practice,
pools are large integer arrays allocated in 215 element blocks;
that is, if a pool fills up, another block is allocated, grow-
ing the pool. In each pool, we allocate “slices”, which hold
individual postings belonging to a term. In each pool, the

2If a term appears in the tweet multiple times, it will be repre-
sented with multiple postings.

Linking the slices

21

24

27

211

slice size

available

allocated

current list

Friday, October 14, 2011

Figure 1: Organization of the active index segment
where tweets are ingested. Increasingly larger slices
are allocated in the pools to hold postings. Except
for slices in pool 1 (the bottom pool), the first 32 bits
are used for storing the pointer that links the slices
together. Pool 4 (the top pool) can hold multiple
slices for a term. The green rectangles illustrate the
the “current” postings list that is being written into.

slice sizes are fixed: they are 21, 24, 27, and 211, respectively
(see Figure 1). For convenience, we will refer to these as
pools 1 through 4, respectively. When a term is first en-
countered, a 21 integer slice is allocated in the first pool,
which is sufficient to hold postings for the first two term oc-
currences. When the first slice runs out of space, another
slice of 24 integers is allocated in pool 2 to hold the next
24 − 1 term occurrences (32 bits are used to serve as the
“previous” pointer, discussed below). After running out of
space, slices are allocated in pool 3 to store the next 27 − 1
term occurrences and finally 211 − 1 term occurrences in
pool 4. Additional space is allocated in pool 4 in 211 integer
blocks as needed.

One advantage of this strategy is that no array copies are
required as postings lists grow in length—which means that
there is no garbage to collect. However, the tradeoff is that
postings are non-contiguous and we need a mechanism to
link the slices together. Addressing slice positions is accom-
plished using 32-bit pointers: 2 bits are used to address the
pool, 19–29 bits are used to address the slice index, and 1–
11 bits are used to address the offset within the slice. This
creates a symmetry in that postings and addressing point-
ers both fit in a standard 32-bit integer. The dictionary
maintains pointers to the current “tail” of the postings list
using this addressing scheme (thereby marking where the
next posting should be inserted and where query evaluation
should begin). Pointers in the same format are used to“link”
the slices in different pools together and, possibly, multiple
slices in pool 4. In all but the first pool, the first 32 bits of
each slice are used to store this “previous” pointer.

To conclude this section, we provide some performance
figures, summarized from [2]. The basic configuration of an
Earlybird server is a commodity machine with two quad-core
processors and 72 GB memory. A fully-loaded active index
segment with 16 million documents occupies about 6.7 GB
memory. On such a segment, we achieve 17000 queries per
second with a 95th percentile latency of <100 ms and 99th
percentile latency of <200 ms using 8 searcher threads. In
a stress test, we evaluated Earlybird indexing performance
under near 100% CPU utilization. We achieve 7000 tweets
per second (TPS) indexing rate at 95th percentile latency
of 150 ms and 99th percentile latency of 180 ms. Indexing
latency is relatively insensitive to tweet arrival rate; at 1000
TPS we observe roughly the same latencies as at 7000 TPS.

3.3 Generalizing the Solution
It is evident that Earlybird represents a specific instantia-

tion of a general solution to the problem of dynamically allo-

cating postings for real-time search: from a small number of
large memory pools, we allocate increasingly larger slices for
postings as more term occurrences are encountered. Within
this general framework, a particular instantiation can be de-
scribed by Z = 〈z0, z1, ..., zP−1〉, the slice size settings (as
powers of two), where P is the number of pools. For ex-
ample, in the production deployment, Z = 〈1, 4, 7, 11〉. For
best utilization of bits in addressing pointers, it is helpful to
restrict |P | to a power of two also.

Note that this framework provides a general solution to
real-time indexing (not only tweets): we simply assume that
slices hold spaces for postings and pointers to previous slices.
In the case of tweets, both postings and pointers are 32-bit
integers, but nothing in our model precludes other encod-
ings. Thus, for the remainder of this paper, we measure
postings in terms of “memory slots”. For simplicity, we as-
sume that pointers also fit in a memory slot, but if this isn’t
the case, a small constant factor adjustment will suffice.

How“optimal”is the current production deployment, com-
pared to alternative configurations? Prior to this study, we
have not attempted to answer this question in a rigorous,
controlled fashion. In this paper, we tackle this question as
follows: First, we define a cost model in terms of speed and
memory usage, the two characteristics we seek to balance.
Second, we develop an analytical model that allows us to
assess the time and space costs of a particular configura-
tion. Finally, for promising configurations identified by our
analytical model, we follow up with experiments.

4. DATA
Since our analytical model makes use of real data to es-

timate parameters, we begin by describing our datasets.
For tweets, we used the Tweets2011 corpus created for the
TREC 2011 microblog track.3 The corpus is comprised of
approximately 16 million tweets over a period of two weeks
(24th January 2011 until 8th February, inclusive) which cov-
ers both the time period of the Egyptian revolution and the
US Superbowl. Different types of tweets are present, includ-
ing replies and retweets. The corpus represents a sample
of the entire tweet stream, but since tweets are hash parti-
tioned across multiple Earlybird instances in production, ex-
periments on these tweets is a reasonably accurate facsimile
of studying an individual Earlybird instance. Even though
we have access to all tweets, we purposely conducted experi-
ments on this publicly available collection so that others will
be able to replicate our results.

Three different sets of queries were used in our evaluation.
First, we took the TREC 2005 terabyte track “efficiency”
queries4 (50,000 queries total). Second, we sampled 100,000
queries randomly from the AOL query log [14], which con-
tains around 10 million queries in total. Our sample pre-
serves the original query length distribution. Finally, we
used queries from the TREC 2011 microblog track. How-
ever, since there were only 50 queries (which is insufficient
for efficiency experiments), we augmented the queries by
first generating the power set of all query terms and then
used the “related queries” API of a commercial search en-
gine to harvest query variants. In this way, we were able to
construct a set of approximately 3100 queries.

Our choice of these three datasets represented an attempt

3
http://trec.nist.gov/data/tweets/

4
http://www-nlpir.nist.gov/projects/terabyte/

to balance several factors. Although we have access to ac-
tual Twitter query logs, experiments on them would have
several drawbacks: First, due to their proprietary nature,
our results would not be replicable. Second, the majority of
Twitter queries are trending hashtags (or queries containing
trending hashtags), which are not particularly interesting
from an efficiency point of view (similar to head navigational
queries in web search). Furthermore, we’d like to study the
types of information needs that real-time search could solve,
not exactly what the service is doing right now. Thus, trian-
gulating based on three query sets paints a more complete
picture: the AOL queries represent general web queries; the
TREC efficiency queries are representative of ad hoc queries,
closer to the “torso” of the query distribution (mostly infor-
mational, as opposed to navigational); finally, the TREC
microblog queries represent a forward-looking conception of
what real-time search might evolve into (at least according
to retired intelligence analysts at NIST). Finally, all three
of our datasets are available to researchers (we intend to
release our expanded microblog queries).

5. ANALYTICAL MODEL
Given a collection of documents C and a set of queries Q,

we define a cost function for memory usage. The total mem-
ory “wasted” is equal to the memory allocated for postings
minus the size of the postings list (i.e., number of postings),
summed across all terms t in the collection:∑

t∈C

[Memory(t;Z)− Size(Postings(t))]

Since the size of postings is constant for a given collection,
we can simply define the memory cost as follows (which we’d
like to minimize):

CM =
∑
t∈C

Memory(t;Z) (1)

Similarly, let us define the time cost as the time it would
take to read all postings (end to end) for all query terms in
each query of Q.

CT =
∑
Q∈Q

∑
q∈Q

TimeToRead(Postings(q)) (2)

Note that this cost function does not actually take into ac-
count time spent in query evaluation (e.g., intersection of
postings lists for conjunctive query processing). We decided
to factor out those costs for two reasons: First, to support
a simpler model (since a large number of postings traversal
techniques are available, each with different optimizations
and tradeoffs). Second, even if we wished to, it is unclear
how we could analytically model postings intersection time,
which is a function of term occurrences in real-world data.

The advantage of our model is that instantiating it with
parameters is fairly easy. If we assume that term frequen-
cies in a collection follow a Zipfian distribution (a standard
assumption in information retrieval), we can analytically es-
timate the memory cost for various Z configurations. Simi-
larly, if the postings length distribution of query terms is
known, we can analytically model the time cost as well.
With models of the two costs, we can find configurations
that strike a desired memory/speed balance. The remain-
der of this section explains how we accomplish this.

http://trec.nist.gov/data/tweets/
http://www-nlpir.nist.gov/projects/terabyte/

5.1 Memory Cost Estimation
Given that the frequency of a term t in a collection is

fr, and the pool settings is Z = 〈z0, z1, ..., zP−1〉, we can
calculate the exact number of memory slots required to hold
the postings list of term t. Let us define a step function
M that maps a frequency to the number of memory slots
required by configuration Z. First, we recursively define a
set of thresholds θi’s on the frequencies as follows:5

θi =

2z0 , i = 0

θi−1 + (2zi − 1), 0 < i ≤ P
θP + (i− P)× (2zP−1 − 1), i > P

For each term frequency interval {fr ∈ N | θi−1 < fr ≤ θi}
the value of the step functionM can be computed as follows:

M(fr) =

{
θ0, fr ≤ θ0
θi + i, θi−1 < fr ≤ θi (i > 0)

This function computes the amount of memory (i.e., number
of slots) that needs to be allocated to store pointers along
with the actual postings. Given functionM, we can rewrite
Equation (1) as:

CM =
∑

1≤t≤|V |

M(fr(t)) (3)

where fr(t) is the frequency of term t, and |V | is the size
of the vocabulary. Making a standard simplifying assump-
tion, if we rank the terms in the collection with respect to
their frequencies, the resulting pairs of 〈r, f̄r〉 (where f̄r is
normalized) form a Zipfian distribution, with the following
probability mass function (PMF):

p(x) =
x−α

H|V |,α
(4)

where Hρ,α is the ρth generalized harmonic number, and α
is a parameter. From Equation (4), one can estimate a term
frequency given the rank of term r(t) and the total number
of terms in the collection N as:

fr(t) = N × p(r(t))

Thus, we can rewrite Equation (3) as follows:

CM =
∑

1≤r≤|V |

M(N × p(r)) (5)

where r is the rank (with respect to frequency) of a term
in the collection. Equation (5) gives an analytical model for
estimating the memory cost of indexing a particular collec-
tion, given N (total number of terms) and the characteristic
Zipfian parameter α.

Furthermore, we can speed up the computation of Equa-
tion (5) by exploiting the fact that the PMF of a Zipfian
distribution is a one-to-one function. In this way, based on

5Note that the maximum frequency for a term is bounded
and therefore the set of θi’s is a finite set.

the definition of the step function M, we have:

θi−1 < N × p(r) ≤ θi ⇒

θi−1 <
N × r−α

H|V |,α
≤ θi ⇒(

θi−1 ×
H|V |,α
N

)
< r−α ≤

(
θi ×

H|V |,α
N

)
⇒

θ
−1
α
i−1 ×

(
H|V |,α
N

)−1
α

︸ ︷︷ ︸
β

> r ≥ θ
−1
α
i

(
H|V |,α
N

)−1
α

⇒

βθ
−1
α
i−1 > r ≥ βθ

−1
α
i

Therefore, we can rewrite Equation (5) as follows by substi-
tuting the above in the definition of M:

CM =
∑

1≤r≤|V |

M(N × p(r))

=
∑

|V |≥r≥β×θ
−1
α

0

θ0 +
∑
θk 6=θ0

∑
βθ

−1
α
k−1

<r≤βθ
−1
α
k

(θk + k)

=

(
|V | − βθ

−1
α

0 + 1

)
θ0 +

∑
θk 6=θ0

β

(
θ

−1
α
k−1 − θ

−1
α
k

)
(θk + k)

To summarize, given a characteristic Zipfian parameter α,
the total number of terms N , and a configuration Z, we can
compute the memory cost of indexing a particular collection
in closed form.

5.2 Time Cost Estimation
We now turn to our analytical model of time cost, that of

the sum of reading postings lists corresponding to all query
terms. Let us assume that the cost of reading postings for
a configuration Z is equal to the sum of two components:
(1) the cost of a sequential scan of equivalent postings lists
stored as contiguous arrays and (2) the cost of following
all pointers that link together non-contiguous slices between
different pools. The first component is the same for all con-
figurations (give a collection) so we can ignore as a constant.
The number of pointers for a term t with frequency fr can
be computed easily given a particular configuration Z, so we
can redefine our cost function as follows:

CT =
∑
Q∈Q

∑
q∈Q

|Pointers(Postings(q);Z)| × Cp (6)

where Cp is the cost of following a pointer and |Pointers(·)|
is the number of pointers needed in a particular postings
list given a configuration Z. The number of pointers can
be easily estimated given the step function M defined in
Section 5.1. Thus, assuming we have an estimate of the
distribution of |Pointers(·)| (from a query log), we are able
to analytically compute a time cost.

What about Cp, the cost of following a particular pointer?
Where exactly does this cost come from? Although all our
index structures are held in main memory, latencies can still
vary by orders of magnitude due to the design of cache hi-
erarchies in modern processor architectures. Reading con-
tiguous blocks of postings (in a slice) is a very fast operation
since (1) neighboring postings are likely to be on the same
cache line, and (2) predictable memory access when striding
postings means that pre-fetching is likely to occur. On the
other hand, when posting traversal reaches the end of a slice,

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1 10 100 1000 10000 100000 1e+06Fr
ac

tio
n

of
 q

ue
ry

 te
rm

s
(lo

g
sc

al
e)

Length of the postings list (log scale)

TREC Microblog
AOL

TREC terabyte

Figure 2: Postings length distribution for various
query sets.

the algorithm needs to follow the pointer to the next slice
and begin reading there—most of the time, this will result in
a cache miss, which will trigger a reference to main memory,
which is significantly slower. Therefore, the cost Cp is dom-
inated by the cost of a cache miss. However, since we model
Cp as a constant, it is not necessary to estimate its actual
value—therefore, our analytical time costs are modeled in
abstract units of Cp.

To summarize, we can analytically estimate the time cost
if we are given a hypothetical postings length distribution of
query terms and the cost of a cache miss using Equation (6).
We stress that this model is overly simplistic and does not
account for time spent intersecting postings. Nevertheless,
this simplification is acceptable since we use the analytical
model only to guide our experiments on real data, and in our
empirical results we do measure end-to-end query latency.

6. ANALYTICAL RESULTS
Given a set of configurations Z = {Z0, Z1, ..., Zm}, we can

estimate the memory cost CM as well as the simplified time
cost CT for any configuration Z ⊆ Z. However, to complete
our model we need to know the total number of terms N ,
size of the vocabulary |V |, and parameter α. To determine
these values, we divided the Tweets2011 collection into two
equally-sized partitions and used the first half for parameter
estimation; the second half is used in our actual experiments
(described later). We determined α to be 1.0, and |V | and
N to 11× 106 and 76× 106 respectively.

As explained in Section 5.2, in order to estimate the time
cost we need the distribution of length of postings for a set
of query terms: this is shown for all three query sets in Fig-
ure 2. This figure shows that the overall distribution is simi-
lar among all query sets. In particular, the distribution from
the AOL and terabyte queries are nearly identical. Data
from the microblog queries give rise to a similarly shaped
distribution, although with less emphasis at the extremes
(both very common and very rare terms).

Given all these parameters, as well as the set of configu-
rations Z, we estimated the time cost and the memory cost
for each configuration. On a scatter plot of the time versus
memory cost, each configuration Z ⊆ Z would represent a
point: points closer to the origin would be considered “bet-
ter” configurations (faster, less memory).

Our strategy for exploring the configuration space was
to first use our analytical model to quickly determine the

tradeoffs associated with a large set of configurations, and
then from those select a subset on which to run actual ex-
periments. We considered slice sizes between 0 and 12 (in-
clusive) and pool sizes between 4 and 8 (inclusive) Another
experiment specifically focused on four-pool configurations
(as in the production system). Within these ranges, we com-
puted the memory and time cost for all possible configura-
tions. Since a scatter plot of all configurations would not be
readable, we grouped the configurations into equally-sized
buckets in terms of memory cost, and from each bucket,
we picked the configuration that has the smallest time cost.
Figure 3 shows the scatter plot constructed in this manner,
using the AOL queries for the time cost estimates (results
using other queries look nearly identical, and are not shown
for space considerations). The right plot shows only four-
pool configurations; the left plot shows all pool sizes between
4 and 8 (inclusive).

Based on these figures, we selected a set of candidate con-
figurations that appear to present good time/cost tradeoffs.
As our analytical models demonstrate, after a certain point
the memory costs increase while the time costs level off,
thereby making most of the configurations uninteresting.
The more preferable configurations are those that appear
near the origin in plots in Figure 3. The configurations se-
lected for experimental analysis are noted.

7. USING TERM HISTORY
There is one additional issue we consider. Given that

Earlybird maintains several index segments in memory (one
“active”, the rest read-only), it has easy access to histori-
cal term statistics from preceding index segments. It stands
to reason that we can take advantage of this information.
Although it seems obvious that such statistics would help,
there are countervailing considerations as well. We have
found that there is a great deal of “churn” in tweet con-
tent [11]; for example, approximately 7% of the top 10,000
terms (ordered by frequency) from one day are no longer in
the top 10,000 on the next day. This makes sense since dis-
cussions on Twitter evolve quickly in response to breaking
news events and idiosyncratic internet memes. Therefore,
using term statistics may not actually help: a term that ap-
peared frequently in the previous index segment may be re-
lated to a news story that is no longer “hot”, and as a result
we might over-allocate memory and waste space.

To empirically determine how these factors play out on
real data, we experimented with different policies for allo-
cating the first slice (i.e., instead of always starting from the
first pool, choose a pool with a larger slice size). We refer
to this as the Starting Pool (SP) policy:

• SP(z0): This is the default policy that does not take
advantage of any term frequency history. Every allocation
starts from the first memory pool (i.e., z0).

• SP(dH(t)e): This policy starts indexing a term t from
the memory pool with the smallest slice size that is larger
than the given historical frequency H(t), i.e., from the
previous index segment. That is, start from pool p if
2zp−1 < H(t) ≤ 2zp or pool P if 2zP−1 ≤ H(t).

• SP(bH(t)c): According to this policy, indexing starts
from the memory pool with the largest slice size that is
smaller than the given historical frequency of a term H(t).
That is, start from pool p if 2zp ≤ H(t) < 2zp+1 or pool
P if 2zP−1 ≤ H(t).

 10

 100

 1000

 10000

 100 1000 10000

Ti
m

e
co

st

Memory cost (1e+6)

Z0

Z1

Z2

Z3 Z4

Z5Zg

 10

 100

 1000

 10000

 100 1000 10000

Ti
m

e
co

st

Memory cost (1e+6)

Z'0

Z'1

Z'2
Z'3

Z'4
Z'5 Z'6

Z'7

Zg

Figure 3: Scatter plot of analytical time cost CT versus memory cost CM , where each point represents a
configuration Z. In the right plot, the number of pools is restricted to 4, whereas in the left plot the number
of pools can vary between 4 and 8. Scatter plots shown with same scale to facilitate comparison.

• SP(Λ(H(t), zP−1)): Based on this policy, if the frequency
of a term H(t) is greater than or equal to the slice size
of the last pool (i.e., 2zP−1), then indexing for that term
starts from the last pool. Otherwise, indexing starts from
the default pool, z0. Function Λ(H(t), zP−1) is zP−1 if
H(t) ≥ 2zP−1 and z0 otherwise. This basically divides
postings into “long” and “short”, with the last slice size as
the break point.

In all of the above policies, when we encounter an out-of-
vocabulary term while indexing, we default to starting from
the first memory pool (i.e., z0).

Using the above schemes, we integrate history into our
allocation policies. Therefore, our experiments explore not
only the impact of different pool configurations, but also the
role of history in improving cost.

8. EXPERIMENTAL SETUP
To isolate only the effects that we are after, our experi-

ments were not conducted on the codebase of the live pro-
duction system, but rather a separate implementation, which
was also implemented in Java. This allowed us to sepa-
rate unrelated issues, such as management of multiple seg-
ments, query brokering, and synchronization of data struc-
tures from the core problem of memory allocation.

Experiments were performed on a server running Red Hat
Linux, with dual Intel Xeon “Westmere” quad-core proces-
sors (E5620 2.4GHz) and 128GB RAM. This particular ar-
chitecture has a 64KB L1 cache per core, split between data
and instructions; a 256KB L2 cache per core; and a 12MB
L3 cache shared by all cores of a single processor. However,
all experiments were run on a single thread.

Our metrics were as follows: Evaluation of memory us-
age is quantified in terms of memory slots allocated once
all tweets have been indexed (denoted C∗M). Similarly, time
costs were measured with different queries after all the tweets
have been indexed. This is a simplification, since in the pro-
duction system query evaluation is interleaved with index-
ing. However, in production, concurrency is managed by an
elaborate set of memory barriers, which is not germane to
the current study. For our first time metric, we computed
the per query average time to read postings for all query
terms in their entirety, i.e.,

C∗T =
1

|Q|
∑
Q∈Q

∑
q∈Q

TimeToRead(Postings(q))

Unlike estimates from our analytical model CT , experimen-
tal costs are measured in milliseconds. In addition, we mea-
sured the per query average time to retrieve k = 100 results
in conjunctive query processing mode, i.e., the most recent
100 hits that contain all query terms (we denote this R100).
We used a simple linear merge algorithm to perform postings
intersection. Note that although more effective algorithms
are available (e.g., SvS [5]), it remains an open question
whether they are suitable for our type of index. Those tech-
niques implicitly assume contiguous postings lists, since they
use variants of binary search to seek through postings. We
felt that to isolate the effects of different query evaluation
algorithms, this was a reasonable choice.

So that we can evaluate the impact of different policies for
taking advantage of term history, we divided the Tweets2011
corpus roughly in half (chronologically). All experiments
were run on the second half, using statistic from the first half
(where appropriate). Note that, somewhat coincidentally,
half of the Tweets2011 corpus corresponds roughly to the
size of the index segments deployed in production, adding
realism to our results.

9. EXPERIMENTAL RESULTS

9.1 Pool Configurations
Table 1 reports experimental results evaluating different

pool configurations, showing memory cost (C∗M), per query
postings traversal time C∗T , and per query top k document
retrieval time (Rk). In all cases, time is measured in mil-
liseconds, and results are averaged across 3 trials, reported
with 95% confidence intervals. We report results using the
AOL, TREC terabyte (TB) and microblog (MB) queries in
separate columns. The first row of the table shows our pro-
duction configuration; the second “block” shows select con-
figurations with the number of pools between 4 and 8 (in-
clusive); the third “block” restricts consideration to 4 pool
configurations (as in production). In all cases we did not
take term history into account, i.e., postings allocation be-
gan in the first pool, which corresponds to SP(z0).

postings traversal (C∗T) top 100 retrieval (R100)
Z CM AOL TB MB AOL TB MB

Zg = 〈1, 4, 7, 11〉 90.2m 1.20 (±0.02) 0.86 (±0.08) 0.91 (±0.09) 2.31 (±0.01) 1.58 (±0.05) 1.39 (±0.02)
Z0 = 〈0, 1, 2, 3, 4, 5, 6, 8〉 15.9m 1.33 (±0.03) 0.93 (±0.07) 0.99 (±0.06) 2.02 (±0.05) 1.44 (±0.03) 1.57 (±0.02)
Z1 = 〈1, 2, 3, 5, 6, 8, 9, 10〉 29.1m 1.21 (±0.01) 0.76 (±0.12) 0.94 (±0.01) 1.90 (±0.08) 1.39 (±0.06) 1.50 (±0.03)
Z2 = 〈1, 3, 5, 6, 8, 9, 10, 11〉 34.9m 1.19 (±0.01) 0.74 (±0.03) 0.90 (±0.01) 1.89 (±0.01) 1.58 (±0.01) 1.39 (±0.02)
Z3 = 〈1, 3, 5, 7, 8, 10, 12〉 45.1m 1.18 (±0.00) 0.74 (±0.02) 0.91 (±0.01) 2.30 (±0.03) 1.57 (±0.01) 1.69 (±0.01)
Z4 = 〈1, 3, 6, 8, 9, 11, 12〉 49.8m 1.25 (±0.01) 0.74 (±0.01) 0.91 (±0.02) 2.30 (±0.01) 1.57 (±0.01) 1.70 (±0.01)
Z5 = 〈2, 6, 9, 12〉 112.1m 1.23 (±0.04) 0.90 (±0.07) 0.91 (±0.01) 2.30 (±0.04) 1.59 (±0.02) 1.69 (±0.03)
Z′0 = 〈1, 2, 3, 5〉 19.7m 2.71 (±0.10) 1.75 (±0.04) 1.93 (±0.09) 3.14 (±0.28) 2.01 (±0.08) 2.15 (±0.14)
Z′1 = 〈1, 3, 5, 6〉 24.0m 1.92 (±0.04) 1.20 (±0.03) 1.33 (±0.03) 2.42 (±0.13) 1.67 (±0.08) 1.76 (±0.03)
Z′2 = 〈1, 3, 5, 7〉 27.6m 1.55 (±0.03) 1.12 (±0.17) 1.11 (±0.01) 2.20 (±0.07) 1.47 (±0.01) 1.69 (±0.05)
Z′3 = 〈1, 3, 6, 8〉 37.3m 1.36 (±0.03) 1.00 (±0.01) 1.00 (±0.01) 2.04 (±0.03) 1.47 (±0.07) 1.62 (±0.10)
Z′4 = 〈2, 5, 7, 9〉 59.6m 1.33 (±0.13) 0.89 (±0.07) 0.94 (±0.01) 1.94 (±0.01) 1.36 (±0.01) 1.57 (±0.01)
Z′5 = 〈2, 5, 8, 10〉 71.9m 1.25 (±0.04) 0.83 (±0.07) 0.92 (±0.02) 1.91 (±0.02) 1.35 (±0.01) 1.58 (±0.05)
Z′6 = 〈2, 5, 8, 11〉 86.4m 1.25 (±0.01) 0.91 (±0.02) 0.90 (±0.01) 2.34 (±0.03) 1.58 (±0.01) 1.38 (±0.02)
Z′7 = 〈2, 6, 9, 12〉 112.1m 1.23 (±0.04) 0.90 (±0.07) 0.91 (±0.01) 2.30 (±0.04) 1.59 (±0.02) 1.69 (±0.03)

Table 1: Memory cost (C∗M), per query postings traversal time C∗T , and per query top k retrieval time (Rk) for
different pool configurations, using the AOL, terabyte (TB) and microblog (MB) queries on the Tweets2011
corpus (second half). Time is measured in ms, averaged across 3 trials, with 95% confidence intervals.

When considering the 4 pool configurations, analytical
modeling suggests that our production configuration Zg bal-
ances memory and time quite well (see Figure 3, right). This
is indeed confirmed by our experimental results. Although
during the original implementation of Earlybird no rigorous
evaluations along these lines were conducted, the develop-
ers nevertheless honed in on a good point in the solution
space. For example, Zr4 and Zr5 yield smaller footprints,
and perhaps suggest faster query evaluation, but the results
are inconclusive: no significant difference on C∗T ; significantly
better for two sets of queries on R100 but significantly worse
for the third. Based on our results, it doesn’t appear possi-
ble to significantly speed up query evaluation, regardless of
configuration. On the other hand, it is possible to dramat-
ically decrease memory consumption by sacrificing speed,
e.g., Zr0 (as predicted by our analytical model).

Turning to configurations involving between 4 and 8 pools,
we see opportunities to improve over the current production
configuration. Configuration Z2, for example, yields a sub-
stantially smaller memory footprint, while not slowing down
query evaluation. However, the cost is more complex code
to manage 4 versus 8 pools (of course, not modeled in our
study). Nevertheless, these experiments point to possible
future improvements in our production codebase.

Note that in this discussion, we avoided use of the term
“optimal”, since that assumes a single objective metric for
combining time and space in a sensical manner. Judgments
on the relative merits of memory and speed must be made
with respect to an organization’s resources, machine speci-
fications, etc. For example, we can certainly imagine a case
where Zr0 is a good setting—e.g., for academic researchers,
where resources are more constrained and latency demands
are perhaps not as high. Therefore, throughout this paper,
we have presented all results in terms of a memory/speed
tradeoff. Any additional attempts to simplify would be not
justified by real-world constraints.

Overall, we find that the predictions made by our analyt-
ical model (CM and CT) match the empirical results quite
reasonably (C∗M and C∗T): not in terms of actual physical
quantities, of course, but in terms of capturing the tradeoff
between memory and speed. As we proceed from Z0 to Z5,
and from Zr0 to Zr7, memory consumption increases while

time trends downward. However, the overall time differences
are not as large as Figure 3 would suggest (i.e., the vertical
axes in the scatter plots are exaggerated). We note that time
estimates produced by our analytical model are in terms of
abstract Cp units (cost of referencing non-contiguous post-
ings), not physical time. This congruence between analytical
and experimental results justifies the assumptions made in
our model, and validates the use of analytical estimates to
quickly explore the large configuration space (which is too
large to experimentally explore). On the other hand, the
match between our analytical time cost CT and top 100 re-
trieval time R100 is not as good—to be expected, since top
k retrieval involves postings intersection, which is difficult
to model analytically. This points to the limitations of our
approach and the need to perform experiments on real data.

9.2 Starting Pool Policies
In our second set of experiments, we investigated the im-

pact of Starting Pool policies. As previously described,
we divided the Tweets2011 corpus in half, gathered term
statistics from the first half, and performed experiments
on the second half. Experiments focused on particularly
interesting pool configurations from the previous results:
Z2〈1, 3, 5, 6, 8, 9, 10, 11〉, Z′5〈2, 5, 8, 10〉, and the default pro-
duction configuration, Zg〈1, 4, 7, 11〉.

When taking advantage of historical term statistics, there
are many issues at play. First, we would expect faster query
evaluation since the postings lists are more likely to be con-
tiguous. This suggests less time overall when traversing all
postings (C∗M), although the impact on R100 is unknown
since top 100 retrieval is unlikely to require traversal of all
postings. In terms of space, there are two considerations:
starting at larger slices might save memory due to fewer
pointers; on the other hand, if past statistics are not en-
tirely predictive, memory will be wasted. How these factors
balance out is an empirical question.

Table 2 shows results for various settings on our three
sets of queries. Time is measured across 3 trials with 95%
confidence intervals and the table is organized in a similar
manner as Table 1. Note that SP(z0) is equivalent to using
no term statistics, and is exactly the same as in Table 1 (row
duplicated here for convenience).

postings traversal (C∗T) top 100 retrieval (R100)
Z SP Policy C∗M AOL TB MB AOL TB MB

Z
g

SP(z0) 90.2m 1.20 (±0.02) 0.86 (±0.08) 0.91 (±0.09) 2.31 (±0.01) 1.58 (±0.05) 1.39 (±0.02)
SP(dH(t)e) 104.5m 1.17 (±0.00) 0.74 (±0.00) 0.90 (±0.02) 2.23 (±0.01) 1.44 (±0.08) 1.39 (±0.01)
SP(bH(t)c) 94.8m 1.18 (±0.01) 0.76 (±0.01) 0.92 (±0.01) 2.23 (±0.02) 1.49 (±0.07) 1.39 (±0.01)
SP(Λ(H(t), zP−1) 90.4m 1.17 (±0.00) 0.74 (±0.01) 0.91 (±0.01) 2.23 (±0.01) 1.49 (±0.06) 1.41 (±0.01)

Z
2

SP(z0) 34.9m 1.19 (±0.01) 0.74 (±0.03) 0.90 (±0.01) 1.89 (±0.01) 1.58 (±0.01) 1.39 (±0.02)
SP(dH(t)e) 40.8m 1.18 (±0.03) 0.74 (±0.02) 0.92 (±0.02) 2.26 (±0.04) 1.45 (±0.09) 1.39 (±0.01)
SP(bH(t)c) 43.2m 1.16 (±0.01) 0.73 (±0.00) 0.90 (±0.02) 2.26 (±0.04) 1.48 (±0.01) 1.39 (±0.01)
SP(Λ(H(t), zP−1) 35.0m 1.17 (±0.01) 0.74 (±0.01) 0.91 (±0.02) 2.25 (±0.04) 1.50 (±0.02) 1.39 (±0.01)

Z
′5

SP(z0) 71.9m 1.25 (±0.04) 0.83 (±0.07) 0.92 (±0.02) 1.91 (±0.02) 1.35 (±0.01) 1.58 (±0.05)
SP(dH(t)e) 77.7m 1.22 (±0.03) 0.75 (±0.01) 0.92 (±0.01) 1.90 (±0.01) 1.35 (±0.07) 1.51 (±0.02)
SP(bH(t)c) 73.9m 1.21 (±0.03) 0.77 (±0.02) 0.92 (±0.02) 1.90 (±0.01) 1.35 (±0.01) 1.50 (±0.02)
SP(Λ(H(t), zP−1) 72.2m 1.20 (±0.00) 0.75 (±0.00) 0.92 (±0.01) 1.90 (±0.00) 1.35 (±0.01) 1.52 (±0.02)

Table 2: Effect of history-based Starting Pool policies. Results are organized the same manner as in Table 1.

Results show that in all cases different SP policies waste
space (i.e, result in a larger memory footprint), without a
clear convincing gain in speed. For example, the most ag-
gressive policy SP(dH(t)e) is the most wasteful (8–16% more
memory). Despite the intuitive appeal of using historical
term statistics, there does not seem to be a benefit, at least
for the policies we studied.

10. RELATED WORK
The problem of incremental indexing, of course, is not

new. However, the literature generally explores different
points in the design space. Previous work typically makes
the assumption that the inverted lists (i.e., postings) are too
large to fit in memory and therefore the index must reside
on disk. Most algorithm operate by buffering documents
and performing in-memory inversion (e.g., [8]), up to the
capacity of a memory buffer. After the buffer is exhausted,
inverted lists are flushed to disk; after repeated cycles of this
process, we now face the challenge of how to integrate the
in-memory portion of the index with one or more index seg-
ments that have been written to disk. There are three gen-
eral strategies. The simplest is to rebuild the on-disk index
in its entirely whenever the in-memory buffer is exhausted.
This strategy is useful as a baseline, but highly inefficient in
practice. The second option is to modify postings in-place
on disk whenever possible [6, 16, 1], for example, by “ea-
gerly” allocating empty space at the end of existing inverted
lists for additional postings. However, no “pre-allocation”
heuristic can perfectly predict postings that have yet to be
encountered, so inevitably there is either not enough space
or space is wasted. For the in-place strategy, if insufficient
free space is available, to keep the postings contiguous, the
indexer must relocate the entire inverted list elsewhere, re-
quiring expensive disk seeks for copying the data. The third
strategy avoids expensive random accesses by merging in-
memory and portions of on-disk inverted lists whenever the
memory buffer fills up [3, 10]: index merging takes advan-
tage of the good bandwidth of disk reads and writes. In
particular, Lester et al. [10] advocate a geometric partition-
ing and hierarchical merging strategy that limits the number
of outstanding partitions, similar to [3].

One challenge of all three strategies described above is the
handling of concurrent queries while in-memory and on-disk
indexes are being processed. No matter what strategy, the
operations will take a non-trivial amount of time, during
which an operational system must continue serving queries
efficiently. Many of the papers cited above do not discuss

concurrent query evaluation. In contrast, this is an impor-
tant aspect of our work in building a production system
(although not specifically the focus of this paper).

In the buffer-and-flush approach, Margaritis and Anas-
tasiadis [12] present an interesting alternative beyond the
three strategies discussed above. They make a slightly dif-
ferent design choice: when the in-memory buffer reaches ca-
pacity, instead of flushing the entire in-memory index, they
choose to flush only a portion of the term space (a con-
tiguous range of terms based on lexicographic sort order),
performing a merge with the corresponding on-disk portions
of the inverted lists. The advantage of this is that it does
not lead to a proliferation of index segments, compared to
the work of Lester et al. [10].

Other than the obvious difference of in-memory vs. on-
disk storage of the index, there is another more subtle point
that distinguishes previous work from the Earlybird design.
The approaches above generally try to keep postings lists
contiguous—and for good reason, since disk seeks are ex-
pensive. There is, however, substantial cost in maintaining
contiguity in terms of disk operations that are needed at in-
dex time. In contrast, since Earlybird index structures are in
main memory, we found it acceptable for postings to be dis-
contiguous. While it is true that traversing non-contiguous
postings in memory results in cache misses, the cost of a
cache miss is less in relative terms than a disk seek. Dis-
contiguous inverted lists allow us to implement a zero-copy
approach to indexing—once postings are written, we never
need to copy them. In a managed memory environment such
as the JVM, this leads to far less pressure on the garbage
collector, since buffer copying yields garbage objects.

In another work, Lempel et al. [9] eschew inverted indexes
completely and incrementally build document-centered rep-
resentations, from which postings list are dynamically con-
structed and cached only in response to queries. The as-
sumption is that more “heavyweight” index processes will
run periodically (e.g., every 30 minutes), so that all other
data structures can be considered transient. Although this
design appears to be justified for the particular search en-
vironment explored (corporate intranet), these assumptions
do not appear to be workable for our setting.

Another interesting point in the design space is repre-
sented by Google’s Percolator architecture [15], which is
built on top of Bigtable [4]—a distributed, multi-dimensional
sparse sorted map based log-structured merge trees. Per-
colator supports incremental data processing through ob-
servers, similar to database triggers, which provide cross-

row transactions, whereas Bigtable only supports single-row
transactions. This architecture represents a very different
design from our system, which makes a fair comparison dif-
ficult. The performance figures reported by the authors
suggest that Earlybird is much faster in indexing, but in
fairness, this is an apples-to-oranges comparison. Percola-
tor was designed to encompass the entire webpage ingestion
pipeline, handling not only indexing but other aspects of
document processing as well—whereas Earlybird is highly
specialized for building in-memory inverted indexes.

Finally, a few notes about our strategy for allocating post-
ings slices from fixed-size pools: there are some similarities
we can point to in previous work, but some important dif-
ferences as well. With the in-place update strategy where
extra space for postings is pre-allocated, it is not much of a
stretch to implement fixed block sizes that are powers of two.
Brown et al. [1] allocate space for on-disk postings in sizes
of 16, 32, 64, 128, . . . 8192. However, a few important dif-
ferences (beyond in-memory vs. on-disk): Brown et al. copy
postings each time a new block is allocated to preserve conti-
guity, whereas we don’t. In addition, the paper leaves open
the method by which those blocks are allocated—whereas
we describe a specific implementation based on fixed slice
sizes in large pools (supporting efficient memory allocation,
compact pointer addressing, etc.).

Tracing the lineage of various storage allocation mecha-
nisms further back in time, we would arrive at a rich litera-
ture on general-purposes memory allocation for heap-based
languages (e.g., malloc in C). According to the taxonomy of
Wilson et al. [17], Earlybird’s allocation strategy would be
an example of segregated free lists, an approach that dates
back to the 1960s. Of course, since we’re allocating mem-
ory for the very specific purpose of storing postings, we can
accomplish the task much more efficiently since there are
much tighter constraints, e.g., no memory fragmentation,
fixed sizes, etc. Nevertheless, it would be fair to think of
our work as a highly-specialized variant of general purpose
memory allocators for heap-based languages.

11. FUTURE WORK AND CONCLUSION
Although the problem of online indexing is not new, we

explore a part of the design space that makes fundamentally
different assumptions compared to previous work: we con-
sider index structures that are completely in memory and
applications that have much tighter index latency require-
ments. There are many challenges for such applications, and
we examined in depth one particular issue—dynamic post-
ings allocation—within a general framework for incremental
indexing. Our results are interesting in and of themselves,
but we hope to achieve the broader goal of bringing real-time
search problems to the attention of the research community.
Hopefully, this will spur more work in this area.

12. ACKNOWLEDGMENTS
This work has been supported in part by NSF under awards
IIS-0916043, IIS-1144034, and IIS-1218043. Any opinions,
findings, or conclusions are the authors’ and do not neces-
sarily reflect those of the sponsor. The first author’s deep-
est gratitude goes to Katherine, for her invaluable encour-
agement and wholehearted support. The second author is
grateful to Esther and Kiri for their loving support and ded-
icates this work to Joshua and Jacob.

13. REFERENCES
[1] E. Brown, J. Callan, and W. Croft. Fast incremental

indexing for full-text information retrieval. VLDB,
1994.

[2] M. Busch, K. Gade, B. Larson, P. Lok, S. Luckenbill,
and J. Lin. Earlybird: Real-time search at Twitter.
ICDE, 2012.

[3] S. Büttcher and C. Clarke. Indexing time vs. query
time trade-offs in dynamic information retrieval
systems. CIKM, 2005.

[4] F. Chang, J. Dean, S. Ghemawat, W. Hsieh,
D. Wallach, M. Burrows, T. Chandra, A. Fikes, and
R. Gruber. Bigtable: A distributed storage system for
structured data. OSDI, 2006.

[5] J. Culpepper and A. Moffat. Efficient set intersection
for inverted indexing. ACM TOIS, 29(1):Article 1,
2010.

[6] D. Cutting and J. Pedersen. Optimizations for
dynamic inverted index maintenance. SIGIR, 1990.

[7] J. Dean and S. Ghemawat. MapReduce: Simplified
data processing on large clusters. OSDI, 2004.

[8] S. Heinz and J. Zobel. Efficient single-pass index
construction for text databases. JASIST,
54(8):713–728, 2003.

[9] R. Lempel, Y. Mass, S. Ofek-Koifman, Y. Petruschka,
D. Sheinwald, and R. Sivan. Just in time indexing for
up to the second search. CIKM, 2007.

[10] N. Lester, A. Moffat, and J. Zobel. Efficient online
index construction for text databases. ACM TODS,
33(3), 2008.

[11] J. Lin and G. Mishne. A study of “churn” in tweets
and real-time search queries. ICWSM, 2012.

[12] G. Margaritis and S. Anastasiadis. Low-cost
management of inverted files for online full-text
search. CIKM, 2009.

[13] A. Moffat and J. Zobel. Self-indexing inverted files for
fast text retrieval. ACM TOIS, 14(4):349–379, 1996.

[14] G. Pass, A. Chowdhury, and C. Torgeson. A picture of
search. InfoScale, 2006.

[15] D. Peng and F. Dabek. Large-scale incremental
processing using distributed transactions and
notifications. OSDI, 2010.

[16] A. Tomasic, H. Garcia-Molina, and K. Shoens.
Incremental updates of inverted lists for text
document retrieval. SIGMOD, 1994.

[17] P. Wilson, M. Johnstone, M. Neely, and D. Boles.
Dynamic storage allocation: A survey and critical
review. International Workshop on Memory
Management, 1995.

[18] H. Yan, S. Ding, and T. Suel. Inverted index
compression and query processing with optimized
document ordering. WWW, 2009.

[19] J. Zhang, X. Long, and T. Suel. Performance of
compressed inverted list caching in search engines.
WWW, 2008.

	1 Introduction
	2 Operational Requirements
	3 Baseline Architecture
	3.1 Earlybird Overview
	3.2 Active Index Segment
	3.3 Generalizing the Solution

	4 Data
	5 Analytical Model
	5.1 Memory Cost Estimation
	5.2 Time Cost Estimation

	6 Analytical Results
	7 Using Term History
	8 Experimental Setup
	9 Experimental Results
	9.1 Pool Configurations
	9.2 Starting Pool Policies

	10 Related Work
	11 Future Work and Conclusion
	12 Acknowledgments
	13 References

