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We consider the problem of designing distribution rules to share ‘welfare’ (cost or revenue) among indi-
vidually strategic agents. There are many known distribution rules that guarantee the existence of a (pure)
Nash equilibrium in this setting, e.g., the Shapley value and its weighted variants; however, a characteriza-
tion of the space of distribution rules that guarantee the existence of a Nash equilibrium is unknown. Our
work provides an exact characterization of this space for a specific class of scalable and separable games,
which includes a variety of applications such as facility location, routing, network formation, and coverage
games. Given arbitrary local welfare functions W, we prove that a distribution rule guarantees equilibrium
existence for all games (i.e., all possible sets of resources, agent action sets, etc.) if and only if it is equivalent
to a generalized weighted Shapley value on some ‘ground’ welfare functions W′, which can be distinct from
W. However, if budget-balance is required in addition to the existence of a Nash equilibrium, then W′ must
be the same as W. We also provide an alternate characterization of this space in terms of ‘generalized’
marginal contributions, which is more appealing from the point of view of computational tractability. A
possibly surprising consequence of our result is that, in order to guarantee equilibrium existence in all games
with any fixed local welfare functions, it is necessary to work within the class of potential games.
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1. Introduction. Fair division is an issue that is at the heart of social science – how should
the cost incurred (revenue generated) by a group of self-interested agents be shared among them?
This central question has led to a large literature in economics over the last decades (Young [50],
Young [51], Moulin [33]), and more recently in computer science (Anshelevich et al. [3], Jain and
Mahdian [21], Moulin [35]). A standard framework within which to study this question is that of
cost sharing games, in which there is a set of agents making strategic choices of which resources
to utilize. Each resource generates a welfare (cost or revenue) depending on the set of agents
that choose the resource. The focus is on finding distribution rules that lead to stable and/or fair
allocations, which is traditionally formalized by the concept of the core in the cooperative theory
and, more recently, by the Nash equilibrium in the noncooperative theory.
Cost sharing has traditionally been studied in the cooperative framework. Here, the problems

studied typically involve a cost value v(S) for each subset of players S, which usually stems from the
optimal solution to an underlying combinatorial optimization problem.1 A canonical example is the
multicast network formation game (Granot and Huberman [17]), where a set of agents (consumers)
N wishes to connect to a common source (a broadcaster) s by utilizing links of an underlying graph.
Each link (resource) has a cost associated with its usage, and the total cost of all the links used

1 Note that our focus is on cost sharing games and not cost sharing mechanisms (Feigenbaum et al. [14]), which
additionally involve soliciting agents’ exogenous private valuations of attaining the end goal. We briefly discuss the
applicability of our results to cost sharing mechanisms in Section 4.3.

1

http://arxiv.org/abs/1402.3610v1
mailto:ragad3@caltech.edu
mailto:jason.marden@colorado.edu
mailto:adamw@caltech.edu


2 Gopalakrishnan, Marden, and Wierman: Potential Games are Necessary to Ensure PNE in Cost Sharing Games

needs to be split among the agents. In such a situation, any subset S of agents, if they cooperate,
can form a coalition, and the best they can do is to choose the links of the minimum cost spanning
tree for the set of vertices S ∪ {s}, and incur its cost – denote it by v(S). Here, the core consists
of all possible ways of distributing v(N) to the players in N in such a way that it is in their best
interest to fully cooperate to form the grand coalition. That is, a distribution rule f v :N → R is
in the core, if

∑
i∈N

f v(i) = v(N), and for every subset S ⊆N ,
∑

i∈S
f v(i)≤ v(S). In general, the

core can be empty, though for multicast games it is not.
A cooperative framework, in effect, models a ‘binary choice’ for the agents – opt out, or opt in

and cooperate. In large distributed (and often unregulated) systems such as the Internet, agents’
options are more complex as they have the opportunity to strategically choose the best action from
multiple available options. Accordingly, there is an emerging focus within cost sharing games on
weaker notions of stability such as Nash equilibria. This focus is driven by applications such as
network-cost sharing (Anshelevich et al. [3], Chen et al. [7]) where individually strategic behavior
is commonly assumed.
Our previous example of multicast games also provides a useful illustration of the noncooperative

cost sharing framework. Multicast games were first modeled as noncooperative games in Chekuri
et al. [6], whose model also generalized facility location games, an important class of problems in
operations research. The principal difference from the cooperative model is that here, the global
cost share of an agent stems from local distribution rules which specify how the local cost (cost
of each link) is split between the agents using that link. Accordingly, an agent’s total cost share
is simply the sum of its cost shares across all the links it uses. In addition, each agent can choose
between potentially several link combinations that connect to the source. A pure Nash equilibrium
corresponds to a choice of links by each agent such that each agent incurs the least possible cost
given the links chosen by the other agents. Similarly to the fact that the core might be empty in
the cooperative model, a pure Nash equilibrium may not exist in general, but for multicast games
it does (Chekuri et al. [6]).
Existing literature on noncooperative cost sharing games focuses on designing distribution rules

that guarantee equilibrium existence and studying the ‘efficiency’ of the resulting equilibria. Per-
haps, the most famous such distribution rule is the Shapley value (Shapley [43]), which is budget-
balanced, guarantees the existence of a Nash equilibrium in any game, and for some classes of games
such as convex games, is always in the core. Generalizations of the Shapley value, e.g., weighted
and generalized weighted Shapley values (Shapley [42]), exhibit many of the same properties.
In addition to guaranteeing equilibrium existence, it is also of paramount importance that these

equilibria be ‘efficient’. That is, they should result in a system cost (usually, the total cost incurred
by all the agents) that is within a small factor of the optimum. For example, in the noncooperative
multicast game, which (effectively) uses the Shapley value distribution rule, a Nash equilibrium
choice of links by the agents may not collectively result in the minimum spanning tree for N ∪{s}.
With these goals in mind, researchers have recently sought to provide characterizations of the

class of (local) distribution rules that guarantee equilibrium existence. The first step toward this
goal was made in Chen et al. [8], which proves that the only budget-balanced distribution rules that
guarantee equilibrium existence in all cost sharing games are generalized weighted Shapley value
distribution rules. Following on Chen et al. [8], Marden and Wierman [30] provides the parallel
characterization in the context of revenue sharing games. Though these characterizations seem
general, they are actually just worst-case characterizations. In particular, the proofs in Chen et al.
[8] and Marden and Wierman [30] consist of exhibiting a specific ‘worst-case’ welfare function which
requires that generalized weighted Shapley value distribution rules be used. Thus, characterizing
the space of distribution rules (not necessarily budget-balanced) for specific local welfare functions
remains an important open problem. In practice, it is exactly this issue that is important: when
designing a distribution rule, one knows the specific local welfare functions for the situation, wherein
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there may be distribution rules other than generalized weighted Shapley values that also guarantee
the existence of an equilibrium.

Our contribution. In this article, we provide a complete characterization of the space of
distribution rules (not necessarily budget-balanced) that guarantee the existence of a pure Nash
equilibrium (which we will henceforth refer to as just an equilibrium) for any specific local welfare
functions. The principal contributions of this article are as follows.
1. Our main result (Theorem 1) states that all games conditioned on any fixed local welfare

functions possess an equilibrium if and only if the distribution rules are equivalent to gen-
eralized weighted Shapley value distribution rules on some ‘ground’ welfare functions. This
shows, perhaps surprisingly, that the results in Chen et al. [8] and Marden and Wierman [30]
hold much more generally. In particular, it is neither the existence of some worst-case welfare
function, nor the restriction of budget-balance, which limits the design of distribution rules
to generalized weighted Shapley values.

2. Our second result (Theorem 2) provides an alternative characterization of the set of dis-
tribution rules that guarantee equilibrium existence. In particular, it states that all games
conditioned on any fixed local welfare functions possess an equilibrium if and only if the distri-
bution rules are equivalent to generalized weighted marginal contribution distribution rules on
some ‘ground’ welfare functions. This result is actually a consequence of a connection between
Shapley values and marginal contributions, namely that they can be viewed as equivalent
given a transformation connecting their ground welfare functions (Proposition 2).

These characterizations provide two alternative approaches for the problem of designing distri-
bution rules, with different design tradeoffs, e.g., between budget-balance and tractability. More
specifically, a design through generalized weighted Shapley values provides direct control over how
close to budget-balanced the distribution rule will be; however, computing these distribution rules
often requires computing exponentially many marginal contributions (Matsui and Matsui [31],
Conitzer and Sandholm [10]). On the other hand, a design through generalized weighted marginal
contributions requires computing only one marginal contribution; however, it is more difficult to
provide bounds on the degree of budget-balance.
Another important consequence of our characterizations is that potential games are necessary

to guarantee the existence of an equilibrium in all games with fixed local welfare functions, since
generalized weighted Shapley value and generalized weighted marginal contribution distribution
rules result in (‘weighted’) potential games (Hart and Mas-Colell [18], Ui [46]). This is particularly
surprising, since the class of potential games is a relatively small subset of the class of games that
possess an equilibrium (Sandholm [41]), and our characterizations imply that such a relaxation in
game structure would offer no advantage in guaranteeing equilibria.
In addition to the implications of the characterizations themselves, their proofs develop tools

for analyzing cost sharing games which could be useful for related models, such as cost sharing
mechanisms. The proofs consist of a sequence of counterexamples that establish novel necessary
conditions for distribution rules to guarantee the existence of an equilibrium. Within this analysis,
new tools for studying distribution rules using their basis representation (see Section 3) are devel-
oped, including an inclusion-exclusion framework that is crucial for our proof. Additionally, the
proofs expose a relationship between Shapley value and marginal contribution distribution rules,
leading to a novel closed form expression for the potential function of the resulting games.

2. Model. In this work we consider a simple, but general, model of a welfare (cost or revenue)
sharing game, where there is a set of self-interested agents/players N = {1, . . . , n} (n > 1) that
each select a collection of resources from a set R= {r1, . . . , rm} (m> 1). That is, each agent i∈N
is capable of selecting potentially multiple resources in R; therefore, we say that agent i has an
action set Ai ⊆ 2R. The resulting action profile, or (joint) allocation, is a tuple a= (a1, . . . , an)∈A
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where the set of all possible allocations is denoted by A=A1× . . .×An. We occasionally denote
an action profile a by (ai, a−i) where a−i ∈A−i denotes the actions of all agents except agent i.
Each allocation generates a welfare, W(a), which needs to be shared among the agents. In this

work, we assume W(a) is (linearly) separable across resources, i.e.,

W(a) =
∑

r∈R

Wr ({a}r) ,

where {a}r = {i∈N : r ∈ ai} is the set of agents that are allocated to resource r in a, and Wr :
2N →R is the local welfare function at resource r. This is a standard assumption (Anshelevich et
al. [3], Chekuri et al. [6], Chen et al. [8], Marden and Wierman [29]), and is quite general. Note that
we incorporate both revenue and cost sharing games, since we allow for the local welfare functions
Wr to be either positive or negative.
The manner in which the welfare is shared among the agents determines the utility function

Ui :A→ R that agent i seeks to maximize. Because the welfare is assumed to be separable, it is
natural that the utility functions should follow suit. Separability corresponds to welfare garnered
from each resource being distributed among only the agents allocated to that resource, which is
most often appropriate, e.g., in revenue and cost sharing. This results in

Ui(a) =
∑

r∈ai

f r (i,{a}r) ,

where f r :N ×2N →R is the local distribution rule at resource r, i.e., f r(i, S) is the portion of the
local welfare Wr that is allocated to agent i∈ S when sharing with S. In addition, we assume that
resources with identical local welfare functions have identical distribution rules, i.e., for any two
resources r, r′ ∈R,

Wr =Wr′ =⇒ f r = f r′.

In light of this assumption, for the rest of this article, we write fWr instead of f r. For completeness,
we define fWr(i, S) := 0 whenever i /∈ S. A distribution rule fWr is said to be budget-balanced if,
for any player set S ⊆N ,

∑
i∈S

fWr(i, S) =Wr(S).
We represent a welfare sharing game as G=

(
N,R,{Ai}i∈N

,{fWr}
r∈R

,{Wr}r∈R

)
, and the design

of fWr is the focus of this article. When there is only one local welfare function, i.e., when Wr =W
for all r ∈ R, we drop the subscripts and denote the local welfare function and its corresponding
distribution rule by W and fW respectively.
The primary goals when designing the distribution rules fWr are to guarantee (i) equilibrium

existence, and (ii) equilibrium efficiency. Our focus in this work is entirely on (i) and we consider
pure Nash equilibria; however it should be noted that other equilibrium concepts are also of interest
(Adlakha et al. [2], Su and van der Schaar [44], Marden [24]). Recall that a (pure Nash) equilibrium
is an action profile a∗ ∈A such that

(∀ i∈N) Ui(a
∗
i , a

∗
−i) = max

ai∈Ai

Ui(ai, a
∗
−i).

2.1. Examples of distribution rules. Existing literature on cost sharing games predomi-
nantly focuses on the design and analysis of specific distribution rules. As such, there are a wide
variety of distribution rules that are known to guarantee the existence of an equilibrium. Table 1
summarizes several well-known distribution rules (both budget-balanced and non-budget-balanced)
from existing literature on cost sharing, and we discuss their salient features in the following.

2.1.1. Equal/Proportional share distribution rules. Most prior work in network cost
sharing (Anshelevich et al. [3], Corbo and Parkes [11], Fiat et al. [15], Chekuri et al. [6],
Christodoulou et al. [9]) deals with the equal share distribution rule, fW

EQ, defined in Table 1.
Here, the welfare is divided equally among the players. The proportional share distribution rule,
fW
PR[ω], is a generalization, parameterized (exogenously) by ω ∈ R|N |

++, a vector of strictly positive
player-specific weights, and the welfare is divided among the players in proportion to their weights.
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Table 1. Example distribution rules

NAME PARAMETER FORMULA

Equal share None fW
EQ(i, S) =

W (S)
|S|

Proportional share

ω=(ω1,...,ωn)

where ωi>0

for all 1≤i≤n

fW
PR[ω](i, S) = ωi∑

j∈S ωj
W (S)

Shapley value

None

fW
SV (i, S) =

∑
T⊆S\{i}

(|T |)!(|S|−|T |−1)!
|S|! (W (T ∪{i})−W (T ))

Marginal contribution fW
MC(i, S) =W (S)−W (S−{i})

Weighted Shapley value
ω=(ω1,...,ωn)

where ωi>0

for all 1≤i≤n

fW
WSV [ω](i, S) =

∑

T⊆S:i∈T

ωi∑
j∈T

ωj




∑

R⊆T

(−1)|T |−|R|W (R)





Weighted marginal
contribution

fW
WMC [ω](i, S) =ωi (W (S)−W (S−{i}))

Generalized weighted
Shapley value

ω=(λ,Σ)

λ=(λ1,...,λn)

Σ=(S1,...,Sm)

where λi>0

for all 1≤i≤n

and Si∩Sj=∅

for i6=j

and∪Σ=N

fW
GWSV [ω](i,S)=

∑

T⊆S:i∈T

λi∑
j∈T

λj




∑

R⊆T

(−1)|T |−|R|W (R)





where T=T∩Sk and k=min{j|Sj∩T 6=∅}

Generalized weighted
marginal contribution

fW
GWMC [ω](i,S)=λi(W (Sk)−W (Sk−{i}))

where Sk=S−

k−1⋃

ℓ=1

Sℓ and i∈ Sk

Both fW
EQ and fW

PR are budget-balanced distribution rules. However, for general welfare functions,
they do not guarantee an equilibrium for all games.2

2.1.2. The Shapley value family of distribution rules. One of the oldest and most
commonly studied distribution rules in the cost sharing literature is the Shapley value (Shapley
[43]). Its extensions include the weighted Shapley value and the generalized weighted Shapley value,
as defined in Table 1.
The Shapley value family of distribution rules can be interpreted as follows. For any given subset

of players S, imagine the players of S arriving one at a time to the resource, according to some
order π. Each player i can be thought of as contributing W (P π

i ∪{i})−W (P π
i ) to the welfare

W (S), where P π
i denotes the set of players in S that arrived before i in π. This is the ‘marginal

contribution’ of player i to the welfare, according to the order π. The Shapley value, fW
SV (i, S), is

simply the average marginal contribution of player i to W (S), under the assumption that all |S|!
orders are equally likely. The weighted Shapley value, fW

WSV [ω](i, S), is then a weighted average
of the marginal contributions, according to a distribution with full support on all the |S|! orders,
determined by the parameter ω ∈R|N |

++, a strictly positive vector of player weights. The (symmetric)
Shapley value is recovered when all weights are equal.
The generalized weighted Shapley value, fW

GWSV [ω], generalizes the weighted Shapley value to
allow for the possibility of player weights being zero. It is parameterized by a weight system given
by ω= (λ,Σ), where λ∈R|N |

++ is a vector of strictly positive player weights, and Σ= (S1, S2, . . . , Sm)

2 When the local welfare functions {Wr} are ‘anonymous’, i.e., when Wr(S) is purely a function of |S| for all S ⊆N
and r ∈R,

{
fWr
EQ

}
guarantees an equilibrium for all games. This is a consequence of it being identical to the Shapley

value distribution rule (Section 2.1.2) in this case. However, the analogous property for fW
PR[ω] does not hold.
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is an ordered partition of the set of players N . Once again, players get a weighted average of their
marginal contributions, but according to a distribution determined by λ, with support only on
orders that conform to Σ, i.e., for 1≤ k < ℓ≤m, players in Sℓ arrive before players in Sk. Note that
the weighted Shapley value is recovered when |Σ|= 1, i.e., when Σ is the trivial partition, (N).
The importance of the Shapley value family of distribution rules is that all distribution rules

are budget-balanced, guarantee equilibrium existence in any game, and also guarantee that the
resulting games are so-called ‘potential games’ (Hart and Mas-Colell [18], Ui [46]).3 However,
they have one key drawback – computing them is often4 intractable (Matsui and Matsui [31],
Conitzer and Sandholm [10]), since it requires computing the sum of exponentially many marginal
contributions.5

2.1.3. The marginal contribution family of distribution rules. Another classic and
commonly studied distribution rule is fW

MC , the marginal contribution distribution rule (Wolpert
and Tumer [48]), where each player’s share is simply his marginal contribution to the welfare, see
Table 1. Clearly, fW

MC is not always budget-balanced. However, an equilibrium is always guaranteed
to exist, and the resulting game is an exact potential game, where the potential function is the same
as the welfare function. Accordingly, the marginal contribution distribution rule always guarantees
that the welfare maximizing allocation is an equilibrium, i.e., the ‘price of stability’ is one. Finally,
unlike the Shapley value family of distribution rules, note that it is easy to compute, as only two
calls to the welfare function are required.
Note that, it is natural to consider weighted and generalized weighted marginal contribution

distribution rules which parallel those for the Shapley value described above. These are defined
formally in Table 1, and they inherit the equilibrium existence and potential game properties of
fW
MC , in an analogous manner to their Shapley value counterparts. These rules have, to the best of
our knowledge, not been considered previously in the literature; however, they are crucial to the
characterizations provided in this article.

2.2. Important families of cost/revenue sharing games. Our model for welfare sharing
games generalizes several existing families of games that have received significant attention in the
literature. We illustrate a few examples below, in all of which the typical distribution rule studied
is the equal share or Shapley value distribution rule:
(i) Multicast and facility location games (Chekuri et al. [6]) are a special case where N is the set

of users, R is the set of links of the underlying graph, Ai consists of all feasible paths from
user i to the source, and for all r ∈R, Wr = crW is the local welfare function, where cr is the
cost of the link r, and W is given by:

(∀ S ⊆N) W (S) =




−1, S 6= ∅

0, S = ∅
(1)

(ii) Congestion games (Rosenthal [38]) are a special case where, for each r ∈R, the local welfare
function Wr is ‘anonymous’, i.e., Wr(S) is purely a function of |S|, and is given by |S| times
the negative of the delay function at r, for all S ⊆N .

3 Shapley value distribution rules result in exact potential games, weighted Shapley value distribution rules result in
weighted potential games, and generalized weighted Shapley value distribution rules result in a slight variation of
weighted potential games (see Appendix C for details).

4 The Shapley value has been shown to be efficiently computable in several applications (Deng and Papadimitriou
[12], Mishra and Rangarajan [32], Aadithya et al. [1]), where specific welfare functions and special structures on the
action sets enable simplifications of the general Shapley value formula.

5 Technically, if the entire welfare function is taken as an input, then the input size is already O(2n), and Shapley
values can be computed ‘efficiently’. However, if access to the welfare function is by means of an oracle (Liben-Nowell
et al. [23]), than the actual input size is still O(n), and the hardness is exposed.
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(iii) Atomic routing games with unsplittable flows (Roughgarden and Tardos [40]) are a special
case where N is the set of source-destination pairs (si, ti), each of which is associated with
ρi units of flow, R is the set of edges of the underlying graph, and Ai consists of all feasible
si− ti paths. If cr(x) denotes the latency function on edge r, then Wr is the negative of the
cost of the total flow due to the players in S, i.e., Wr(S) =−|S|cr

(∑
i∈S

ρi
)
, for all S ⊆N .

(iv) Network formation games (Anshelevich et al. [3]) are a special subcase of the previous case,
with a suitable encoding of the players. Suppose the set of players is N = {0,1, . . . , n−1}, and
the cost of constructing each edge r is Cr(S) when S ⊆N is the set of players who choose that
edge. Then, one possibility is to set ρi = 10i so that

∑
i∈S

ρi can be decoded to obtain the set

of players S. Therefore, cr can be defined such that for all S ⊆N , cr
(∑

i∈S
ρi
)
= Cr(S)

|S|
.

Other notable specializations of our model that focus on the design of distribution rules are network
coding (Marden and Effros [26]), graph coloring (Panagopoulou and Spirakis [37]), and coverage
problems (Marden and Wierman [28], Marden and Wierman [29]). Designing distribution rules in
our cost sharing model also has applications in distributed control (Gopalakrishnan et al. [16]).

3. Basis representations. To gain a deeper understanding of the structural form of some of
the distribution rules discussed in Section 2.1, it is useful to consider their ‘basis’ representations.
Not only do these representations provide insight, they are crucial to the proofs in this paper. The
basis framework we adopt was first introduced in Shapley [42] in the context of the Shapley value,
and corresponds to the set of ‘inclusion functions’. We start by defining a basis for the local welfare
functions below, and then move to introducing the basis representation of the distribution rules
we introduced in Section 2.1.

3.1. A basis for welfare functions. Instead of working with W directly, it is often easier to
represent W as a linear combination of simple basis welfare functions. A natural basis, first defined
in Shapley [42], is the set of inclusion functions. The inclusion function of a player subset T ⊆N ,
denoted by W T , is defined as:

W T (S) :=




1, T ⊆ S

0, otherwise
(2)

In the context of cooperative game theory, inclusion functions are identified with unanimity games.
It is well-known (Shapley [42]) that the set of all inclusion functions, {W T : T ⊆N}, constitutes a
basis for the space of all welfare functions, i.e., given any welfare function W , there exists a unique
support set T W ⊆ 2N , and a unique sequence QW = {qWT }T∈T W of non-zero weights indexed by
T W , such that:

W =
∑

T∈T W

qWT W T (3)

We sometimes denote the welfare function W by the tuple (T W ,QW ).

3.2. A basis for distribution rules. The basis representation for welfare functions intro-
duced above naturally yields a basis representation for distribution rules. To simplify notation in
the following, we denote fWT

by fT , for each T ∈ T W . That is, fT :N × 2N → R is a basis dis-
tribution rule corresponding to the unanimity game W T , where fT (i, S) is the portion of W T (S)
allocated to agent i∈ S when sharing with S.
Given a set of basis distribution rules {fT : T ⊆N}, by linearity, the function fW ,

fW :=
∑

T∈T W

qWT fT , (4)

defines a distribution rule corresponding to the welfare function W . Note that if each fT is budget-
balanced, meaning that for any player set S ⊆N ,

∑
i∈S

fT (i, S) =W T (S), then fW is also budget-
balanced. However, unlike the basis for welfare functions, some distribution rules do not have
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Table 2. Definition of basis distribution rules

NAME PARAMETER DEFINITION

Shapley value

None

fT
SV (i, S) = fWT

EQ (i, S) =






1
|T | , i ∈ T and T ⊆ S

0, otherwise
(5)

Marginal contribution fT
MC(i, S) = |T |fT

SV (i, S) =




1, i∈ T and T ⊆ S

0, otherwise
(6)

Weighted Shapley value
ω=(ω1,...,ωn)

where ωi>0

for all 1≤i≤n

fT
WSV [ω](i, S) = fWT

PR [ω](i, S) =





ωi∑
j∈T ωj

, i∈ T and T ⊆ S

0, otherwise

(7)

Weighted marginal
contribution

fT
WMC [ω](i, S) =

(∑
j∈T ωj

)
fT
WSV [ω](i, S) =




ωi, i∈ T and T ⊆ S

0, otherwise

Generalized weighted
Shapley value

ω=(λ,Σ)

λ=(λ1,...,λn)

Σ=(S1,...,Sm)

where λi>0

for all 1≤i≤n

and Si∩Sj=∅

for i6=j

and∪Σ=N

fT
GWSV [ω](i,S)=





λi∑
j∈T

λj
, i∈ T and T ⊆ S

0, otherwise

where T=T∩Sk and k=min{j|Sj∩T 6=∅}

(8)

Generalized weighted
marginal contribution

fT
GWMC [ω](i,S)=(

∑
j∈T

λj)fT
GWSV [ω](i,S)=





λi, i ∈ T and T ⊆ S

0, otherwise

where T=T∩Sk and k=min{j|Sj∩T 6=∅}

(9)

a basis representation of the form (4), e.g., equal and proportional share distribution rules (see
Section 2.1.1). But, well-known distribution rules of interest to us, like the Shapley value family of
distribution rules, were originally defined in this manner. Further, our characterizations highlight
that any distribution rule that guarantees equilibrium existence must have a basis representation.
Table 2 restates the distribution rules shown in Table 1 in terms of their basis representations,

which, as can be seen, tend to be simpler and provide more intuition.
For example, the Shapley value distribution rule on a welfare function W is quite naturally

defined through its basis – for each unanimity game W T , the welfare is shared equally among the
players, see (5). In other words, whenever there is welfare generated (when all the players in T
are present), the resulting welfare is split equally among the contributing players (players in T ).
Similarly, the weighted Shapley value, for each unanimity game W T , distributes the welfare among
the players in proportion to their weights, see (7). Finally, the basis representation highlights that
the generalized weighted Shapley value can be interpreted with Σ as representing a grouping of
players into priority classes, and the welfare being distributed only among the contributing players
of the highest priority, in proportion to their weights, see (8).
Interestingly, the marginal contribution distribution rule, though it was not originally defined this

way, has a basis representation that highlights a core similarity to the Shapley value. In particular,
though the definitions in Table 1 make fW

MC and fW
SV seem radically different; from Table 2, their

basis distribution rules, fT
MC and fT

SV , are, in fact, quite intimately related, see (5) and (6). We
formalize this connection between the Shapley value family of distribution rules and the marginal
contribution family of distribution rules in Section 4.2.
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4. Results and discussion. Our goal is to characterize the space of distribution rules that
guarantee the existence of an equilibrium in welfare sharing games. Towards this end, this paper
builds on the recent works of Chen et al. [8] and Marden and Wierman [30], which take the first
steps toward providing such a characterization. Proposition 1 combines the main contributions
of these two papers into one statement. Let W denote a nonempty set of welfare functions. Let
fW = {fW}

W∈W denote the set of corresponding distribution rules. Let G(N,fW,W) denote the
class of all welfare sharing games with player set N , local welfare functions Wr ∈W, and corre-
sponding distribution rules fWr ∈ fW. We refer to W as the set of local welfare functions of the class
G(N,fW,W). Note that this class is quite general; in particular, it includes games with arbitrary
resources and action sets. When there is only one local welfare function, i.e., when W= {W}, we
denote this class simply by G(N,fW ,W ). Note that G(N,fW ,W )⊆G(N,fW,W) for all W ∈W.

Proposition 1 (Chen et al. [8], Marden and Wierman [30]). There exists a local wel-
fare function W for which all games in G(N,fW ,W ) possess a pure Nash equilibrium for a budget-
balanced fW if and only if there exists a weight system ω for which fW is the generalized weighted
Shapley value distribution rule, fW

GWSV [ω].

Less formally, Proposition 1 states that if one wants to use a distribution rule that is budget-
balanced and guarantees equilibrium existence for all possible welfare functions and action sets,
then one is limited to the class of generalized weighted Shapley value distribution rules.6 This result
is shown by exhibiting a specific ‘worst-case’ local welfare function W ∗ (the one in (1)) for which
this limitation holds. In reality, when designing a distribution rule, one knows the specific set of
local welfare functions W for the situation, and Proposition 1 claims nothing in the case where it
does not include W ∗, where, in particular, there may be other budget-balanced distribution rules
that guarantee equilibrium existence for all games. Recent work has shown that there are settings
where this is the case (Marden and Wierman [29]), at least when the agents are not allowed to
choose more than one resource. In addition, the marginal contribution family of distribution rules is
a non-budget-balanced class of distribution rules that guarantee equilibrium existence in all games
(no matter what the local welfare functions W), and there could potentially be others as well.
In the rest of this section, we provide two equivalent characterizations of the space of distribution

rules that guarantee equilibrium existence for all games with a fixed set of local welfare functions –
one in terms of generalized weighted Shapley values and the other in terms of generalized weighted
marginal contributions. We defer complete proofs to the appendices. However, we sketch an outline
in Section 6, highlighting the proof technique and the key steps involved.

4.1. Characterization in terms of generalized weighted Shapley values. Our first
characterization states that for any fixed set of local welfare functions, even if the distribution rules
are not budget-balanced, the conclusion of Proposition 1 is still valid. That is, every distribution
rule that guarantees the existence of an equilibrium in all games is equivalent to a generalized
weighted Shapley value distribution rule:

Theorem 1. Given any set of local welfare functions W, all games in G(N,fW,W) possess a
pure Nash equilibrium if and only if there exists a weight system ω, and a mapping gSV that maps
each local welfare function W ∈W to a corresponding ground welfare function gSV (W ) such that
its distribution rule fW ∈ fW is equivalent to the generalized weighted Shapley value distribution
rule, fW ′

GWSV [ω], where W ′ = gSV (W ) is the actual welfare that is distributed7 by fW , defined as,

(∀S ⊆N) W ′(S) =
∑

i∈S

fW (i, S). (10)

6 The authors of Chen et al. [8] and Marden and Wierman [30] use the term ordered protocols to refer to generalized
weighted Shapley value distribution rules with |Σ| = |N |, i.e., where Σ defines a total order on the set of players
N . They state their characterizations in terms of concatenations of positive ordered protocols, which are generalized
weighted Shapley value distribution rules with an arbitrary Σ.

7 Note that W ′ =W if and only if fW is budget-balanced.
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Refer to Appendix A for the complete proof, and Section 6 for an outline. While Proposition
1 states that there exists a local welfare function for which any budget-balanced distribution rule
is required to be equivalent to a generalized weighted Shapley value (on that welfare function) in
order to guarantee equilibrium existence, Theorem 1 states a much stronger result that, for any set
of local welfare functions, the corresponding distribution rules must be equivalent to generalized
weighted Shapley values on some ground welfare functions to guarantee equilibrium existence.
This holds true even when the distribution rules are not budget-balanced. Proving Theorem 1
requires working with arbitrary local welfare functions, which is a clear distinction from the proof
of Proposition 1, which exhibits a specific local welfare function, showing the result for that case.
From Theorem 1, it follows that designing distribution rules to ensure the existence of an equi-

librium merely requires selecting a weight system ω= (λ,Σ) and a ground welfare function W ′ for
each local welfare function W ∈W (this defines the mapping gSV ), and then applying the distribu-

tion rules
{
fW ′

GWSV [ω]
}

W∈W
. Budget-balance, if required, can be directly controlled through proper

choice of W ′, since {W ′} are the actual welfares distributed. For example, if exact budget-balance
is desired, then W ′ =W for all W ∈W. Notions of approximate budget-balance (Roughgarden and
Sundararajan [39]) can be similarly accommodated by keeping W ′ ‘close’ to W .
An important implication of Theorem 1 is that if one hopes to use a distribution rule that always

guarantees equilibrium existence in games with any fixed set of local welfare functions, then one is
limited to working within the class of ‘potential games’. This is perhaps surprising since a priori,
potential games are often thought to be a small, special class of games (Sandholm [41]).8 More
specifically, generalized weighted Shapley value distribution rules result in a slight variation of
weighted potential games (Hart and Mas-Colell [18], Ui [46]),9 whose potential function can be
computed recursively as:

Φ[ω](a) =
∑

r∈R

φr[ω]({a}r),

where φr[ω] : 2N → Rm is the local potential function at resource r (we denote the kth element
of this vector by (φr[ω])k), and for any 1≤ k ≤m and any subset S ⊆N ,

(φr[ω])k (S) =
1∑

i∈S
λi

(
W ′

r(Sm−k+1)+
∑

i∈S

λi (φr[ω])k (S−{i})

)
, (11)

where W ′
r = gSV (Wr) and Sk = S−∪k−1

ℓ=1Sℓ. Refer to Appendix C for the proof.
Theorem 1 also has some negative implications. First, the limitation to generalized weighted

Shapley value distribution rules means that one is forced to use distribution rules which may require
computing exponentially many marginal contributions, as discussed in Section 2.1. Second, if one
desires budget-balance, then there are efficiency limits for games in G(N,fW

WSV ,W). In particular,
there exists a submodular welfare function W such that, for any weight vector ω, there exists a
game in G(N,fW

WSV [ω],W ) where the best equilibrium has welfare that is a multiplicative factor
of two worse than the optimal welfare (Marden and Wierman [30]).

4.2. Characterization in terms of generalized weighted marginal contributions. Our
second characterization is in terms of the marginal contribution family of distribution rules. The
key to obtaining this contribution is the connection between the marginal contribution and Shapley
value distribution rules that we observed in Section 3. We formalize this in the following proposition.
Refer to Appendix B for the proof.

8 In spite of this limitation, it is useful to point out that there are many well understood learning dynamics which
guarantee equilibrium convergence in potential games (Blume [5], Marden et al. [25], Marden and Shamma [27]).

9 See Definition 1 in Appendix C.
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Proposition 2. For any two welfare functions W ′ = (T ′,Q′) and W ′′ = (T ′′,Q′′), and any
weight system ω= (λ,Σ),

fW ′

GWSV [ω] = fW ′′

GWMC [ω] ⇐⇒ T ′ = T ′′ and (∀ T ∈ T ′) q′T =



∑

j∈T

λj


 q′′T . (12)

Informally, Proposition 2 says that generalized weighted Shapley values and generalized weighted
marginal contributions are equivalent, except with respect to different ground welfare functions
whose relationship is through their basis coefficients, as indicated in (12). This proposition imme-
diately leads to the following equivalent statement of Theorem 1.

Theorem 2. Given any set of local welfare functions W, all games in G(N,fW,W) possess
a pure Nash equilibrium if and only if there exists a weight system ω, and a mapping gMC that
maps each local welfare function W ∈W to a corresponding ground welfare function gMC(W ) such
that its distribution rule fW ∈ fW is equivalent to the generalized weighted marginal contribution
distribution rule, fW ′′

GWMC [ω], where W ′′ = gMC(W ) is defined as,

W ′′ = h(gSV (W )), (13)

where h denotes the mapping that maps W ′ to W ′′ according to (12).

Importantly, Theorem 2 provides an alternate way of designing distribution rules that guarantee
equilibrium existence. The advantage of this alternate design is that marginal contributions are
much easier to compute than the Shapley value, which requires computing exponentially many
marginal contributions. However, it is much more difficult to control the budget-balance of marginal
contribution distribution rules. Specifically, {W ′′} are not the actual welfares distributed, and so
there is no direct control over budget-balance as was the case for generalized weighted Shapley
value distribution rules. Instead, it is necessary to start with desired welfares {W ′} to be distributed
(equivalently, the desired mapping gSV ) and then perform a ‘preprocessing’ step of transforming
it into the ground welfare functions {W ′′} using (13), which requires exponentially many calls to
each W ′. However, this is truly a preprocessing step, and thus only needs to be performed once.
Another simplification that Theorem 2 provides when compared to Theorem 1 is in terms of

the potential function. In particular, in light of Proposition 2, the distribution rules fW ′

GWSV [ω]
and fW ′′

GWMC [ω], where W ′′ = h(W ′), result in the same ‘weighted’ potential game with the same
potential function Φ[ω]. However, in terms of W ′′, there is a clear closed-form expression for the
local potential function at resource r, φr[ω] : 2N →Rm. For any 1≤ k ≤m and any subset S ⊆N ,

(φr[ω])k (S) =W ′′
r (Sm−k+1),

where W ′′
r = gMC(Wr) and Sk = S−∪k−1

ℓ=1Sℓ. In other words, we have,

(∀ S ⊆N) φr[ω](S) =
(
W ′′

r (Sm),W
′′
r (Sm−1), . . . ,W

′′
r (S1)

)
.

Refer to Appendix C for the proof. Having a simple closed form potential function is helpful for
many reasons. For example, it aids in the analysis of learning dynamics and in characterizing
efficiency bounds through the well-known potential function method (Tardos and Wexler [45]).

4.3. Limitations and extensions. It is important to highlight that our characterizations
in Theorems 1 and 2 crucially depend on the fact that an equilibrium must be guaranteed in all
games, i.e., for all possibilities of resources, action sets, and choice of local welfare functions from
W. (This is the same for the characterizations given in the previous work in Chen et al. [8] and
Marden andWierman [30].) If this requirement is relaxed it may be possible to find situations where
distribution rules that are not equivalent to generalized weighted Shapley values can guarantee
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equilibrium existence. For example, Marden and Wierman [29] gives such a rule for a coverage game
where players can select only one resource at a time. A challenging open problem is to determine
the structure on the action sets that is necessary for the characterizations in Theorems 1 and 2 to
hold.
A second remark is that our entire focus has been on characterizing distribution rules that

guarantee equilibrium existence. However, guaranteeing efficient equilibria is also an important

goal for distribution rules. The characterizations in Theorems 1 and 2 provide important new
tools to optimize the efficiency, e.g., the price of anarchy, of distribution rules for general cost
sharing and revenue sharing games through proper choice of the weight system and ground welfare
functions. An important open problem in this direction is to understand the resulting tradeoffs
between budget-balance and efficiency.
Finally, it is important to remember that our focus has been on cost sharing games; however it

is natural to ask if similar characterizations can be obtained for cost sharing mechanisms (Moulin

and Shenker [36], Dobzinski et al. [13], Immorlica and Pountourakis [20], Johari and Tsitsiklis [22],
Yang and Hajek [49], Moulin [34]). More specifically, the model considered in this paper extends
immediately to situations where players have independent heterogeneous valuations over actions, by
adding more welfare functions to W.10 However, in cost sharing mechanisms, player valuations are
private, which adds a challenging wrinkle to this translation. Thus, extending our characterizations
to the setting of cost sharing mechanisms is a difficult, but important, open problem.

5. Prior work in noncooperative cost sharing games. As noted previously, the first steps
toward characterizing the space of distribution rules that guarantee equilibrium existence were

provided in Chen et al. [8] and Marden and Wierman [30]. Prior to that, almost all the literature in
cost sharing games (Anshelevich et al. [3], Corbo and Parkes [11], Fiat et al. [15], Chekuri et al. [6],
Christodoulou et al. [9]) considered a fixed distribution rule that guarantees equilibrium existence,
namely equal share (dubbed the ‘fair cost allocation rule’, equivalent to the Shapley value in these
settings), and the focus was directed towards characterizing the efficiency of equilibria.
A recent example of work in this direction is von Falkenhausen and Harks [47], which considers

games where the action sets (strategy spaces) of the agents are either singletons or bases of a
matroid defined on the ground set of resources. For such games, the authors focus on designing
(possibly non-separable, non-scalable) distribution rules that result in efficient equilibria. They
tackle the question of equilibrium existence with a novel characterization of the set of possible
equilibria independent of the distribution rule, and then exhibit a family of distribution rules that
result in any given equilibrium in this set. Our goal is fundamentally different from theirs, in that
we seek to characterize distribution rules that guarantee equilibrium existence for a class of games,

whereas they directly characterize the best and worst achievable equilibria of a given game.
An alternative approach for distribution rule design is studied in Anshelevich et al. [4], Hoefer

and Krysta [19]. The authors consider a fundamentally different model of a cost sharing game where
agents not only choose resources, but also indicate their demands for the shares of the resulting
welfare at these resources. Their model essentially defers the choice of the distribution rule to the
agents. In such settings, they prove that an equilibrium may not exist in general.

10 To see this, consider a welfare sharing game G∈ G(N,fW,W). Let the action set of player i be Ai = {a1, . . . , aℓ}, and
suppose he values action aj at uj , for 1≤ j ≤ ℓ. Then, we modify G to G′ by adding ℓ more resources r1, . . . , rℓ to R,

settingWrj (S) =

{
uj , i∈ S

0, i /∈ S
and f

Wrj = f
Wrj

SV for 1≤ j ≤ ℓ, and augmenting each action in Ai with its corresponding

resource, so that aj → aj ∪ {rj}. Then, G
′ ∈ G(N,fW

′

,W′), where W′ =W ∪ℓ
j=1 {Wrj} and fW

′

= fW ∪ℓ
j=1 {f

Wrj }.

Notice that all games in G(N,fW,W) have an equilibrium if and only if all games in G(N,fW
′

,W′) have an equilibrium.
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6. Proof sketch of Theorem 1. We now sketch an outline of the proof of Theorem 1 for
the special case where there is just one local welfare function W , i.e., W= {W}, highlighting the
key stages. For an independent, self-contained account of the complete proof, refer to Appendix A.
First, note that we only need to prove one direction since it is known that for any weight system

ω and any two welfare functions W,W ′, all games in G(N,fW ′

GWSV [ω],W ) have an equilibrium
(Hart and Mas-Colell [18]).11 Thus, our focus is solely on proving that for distribution rules fW

that are not generalized weighted Shapley values on some ground welfare function, there exists
G∈G(N,fW ,W ) with no equilibrium.
The general proof technique is as follows. First, we present a quick reduction to characterizing

only budget-balanced distribution rules fW that guarantees the existence of an equilibrium for
all games in G(N,fW ,W ). Then, we establish several necessary conditions for a budget-balanced
distribution rule fW that guarantees the existence of an equilibrium for all games in G(N,fW ,W ),
which effectively eliminate all but generalized weighted Shapley values on W , giving us our desired
result. We establish these conditions by a series of counterexamples which amount to choosing a
resource set R and the action sets {Ai}i∈N

, for which failure to satisfy a necessary condition would
lead to nonexistence of an equilibrium.
Throughout, we work with the basis representation of the welfare functionW that was introduced

in Section 3.1. Since we are dealing with only one welfare function W , we drop the superscripts
from T W , QW , and qWT in order to simplify notation. It is useful to think of the sets in T as being
‘coalitions’ of players that contribute to the welfare function W (also referred to as contributing
coalitions), and the corresponding coefficients in Q as being their respective contributions. Also,
for simplicity, we normalize W by setting W (∅) = 0 and therefore, ∅ /∈ T . Before proceeding, we
introduce some notation below:
1. For any subset S ⊆N , T (S) denotes the set of contributing coalitions in S:

T (S) = {T ∈ T | T ⊆ S}

2. For any subset S ⊆N , N(S) denotes the set of contributing players in S:

N(S) =
⋃
T (S)

3. For any two players i, j ∈N , Tij denotes the set of all coalitions containing i and j:

Tij = {T ∈ T | {i, j} ⊆ T}

4. Let B ⊆ 2N denote any collection of subsets of a set N . Then the relation ⊆ induces a partial
order on B. Bmin denotes the set of minimal elements of the poset (B,⊆):

Bmin = {B ∈ B | (∄B′ ∈ B) s.t. B′ (B}

Example 1. Let N = {i, j, k, ℓ} be the set of players. Table 3a defines a W : 2N →R, as well
as five different distribution rules for W . Table 3b shows the basis representation of W , and Table
3c illustrates the notation defined above for W . Throughout the proof sketch, we periodically revisit
these distribution rules to illustrate the key ideas.

The proof is divided into five sections – each section incrementally builds on the structure
imposed on the distribution rule f by previous sections.

6.1. Reduction to budget-balanced distribution rules. First, we reduce the problem
of characterizing all distribution rules fW that guarantee equilibrium existence for all G ∈
G(N,fW ,W ) to characterizing only budget-balanced distribution rules fW that guarantee equilib-
rium existence for all G∈ G(N,fW ,W ):

11 Notice that W has no role to play as far as equilibrium existence of games G ∈ G(N,fW ′

GWSV [ω],W ) is concerned,
since it does not affect player utilities. This observation will prove crucial later.
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Proposition 3. For all welfare functions W , a distribution rule fW guarantees the existence
of an equilibrium for all games in G(N,fW ,W ) if and only if it guarantees the existence of an
equilibrium for all games in G(N,fW ,W ′), where, for all subsets S ⊆N , W ′(S) :=

∑
i∈S

fW (i, S).

Proof. This proposition is actually a subtlety of our notation. For games G∈ G(N,fW ,W ), the
welfare function W does not directly affect strategic behavior (it only does so through the distri-
bution rule fW ). Therefore, in terms of strategic behavior and equilibrium existence, the classes
G(N,fW ,W ) and G(N,fW ,W ′) are identical, for any two welfare functions W,W ′. Therefore, a
distribution rule fW guarantees equilibrium existence for all games in G(N,fW ,W ) if and only if
it guarantees equilibrium existence for all games in G(N,fW ,W ′). To complete the proof, simply
pick W ′ to be the actual welfare distributed by fW , as defined in (10). �

Notice that fW is a budget-balanced distribution rule for the actual welfare it distributes, namely
W ′ as defined in (10). Hence, it is sufficient to prove that for budget-balanced distribution rules
fW that are not generalized weighted Shapley values, there exists a game in G(N,fW ,W ) for which
no equilibrium exists.
Example 2. Note that fW

1 through fW
4 are budget-balanced, whereas fW

5 , which is the marginal
contribution distribution rule fW

MC , is not. Let W ′, shown in Table 3a, be the actual welfare dis-
tributed by fW

5 , as defined in (10). Then fW
5 is a budget-balanced distribution rule for W ′. In fact,

it is the Shapley value distribution rule fW ′

SV .

6.2. Three necessary conditions. The second step of the proof is to establish that for every
subset S ⊆ N of players, any budget-balanced distribution rule fW must distribute the welfare
W (S) only among contributing players, and do so as if the noncontributing players were absent:

Proposition 4. If fW is a budget-balanced distribution rule that guarantees the existence of
an equilibrium in all games G∈ G(N,fW ,W ), then,

(∀ S ⊆N) (∀ i∈ S) fW (i, S) = fW (i,N(S))

Table 3. Tables for Examples 6.x

(a) Definitions of welfare functions and distribution rules

S ⊆N ∅ {i} {j} {k} {ℓ} {i, j} {i, k} {i, ℓ} {j, k} {j, ℓ} {k, ℓ} {i, j, k} {i, j, ℓ} {i, k, ℓ} {j, k, ℓ} {i, j, k, ℓ}

W (S) 0 5 3 0 3 6 2 8 0 6 3 0 7 5 3 1

fW
1 (·, S) − (5) (3) (0) (3) (3,3) (1,1) (4,4) (0,0) (3,3) ( 3

2
, 3
2
) (0,0,0) ( 7

3
, 7
3
, 7
3
) ( 5

3
, 5
3
, 5
3
) (1,1,1) ( 1

4
, 1
4
, 1
4
, 1
4
)

fW
2 (·, S) − (5) (3) (0) (3) (4,2) (4,−2) (5,3) (2,−2) (3,3) (0,3) (3,1,−4) (3,1,3) (4,−2,3) (2,−2,3) (2,0,−4,3)

fW
3 (·, S) − (5) (3) (0) (3) (4,2) (4,−2) (5,3) (2,−2) (3,3) (0,3) (3,1,−4) ( 10

3
, 2
3
,3) (4,−2,3) (2,−2,3) ( 7

3
,− 1

3
,−4,3)

fW
4 (·, S) − (5) (3) (0) (3) (4,2) (4,−2) (5,3) (1,−1) (3,3) (0,3) (3,0,−3) (3,1,3) (4,−2,3) (1,−1,3) (2,−1,−3,3)

fW
5 (·, S) − (5) (3) (0) (3) (3,1) (2,−3) (5,3) (0,−3) (3,3) (0,3) (0,−2,−6) (1,−1,1) (2,−3,3) (0,−3,3) (−2,−4,−6,1)

W ′(S) 0 5 3 0 3 4 −1 8 −3 6 3 −8 1 2 0 −11

(b) Basis representation of W

Coalition T ∈ T Contribution qT ∈Q

{i} 5

{j} 3

{ℓ} 3

{i, j} −2

{i, k} −3

{j, k} −3

{i, j, ℓ} −2

(c) Notation

Symbol Value

T ({i, ℓ}) {{i},{ℓ}}

T ({j, k}) {{j},{j, k}}

N({i, k}) {i, k}

Tij {{i, j},{i, j, ℓ}}

T min
ij {{i, j}}

(d) Basis distribution rules computed by recursion (27)

Coalition T ∈ T fT
1 (·, T ) fT

2 (·, T ) fT
3 (·, T ) fT

4 (·, T ) fT
5 (·, T )

{i} (1) (1) (1) (1) (1)

{j} (1) (1) (1) (1) (1)

{ℓ} (1) (1) (1) (1) (1)

{i, j} (1,0) ( 1
2
, 1
2
) ( 1

2
, 1
2
) ( 1

2
, 1
2
) (1,1)

{i, k} ( 4
3
,− 1

3
) ( 1

3
, 2
3
) ( 1

3
, 2
3
) ( 1

3
, 2
3
) (1,1)

{j, k} (1,0) ( 1
3
, 2
3
) ( 1

3
, 2
3
) ( 2

3
, 1
3
) (1,1)

{i, j, ℓ} ( 1
3
, 1
3
, 1
3
) ( 1

2
, 1
2
,0) ( 1

3
, 2
3
,0) ( 1

2
, 1
2
,0) (1,1,1)
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Section A.2.1 is devoted to the proof, which consists of incrementally establishing the following
necessary conditions, for any subset S ⊆N :
(a) If no contributing coalition is formed in S, then fW does not allocate any utility to the players

in S (Lemma 1).
(b) fW distributes the welfare only among the contributing players in S (Lemma 2).
(c) fW distributes the welfare among the contributing players in S as if all other players were

absent (Lemma 3).

Example 3. For the welfare function W , S = N(S) for all subsets S, making Proposition 4
trivial, except for the two subsets {k} and {k, ℓ} for which k is not a contributing player. Note
that fW

2 through fW
4 allocate no welfare to k in these subsets, and ℓ gets the same whether k is

present or not. But fW
1 (k,{k, ℓ}) 6= 0 and fW

1 (ℓ,{k, ℓ}) 6= fW
1 (ℓ,{ℓ}). Therefore, fW

1 , which is the
equal share distribution rule fW

EQ, violates conditions (b)-(c), and hence, Proposition 4. So, it does
not guarantee equilibrium existence in all games; see Counterexample 2 in the proof of Lemma 3.

6.3. Decomposition of the distribution rule. The third step of the proof establishes
that fW must have a basis representation of the form (4), where the basis distribution rules are
generalized weighted Shapley values:

Proposition 5. If f is a budget-balanced distribution rule that guarantees the existence of
an equilibrium in all games G ∈ G(N,fW ,W ), then, there exists a sequence of weight systems
Ω= {ωT }

T∈T such that

fW =
∑

T∈T

qTf
T
GWSV [ω

T ]

Note that for now, the weight systems ωT could be arbitrary, and need not be related in any
way. We deal with how they should be ‘consistent’ in the next section.
In Section A.2.2, we prove Proposition 5 by describing a procedure to compute the basis distri-

bution rules, fT , assuming they exist, and then showing the following properties of fT :
(a) Each fT is a budget-balanced distribution rule for W T (Lemmas 4-5).
(b) fW , and the basis distribution rules {fT}

T∈T , satisfy (4) (Lemma 7).
(c) Each fT is nonnegative; so, fT = fT

GWSV [ω
T ] for some ωT (Lemma 8).

Example 4. Table 3d shows the basis distribution rules computed by our recursive procedure in
(27). Note that fT

j ,1≤ j ≤ 4, are budget-balanced distribution rules for W T (for each T , the shares
sum up to 1). It can be verified that fT

2 , f
T
3 , f

T
4 are nonnegative and satisfy (4). Next, observe that

from Table 3a, fW
1 (i,{i, ℓ}) = 4, but from Table 3d,

∑
T∈T qT f

T
1 (i,{i, ℓ}) = q{i}f

{i}
1 (i,{i, ℓ}) = 5, so

fW
1 violates condition (b). Also, f

{i,k}
1 (k,{i, k})< 0, violating condition (c). So, fW

1 , the equal share
distribution rule, does not have a basis representation, and hence does not guarantee equilibrium
existence in all games; see Counterexamples 3-4 in the proofs of Lemmas 7 and 8.

6.4. Consistency of basis distribution rules. The fourth part of the proof establishes two
important consistency properties that the basis distribution rules fT must satisfy:
(a) Global consistency: If there is a pair of players i, j common to two coalitions T,T ′, then their

local shares from these two coalitions must satisfy (Lemma 9):

fT (i, T )fT ′
(j,T ′) = fT ′

(i, T ′)fT (j,T )

(b) Cyclic consistency: If there is a sequence of z ≥ 3 players, (i1, i2, . . . , iz) such that for each of
the z neighbor-pairs {(i1, i2) , (i2, i3) , . . . , (iz, i1)}, ∃ T1 ∈ T

min
i1i2

, T2 ∈ T
min
i2i3

, . . . , Tz ∈ T
min
izi1

and in
each Tj, at least one of the neighbors ij, ij+1 gets a nonzero share, then the shares of these z
players must satisfy (Lemma 10):

fT1(i1, T1)f
T2(i2, T2) · · ·f

Tz(iz, Tz) = fT1(i2, T1)f
T2(i3, T2) · · ·f

Tz(i1, Tz)
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Section A.3.1 is devoted to the proofs. Since fT = fT
GWSV [ω

T ] for some ωT , the above translate
into consistency conditions on the sequence of weight systems Ω = {ωT}

T∈T (Corollaries 2 and 3
respectively). These conditions are generalizations of those used to prove Proposition 1 in Chen et
al. [8] and Marden and Wierman [30] – the welfare function used, see (1), is such that T =2N\{∅},
which is ‘rich’ enough to further simplify the above consistency conditions. In such cases, the
distribution rule fW is fully determined by ‘pairwise shares’ of the form fW (i,{i, j}).

Example 5. Among the three budget-balanced distribution rules that have a basis representa-
tion, namely fW

2 , fW
3 and fW

4 , only fW
2 satisfies both consistency conditions. fW

3 fails the global con-
sistency test, since f

{i,j}
3 (i,{i, j})f {i,j,ℓ}

3 (j,{i, j, ℓ}) 6= f
{i,j,ℓ}
3 (i,{i, j, ℓ})f {i,j}

3 (j,{i, j}), and so, does
not guarantee equilibrium existence in all games; see Counterexample 5(a) in the proof of Lemma 9.
Similarly, fW

4 fails the cyclic consistency test, since f
{i,j}
4 (i,{i, j})f {j,k}

4 (j,{j, k})f {i,k}
4 (k,{i, k}) 6=

f
{i,j}
4 (j,{i, j})f {j,k}

4 (k,{j, k})f {i,k}
4 (i,{i, k}), and hence does not guarantee equilibrium existence in

all games; see Counterexample 6 in the proof of Lemma 10.

6.5. Existence of a universal weight system. The last step of the proof is to show that
there exists a universal weight system ω∗ = (λ∗,Σ∗) that is equivalent to all the weight systems in
Ω = {ωT }

T∈T . That is, replacing ωT with ω∗ for any coalition T does not change the distribution
rule fT

GWSV [ω
T ]:

Proposition 6. If fW =
∑

T∈T qTf
T
GWSV [ω

T ] is a budget-balanced distribution rule that guar-
antees the existence of an equilibrium in all games G ∈ G(N,fW ,W ), then, there exists a weight
system ω∗ such that,

(∀ T ∈ T ) fT
GWSV [ω

T ] = fT
GWSV [ω

∗]

In Section A.3.2, we prove this proposition by explicitly constructing ω∗, given a sequence of
weight systems Ω= {ωT }

T∈T that satisfies the consistency Corollaries 2 and 3.

Example 6. The only budget-balanced distribution rule to have survived all the necessary con-
ditions is fW

2 . Using the construction in Section A.3.2, it can be shown that fW
2 is equivalent to

the generalized weighted Shapley value distribution rule fW
GWSV [ω

∗], where the weight system ω∗ =
(λ∗,Σ∗) is given by λ

∗ = ( 1
2
, 1
2
,1, a) where a is any strictly positive number, and Σ∗ = {{i, j, k},{ℓ}}.

Appendix A: Proof of Theorem 1. In this appendix, we present the complete proof of
Theorem 1. It is our intent that this section be self-contained and independent of the partial outline
presented in Section 6, and therefore, may contain some redundancies.
First, note that we only need to prove one direction since it is known that for any weight system

ω and any mapping gSV , all games in G(N,{f gSV (W )
GWSV [ω]}W∈W,W) have an equilibrium (Hart and

Mas-Colell [18]).12 Thus, we present the bulk of the proof – the other direction – proving that for
distribution rules fW that are not generalized weighted Shapley values on some welfare function,
there exists a game in G(N,fW,W) for which no equilibrium exists.
The general technique of the proof is as follows. First, we present a quick reduction to charac-

terizing only budget-balanced distribution rules fW that guarantees equilibrium existence for all
games in G(N,fW,W). Then, we establish several necessary conditions that these rules must satisfy.
Effectively, for each W ∈W, these necessary conditions eliminate any budget-balanced distribution
rule fW that is not a generalized weighted Shapley value onW , and hence give us our desired result.
We establish each of these conditions by a series of counterexamples which amount to choosing a
resource set R, the local welfare functions {Wr}r∈R

, and the associated action sets {Ai}i∈N
, for

which failure to satisfy a necessary condition would lead to nonexistence of an equilibrium.

12 In fact, notice that W has no role to play as far as equilibrium existence of games G(N,{fgSV (W )
GWSV [ω]}W∈W,W) is

concerned, since it does not directly affect player utilities. This observation will prove crucial later.
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Table 4. Summary of notation

Symbol Definition Meaning

T W (S)
{
T ∈ T W | T ⊆ S

}
set of contributing coalitions in S

NW (S)
⋃
T W (S) set of contributing players in S

T W
ij

{
T ∈ T W | {i, j} ⊆ T

}
set of coalitions containing both players i and j

Bmax {B ∈B | (∄B′ ∈B) s.t. B (B′} set of maximal elements of the poset (B,⊆)

Bmin {B ∈B | (∄B′ ∈B) s.t. B′ (B} set of minimal elements of the poset (B,⊆)

Most counterexamples involve multiple copies of the same resource. To simplify specifying such
counterexamples, we introduce a scaling coefficient vr ∈Z++ for each resource r ∈R, which denotes
the number of copies of r, so that we have,

(∀ a∈A) W(a) =
∑

r∈R

vrWr ({a}r) and Ui(a) =
∑

r∈ai

vrf
r (i,{a}r) .

Therefore, to exhibit a counterexample, in addition to choosing R, {Wr}r∈R
and {Ai}i∈N

, we also
choose {vr}r∈R

.
Throughout, we work with the basis-representation of the welfare function that was introduced

in Section 3.1. For each W ∈W, it is useful to think of the sets in T W as being ‘coalitions’ of
players that contribute to the welfare function W (also referred to as contributing coalitions), and
the corresponding coefficients in QW as being their respective contributions. Also, for simplicity,
we normalize W by setting W (∅) = 0 and therefore, ∅ /∈ T W . Before proceeding, we introduce some
notation below, which is also summarized in Table 4 for easy reference.

Notation. For any subset S ⊆N , let T W (S) denote the set of contributing coalitions in S:

T W (S) =
{
T ∈ T W | T ⊆ S

}

Using this notation, and the definition of inclusion functions from (2) in (3), we have an alternate
way of writing W , namely,

W (S) =
∑

T∈T W (S)

qWT (14)

For any subset S ⊆N , let NW (S) denote the set of contributing players in S:

NW (S) =
⋃
T W (S)

Using this notation, and the alternate definition of W from (14), we have,

W (S) =W (NW (S)) (15)

For any two players i, j ∈N , let T W
ij denote the set of all coalitions containing i and j:

T W
ij =

{
T ∈ T W | {i, j}⊆ T

}
(16)

Let B ⊆ 2N denote a collection of subsets of N . The relation ⊆ induces a partial order on B. Let
Bmax and Bmin denote the set of maximal and minimal elements of the poset (B,⊆) respectively:

Bmax = {B ∈B | (∄B′ ∈ B) s.t. B (B′}

Bmin = {B ∈B | (∄B′ ∈ B) s.t. B′ (B}

Example 7. Let N = {i, j, k} be the set of players, and W : 2N → R as defined in Table 5a.
Table 5b shows the basis representation of W , and Table 5c illustrates our notation for this W .



18 Gopalakrishnan, Marden, and Wierman: Potential Games are Necessary to Ensure PNE in Cost Sharing Games

Table 5. Tables for Example 7

(a) Definition of W

S W (S)

∅ 0

{i} 1

{j} 2

{k} 3

{i, j} 3

{j, k} 3

{i, k} 3

{i, j, k} 4

(b) Basis representation of W

Coalition T ∈ T W Contribution qWT ∈QW

{i} 1

{j} 2

{k} 3

{j, k} −2

{i, k} −1

{i, j, k} 1

(c) Illustration of notation

Symbol Value

T W ({i, j}) {{i},{j}}

T W ({j, k}) {{j},{k},{j, k}}

NW ({i, k}) {i, k}

T W
ij {{i, j, k}}

(
T W
jk

)max
{{i, j, k}}

(
T W
ik

)min
{{i},{k}}

Proof outline. The proof is divided into five sections – each section incrementally builds on
the structure imposed on the distribution rule f by previous sections:
1. Reduction to budget-balanced distribution rules. We reduce the problem of characterizing all

distribution rules fW that guarantee equilibrium existence for all G∈ G(N,fW,W) to charac-
terizing only budget-balanced distribution rules fW that guarantee equilibrium existence for
all G∈ G(N,fW,W).

2. Three necessary conditions. We establish three necessary conditions that collectively describe,
for any W ∈W, for any subset S of players, which players get shares of W (S) and how these
shares are affected by the presence of the other players.

3. Decomposition of the distribution rule. We use these conditions to show that for each W ∈W,
fW must be representable as a linear combination of generalized weighted Shapley value distri-
bution rules (with possibly different weight systems) on the unanimity games corresponding
to the coalitions in T W , with corresponding coefficients from QW .

4. Consistency of basis distribution rules. We establish two important consistency properties (one
global and one cyclic) that these ‘basis’ distribution rules should satisfy, and restate these
properties in terms of their corresponding weight systems.

5. Existence of a universal weight system. We use the two consistency conditions on the weight
systems of the basis distribution rules to show that there exists a single universal weight
system that can replace the weight systems of all the basis distribution rules without changing
the resulting shares of any welfare function. This establishes, for each W ∈W, the equivalence
of fW to a generalized weighted Shapley value on W with this universal weight system.

A.1. Reduction to budget-balanced distribution rules. First, we reduce the problem of
characterizing all distribution rules fW that guarantee equilibrium existence for all G∈ G(N,fW,W)
to characterizing only budget-balanced distribution rules fW that guarantee equilibrium existence
for all G∈ G(N,fW,W):

Proposition 7. Given any set of local welfare functions W, their corresponding local distri-
bution rules fW guarantee the existence of an equilibrium for all games in G(N,fW,W) if and only
if they guarantee the existence of an equilibrium for all games in G(N,fW, gSV (W)).

Proof. This proposition is actually a subtlety of our notation. For games G ∈ G(N,fW,W),
the welfare functions W do not directly affect strategic behavior (they only do so through the
distribution rules fW). Therefore, in terms of strategic behavior and equilibrium existence, the
classes G(N,fW,W) and G(N,fW,W′) are identical, for any two sets of welfare functions W,W′.
Therefore, a distribution rule fW guarantees equilibrium existence for all games in G(N,fW,W)
if and only if it guarantees equilibrium existence for all games in G(N,fW,W′). To complete the
proof, simply pick W′ = gSV (W), the actual welfares distributed by fW, as defined in (10). �
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Notice that fW are budget-balanced distribution rules for the actual welfares they distribute,
namely gSV (W) as defined in (10). Hence, it is sufficient to prove that for budget-balanced distribu-
tion rules fW that are not generalized weighted Shapley values, there exists a game in G(N,fW,W)
for which no equilibrium exists.

A.2. Constraints on individual distribution rules. In the next two sections, we establish
common constraints that each budget-balanced distribution rule fW ∈ fW must satisfy, in order
to guarantee equilibrium existence for all games in G(N,fW,W) for any given set of local welfare
functions W. To do this, we deal with one welfare function at a time – for each W ∈W, we only
focus on the corresponding distribution rule fW guaranteeing equilibrium existence for all games
in the class G(N,fW ,W ). Note that this is justified by the fact that G(N,fW ,W )⊆ G(N,fW,W)
for all W ∈W, and so, if fW guarantees equilibrium existence for all games in G(N,fW,W), then
each fW ∈ fW must guarantee equilibrium existence for all games in G(N,fW ,W ).
Since we are dealing with only one welfare function at a time, we drop the superscripts from

fW , T W , QW , qWT , etc. in order to simplify notation.

A.2.1. Three necessary conditions. Our goal in this section is to establish that, for every
subset S ⊆N of players, any budget-balanced distribution rule f must distribute the welfare W (S)
only among contributing players, and do so as if the noncontributing players were absent:

Proposition 8. If f is a budget-balanced distribution rule that guarantees the existence of an
equilibrium in all games G∈ G(N,f,W ), then,

(∀ S ⊆N) (∀ i∈ S) f(i, S) = f(i,N(S))

We prove this proposition in incremental stages, by establishing the following necessary condi-
tions, for any subset S ⊆N :
(a) If no contributing coalition is formed in S, then f does not allocate any utility to the players

in S. Formally, in Lemma 1, we show that if T (S) = ∅, then for all players i∈ S, f(i, S) = 0.
(b) f distributes the welfare only among the contributing players in S. Formally, in Lemma 2, we

generalize Lemma 1 by showing that for all players i /∈N(S), f(i, S) = 0.
(c) f distributes the welfare among the contributing players in S as if all other players were

absent. Formally, in Lemma 3, we show that for all players i∈N(S), f(i, S) = f(i,N(S)).

Lemma 1. If f is a budget-balanced distribution rule that guarantees the existence of an equi-
librium in all games G∈ G(N,f,W ), then,

(∀ S ⊆N s.t. T (S) = ∅) (∀ i ∈ S) f(i, S) = 0 (17)

Proof. The proof is by induction on |S|. The base case, where |S| = 1 is immediate, because
from budget-balance, we have that for any player i ∈N ,

f(i,{i}) =

{
q{i} , {i} ∈ T

0 , otherwise

Our induction hypothesis is that (17) holds for all subsets S of size z, for some 0 < z < |N |.
Assuming that this is true, we show that (17) holds for all subsets S of size z+1. The proof is by
contradiction, and proceeds as follows.
Assume to the contrary, that f(i, S) 6= 0 for some i ∈ S, for some S ⊆N , where T (S) = ∅ and
|S|= z+1. Since f is budget-balanced, and z+1≥ 2, it follows that there is some j ∈ S−{i} with
f(j,S) 6= 0, such that f(i, S) · f(j,S)< 0, i.e., f(i, S) and f(j,S) have opposite signs. Without loss
of generality, assume that f(i, S)< 0 and f(j,S)> 0.
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fixed players: fixed players:

(a) The game

,

,

,

,

(b) The payoff matrix

Figure 1. Counterexample 1

Counterexample 1: Consider the game in Figure 1a, with resource set R = {r1, r2} and local
resource coefficients vr1 = vr2 = 1. Players i and j have the same action sets – they can each choose
either r1 or r2. All other players in S have a fixed action – they choose both resources. Formally,

Ak =




{{r1},{r2}} , k ∈ {i, j}

{{r1, r2}} , k ∈ S−{i, j}

This is essentially a game between i and j, with the payoff matrix in Figure 1b.
Since T (S) = ∅, it follows that T (S′) = ∅ for all S′ ⊆ S. Therefore, by letting S′ = S−{i}, we can

apply the induction hypothesis to S′ to obtain f(j,S−{i}) = 0. Similarly, by letting S′ = S−{j},
we get f(i, S−{j})= 0. We now use this to show that none of the four outcomes of Counterexample
1 is an equilibrium – this contradicts the fact that f guarantees the existence of an equilibrium
in all games G∈ G(N,f,W ). First, consider the outcome ({r1},{r1}). Given that player j is in r1,
player i obtains a payoff of f(i, S) in r1, which, by our assumption in step (ii), is negative. By
deviating to r2, player i would obtain a payoff of f(i, S−{j}) = 0, which is strictly better for player
i. Hence, ({r1},{r1}) is not an equilibrium. By nearly identical arguments, it can be shown that
the other three outcomes are also not equilibria. This completes the inductive argument. �

Lemma 2. If f is a budget-balanced distribution rule that guarantees the existence of an equi-
librium in all games G∈ G(N,f,W ), then,

(∀ S ⊆N) (∀ i∈ S−N(S)) f(i, S) = 0 (18)

Proof. For 0 ≤ p ≤ |T | and 0 ≤ q ≤ n, let Pq
p denote the collection of all nonempty subsets

S for which |T (S)| = p and |S − N(S)| = q, i.e., S has exactly p contributing coalitions and q
noncontributing players in it. Then, P= {P0

0 ,P
1
0 , . . . ,P

n
0 , P0

1 ,P
1
1 , . . . ,P

n
1 , . . . , P0

|T |,P
1
|T |, . . . ,P

n
|T |}

is an ordered partition of all nonempty subsets of N . Note that we have slightly abused the usage
of the term ‘partition’, since it is possible that Pq

p = ∅ for some p, q.
We prove the lemma by induction on P =

{
{Pq

p}
}
, i.e., the tuple (p, q). Our base cases are

twofold:
(i) When p= 0, i.e., for any subset S ∈

⋃n

q=0P
q
0 , T (S) = ∅. So, (18) is true from Lemma 1.

(ii) When q= 0, i.e., for any subset S ∈
⋃n

p=0P
0
p , S =N(S). So, (18) is vacuously true.

Our induction hypothesis is the following statement:

(18) holds for all S ∈
z⋃

p=0

n⋃

q=0

Pq
p

y⋃

q=0

Pq
z+1, for some 0≤ z < |T |, and for some 0≤ y < n.

Assuming that this is true, we prove that (18) holds for all S ∈ Py+1
z+1 . In other words, assuming

that for all subsets S ∈
⋃
{P0

0 ,P
1
0 , . . . ,P

n
0 , . . . , P0

z ,P
1
z , . . . ,P

n
z , . . . , P0

z+1,P
1
z+1, . . . ,P

y
z+1} we have

already proved the lemma, we focus on proving the lemma for S ∈Py+1
z+1 , the next collection in P.

The proof is by contradiction, and proceeds as follows.
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Assume to the contrary, that f(i, S) 6= 0 for some i∈ S−N(S), for some S ∈Py+1
z+1 . Since z+1≥ 1

and y + 1 ≥ 1, it must be that |S| ≥ 2, i.e., S has at least two players. Also, because i /∈ N(S),
it follows that N(S) = N(S − {i}), and so, from (15), we have, W (S) = W (S − {i}). Since f is
budget-balanced, and W (S) =W (S−{i}), we can express f(i, S) as,

f(i, S) =
∑

k∈S−{i}

(f(k,S−{i})− f(k,S))

Because f(i, S) 6= 0, it is clear that at least one of the difference terms on the right hand side is
nonzero and has the same sign as f(i, S). That is, there is some j ∈ S−{i} such that

f(i, S) (f(j,S−{i})− f(j,S))> 0 (19)

Also, f(i, S−{j}) = 0. To see this, we consider the following two cases, where, for ease of expression,
we let S′ = S−{j}.

(i) If j ∈N(S), then |T (S′)|< |T (S)|= z+1, and so S′ ∈
⋃z

p=0

⋃n

q=0P
q
p .

(ii) If j /∈ N(S), then |T (S′)| = |T (S)| = z + 1, and |S′ − N(S′)| < |S − N(S)| = y + 1 and so
S′ ∈

⋃y

q=0P
q
z+1.

In either case, we can apply the induction hypothesis to S−{j} to conclude that f(i, S−{j}) = 0,
since i /∈N(S−{j}). Therefore, (19) can be rewritten as,

(f(i, S)− f(i, S−{j})) (f(j,S)− f(j,S−{i}))< 0

To complete the proof, let us first consider the case where f(i, S)− f(i, S−{j})< 0 and f(j,S)−
f(j,S−{i})> 0. For this case, Counterexample 1 illustrated in Figure 1, along with the arguments
for non-existence of equilibrium therein (the proof of Lemma 1), serves as a counterexample here
too. The proof for when f(i, S)− f(i, S−{j})> 0 and f(j,S)− f(j,S−{i})< 0 is symmetric. �

Lemma 3. If f is a budget-balanced distribution rule that guarantees the existence of an equi-
librium in all games G∈ G(N,f,W ), then,

(∀ S ⊆N) (∀ i∈N(S)) f(i, S) = f(i,N(S)) (20)

Proof. Since this is a tautology when N(S) = S, let us assume that N(S)( S. We consider two
cases below.

Case 1: |N(S)| = 1. Without loss of generality, let N(S) = {i}. Since f is budget-balanced, and
W (S) =W (N(S)), we can express f(i,N(S)) as,

f(i,N(S)) =
∑

k∈S

f(k,S)

From Lemma 2, we know that f(k,S) = 0 for all k ∈ S−N(S). Accordingly, f(i, S) = f(i,N(S)).

Case 2: |N(S)| 6= 1. For 0≤ p≤ |T |, let Pp denote the collection of all nonempty subsets S such
that |N(S)| 6= 1 and N(S)( S, for which |T (S)|= p, i.e., S has exactly p contributing coalitions
in it. Then, P = {P0,P1, . . . ,P|T |} is an ordered partition of all nonempty subsets S such that
|N(S)| 6= 1 and N(S) ( S. Note that we have slightly abused the usage of the term ‘partition’,
since it is possible that Pp = ∅ for some p.
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We prove the lemma by induction on P. The base case, where S ∈ P0, is vacuously true, since
N(S) = ∅. Our induction hypothesis is that (20) holds for all subsets S ∈

⋃z

p=0Pp, for some 0 ≤
z < |T |. Assuming that this is true, we show that (20) holds for all subsets S ∈Pz+1.

Before proceeding with the proof, we point out the following observation. Since f is budget-
balanced, and W (S) =W (N(S)), we have,

∑

k∈N(S)

f(k,N(S)) =
∑

k∈S

f(k,S) =
∑

k∈N(S)

f(k,S) (21)

where the second equality comes from Lemma 2, which gives us f(k,S) = 0 for all k ∈ S−N(S).

The proof is by contradiction, and proceeds as follows. Assume to the contrary, that f(k,S) 6=
f(k,N(S)) for some k ∈ N(S), for some S ∈ Pz+1. Since z + 1 ≥ 1, and |N(S)| 6= 1, |N(S)| ≥ 2.
Then, from (21), we can pick i, j ∈N(S) such that,

f(i, S)< f(i,N(S)) (22)

f(j,S)> f(j,N(S)) (23)

fixed players: fixed players:

r22

fixed players:

r21

fixed players:

(a) The game

,

,

,

,

(b) The payoff matrix

Figure 2. Counterexample 2

Counterexample 2: Consider the game in Figure 2a, with resource set R= {r11, r12, r21, r22} and
local resource coefficients vr11 = vr12 = vr21 = vr22 = 1. Player i is the row player and player j is the
column player. All other players in N(S) have a fixed action – they choose all four resources. And
all players in S−N(S) also have a fixed action – they choose resources r12 and r21. Formally,

Ak =






{T = {r11, r12},B = {r21, r22}} , k= i

{L= {r11, r21},R= {r12, r22}} , k= j

{{r11, r12, r21, r22}} , k ∈N(S)−{i, j}

{{r12, r21}} , k ∈ S−N(S)

This is essentially a game between players i and j, with the payoff matrix in Figure 2b. The set of
joint action profiles can therefore be represented as A= {TL,TR,BL,BR}.
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Because i ∈ N(S), |T (S − {i})| = |T (N(S) − {i})| < |T (S)|. Also note that N(S − {i}) =
N(N(S)−{i}). Now, consider two cases:
(i) If j /∈N(S−{i}), then j /∈N(N(S)−{i}), and so, from Lemma 2, f(j,S−{i}) = f(j,N(S)−
{i}) = 0.

(ii) If j ∈N(S−{i}), then j ∈N(N(S)−{i}). If N(S−{i}) = {j}, then, applying our analysis in
Case 1 to S−{i} and N(S)−{i}, we have,

f(j,S−{i}) = f(j,N(S−{i}))

f(j,N(S)−{i}) = f(j,N(N(S)−{i}))
(24)

If N(S − {i}) 6= {j}, then we know that |N(S − {i})| ≥ 2. Accordingly, we can apply our
induction hypothesis to S−{i} and N(S)−{i} to obtain (24).

In either case, we have,
f(j,S−{i}) = f(j,N(S)−{i}) (25)

By similar arguments, we obtain,

f(i, S−{j}) = f(i,N(S)−{j}) (26)

We use the four properties in (22), (23), (25), and (26) to show that Counterexample 2 does
not possess an equilibrium, thereby contradicting the fact that f guarantees the existence of an
equilibrium in all games G∈ G(N,f,W ). We show this for each outcome:
(i) TL is not an equilibrium, since player j has an incentive to deviate from L to R:

f(j,N(S)−{i})+ f(j,S)> f(j,S−{i})+ f(j,N(S))

This results from combining (23) and (25).
(ii) TR is not an equilibrium, since player i has an incentive to deviate from T to B:

f(i, S−{j})+ f(i,N(S))> f(i,N(S)−{j})+ f(i, S)

This results from combining (22) and (26).
(iii) BR and BL are also not equilibria, because in these action profiles, players j and i respectively

have incentives to deviate – the arguments are identical to cases (a) and (b) above, respectively.
This completes the inductive argument. �

A.2.2. Decomposition of the distribution rule. Our goal in this section is to use the
necessary conditions above (Proposition 8) to establish that f must be representable as a linear
combination of generalized weighted Shapley value distribution rules (see (8) in Table 2) on the
unanimity games corresponding to the coalitions in T , with corresponding coefficients from Q:

Proposition 9. If f is a budget-balanced distribution rule that guarantees the existence of
an equilibrium in all games G ∈ G(N,f,W ), then, there exists a sequence of weight systems Ω =
{ωT}

T∈T such that

f =
∑

T∈T

qTf
T
GWSV [ω

T ]

Note that for now, the weight systems ωT could be arbitrary, and need not be related in any
way. We deal with how they should be ‘consistent’ later, in Section A.3.1.
Before proceeding, we define a useful abstract mathematical object. The min-partition of a finite

poset (T ,⊆), denoted by Pmin(T ) = {P1,P2, . . . ,Pℓ}, is an ordered partition of T , constructed
iteratively as specified in Algorithm 1.
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Algorithm 1 Construction of Pmin(T )

P1 = T
min

z← 2
while T 6=

⋃
1≤p<z

Pp do Pz = (T −
⋃

1≤p<z
Pp)

min; z← z+1;
end while

Example 8. Let (T ,⊆) be a poset, where T = {{i},{j},{j, k},{k, ℓ},{j, ℓ},{i, j, k}}. Then,

Pmin(T ) = { {{i},{j},{k, ℓ}} , {{j, k},{j, ℓ}} , {{i, j, k}} }

Construction of basis distribution rules: Given a budget-balanced distribution rule f that guar-
antees the existence of an equilibrium in all games G ∈ G(N,f,W ), we now show how to con-
struct a sequence of basis distribution rules {fT}

T∈T such that (4) is satisfied. Let Pmin(T ) =
{P1,P2, . . . ,Pℓ} be the min-partition of the poset (T ,⊆), and let f be a distribution rule for W .
Starting with z =1, recursively define fT for each T ∈Pz as,

(∀S ⊆N) (∀i∈N) fT (i, S) =





1
qT



f(i, T )−
∑

T ′∈T (T )−{T}

qT ′fT ′
(i, S)



 , T ⊆ S

0 , otherwise

(27)

At the end of this procedure, we obtain the basis distribution rules {fT}
T∈T . Note that it is not

obvious from this construction that these basis distribution rules satisfy (4), or that they are
generalized weighted Shapley value distribution rules on their corresponding unanimity games.
The rest of this section is devoted to showing these properties. But first, here is an example to
demonstrate this recursive construction.

Example 9. Consider the setting in Example 7, where N = {i, j, k} is the set of players, and
W : 2N →R is the welfare function defined in Table 5a. The basis representation of W is shown in
Table 5b. The set of coalitions is therefore given by T = {{i},{j},{k},{j, k},{i, k},{i, j, k}}. For
the poset (T ,⊆), we have,

Pmin(T ) = { {{i},{j},{k}} , {{j, k},{i, k}} , {{i, j, k}} }

Consider the following two distribution rules for W .
(i) fSV , the Shapley value distribution rule (see Section 2.1.2).
(ii) fEQ, the equal share distribution rule (see Section 2.1.1).
Table 6a shows fSV and fEQ for this welfare function. The basis distribution rules fT

SV and fT
EQ

that result from applying our construction (27) above are shown in Table 6b. For simplicity, we
show only fT

SV (·, T ) and fT
EQ(·, T ).

The proof of Proposition 9 consists of four lemmas, as outlined below:

(a) In Lemma 4, we show that each fT , as constructed in (27) mimics f locally for its correspond-
ing unanimity game W T , i.e., fT satisfies Proposition 8 for W =W T .

(b) Using this property, in Lemma 5, we show that each fT is a budget-balanced distribution rule
for its corresponding unanimity game W T .

(c) In Lemma 7, we show that f , and the basis distribution rules {fT}
T∈T , satisfy (4), i.e.,

f =
∑

T∈T qTf
T .

(d) Finally, in Lemma 8, we show that for each T ∈ T , there exists a weight system ωT such that
fT = fT

GWSV [ω
T ].
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Table 6. Tables for Example 9

(a) Definition of fSV and fEQ

S fSV (·, S) fEQ(·, S)

{i} (1) (1)

{j} (2) (2)

{k} (3) (3)

{i, j} (1,2) ( 3
2
, 3
2
)

{j, k} (1,2) ( 3
2
, 3
2
)

{i, k} ( 1
2
, 5
2
) ( 3

2
, 3
2
)

{i, j, k} ( 5
6
, 4
3
, 11

6
) ( 4

3
, 4
3
, 4
3
)

(b) Basis distribution rules for fSV and fEQ

Coalition T ∈ T fT
SV (·, T ) fT

EQ(·, T )

{i} (1) (1)

{j} (1) (1)

{k} (1) (1)

{j, k} ( 1
2
, 1
2
) ( 1

4
, 3
4
)

{i, k} ( 1
2
, 1
2
) (− 1

2
, 3
2
)

{i, j, k} ( 1
3
, 1
3
, 1
3
) (− 1

6
,− 1

6
, 4
3
)

Lemma 4. Each fT as defined in (27) satisfies,

(∀S ⊆N) (∀i∈N) fT (i, S) =




fT (i, T ) , i∈ T and T ⊆ S

0 , otherwise
(28)

Proof. The proof is by induction on Pmin(T ). The base case, where T ∈P1 is immediate, because
from (27), for any T ∈P1,

(∀S ⊆N) (∀i∈N) fT (i, S) =





1
qT
f(i, T ) , T ⊆ S

0 , otherwise

Our induction hypothesis is that fT satisfies (28) for all T ∈
⋃z

p=1Pp, for some 1≤ z < ℓ. Assuming
that this is true, we prove that fT satisfies (28) for all T ∈ Pz+1. To evaluate fT (i, S) for some
i∈ S ⊆N , we consider the following three cases:

(i) T * S. In this case, from (27), fT (i, S) = 0.
(ii) i /∈ T ⊆ S. Here, we know that f(i, T ) = 0 by definition. Also, for all T ′ ∈ T (T )−{T}, we have,

T ′ ∈
⋃z

p=1Pp and i /∈ T ′; so, from the induction hypothesis, fT ′
(i, S) = 0. Therefore, evaluating

(27), we get fT (i, S) = 0.

(iii) i∈ T ⊆ S. In this case, we need to show that fT (i, S) = fT (i, T ). By (27), we have,

fT (i, S) =
1

qT



f(i, T )−
∑

T ′∈T (T )−{T}

qT ′fT ′
(i, S)





fT (i, T ) =
1

qT


f(i, T )−

∑

T ′∈T (T )−{T}

qT ′fT ′
(i, T )




For each T ′ ∈ T (T )−{T}, we know that T ′ ∈
⋃z

p=1Pp, and hence, from the induction hypoth-

esis, we have fT ′
(i, S) = fT ′

(i, T ). Therefore, fT (i, T ) = fT (i, S), as desired.

Hence, fT satisfies (28). �
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Lemma 5. If f is a budget-balanced distribution rule for W , then each fT as defined in (27) is
a budget-balanced distribution rule for W T , i.e.,

(∀T ∈ T ) (∀S ⊆N)
∑

i∈S

fT (i, S) =W T (S)

Proof. Since fT is of the form (28) from Lemma 4, to show (local) budget-balance, we need
only show that

(∀T ∈ T )
∑

i∈T

fT (i, T ) = 1 (29)

Once again, the proof is by induction on Pmin(T ). The base case, where T ∈ P1 follows from the
budget-balance of f . Our induction hypothesis is that fT satisfies (29) for all T ∈∪z

p=1Pp, for some
1 ≤ z < ℓ. Assuming that this is true, we prove that fT satisfies (29) for all T ∈ Pz+1. For any
T ∈Pz+1, using (27), we have,

∑

i∈T

fT (i, T )=
1

qT




∑

i∈T

f(i, T )−
∑

i∈T

∑

T ′∈T (T )−{T}

qT ′fT ′

(i, T ′)





=
1

qT


W (T )−

∑

T ′∈T (T )−{T}

∑

i∈T ′

qT ′fT ′

(i, T ′)




=
1

qT




∑

T ′∈T (T )

qT ′ −
∑

T ′∈T (T )−{T}

qT ′



=
1

qT
(qT ) = 1

where we have used the budget-balance of f , followed by the induction hypothesis and (14). This
completes the inductive argument and hence the proof. �

Example 10. Consider the decomposition of fSV and fEQ illustrated in Example 9. Both fT
SV

and fT
EQ are locally budget-balanced for all T ∈ T , that is, they satisfy (29).

Before continuing with the proof, in the next lemma, we present the conditional inclusion-
exclusion principle, an important and useful property of the basis distribution rules {fT}

T∈T .

Lemma 6. (Conditional inclusion-exclusion principle) For any T ∈ T , there exist integers
{nT (T

′)}
T ′∈T such that the basis distribution rules {fT}

T∈T defined in (27) satisfy,

(∀i∈ T ) qTf
T (i, T ) =

∑

T ′∈T (T )

nT (T
′)f(i, T ′) (30)

Furthermore, if {fT}
T∈T satisfies

(∀S ( T ) (∀i∈ S) f(i, S) =
∑

T ′∈T (S)

qT ′fT ′
(i, T ′), (31)

then,
(∀i∈ T ) (∀j ∈ T −{i}) 0 = qTf

T (i, T −{j}) =
∑

T ′∈T (T )

nT (T
′)f(i, T ′−{j}) (32)

Proof. For any T ∈ T , setting S = T in (27), and using Lemma 4, we get,

(∀i∈ T ) qTf
T (i, T ) = f(i, T )−

∑

T ′∈T (T )−{T}

qT ′fT ′
(i, T ′) (33)

It follows that by unravelling the recursion above, i.e., by repeatedly substituting for the terms
qT ′fT ′

(i, T ′) that appear in the summation, we obtain (30), where {nT (T
′)}

T ′∈T are some integers.
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Let Ti(T ) = {T
′ ∈ T (T ) : i∈ T ′} denote the set of coalitions contained in T that contain i. Before

proving (32), we make the following observation. From (30), we have,

(∀i∈ T ) qTf
T (i, T ) =

∑

T ′∈T (T )

nT (T
′)f(i, T ′)

=
∑

T ′∈Ti(T )

nT (T
′)

∑

T ′′∈Ti(T
′)

qT ′′fT ′′
(i, T ′′) (from (27) and Lemma 4)

=
∑

T ′∈Ti(T )

mi,T (T
′)qT ′fT ′

(i, T ′)

(34)

where {mi,T (T
′)}

T ′∈T are some integer coefficients. We now exploit the fact that (34) holds for all
distribution rules f to show that the unique solution for the coefficients mi,T (T

′) is given by,

mi,T (T
′) =




1 , T ′ = T

0 , otherwise
(35)

To see this, we first prove that, given T ∈ T and i ∈ T , mi,T (T
′′) = 0 for all T ′′ ∈ Ti(T ) − {T}

by induction on Pmin(Ti(T ) − {T}). To do this, we focus on the family of generalized weighted
Shapley value distribution rules {fGWSV [ω

S]}
S∈T (T ) with weight systems ωS = (λ,ΣS), where λ=

(1,1, . . . ,1) and ΣS = (N −S,S). By definition (see (8) in Table 2), for each T ′ ∈ Ti(T ),

fT ′

GWSV [ω
S ](i, T ′) =





1
|T ′|

, T ′ ⊆ S

0 , otherwise
(36)

(i) For the base case, when T ′′ ∈P1, it follows from (36), with S = T ′′, that, for all T ′ ∈ Ti(T ),

fT ′

GWSV [ω
T ′′

](i, T ′) =





1
|T ′|

, T ′ = T ′′

0 , otherwise
(37)

This results from the fact that since T ′′ ∈P1, T
′ ⊆ T ′′ if and only if T ′ = T ′′. Now, we evaluate

(34) for the distribution rule fGWSV [ω
T ′′

] to get,

qT f
T
GWSV [ω

T ′′
](i, T ) =

∑

T ′∈Ti(T )

mi,T (T
′)qT ′fT ′

GWSV [ω
T ′′

](i, T ′)

Using (37) to simplify the above equation, we get,

0 =mi,T (T
′′)qT ′′

1

|T ′′|

since, for any T ′ 6= T ′′, T ′ ∩ (N −T ′) 6= ∅. Therefore, mi,T (T
′′) = 0.

(ii) Our induction hypothesis is that mi,T (T
′′) = 0 for all T ′′ ∈

⋃z

p=1Pp, for some 1≤ z < ℓ. Assum-
ing that this is true, we prove that mi,T (T

′′) = 0 for all T ′′ ∈ Pz+1. If T
′′ ∈ Pz+1, it follows

from (36), with S = T ′′, that, for all T ′ ∈ {T}
⋃ℓ

p=z+1Pp, (37) holds, from a similar reasoning

as above. Now, we evaluate (34) for the distribution rule fGWSV [ω
T ′′

](·, ·) to get,

qT f
T
GWSV [ω

T ′′
](i, T ) =

∑

T ′∈Ti(T )

mi,T (T
′)qT ′fT ′

GWSV [ω
T ′′

](i, T ′)
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By grouping together terms on the right hand side, we can rewrite this as,

qTf
T
GWSV [ω

T ′′
](i, T ) =mi,T (T )qTf

T
GWSV [ω

T ′′
](i, T )+

ℓ∑

p=1

∑

T ′∈Pp

mi,T (T
′)qT ′fT ′

GWSV [ω
T ′′

](i, T ′)

(38)Using the induction hypothesis, we get that,
z∑

p=1

∑

T ′∈Pp

mi,T (T
′)qT ′fT ′

GWSV [ω
T ′′

](i, T ′) = 0 (39)

Using (37), we get that,

ℓ∑

p=z+1

∑

T ′∈Pp

mi,T (T
′)qT ′fT ′

GWSV [ω
T ′′

](i, T ′) =mi,T (T
′′)qT ′′

1

|T ′′|

fT
GWSV [ω

T ′′
](i, T ) = 0

(40)

since, for all T ′ ∈ {T}
⋃ℓ

p=z+1Pp, if T
′ 6= T ′′, then T ′∩ (N −T ′) 6= ∅. Therefore, using (39) and

(40) in (38), we get mi,T (T
′′) = 0.

This completes the inductive argument. From this, it is straightforward to see that mi,T (T ) = 1.

We now return to proving the remainder of the lemma, that is (32). The right hand side of (32)
can be evaluated as,

∑

T ′∈T (T )

nT (T
′)f(i, T ′−{j}) =

∑

T ′∈T (T )

nT (T
′)

∑

T ′′∈T (T ′−{j})

qT ′′fT ′′
(i, T ′′) (from (31))

=
∑

T ′∈Ti(T )

nT (T
′)

∑

T ′′∈Ti(T
′)

qT ′′fT ′′
(i, T ′′−{j}) (from Lemma 4)

=
∑

T ′∈Ti(T )

mi,T (T
′)qT ′fT ′

(i, T ′−{j}) (from (34))

= qTf
T (i, T −{j}) = 0 (from (35))

This completes the proof. �

Lemma 7. If f is a budget-balanced distribution rule that guarantees the equilibrium existence
in all games G∈G(N,f,W ), then the basis distribution rules {fT}

T∈T defined in (27) satisfy

(∀S ⊆N) (∀i∈ S) f(i, S) =
∑

T∈T

qTf
T (i, S) (41)

Proof. From Lemma 4, (41) is equivalent to

(∀S ⊆N) (∀i∈ S) f(i, S) =
∑

T∈T (S)

qTf
T (i, T ) (42)

Let S ⊆N . We consider three cases:
Case 1: S ∈ T . The proof is immediate here, because, rearranging the terms in (27), we get,

f(i, S) =
∑

T ′∈T (S)

qT ′fT ′
(i, S) =

∑

T ′∈T (S)

qT ′fT ′
(i, T ′) (43)

where the last equality follows from Lemma 4.
Case 2: S 6=N(S). In this case, we can apply Proposition 8, i.e., f(i, S) = f(i,N(S)), to reduce it
to the following case, replacing S with N(S).
Case 3: S =N(S). In other words, S is a union of one or more coalitions in T . The remainder of
the proof is devoted to this case.
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For any subset S ⊆N such that S =N(S), i.e., S is exactly a union of one or more coalitions
in T , we prove this lemma by induction on |T (S)|. The base case, where |T (S)|= 1 (and hence
S ∈ T ) is true from (43). Our induction hypothesis is that (42) holds for all subsets S ⊆N such
that S = N(S), with |T (S)| ≤ z for some 1 ≤ z < |T |. Assuming that this is true, we prove that
(42) holds for all subsets S ⊆N such that S =N(S), with |T (S)|= z+1. If S ∈ T , then the proof
is immediate from (43), so let us assume S /∈ T . Before proceeding with the proof, we point out
the following observation. Since f is budget-balanced, we have,

∑

i∈S

f(i, S) =W (S) =
∑

T∈T (S)

qT (from (14))

=
∑

T∈T (S)

qT
∑

i∈T

fT (i, T ) (from Lemma 5)

=
∑

i∈S

∑

T∈T (S)

qTf
T (i, T ) (from Lemma 4)

(44)

The proof is by contradiction, and proceeds as follows. Assume to the contrary, that f(k,S) 6=∑
T∈T (S) qTf

T (k,T ) for some k ∈ S, for some S ⊆N such that S =N(S), with |T (S)|= z+1. Since
z+1≥ 2, and S =N(S), it must be that |S| ≥ 2, i.e., S has at least two players. Then, from (44),
it follows that we can pick i, j ∈ S such that,

f(i, S)>
∑

T∈T (S)

qTf
T (i, T ) (45)

f(j,S)<
∑

T∈T (S)

qTf
T (j,T ) (46)

Because S =N(S), for any S′ ( S, |T (S′)|< |T (S)|. Hence, applying the induction hypothesis,

(∀S′ ( S) (∀i∈ S′) f(i, S′) =
∑

T∈T (S′)

qTf
T (i, T ) (47)

Since every coalition T ∈ T (S) is a subset of S, (47) holds when S is replaced with any T ∈ T (S).
Therefore, Lemma 6, the conditional inclusion-exclusion principle, can be applied to obtain, for
any coalition T ∈ T (S),

(∀i∈ T ) qTf
T (i, T ) =

∑

T ′∈T (T )

nT (T
′)f(i, T ′)

(∀i∈ T ) (∀j ∈ T −{i}) qT f
T (i, T −{j}) =

∑

T ′∈T (T )

nT (T
′)f(i, T ′−{j})

Summing up these equations over all T ∈ T (S), we get,

(∀i∈ S)
∑

T∈T (S)

qTf
T (i, T ) =

∑

T∈T (S)

ñS(T )f(i, T )

(∀i∈ S) (∀j ∈ S−{i})
∑

T∈T (S)

qTf
T (i, T −{j}) =

∑

T∈T (S)

ñS(T )f(i, T −{j})

(48)

where the constants {ñS(T )}T∈S are given by,

ñS(T ) =
∑

T ′∈T (S)
T⊆T ′

nT ′(T )
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Figure 3. Counterexample 3

Counterexample 3. Our goal is to exploit inequalities (45) and (46) to build a counterexample
that mimics Counterexample 2 illustrated in Figure 2, leading to a similar best-response cycle
involving just players i and j. Equation (48) suggests the following technique for achieving pre-
cisely this. Consider the game in Figure 3, which has the same underlying 2× 2 box structure of
Counterexample 2. The resources in the top half are added as follows:
(i) Add a resource r1 to the top left box.
(ii) Add resources in R+

1 = {rT1 : T ∈ T (S) and ñS(T )> 0} to the top right box.
(iii) Add resources in R−

1 = {rT1 : T ∈ T (S) and ñS(T )< 0} to the top left box.
Then, the bottom half is symmetrically filled up as follows.
(i) Add a resource r2 to the bottom right box.
(ii) Add resources in R+

2 = {rT2 : T ∈ T (S) and ñS(T )> 0} to the bottom left box.
(iii) Add resources in R−

2 = {rT2 : T ∈ T (S) and ñS(T )< 0} to the bottom right box.
The resource set R is therefore given by,

R= {r1, r2}∪R
+
1 ∪R

−
1 ∪R

+
2 ∪R

−
2

The local resource coefficients are given by,

vr1 = vr2 =1 and (∀T ∈ T (S)) vrT1 = vrT2 = |ñS(T )|

In resources r1 and r2, we fix players in S −{i, j}. For each T ∈ T (S), in resources rT1 and rT2 , we
fix players in T −{i, j}. Effectively, all players other than i and j have a fixed action in their action
set, determined by these fixtures. The action set of player i is given by Ai = {T,B}, where,

T =
{
rT1 ∈R

−
1 : i ∈ T

}
∪{r1}∪

{
rT1 ∈R

+
1 : i∈ T

}

B =
{
rT2 ∈R

+
2 : i ∈ T

}
∪{r2}∪

{
rT2 ∈R

−
2 : i∈ T

}

The action set of player j is given by Aj = {L,R}, where,

L=
{
rT1 ∈R

−
1 : j ∈ T

}
∪{r1}∪

{
rT2 ∈R

+
2 : j ∈ T

}

R=
{
rT1 ∈R

+
1 : j ∈ T

}
∪{r2}∪

{
rT2 ∈R

−
2 : j ∈ T

}

This is essentially a game between players i and j. The set of joint action profiles can therefore be
represented as A= {TL,TR,BL,BR}.
We use the four properties in (45), (46), (47), and (48) to show that Counterexample 3 does

not possess an equilibrium, thereby contradicting the fact that f guarantees the existence of an
equilibrium in all games G∈ G(N,f,W ). We show this for each outcome:



Gopalakrishnan, Marden, and Wierman: Potential Games are Necessary to Ensure PNE in Cost Sharing Games 31

(i) TL is not an equilibrium, since player j has an incentive to deviate from L to R. To see this,
consider the utilities of player j when choosing L and R,

Uj(T,L) =−
∑

T∈T (S)
ñS(T )<0

ñS(T )f(j,T )+ f(j,S)+
∑

T∈T (S)
ñS(T )>0

ñS(T )f(j,T −{i})

Uj(T,R) =
∑

T∈T (S)
ñS(T )>0

ñS(T )f(j,T )+ f(j,S−{i})−
∑

T∈T (S)
ñS(T )<0

ñS(T )f(j,T −{i})

The difference in utilities for j between choosing R and L is therefore given by,

Uj(T,R)−Uj(T,L)

=




∑

T∈T (S)

ñS(T )f(j,T )− f(j,S)





+


f(j,S−{i})−

∑

T∈T (S)

ñS(T )f(j,T −{i})




=




∑

T∈T (S)

qTf
T (j,T )− f(j,S)



+



f(j,S−{i})−
∑

T∈T (S)

qTf
T (j,T −{i})





=




∑

T∈T (S)

qTf
T (j,T )− f(j,S)



+



f(j,S−{i})−
∑

T∈T (S−{i})

qTf
T (j,T )





=
∑

T∈T (S)

qTf
T (j,T )− f(j,S)> 0

This results from using (48) first, followed by (47), Lemma 4, and then (46).
(ii) TR is not an equilibrium, since player i has an incentive to deviate from T to B. The proof

is along the same lines as the previous case. Using similar arguments, we get,

Ui(B,R)−Ui(T,R) = f(i, S)−
∑

T∈T (S)

qTf
T (i, T )

which is positive, from (45).
(iii) BR and BL are also not equilibria, because in these action profiles, players j and i respectively

have incentives to deviate – the arguments are identical to cases (a) and (b) above, respectively.
This completes the inductive argument. �

Example 11. Consider the decomposition of fSV and fEQ into their respective basis distribu-
tion rules, as illustrated in Example 9. Let S = {i, j}.
(i) fSV (i, S) = 1, and

∑
T∈T (S) qTf

T
SV (i, T ) = q{i}f

{i}
SV (i,{i}) = 1. Thus, fSV satisfies (41).

(ii) fEQ(i, S) =
3
2
, and

∑
T∈T (S) qTf

T
EQ(i, T ) = q{i}f

{i}
EQ(i,{i}) = 1. Therefore, fEQ does not satisfy

(41), and hence does not guarantee the existence of an equilibrium in all games G∈G(N,f,W ).

From Lemma 7, it follows that any budget-balanced distribution rule f that guarantees the
existence of an equilibrium in all games G∈G(N,f,W ) satisfies (31) for all T ∈ T . So, for such f ,
condition (31) can be stripped off of Lemma 6, leading to the (unconditional) inclusion-exclusion
principle, a powerful tool that we use extensively in proving several subsequent lemmas. We formally
state this in the following corollary:



32 Gopalakrishnan, Marden, and Wierman: Potential Games are Necessary to Ensure PNE in Cost Sharing Games

Corollary 1. (Inclusion-exclusion principle) If f is a budget-balanced distribution rule that
guarantees the existence of an equilibrium in all games G∈G(N,f,W ), and {fT}

T∈T are the basis
distribution rules defined in (27), then, for every T ∈ T , there exist integers {nT (T

′)}
T ′∈T such

that the following equations hold:

(∀i∈ T ) qTf
T (i, T ) =

∑

T ′∈T (T )

nT (T
′)f(i, T ′) (49)

(∀i∈ T ) (∀j ∈ T −{i}) 0 = qTf
T (i, T −{j}) =

∑

T ′∈T (T )

nT (T
′)f(i, T ′−{j}) (50)

Example 12. To illustrate the inclusion-exclusion principle, let the set of players be N =
{i, j, k, ℓ}, and let the set of contributing coalitions be T = {{i},{i, j},{i, k},{i, ℓ},{i, j, k, ℓ}}. Then,
for T = {i, j, k, ℓ}, unraveling the recursion in (33) gives the following inclusion-exclusion formula
for isolating fT (i, T ), in terms of f :

qTf
T (i, T ) = f(i,{i, j, k, ℓ})− f(i,{i, j})− f(i,{i, k})− f(i,{i, ℓ})+ 2f(i,{i})

The corresponding coefficients are given by,

nT ({i, j, k, ℓ}) = 1 nT ({i, j}) = nT ({i, k}) = nT ({i, ℓ}) =−1 nT ({i}) = 2

Lemma 8. If f is a budget-balanced distribution rule that guarantees the existence of an equi-
librium in all games G∈ G(N,f,W ), then, for each basis distribution rule fT defined in (27), there
exists a weight system ωT , such that,

fT = fT
GWSV [ω

T ] (51)

Proof. First, we show that each basis distribution rule fT is nonnegative. The proof is by
contradiction, and proceeds as follows. Assume to the contrary, that fT (k,T )< 0 for some k ∈ T .
From (29), this is possible only if |T | ≥ 2, and it follows that we can pick i, j ∈ T such that
qTf

T (i, T )< 0 and qTf
T (j,T )> 0.

Counterexample 4. Our goal is to exploit the inequalities qTf
T (i, T ) < 0 and qTf

T (j,T )> 0 to
build a counterexample that mimics Counterexample 3 illustrated in Figure 3, leading to a similar
best-response cycle involving just players i and j. The inclusion-exclusion principle (Corollary 1)
suggests the following technique for achieving precisely this. Consider the game in Figure 4, which
is nearly identical to Counterexample 3, except that resources r1 and r2 are absent. The resources
in the top half are added as follows.

(i) Add resources in R+
1 =

{
rT

′

1 : T ′ ∈ T (T ) and nT (T
′)> 0

}
to the top right box.

(ii) Add resources in R−
1 =

{
rT

′

1 : T ′ ∈ T (T ) and nT (T
′)< 0

}
to the top left box.

Then, the bottom half is symmetrically filled up as follows.

(i) Add resources in R+
2 =

{
rT

′

2 : T ′ ∈ T (T ) and nT (T
′)> 0

}
to the bottom left box.

(ii) Add resources in R−
2 =

{
rT

′

2 : T ′ ∈ T (T ) and nT (T
′)< 0

}
to the bottom right box.

The resource set R is therefore given by,

R=R+
1 ∪R

−
1 ∪R

+
2 ∪R

−
1

The local resource coefficients are given by,

(∀T ′ ∈ T (T )) v
rT

′
1

= v
rT

′
2

= |nT (T
′)|

For each T ′ ∈ T (T ), in resources rT
′

1 and rT
′

2 , we fix players in T ′ − {i, j}. Effectively, all players
other than i and j have a fixed action in their action set, determined by these fixtures.
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Figure 4. Counterexample 4

The action set of player i is given by Ai = {T,B}, where,

T =
{
rT

′

1 ∈R
−
1 : i∈ T ′

}
∪
{
rT

′

1 ∈R
+
1 : i∈ T ′

}

B =
{
rT

′

2 ∈R
+
2 : i∈ T ′

}
∪
{
rT

′

2 ∈R
−
2 : i∈ T ′

}

The action set of player j is given by Aj = {L,R}, where,

L=
{
rT

′

1 ∈R
−
1 : j ∈ T ′

}
∪
{
rT

′

2 ∈R
+
2 : j ∈ T ′

}

R=
{
rT

′

2 ∈R
+
1 : j ∈ T ′

}
∪
{
rT

′

1 ∈R
−
2 : j ∈ T ′

}

This is essentially a game between players i and j. The set of joint action profiles can therefore be
represented as A= {TL,TR,BL,BR}.
We use the inclusion-exclusion principle (Corollary 1) to show that Counterexample 4 does

not possess an equilibrium, thereby contradicting the fact that f guarantees the existence of an
equilibrium in all games G∈ G(N,f,W ). We show this for each outcome:
(i) TL is not an equilibrium, because player j has an incentive to deviate from L to R. To see

this, consider the utilities of player j when choosing L and R,

Uj(T,L) =−
∑

T ′∈T (T )
nT (T ′)<0

nT (T
′)f(j,T ′)+

∑

T ′∈T (T )
nT (T ′)>0

nT (T
′)f(j,T ′−{i})

Uj(T,R) =
∑

T ′∈T (T )
nT (T ′)>0

nT (T
′)f(j,T ′)−

∑

T ′∈T (T )
nT (T ′)<0

nT (T
′)f(j,T ′−{i})

The difference in utilities for j between choosing R and L is therefore given by,

Uj(T,R)−Uj(T,L) =
∑

T ′∈T (T )

nT (T
′)f(j,T ′)−

∑

T ′∈T (T )

nT (T
′)f(j,T ′−{i})

=
∑

T ′∈T (T )

nT (T
′)f(j,T ′) (from (50))

= qTf
T (j,T )> 0 (from (49))

(ii) TR is not an equilibrium, because player i has an incentive to deviate from T to B. The proof
resembles the previous case. By using similar arguments, we get,

Ui(B,R)−Ui(T,R) = qTf
T (i, T )< 0

(iii) BR and BL are also not equilibria, because in these action profiles, players j and i respectively
have incentives to deviate – the arguments are identical to cases (a) and (b) above, respectively.

This completes the inductive argument.
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Now, since each fT is nonnegative, budget-balanced, and satisfies Lemma 4, it is completely
specified by |T | nonnegative values, {fT (i, T ) : i ∈ T}, that sum to 1. Let ΣT = (ST

1 , S
T
2 ) be an

ordered partition of T , where ST
1 = {i : fT (i, T )> 0}, and ST

2 = T − ST
1 . Define a weight vector

λ
T as follows:

λT
i =





fT (i, T ) , i∈ ST

1

arbitrary positive value , i∈ ST
2

Then, it follows that fT satisfies (51) with weight system ωT =
(
λ

T ,ΣT
)
constructed above. (See

(8) in Table 2 to recall the definition of the generalized weighted Shapley value distribution rule.)
This completes the proof. �

Example 13. Consider the decomposition of fSV and fEQ into their respective basis distribu-
tion rules, from Example 9. Clearly, fT

SV is nonnegative for all T ∈ T , whereas fT
EQ is not.

A.3. Consistency of basis distribution rules. It follows from Proposition 9, that each
budget-balanced distribution rule fW ∈ fW that guarantees the existence of an equilibrium in all
games G∈ G(N,fW,W) is completely specified by a sequence of weight systems ΩW = {ωW,T}

T∈T W .
But, these weight systems could be ‘inconsistent’ across different coalitions and across different
welfare functions. Thus, our next steps focus on proving that all the weight systems ωT,W are
consistent – in other words, there exists a universal weight system ω∗ that is equivalent to all
the ωW,T (replacing ωW,T with ω∗ for any coalition T ∈ TW for any W ∈W does not affect the
distribution rule fW,T = fT

GWSV [ω
W,T ]).

To address the consistency of ωW,T across different coalitions T under the same welfare function
W , it is sufficient to work with one welfare function at a time, just like in the previous module.
However, to address the consistency across different welfare functions, it is necessary to work with
more than one welfare function at a time – for every subset of welfare functions V⊆W, we only
focus on the corresponding distribution rules fV that guarantee equilibrium existence for all games
in the class G(N,fV,V). The justification is similar – G(N,fV,V) ⊆ G(N,fW,W) for all V ⊆W,
and so, if fW guarantees equilibrium existence for all games in G(N,fW,W), then for every subset
V⊆W, fV⊆ fW must guarantee equilibrium existence for all games in G(N,fV,V).
In what follows, we work with k > 1 welfare functions (not necessarily distinct) at a time, say

W1,W2, . . . ,Wk, to address consistency across welfare functions, and then use the special case of
W1 =W2 = . . .=Wk =W to address consistency across coalitions under the same welfare function
W . In order to simplify notation, we drop W from the superscripts. That is, for 1≤ j ≤ k, we write
f j instead of fWj , T j instead of T Wj , qjT instead of q

Wj

T , nj

T (T
′) instead of n

Wj

T (T ′), etc.

A.3.1. Two consistency conditions. Our goal in this section is to establish the following
two important consistency properties that the basis distribution rules fW,T must satisfy, in order
for the budget-balanced distribution rules fW =

∑
T∈T W qWT fW,T to guarantee the existence of an

equilibrium in all games G ∈ G(N,fW,W). Recall that T W
ij , defined in (16), refers to the set of

coalitions in T W containing both players i and j. In addition, let T W
ij (S) = {T ∈ T W (S) | {i, j}⊆ T}

denote the set of coalitions in T W (S) containing both players i and j.
(a) Global consistency: If there is a pair of players common to two coalitions (under the same or

different welfare functions), then their shares from these two coalitions (given by the corre-
sponding fW,T values) must be ‘consistent’, as formalized in Lemma 9. Here, we deal with at
most two welfare functions at a time.

(b) Cyclic consistency: If there is a sequence of k ≥ 3 players, (i1, i2, . . . , ik) such that for each

of the k neighbor-pairs {(i1, i2) , (i2, i3) , . . . , (ik, i1)}, ∃ T1 ∈
(
T 1
i1i2

)min
, T2 ∈

(
T 2
i2i3

)min
, . . . , Tk ∈(

T k
iki1

)min
and in each Tj, at least one of the neighbors ij, ij+1 gets a nonzero share (given

by the corresponding f j,Tj value), then the shares of these k players from these k coalitions
must satisfy a ‘cyclic consistency’ condition, as formalized in Lemma 10. Here, we deal with
an arbitrary number of welfare functions at a time.



Gopalakrishnan, Marden, and Wierman: Potential Games are Necessary to Ensure PNE in Cost Sharing Games 35

Lemma 9. Given any two local welfare functions W1,W2, if f 1 =
∑

T∈T 1

q1Tf
1,T and f 2 =

∑

T∈T 2

q2Tf
2,T are corresponding budget-balanced distribution rules that guarantee equilibrium exis-

tence in all games G∈G(N,{f 1, f 2},{W1,W2}), then, for any two players i, j ∈N , any two coali-
tions T ′ ∈ T 1

ij and T ∈ T 2
ij ,

f 1,T ′
(i, T ′)f 2,T (j,T ) = f 2,T (i, T )f 1,T ′

(j,T ′) (52)

Proof. Note that it is sufficient to show (52) for only those coalitions in T 1
ij and T 2

ij in which at
least one among i and j get a nonzero share. Formally, define the collections T 1+

ij and T 2+
ij as,

T 1+
ij =

{
T ∈ T 1

ij : f 1,T (i, T )> 0 or f 1,T (j,T )> 0
}

T 2+
ij =

{
T ∈ T 2

ij : f 2,T (i, T )> 0 or f 2,T (j,T )> 0
} (53)

Let S be a minimal element (coalition) in the poset
(
T 1+
ij ,⊆

)
, and without loss of generality, assume

f 1,S(i, S)> 0. Then, we need only show13 that for any coalition T ∈ T 2+
ij ,

f 2,T (i, T )f 1,S(j,S) = f 1,S(i, S)f 2,T (j,T ) (55)

The proof is by contradiction. Assume to the contrary, that for some T ∈ T 2+
ij ,

f 2,T (i, T )f 1,S(j,S) 6= f 1,S(i, S)f 2,T (j,T ). We consider the following two cases:

Case 1: q1Sq
2
T > 0.

Figure 5. Counterexample 5(a)

Counterexample 5(a). Our goal is to build a counterexample that mimics Counterexample 4
illustrated in Figure 4, leading to a similar best-response cycle involving just players i and j. As
before, we use the inclusion-exclusion principle (Corollary 1) to isolate just f 2,T , by appropriately
adding resources and setting action sets. Consider the game in Figure 5, which is identical to
Counterexample 4, except for the following changes:

13 It can be shown that (55) implies (52): For the special case when W2 =W1, (55) implies that for all T ′ ∈ T 1+
ij ,

f1,T ′

(i, T ′)f1,S(j,S) = f1,S(i, S)f1,T ′

(j, T ′) (54)

Let T ′ ∈ T 1
ij and T ∈ T 2

ij . By assumption, f1,S(i, S) 6=0. If f1,S(j,S) = 0, then (55) and (54) imply that f2,T (j, T ) = 0

and f1,T ′

(j, T ′) = 0, in which case both sides of (52) are zero. If f1,S(j,S) 6= 0, then none of the four terms in equations
(55) and (54) are zero, and therefore, by eliminating f1,S(i, S) and f1,S(j,S) between them, we get (52).
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(i) There are two additional resources, r1 and r2, so the resource set is now

R= {r1, r2}∪R
+
1 ∪R

−
1 ∪R

+
2 ∪R

−
1

(ii) The welfare function at r1 and r2 is W1. At all other resources, the welfare function is W2.
(iii) The local resource coefficients are given by,

vr1 = vr2 = v2 and (∀T ′ ∈ T 2(T )) v
rT

′
1

= v
rT

′
2

= v1|n
2
T (T

′)|

where v1 > 0 and v2 > 0. We will discuss the specific choice of v1, v2 later.
(iv) In resources r1 and r2, we fix players in S−{i, j}.
(v) The actions T,B,L,R are modified to accommodate the two new resources:

T =
{
rT

′

1 ∈R
−
1 : i ∈ T ′

}
∪{r1}∪

{
rT

′

1 ∈R
+
1 : i∈ T ′

}

B =
{
rT

′

2 ∈R
+
2 : i ∈ T ′

}
∪{r2}∪

{
rT

′

2 ∈R
−
2 : i∈ T ′

}

L=
{
rT

′

1 ∈R
−
1 : j ∈ T ′

}
∪{r1}∪

{
rT

′

2 ∈R
+
2 : j ∈ T ′

}

R=
{
rT

′

1 ∈R
+
1 : j ∈ T ′

}
∪{r2}∪

{
rT

′

2 ∈R
−
2 : j ∈ T ′

}

To complete the specification of Counterexample 5(a), we need to specify the values of v1 > 0
and v2 > 0. We now show that if f 2,T (i, T )f 1,S(j,S) 6= f 1,S(i, S)f 2,T (j,T ), then these values can
be picked carefully in such a way that Counterexample 5(a) does not possess an equilibrium,
thereby contradicting the fact that f 1 and f 2 guarantee equilibrium existence in all games G ∈
G(N,{f 1, f 2},{W1,W2}). Consider each of the four outcomes:
(i) In action profiles TL and BR, player j has an incentive to deviate if Uj(T,R)−Uj(T,L) =

Uj(B,L)−Uj(B,R)> 0. This happens if,

v1




∑

T ′∈T 2(T )

n2
T (T

′)f 2(j,T ′)−
∑

T ′∈T 2(T )

n2
T (T

′)f 2(j,T ′−{i})



−v2
(
f 1(j,S)− f 1(j,S−{i})

)
> 0

Using the inclusion-exclusion principle (Corollary 1) to simplify the terms in the first bracket,
and the basis representation of f 1 to simplify the difference in the second bracket, this condi-
tion is equivalent to,

v1
(
q2Tf

2,T (j,T )
)
− v2




∑

T ′∈T 1
ij(S)

q1T ′f 1,T ′
(j,T ′)


> 0

Since S is minimal in T 1+
ij , this reduces to,

v1q
2
Tf

2,T (j,T )> v2q
1
Sf

1,S(j,S) (56)

(ii) Similarly, in action profiles TR and BL, player i has an incentive to deviate if Ui(B,R)−
Ui(T,R) =Ui(T,L)−Ui(B,L)> 0. This happens if,

−v1




∑

T ′∈T 2(T )

n2
T (T

′)f 2(i, T ′)−
∑

T ′∈T 2(T )

n2
T (T

′)f 2(i, T ′−{j})


+v2

(
f 1(i, S)− f 1(i, S−{j})

)
> 0

By similar arguments as above, this condition reduces to,

v1q
2
Tf

2,T (i, T )< v2q
1
Sf

1,S(i, S) (57)
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Without loss of generality, assume q2T > 0 and q1S > 0 (For the symmetric case when q2T < 0 and
q1S < 0, the same arguments apply, but the deviations in the best-response cycle are reversed). By
assumption, f 1,S(i, S)> 0. Now we consider two cases for f 1,S(j,S):
(i) f 1,S(j,S) = 0. In this case, f 2,T (j,T ) > 0 (for otherwise, (55) would be satisfied). It follows

then, that (56) and (57) always have a solution in strictly positive integers v1 and v2.
(ii) f 1,S(j,S)> 0. In this case, suppose f 2,T (i, T )f 1,S(j,S)< f 1,S(i, S)f 2,T (j,T ) (For the other case

when f 2,T (i, T )f 1,S(j,S)> f 1,S(i, S)f 2,T (j,T ), the same arguments apply, but the deviations
in the best-response cycle are reversed). Combining (56) and (57), we get,

q2T
q1S

f 2,T (i, T )

f 1,S(i, S)
<

v2
v1

<
q2T
q1S

f 2,T (j,T )

f 1,S(j,S)
This inequality has a solution in strictly positive integers v1 and v2, if and only if,

q2T
q1S

f 2,T (i, T )

f 1,S(i, S)
<

q2T
q1S

f 2,T (j,T )

f 1,S(j,S)

⇐⇒ f 2,T (i, T )f 1,S(j,S)< f 1,S(i, S)f 2,T (j,T )

which is true by assumption.

Case 2: q1Sq
2
T < 0.

Figure 6. Counterexample 5(b)

Counterexample 5(b). Our goal remains the same – to build a counterexample in which a best-
response cycle involving just players i and j exists. This counterexample breaks from symmetry,
and we use the inclusion-exclusion principle (Corollary 1) thrice here, to isolate two more basis
distribution rules, in addition to f 2,T . We now present the formal details.
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Consider the game in Figure 6, where we have various boxes with labels on them indicating
which resource or set of resources is present. Let Ti and Tj be some coalitions that contain i and j
respectively. We will discuss the specific choice of Ti, Tj later. As before, we use the resource sets(
R+

1 ,R
−
1

)
(with W2 the welfare function at all these resources) for isolating f 2,T . In addition, we

use resource sets
(
R+

3 ,R
−
3

)
(with Wx as the welfare function at all these resources) and

(
R+

4 ,R
−
4

)

(with Wy as the welfare function at all these resources) to isolate two more basis distribution rules,
fx,Tj and f y,Ti , respectively, where the choice of x, y ∈ {1,2} will be discussed later. In addition to
these six sets, we also have a single resource r2 whose welfare function is W1. Formally,

R+
1 =

{
rT

′

1 : T ′ ∈ T 2(T ) and n2
T (T

′)> 0
}

R−
1 =

{
rT

′

1 : T ′ ∈ T 2(T ) and n2
T (T

′)< 0
}

R+
3 =

{
rT

′

3 : T ′ ∈ T x(Tj) and nx
Tj
(T ′)> 0

}
R+

4 =
{
rT

′

4 : T ′ ∈ T y(Ti) and ny
Ti
(T ′)> 0

}

R−
3 =

{
rT

′

3 : T ′ ∈ T x(Tj) and nx
Tj
(T ′)< 0

}
R−

4 =
{
rT

′

4 : T ′ ∈ T y(Ti) and ny
Ti
(T ′)< 0

}

The resource set R is therefore given by,

R= {r2}∪R
+
1 ∪R

−
1 ∪R

+
3 ∪R

−
3 ∪R

+
4 ∪R

−
4

The local resource coefficients are given by,

vr2 = v2

(∀T ′ ∈ T 2(T )) v
rT

′
1

= v1|n
2
T (T

′)|

(∀T ′ ∈ T x(Tj)) v
rT

′
3

= v3|n
x
Tj
(T ′)| and (∀T ′ ∈ T y(Ti)) v

rT
′

4
= v4|n

y

Ti
(T ′)|

where v1, v2, v3, v4 > 0. We will discuss the specific choice of v1, v2, v3, v4 later. In resource r2, we
fix players in S−{i, j}. For each T ′ ∈ T 2(T ), in resource rT

′

1 , we fix players in T ′−{i, j}. For each
T ′ ∈ T x(Tj), in resource rT

′

3 , we fix players in T ′ − {j}. For each T ′ ∈ T y(Ti), in resource rT
′

4 , we
fix players in T ′−{i}. Effectively, all players other than i and j have a fixed action in their action
set, determined by these fixtures. In addition, these fixtures might also specify mandatory sets of
resources Ri and Rj that players i and j must always be present in. The action sets of players i
and j are given by Ai = {T,B} and Aj = {U,D}, where,

T =
{
rT

′

4 ∈R
−
4 : i∈ T ′

}
∪{r2}∪

{
rT

′

1 ∈R
−
1 : i∈ T ′

}
∪Ri

B =
{
rT

′

1 ∈R
+
1 : i∈ T ′

}
∪
{
rT

′

4 ∈R
+
4 : i∈ T ′

}
∪Ri

U =
{
rT

′

1 ∈R
−
3 : j ∈ T ′

}
∪{r2}∪Rj

D=
{
rT

′

1 ∈R
−
1 : j ∈ T ′

}
∪
{
rT

′

1 ∈R
+
3 : j ∈ T ′

}
∪
{
rT

′

1 ∈R
+
1 : j ∈ T ′

}
∪Rj

This is essentially a game between players i and j. The set of joint action profiles can therefore be
represented as A= {TU,TD,BU,BD}.
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To complete the specification of Counterexample 5(b), we need to specify the values
of v1, v2, v3, v4 > 0, x, y ∈ {1,2}, and Ti, Tj. We now show that if f 2,T (i, T )f 1,S(j,S) 6=
f 1,S(i, S)f 2,T (j,T ), then these values can be picked carefully in such a way that Counterexample
5(b) does not possess an equilibrium, thereby contradicting the fact that f 1 and f 2 guarantee equi-
librium existence in all games G∈ G(N,{f 1, f 2},{W1,W2}). Consider each of the four outcomes:
(i) In action profile TU , player i has an incentive to deviate if Ui(B,U) − Ui(T,U) > 0. This

happens if,

v4




∑

T ′∈T y(Ti)

ny

Ti
(T ′)f y(i, T ′)



+ v1




∑

T ′∈T 2(T )

n2
T (T

′)f 2(i, T ′−{j})



− v2f
1(i, S)> 0

Note that Ui(B,U) and Ui(T,U) include utilities to player i from resources in Ri, but while
taking the difference, this cancels out, since i is fixed in these resources, and between these two
action profiles, all other players also have a fixed action. Now, using the inclusion-exclusion
principle (Corollary 1) to simplify the terms in the first two brackets, we get,

v4q
y

Ti
f y,Ti(i, Ti)> v2f

1(i, S) (58)

(ii) In action profile BD, player i has an incentive to deviate if Ui(T,D)− Ui(B,D) > 0. This
happens if:

−v4




∑

T ′∈T y(Ti)

ny

Ti
(T ′)f y(i, T ′)



− v1




∑

T ′∈T 2(T )

n2
T (T

′)f 2(i, T ′)



+ v2f
1(i, S−{j})> 0

As before, the utility to player i from resources in Ri cancels out. Using the inclusion-exclusion
principle to simplify the terms, we get,

v2f
1(i, S−{j})− v1q

2
Tf

2,T (i, T )> v4q
y

Ti
f y,Ti(i, Ti) (59)

(iii) In action profile TD, player j has an incentive to deviate if Uj(T,U) − Uj(T,D) > 0. This
happens if:

−v3




∑

T ′∈T x(Tj)

nx
Tj
(T ′)fx(j,T ′)


+ v2f

1(j,S)

− v1




∑

T ′∈T 2(T )
n2
T (T ′)>0

n2
T (T

′)f 2(j,T ′−{i})−
∑

T ′∈T 2(T )
n2
T (T ′)<0

n2
T (T

′)f 2(j,T ′)


> 0

The utility to player j from resources in Rj cancels out. Using the inclusion-exclusion principle
to simplify the first term, we get,

v2f
1(j, S)− v1




∑

T ′∈T 2(T )
n2

T (T ′)>0

n2
T (T

′)f2(j, T ′−{i})−
∑

T ′∈T 2(T )
n2

T (T ′)<0

n2
T (T

′)f2(j, T ′)


> v3q

x
Tj
fx,Tj (j, Tj) (60)
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(iv) In action profile BU , player j has an incentive to deviate if Uj(B,D)− Uj(B,U) > 0. This
happens if:

v3




∑

T ′∈T x(Tj)

nx
Tj
(T ′)fx(j,T ′)


− v2f

1(j,S−{i})

+ v1




∑

T ′∈T 2(T )
n2
T (T ′)>0

n2
T (T

′)f 2(j,T ′)−
∑

T ′∈T 2(T )
n2
T (T ′)<0

n2
T (T

′)f 2(j,T ′−{i})


> 0

As before, the utility to player j from resources in Rj cancels out. Using the inclusion-exclusion
principle to simplify the first term, we get,

v3q
x
Tj
fx,Tj (j, Tj)> v2f

1(j, S−{i})− v1




∑

T ′∈T 2(T )
n2

T (T ′)>0

n2
T (T

′)f2(j, T ′)−
∑

T ′∈T 2(T )
n2

T (T ′)<0

n2
T (T

′)f2(j, T ′−{i})




(61)

Combining inequalities (58) and (59), we get,

v1q
2
Tf

2,T (i, T )+ v2
(
f 1(i, S)− f 1(i, S−{j})

)
< 0

Using the basis representation of f 1 to simplify the difference in the bracket, this condition is
equivalent to,

v1q
2
Tf

2,T (i, T )+ v2




∑

T ′∈T 1
ij
(S)

q1T ′f 1,T ′
(i, T ′)



< 0

Since S is minimal in T 1+
ij , this reduces to,

v1q
2
T f

2,T (i, T )+ v2q
1
Sf

1,S(i, S)< 0 (62)

Combining inequalities (60) and (61), we get,

v1




∑

T ′∈T 2(T )

n2
T (T

′)f2(j, T ′)−
∑

T ′∈T 2(T )

n2
T (T

′)f2(j, T ′−{i})



+ v2
(
f1(j, S)− f1(j, S−{i})

)
> 0

Using the inclusion-exclusion principle to simplify the terms in the first bracket, and the basis
representation of f 1 to simplify the difference in the second bracket, this condition is equivalent to,

v1q
2
Tf

2,T (j,T )+ v2




∑

T ′∈T 1
ij
(S)

q1T ′f 1,T ′
(j,T ′)



> 0

Since S is minimal in T 1+
ij , this reduces to,

v1q
2
Tf

2,T (j,T )+ v2q
1
Sf

1,S(j,S)> 0 (63)

Without loss of generality, assume q2T > 0 and q1S < 0 (For the symmetric case when q2T < 0 and
q1S > 0, the same arguments apply, but the deviations in the best-response cycle are reversed). By
assumption, f 1,S(i, S)> 0. Now we consider two cases for f 1,S(j,S):
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(i) f 1,S(j,S) = 0. In this case, f 2,T (j,T ) > 0 (for otherwise, (55) would be satisfied). It follows
then, that (62) and (63) always have a solution in strictly positive integers v1 and v2.

(ii) f 1,S(j,S)> 0. In this case, suppose f 2,T (i, T )f 1,S(j,S)< f 1,S(i, S)f 2,T (j,T ) (For the other case
when f 2,T (i, T )f 1,S(j,S)> f 1,S(i, S)f 2,T (j,T ), the same arguments apply, but the deviations
in the best-response cycle are reversed). Combining (62) and (63), we get,

−
q2T
q1S

f 2,T (i, T )

f 1,S(i, S)
<

v2
v1

<−
q2T
q1S

f 2,T (j,T )

f 1,S(j,S)

Therefore, this inequality has a solution in strictly positive integers v1 and v2, if and only if,

q2T
q1S

f 2,T (i, T )

f 1,S(i, S)
>

q2T
q1S

f 2,T (j,T )

f 1,S(j,S)

⇐⇒ f 2,T (i, T )f 1,S(j,S)< f 1,S(i, S)f 2,T (j,T )

which is true by assumption.
Finally, we need to show that given these carefully chosen values for v1 and v2, it is possible to find
v3 > 0, v4 > 0, x, y ∈ {1,2}, Ti and Tj such that the inequalities (58)-(61) are satisfied. These four
inequalities can be consolidated as,

LHSj <v3q
x
Tj
fx,Tj(j,Tj)<RHSj

LHSi < v4q
y

Ti
f y,Ti(i, Ti)<RHSi

We describe the procedure to find v3 > 0, x∈ {1,2}, and Tj here. Finding v4 > 0, y ∈ {1,2}, and Ti

is analogous. Specifically, we consider the case where RHSj > 0 (we discuss the other case later).
Consider the two quantities f 1,S(j,S) and f 2,T (j,T ). They are not both zero (for otherwise, (55)
would be satisfied). We consider two subcases:
(i) If f 2,T (j,T )> 0, choose x= 2, Tj = T . Then, it is possible to find v3 > 0 such that LHSj <

v3q
2
Tf

2,T (j,T )<RHSj because by assumption, q2T > 0.
(ii) If f 2,T (j,T ) = 0, then f 1,S(j,S)> 0. Here, we slightly alter Counterexample 5(b) by modifying

player j’s action set Aj = {U,D} as follows – we simply switch the resources in R−
3 and R+

3

between action U and action D. Formally,

U ′ = {r2}∪
{
rT

′

1 ∈R
+
3 : j ∈ T ′

}
∪Rj

D′ =
{
rT

′

1 ∈R
−
3 : j ∈ T ′

}
∪
{
rT

′

1 ∈R
−
1 : j ∈ T ′

}
∪
{
rT

′

1 ∈R
+
1 : j ∈ T ′

}
∪Rj

This alteration does not affect any of the arguments above, except that we now need to find
v3 > 0, x∈ {1,2}, and Tj such that LHSj <−v3qTj

fTj(j,Tj)<RHSj. (In particular, (62) and
(63) remain unchanged.) Choose x=1, Tj = S. Then, it is possible to find v3 > 0 such that
LHSj <−v3q

1
Sf

1,S(j,S)<RHSj because by assumption, q1S < 0.
The case when RHSj < 0 is symmetric – we just interchange S and T , and the choice of x,
throughout in the two subcases. That is, if f 1,S(j,S)> 0, we choose x= 1, Tj = S. Otherwise, we
choose x= 2, Tj = T , and alter Counterexample 5(b) the same way as above. This completes the
proof.14 �

14 Note that v1 and v2 can be scaled by an arbitrary positive constant if necessary, in order to ensure that an integral
solution to v3, v4 exists.
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From Lemma 8, we inferred that each fW,T is a generalized weighted Shapley value for the
corresponding unanimity game W T , with weight system ωW,T =

(
λ

W,T ,ΣW,T
)
that we constructed

using fW,T . As a result, the conditions on
{
{fW,T }

T∈T W

}
W∈W

imposed by Lemma 9 translate to

equivalent conditions on the weight systems
{
{ωW,T }

T∈T W

}
W∈W

. The following corollary restates
Lemma 9 in terms of the weight systems.

Corollary 2. Given any set of local welfare functions W, if fW are budget-balanced distri-
bution rules that guarantee equilibrium existence in all games G ∈ G(N,fW,W), where, for each

W ∈W, fW :=
∑

T∈T W

qWT fT
GWSV [ω

W,T ], where ωW,T =
(
λ

W,T ,ΣW,T =
(
SW,T
1 , SW,T

2

))
, then, for any

two players i, j ∈N ,
(a) (∃ W,T ) i∈ SW,T

1 , j ∈ SW,T
2 =⇒ (∀ W ′, T ′) j ∈ SW ′,T ′

2

(b) (∃ W,T ) i∈ SW,T
1 , j ∈ SW,T

1 =⇒ (∀ W ′, T ′)





(i) i∈ SW ′,T ′

1 ⇔ j ∈ SW ′,T ′

1

(ii) {i, j} ⊆ SW ′,T ′

1 ⇒
λ
W,T
i

λ
W ′,T ′

i

=
λ
W,T
j

λ
W ′,T ′

j

Explanation. In essence, this corollary states consistency constraints that the various weight
systems that define the distribution rules must satisfy, for every pair of players. It is obtained by
applying Lemma 9 for all pairs of welfare functions W×W. Suppose W,W ′ ∈W, and let T ∈ T W

ij

and T ′ ∈ T W ′

ij . Then, from Lemma 9, we have,

fW,T (i, T )fW ′,T ′
(j,T ′) = fW ′,T ′

(i, T ′)fW,T (j,T ) (64)

The different parts of the corollary then follow directly from applying the definition of the gen-
eralized weighted Shapley value (see (8) in Table 2) and simplifying the above equation for the
corresponding cases.

Lemma 10. For any integer k ≥ 3, given any k welfare functions W1,W2, . . . ,Wk, if{
f j :=

∑

T∈T j

qjTf
j,T

}k

j=1

are corresponding budget-balanced distribution rules that guarantee equilib-

rium existence in all games G∈ G(N,{f 1, f 2, . . . , fk} ,{W1,W2, . . . ,Wk}), and i1, i2, . . . , ik ∈N are

any k players such that ∃ T1 ∈
(
T 1+
i1i2

)min
, T2 ∈

(
T 2+
i2i3

)min
, . . . , Tk ∈

(
T k+
iki1

)min
, then,

f 1,T1(i1, T1)f
2,T2(i2, T2) · · ·f

k,Tk(ik, Tk) = f 1,T1(i2, T1)f
2,T2(i3, T2) · · ·f

k,Tk(i1, Tk) (65)

Proof. Recall that T j+
xy denotes the collection of those coalitions from T j

xy in which at least one
of x, y obtains a nonzero share (according to f j). Refer to (53) for the formal definition.

Index arithmetic: In the rest of this proof, the index set is {1,2, . . . , k}, and when we add an
integer ℓ to an index j, j+ℓ denotes the index that is ℓ positions away from index j (cycling around
if necessary). For example, suppose k= 3. Then, for index j = 2, j+2= 1 and j− 2 = 3.

For simplicity, denote qjTj
by qj, f

j,Tj(ij, Tj) by aj , and f j,Tj(ij+1, Tj) by bj. Note that aj ≥ 0 and
bj ≥ 0. Now, (65) can be written as:

k∏

j=1

aj =
k∏

j=1

bj (66)

Our proof technique mirrors those in previous sections. Assuming (66) is not satisfied, we present
a game where no equilibrium exists. Without loss of generality, let

k∏

j=1

aj <
k∏

j=1

bj (67)
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We present a family of counterexamples, each corresponding to a specific sign profile of the coeffi-
cients qj. (Recall that for a given choice of the local welfare functions, qj are fixed.) The proof is
in three stages:
(i) We present the details of the counterexample game (Counterexample 6 ).
(ii) We present four validity conditions on the action profiles of Counterexample 6, and define

those action profiles that satisfy at least one of them as valid action profiles, observing that
such action profiles are never equilibria.

(iii) We show that every action profile in Counterexample 6 is valid.

Figure 7. Counterexample 6

Counterexample 6. Consider the game in Figure 7, that involves only players i1, i2, . . . , ik. There
are 2k resources, arranged in two circular rows of k resources each. For each column j, both resources
uj and dj share the same resource-specific coefficient vj > 0 and same local welfare function Wj ,
and in both these resources, we fix players in Tj − {ij, ij+1}. Effectively, all players other than
i1, i2, . . . , ik have a fixed action in their action set, determined by these fixtures. In addition, these
fixtures might also specify mandatory sets of resources R1,R2, . . . ,Rk that the players i1, i2, . . . , ik
must always be present in, respectively. However, for simplicity, we will not explicitly represent
this, since such actions do not affect strategic behavior (utilities from these resources cancel out as
far as unilateral deviations are concerned, just like they did in the proof of Lemma 9). Next, we
need to specify the action sets of the players i1, i2, . . . , ik, which will depend intimately on properties
regarding the sequence of signs of the coefficients qj. We begin by relabeling the indices according
to a cyclic transformation that is without loss of generality, to ensure that the following properties
will be satisfied after the transformation:
(i) The first coefficient, q1, is negative, unless all coefficients are positive.
(ii) The last coefficient, qk, is positive, unless all coefficients are negative.
(iii) The penultimate coefficient, qk−1, is positive, unless no two adjacent coefficients are both

positive.
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In essence, we cut down on the different sequences of signs of the coefficients that we need to
consider. Formally, we define two special index sets, J and J∗, as follows:

J = {j | 1≤ j ≤ k and qj−1 > 0 and qj < 0} J∗ = {j | j ∈ J and qj−2 > 0}

Now, we define a special index k∗ as follows. If J∗ 6= ∅, pick any k∗ ∈ J∗. Otherwise, if J 6= ∅,
then pick any k∗ ∈ J . If J = J∗ = ∅, set k∗ = 1. Now, we perform a cyclic transformation of the
indices that resets k∗ = 1, by rotating Figure 7 counter-clockwise by k∗−1 columns. In other words,
index j becomes index j− k∗+1. In the rest of the proof, we assume that Figure 7 represents the
counter-example after this transformation.
Next, we observe that given any profile of the signs of the coefficients qj, the k columns of

resources in Figure 7 can be grouped into several segments, each of which can be classified as one
the following three kinds:

(i) Pℓ, a maximal plus segment of length ℓ: This segment consists of ℓ > 1 contiguous columns
i, i+1, . . . , i+ ℓ− 1 such that qj > 0 for i≤ j ≤ i+ ℓ− 1. In addition, we require maximality,
i.e., if ℓ 6= k, then qi−1 < 0 and qi+ℓ < 0.

(ii) Mℓ, a maximal minus segment of length ℓ: This segment consists of ℓ > 1 contiguous columns
i, i+1, . . . , i+ ℓ− 1 such that qj < 0 for i≤ j ≤ i+ ℓ− 1. In addition, we require maximality,
i.e., if ℓ 6= k, then qi−1 > 0 and qi+ℓ > 0.

(iii) Zℓ, a maximal alternating minus-plus segment of length ℓ: This segment consists of ℓ > 1
contiguous columns (ℓ being even) i, i + 1, . . . , i + ℓ − 1 such that qj < 0 and qj+1 > 0 for
j ∈ {i, i+ 2, i+4, . . . , i+ ℓ− 2}. In addition, we require maximality, i.e., if ℓ 6= k, then qi−1 >
0=⇒ qi−2 > 0 and qi+ℓ < 0 =⇒ qi+ℓ+1 < 0. Note that this kind of segment may share its first /
last column with a preceding minus / succeeding plus segment.

Example 14. Consider the sign profile (−,−,+,−,+,+,−). Our special index sets are given
by J = {4,7}, J∗ = {7}. Hence, k∗ = 7, and so, without loss of generality, we transform this sign
profile to (−,−,−,+,−,+,+). Now, the first three columns constitute an M3 segment, and the
last two columns constitute a P2 segment. In between, we have a (+,−) segment that doesn’t fit
any of our three definitions above. But, if the immediate neighbors on either side are taken into
consideration, we have (−,+,−,+), which is a Z4 segment. So, the (unique) decomposition of
this sign profile is given by M3Z4P2, where columns 3 and 6 are shared between two neighboring
segments.

Technically, the above definition of a Zℓ segment allows for a spurious Z2 segment to be sand-
wiched between an M and an adjacent P segment. For example, the sign profile (−,−,+,+) could
be decomposed as either M2P2 or M2Z2P2. We exclude this possibility by requiring that every Zℓ

segment have at least one column that is not shared with a neighboring segment. Note that this
requirement also guarantees that the above decomposition is always unique.
We now specify the action sets for the players i1, i2, . . . , ik. For any player ij , his actions involve

only the resources in adjacent columns j− 1 and j, and specifically, in only one of two ways:

(i) Straight players have the following action set:

Aij
= {(uj−1, uj), (dj−1, dj)} (68)

(ii) Diagonal players have the following action set:

Aij
= {(uj−1, dj), (dj−1, uj)} (69)
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Whether player ij is straight or diagonal is determined as follows. We consider two cases:
Case 1: j = 1. Player i1 is straight if and only if one of the following conditions is satisfied:
(i) q1 > 0
(ii) column 1 is at the beginning of an M segment and column k is at the end of a P segment
Case 2: j 6= 1. Player ij is straight if and only if one of the following conditions is satisfied:
(i) column j is at the end of a P2ℓ+1, Mℓ or Zℓ segment
(ii) qj < 0, and column j is in a Zℓ segment
(iii) qj > 0, qj−1 < 0, and column j is at the beginning of a Pℓ segment
(iv) qj < 0, qj−1 > 0, qj−2 < 0, and column j is at the beginning of an M segment
A player is diagonal if and only if he is not straight.
Example 15. Consider the M3Z4P2 sign profile of Example 14, namely, (−,−,−,+,−,+,+).

There are seven players, i1, . . . , i7. Their action sets are represented pictorially (in blue) in Figure
8. Formally, players i1, i3, i5, i6 are straight, whereas players i2, i4, i7 are diagonal.

Figure 8. Action sets of the players in Example 15

Note. Each blue arrow connecting two resources in columns j − 1 and j denotes the action of player j choosing
those two resources.

Counterexample 6 is essentially a game between the players i1, i2, . . . , ik. To complete its specifi-
cation, we need to specify the resource-specific coefficients vj. For this, we pick any vj > 0 satisfying
the following set of inequalities:

v1|q1|b1 > v2|q2|a2

v2|q2|b2 > v3|q3|a3

...

vk|qk|bk > v1|q1|a1

(70)

We argue that if (67) is satisfied, then this set of inequalities has a solution in strictly positive
integers vj. To see this, first observe that if (67) is satisfied, then bj 6= 0 for all 1≤ j ≤ k. If aj = 0
for some j, say for j = 1, then (70) can be solved recursively as follows.
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First, pick any integer vk > 0; this satisfies the last inequality. Then, for k− 1≥ j ≥ 1, pick any
integer vj > 0 that satisfies the jth inequality, i.e.,

vj >vj+1

|qj+1|

|qj|

aj+1

bj

Next, consider the case where aj 6= 0 for all 1≤ j ≤ k. For simplicity, denote vi|qi| by v′i.

For i 6= 1, multiplying the first i− 1 inequalities results in an upper bound for the ratio v′i
v′1
, and

multiplying the last k− i+1 inequalities results in a lower bound for the ratio
v′i
v′1
. These bounds

are given by:

(∀2≤ i≤ k)

k+1∏

j=i+1

aj

k∏

j=i

bj

<
v′i
v′1

<

i−1∏

j=1

bj

i∏

j=2

aj

(71)

It can be seen that (71) is feasible if and only if (67) is satisfied. Algorithm 2 describes a procedure
for obtaining v′i > 0 that solves (70).

Algorithm 2 Solving (70)

v′1← 1
Pick v′2 satisfying (71) for i= 2
i← 3
while i≤ k do

Pick v′i satisfying the inequality given by,

∏k+1

j=i
aj

∏k

j=i
bj

< aiv
′
i < bi−1v

′
i−1 (72)

i← i+1
end while

Note that during the ith iteration, (72) is feasible for v′i, because, by using the inequalities in (71)
for i and i− 1, it follows that,

k+1∏

j=i

aj

k∏

j=i

bj

<aiv
′
i , bi−1v

′
i−1 <

i−1∏

j=1

bj

i−1∏

j=2

aj

and once again, this is feasible if and only if (67) is satisfied.
Now, we verify that the v′i > 0 obtained through this procedure satisfy (70):
(i) From (72), it is clear that the second through (k− 1)th inequalities are satisfied.
(ii) The first inequality is satisfied, because v′1 = 1 and we picked v2 satisfying (71) for i= 2, from

which we get v′2 <
b1
a2
.

(iii) The last inequality is satisfied, since v′1 = 1, and the vk that we picked satisfying (72) for i= k
also satisfies (71) for i= k, from which we get vk >

a1
bk
.

From these v′j , we obtain vj by dividing out |qj|. Note that it is always possible to choose v′j such
that all vj are rational. If this is done, then these vj can all be scaled by a single positive constant
to make them integers, while still satisfying (70).



Gopalakrishnan, Marden, and Wierman: Potential Games are Necessary to Ensure PNE in Cost Sharing Games 47

We observe that our definition of the players’ action sets in (68) and (69) ensures that in any
action profile, every column j (consisting of resources uj and dj) must have both players ij and
ij+1. (There are four possible ways in which this can happen.) We call an action profile a =
(a1, . . . , ak) a valid action profile if there exists some 1≤ j ≤ k (called a valid index ) such that one
of four validity conditions is true. Each validity condition involves a configuration consisting of two
adjacent columns. We now present the four validity conditions: (The valid configurations that are
referenced in these conditions are illustrated in Figure 9.)

(i) qj < 0, qj+1 < 0, aj ∩ aj+1 6= ∅. Visually, this corresponds to V1 or V2.

(ii) qj > 0, qj+1 > 0, aj ∩ aj+1 = ∅. Visually, this corresponds to V3 or V4.

(iii) qj < 0, qj+1 > 0, aj ∩ aj+1 6= ∅, aj+1 ∩ aj+2 6= ∅. Visually, this corresponds to V2.

(iv) qj > 0, qj+1 < 0, aj ∩ aj+1 = ∅, aj+1 ∩ aj+2 = ∅. Visually, this corresponds to V4.

Figure 9. Possible (anonymous) configurations for valid action profiles

Note. Each black circle denotes a player. Recall that each column j must contain two players, ij and ij+1. Hence,
in every configuration, there are two black circles per column. In every configuration, at the top of each column, the
sign of its coefficient is indicated. If there is no sign indicated, then it could be either positive or negative.

Figure 10 is more detailed, where we enumerate all possible ways the black circles in Figure 9
can correspond to players of their respective columns. For each set of valid configurations, we also
show the utility to player ij+1 for the action that he is shown taking (aj+1), as well as for the action
he could otherwise have chosen (aj+1).

We now show that a valid action profile cannot be an equilibrium. From (70), we get,

(∀ 1≤ j ≤ k) vj|qj|f
Tj ((ij+1, Tj)> vj+1|qj+1|f

Tj+1 (ij+1, Tj+1) (73)

Using (73), it can be seen that in any valid action profile with a valid index j, i.e., action profiles
containing any of the configurations of V1 through V4, player ij+1 always has an incentive to deviate.
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Figure 10. Possible configurations for valid action profiles

Note. The action set of player ij+1 is given by Aij+1
= {aj+1, aj+1}. The specific resources that these two actions

include will depend on whether the player is straight or diagonal, which is not important here. We do not explicitly
highlight the actions of all players other than players ij , ij+1, ij+2. In each configuration, action aj+1 corresponds to
the action that player ij+1 is shown taking. Uj+1 (aj+1) denotes the utility to player ij+1 in the configurations shown,
and it only depends on whether it is V1, V2, V3, or V4. In every configuration, at the top of each column, the sign of
its coefficient is indicated where relevant. If no sign is indicated, it could be either positive or negative.

For example, consider any of the four configurations of V1, where qj < 0, qj+1 < 0. The difference
in the utilities to player ij+1 between deviating to aj+1 and staying in aj+1 is given by,

∆j+1 =Uj+1(aj+1)−Uj+1(aj+1)

=−vj (f(ij+1, Tj)− f(ij+1, Tj −{ij}))+ vj+1 (f(ij+1, Tj+1)− f(ij+1, Tj+1−{ij+2}))

Using the basis representation of f , this can be simplified as,

∆j+1 =−vj
∑

T∈Tijij+1
(Tj)

qTf
T (ij+1, T )+ vj+1

∑

T∈Tij+1ij+2
(Tj+1)

qTf
T (ij+1, T )
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But Tj and Tj+1 are minimal in T +
ij ij+1

and T +
ij+1ij+2

respectively. Therefore, we get,

∆j+1 =−vjqjf
Tj (ij+1, Tj)+ vj+1qj+1f

Tj+1(ij+1, Tj+1)

= vj |qj|f
Tj (ij+1, Tj)− vj+1|qj+1|f

Tj+1(ij+1, Tj+1)

which is strictly positive, from (73). Hence, in configuration V1, player ij+1 has an incentive to
deviate. Similar arguments can be constructed for configurations of V2, V3, and V4.

The final step is to show that no invalid action profile exists in Counterexample 6. We do this
by showing that any attempt to construct an invalid action profile by choosing actions from the
players’ action sets must fail. Before presenting the formal details, we return to Example 15 to
highlight the intuition behind our approach.

Example 16. In Example 15, we specified the action sets of the seven players involved in an
M3Z4P2 sign profile, namely, (−,−,−,+,−,+,+). Here, we show that for this sign profile, every
admissible action profile is valid, i.e., it satisfies one of the four validity properties. We do this by
showing that any attempt to construct an invalid action profile must fail:

(i) First, consider the M3 segment. Recall that player i2 is diagonal and player i3 is straight. It
can be seen that in any invalid action profile, there are only four possible ways in which this
segment can be filled up – configurations M1, M2, or their symmetric counterparts, M ′

1, M
′
2,

as illustrated in Figure 11a. To see this, take M1 for example:

• If i2 switches, the first two columns form a valid configuration of V2.
• If i3 switches, the second and third columns form a valid configuration of V2.
• If both i2 and i3 switch, the first two columns form a valid configuration of V1.

(ii) Next, consider the Z4 segment. Recall that player i4 is diagonal, and players i5 and i6 are
straight. It can be seen that in any invalid action profile, there are only ten possible ways
in which this segment can be filled up – configurations Z1 through Z4, or their symmetric
counterparts, Z ′

1 through Z ′
4, as illustrated in Figure 11b. Here, if any configuration other than

these ten occurs, there will be adjacent columns what would form valid configurations of either
V2 or V4.

(iii) Finally, consider the P2 segment. Recall that player i7 is diagonal. It can be seen that in any
invalid action profile, there are only four possible ways in which this segment can be filled up
– configurations P1, P2, or their symmetric counterparts, P ′

1, P
′
2, as illustrated in Figure 11c.

Here, if any configuration other than these four occurs, the two columns would form valid
configurations of either V3 or V4.

It follows that any invalid action profile must be constructed by picking one configuration from each
of Figures 11a-11c and ‘stringing’ them together. Note that in doing so, two columns shaded with
the same color must be identical to be strung together, since they correspond to overlapping columns.
Therefore, it can be seen that there are only four ways of gluing together such configurations:
M1Z4P1, M1Z4P2, and their symmetric counterparts, M ′

1Z
′
4P

′
1, M

′
1Z

′
4P

′
2. None of these four action

profiles are invalid:

(i) M1Z4P2 and M ′
1Z

′
4P

′
2 are illegal action profiles, since player i1 is straight, whereas in these

two action profiles, he chooses a diagonal action.
(ii) M1Z4P1 and M ′

1Z
′
4P

′
1 are legal action profiles, but are valid, because the last column and the

first column (when wrapped around) form a valid configuration of V4.

Hence, all action profiles are valid.
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(a) Invalid configurations for an M3 segment.
Note. The vertical green shade indicates that the third column of this M3 segment
must match the first column of the succeeding Z4 segment, since they overlap.

(b) Invalid configurations for a Z4 segment.
Note. We have clubbed together two configurations as Z3 (and similarly, Z′

3), since they have
identical boundaries (first and last columns) – only boundary compatibility matters when gluing
together different segments. The vertical green shade indicates that the first column of this Z4

segment must match the third column of the preceding M3 segment, since they overlap. The
horizontal blue shade indicates that the fourth column of this Z4 segment must match the first
column of the succeeding P2 segment, since they overlap.

(c) Invalid configurations for a P2 segment.
Note. The horizontal blue shade indicates that the first
column of this P2 segment must match the fourth column
of the preceding Z4 segment, since they overlap.

Figure 11. Possible configurations for M3, Z4, P2 segments within an invalid action profile for Example 16
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We now build on the general intuition that was demonstrated in the example above to provide
a complete proof. First, we state some necessary conditions that any invalid action profile must
satisfy within a Pℓ, Mℓ, and Zℓ segment. The proofs are by induction, and involve arguing that in
order to avoid any of the valid configurations V1 through V4, while still respecting how the action
sets are defined, such segments must satisfy these necessary conditions. The visual configurations
that are referenced in these conditions are illustrated in Figure 12.
(i) Let columns j, j + 1, . . . , j + ℓ− 1 form an Mℓ segment. Then, in any invalid action profile,

aj ∩ aj+1 = ∅. In addition,
• uj ∈ aj =⇒ dj+ℓ−1 ∈ aj+ℓ−1

• dj ∈ aj =⇒ uj+ℓ−1 ∈ aj+ℓ−1

Visually, any Mℓ segment of an invalid action profile must match configurations M1,M2 or
their symmetric counterparts M ′

1,M
′
2. If not, there will be adjacent columns that would form

valid configurations of either V1 or V2.
The proof is by induction on ℓ, the length of the segment. For the base case, when ℓ=2, the

arguments are similar to those for the M3 segment in Example 16. Our induction hypothesis
is that every invalid Mℓ segment must match one of the four configurations M1,M2,M

′
1,M

′
2,

for some ℓ > 2. Assuming this is true, now consider an invalid Mℓ+1 segment. Keep in mind
that from the definition of action sets, player ij+ℓ is required to be straight, since he is at the

end of this segment. Let M̃ℓ denote the subsegment formed by its first ℓ columns. From the
induction hypothesis, M̃ℓ must match one of the four configurations M1,M2,M

′
1,M

′
2:

• M̃ℓ cannot match M2 or M
′
2, because in either case, in Mℓ+1, columns ℓ and ℓ+1 together

will form valid configurations of either V1 or V2 (depending on how column ℓ+1 is occupied
by the players ij+ℓ and ij+ℓ+1).
• If M̃ℓ matches M1 or M ′

1, then Mℓ+1 will match one of the four configurations M1, M2,
M ′

1, M
′
2 (depending on how column ℓ+1 is occupied by the players ij+ℓ and ij+ℓ+1).

(ii) Let columns j, j + 1, . . . , j + ℓ − 1 form a Pℓ segment. Then, in any invalid action profile,
aj ∩ aj+1 6= ∅. In addition,
• uj ∈ aj =⇒ dj+ℓ−1 ∈ aj+ℓ−1

• dj ∈ aj =⇒ uj+ℓ−1 ∈ aj+ℓ−1

Visually, any Pℓ segment of an invalid action profile must match configurations P1, P2 or their
symmetric counterparts P ′

1, P
′
2. If not, there will be adjacent columns that would form valid

configurations of either V3 or V4. The proof is by a similar inductive argument as the Mℓ

case above, except that it is more complicated – we need to consider segments of odd and
even lengths separately, because whether player ij+ℓ−1 is straight or diagonal in a Pℓ segment
depends on whether ℓ is even or odd. We omit the proof for brevity.

(iii) Let columns j, j +1, . . . , j + ℓ− 1 form a Zℓ segment. Then, in any invalid action profile, one
of the following three statements must hold:
• aj ∩ aj+1 6= ∅ and aj+ℓ−1 ∩ aj+ℓ = ∅. In addition,

—uj ∈ aj =⇒ (uj+ℓ−1 ∈ aj+ℓ−1 AND dj+ℓ−1 ∈ aj+ℓ)
—dj ∈ aj =⇒ (dj+ℓ−1 ∈ aj+ℓ−1 AND uj+ℓ−1 ∈ aj+ℓ)

Visually, this corresponds to configuration Z1 or its symmetric counterpart Z ′
1.

• aj ∩ aj+1 = ∅ and aj+ℓ−1 ∩ aj+ℓ = ∅. Visually, this corresponds to configurations Z2,Z3 or
their symmetric counterparts Z ′

2,Z
′
3.

• aj ∩ aj+1 = ∅ and aj+ℓ−1 ∩ aj+ℓ 6= ∅. In addition,
—uj ∈ aj =⇒ dj+ℓ−1 ∈ aj+ℓ−1 ∩ aj+ℓ

—dj ∈ aj =⇒ uj+ℓ−1 ∈ aj+ℓ−1 ∩ aj+ℓ

Visually, this corresponds to configuration Z4 or its symmetric counterpart Z ′
4.

Note that if none of these conditions are satisfied, then there will be adjacent columns that
would form valid configurations of either V2 or V4. Once again, the proof is by a similar
inductive argument, and is omitted for brevity.
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Figure 12. Possible configurations for Mℓ, Pℓ, and Zℓ segments (spanning columns j through j + ℓ− 1) within an
invalid action profile

Note. An action profile can be constructed by performing one of two operations repeatedly: (1) Two segments
can be “hooked” together to form a larger segment if the last column of the first segment and the first column of
the second segment are identical in both occupancy and shading scheme. In this case, these two columns overlap to
become one column. For example, M1 and Z2 can be hooked together. (2) Two segments can potentially be “glued”
together to form a larger segment if the last column of the first segment and the first column of the second segment
do not have matching shading schemes. In this case, these two columns would not overlap, but sit next to each other.
Such a gluing is permitted only if the resulting action of the boundary player ij+ℓ is legal (permissible according to
the definition of the action sets). For example, Z2 and M1 can be glued together, since it results in the boundary
player ij+ℓ being straight, which respects the definition of a straight player.
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It follows that any invalid action profile must somehow be constructed by ‘stringing’ together
different-length instantiations of these sixteen configurations. Figure 12 illustrates how this is done.
There are four possible configurations for an Mℓ segment, four possible configurations for a Pℓ

segment, and eight possible configurations for a Zℓ segment. Note that, by definition, these are
maximal segments, so when stringing together two configurations, they cannot be of the same type
of segment. We discuss all possible ways of putting together an invalid action profile below:

(i) First, observe that an invalid action profile cannot be constructed using exactly one of these
sixteen configurations (j = 1, ℓ= k in this case), because, when wrapped around, at the bound-
ary that is formed by the last column and the first column, either of the following two scenarios
occur:

• The boundary player, i1, ends up making an illegal choice, rendering the whole action
profile illegal.

• The boundary configuration (the configuration formed by the last column and the first
column) ends up being a valid configuration.

(ii) Now, we need at least two configurations to be strung together to create an invalid action
profile. We investigate possible ways of stringing together two configurations. Observe that
configurations Z1, Z2, Z3 and their symmetric counterparts Z ′

1, Z
′
2, Z

′
3 cannot be hooked

to any configurations of a Pℓ segment (since the overlapping columns do not match), and
cannot be glued to any configurations of an Mℓ segment (since this results in a valid boundary
configuration of V4). So, these six configurations cannot be used to construct an invalid action
profile, and can be eliminated.

(iii) Among the remaining ten configurations, observe that P1 and its symmetric counterpart P ′
1

cannot be glued to any configurations of an Mℓ or any remaining configurations of a Zℓ

segment (since this results in a valid boundary configuration of V4). Also,M2 and its symmetric
counterpart M ′

2 cannot be hooked to any remaining configurations of a Zℓ segment (since the
overlapping columns do not match), and cannot be glued to any configurations of a Pℓ segment
(since this results in a valid boundary configuration of V2). So, these four configurations cannot
be used to construct an invalid action profile, and can be eliminated.

(iv) We are left with M1, P2, Z4, which can all be hooked or glued with each other, and their
symmetric counterparts, M ′

1, P
′
2, Z

′
4, which can also all be hooked or glued with each other.

Also, none of M1, P2, Z4 can be hooked or glued with any of M ′
1, P

′
2, Z

′
4 and vice versa (since

either overlapping columns (if any) do not match, or the boundary player ij+ℓ ends up making
an illegal choice).

(v) Therefore, an invalid action profile must be constructed by using only M1, P2,Z4 or only
M ′

1, P
′
2,Z

′
4. Also, such invalid action profiles must begin with a minus sign and end with a plus

sign (due to our cyclic transformation at the beginning). There are now only three cases to
be considered:

• Begin with M1 (respectively, M ′
1) and end with Z4 (respectively, Z ′

4)

• Begin with M1 (respectively, M ′
1) and end with P2 (respectively, P ′

2)

• Begin with Z4 (respectively, Z ′
4) and end with P2 (respectively, P ′

2)

But, in each of these cases, when wrapped around, the boundary player i1 ends up making an
illegal choice, rendering the whole action profile illegal.

Hence, there exist no invalid action profiles. This concludes the proof. �

As before, we now present a useful inference from Lemma 10 in terms of the weight systems:
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Corollary 3. Given any set of local welfare functions W, let fW be budget-balanced distribu-
tion rules that guarantee equilibrium existence in all games G∈ G(N,fW,W), where, for each W ∈

W, fW :=
∑

T∈T W

qWT fT
GWSV [ω

W,T ], where ωW,T =
(
λ

W,T ,ΣW,T =
(
SW,T
1 , SW,T

2

))
. Let i1, i2, . . . , ik ∈N

be any k players (k ≥ 3) such that ∃ T1 ∈
(
T 1+
i1i2

)min
, T2 ∈

(
T 2+
i2i3

)min
, . . . , Tk ∈

(
T k+
iki1

)min
, for any k

welfare functions W1,W2, . . . ,Wk ∈W. Then,

(a) (∀ 1≤ j ≤ k) {ij, ij+1}⊆ S
j,Tj

1

(b)
k∏

j=1

λ
j,Tj

ij

λ
j,Tj

ij+1

= 1

A.3.2. Existence of a universal weight system. In order to establish the global consis-
tency of the sequence of weight systems Ω=

{
{ωW,T}

T∈T W

}
W∈W

, we need to show that there exists
a universal weight system ω∗ = (λ∗,Σ∗) that is equivalent to all the weight systems in Ω, i.e.,
replacing ωW,T with ω∗ for any coalition T ∈ TW for any W ∈W does not affect the distribution
rule fW,T = fT

GWSV [ω
W,T ]. We show this by explicitly constructing Σ∗ and λ

∗. Before doing so, we
use Ω to define two useful relations �Ω and =Ω on the set N , as follows. For any two elements
i, j ∈N ,

i�Ω j⇐⇒
(
(∃ W ∈W) (∃ T ∈ T W+

ij ) s.t. i∈ SW,T
1

)
OR

(
i= j

)

i=Ω j⇐⇒ (i�Ω j) AND (j �Ω i)

(74)

Using Corollary 2(a) and 2(b)(i), we can write down an equivalent set of definitions for these
relations:

i�Ω j⇐⇒
(
(∀ W ∈W) (∀ T ∈ T W+

ij ) i∈ SW,T
1

)
OR

(
i= j

)

i=Ω j⇐⇒
(
(∀ W ∈W) (∀ T ∈ T W+

ij ) {i, j}⊆ SW,T
1

)
OR

(
i= j

) (75)

We denote the transitive closures of these relations by �+
Ω and =+

Ω respectively.

Lemma 11. Given any set of local welfare functions W, if fW are budget-balanced distribution
rules that guarantee equilibrium existence in all games G ∈ G(N,fW,W), described completely by
the sequence of weight systems Ω, then, �+

Ω constitutes a partial order on N .

Proof. By definition, �+
Ω is both reflexive and transitive. To prove that it is a partial order

on N , we need only show antisymmetry, i.e., we need to show that for any i, j ∈ N , if i �+
Ω j

and j �+
Ω i, then i=+

Ω j. This is equivalent to showing that if there is a cycle in �Ω, i.e., if there
exists a sequence of k distinct players i1, . . . , ik ∈N such that i1 �Ω i2 �Ω . . .�Ω ik �Ω i1, then it
must be that i1 =Ω i2 =Ω . . . =Ω ik =Ω i1. The case where k = 1 is trivial. For k = 2, the proof is
vacuous by definition of =Ω. For k ≥ 3, suppose there is a cycle in �Ω. Then, using the definition
of �Ω from (75), ∀ 1 ≤ j ≤ k ∀ W ∈W ∀ Tj ∈ T

W+
ijij+1

, ij ∈ S
W,Tj

1 . Then, from Corollary 3(a),

∀ 1≤ j ≤ k ∃W ∈W ∃ Tj ∈ T
W+
ij ij+1

s.t. {ij, ij+1} ⊆ S
W,Tj

1 . The conclusion then follows by using the
definitions from (74). �
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We now present the construction of a universal weight system, ω∗ = (λ∗,Σ∗).

• Construction of Σ∗. From Lemma 11, the relation �+
Ω constitutes a partial order on N . And

the corresponding relation =+
Ω is an equivalence relation. We let Σ∗ = (S∗

1 , S
∗
2 , . . . , S

∗
k) be an

ordered partition of N into its equivalence classes according to =+
Ω , ordered in any manner

that does not violate �+
Ω , i.e., for any 1≤ j < ℓ≤ k, any ij ∈ S

∗
j and iℓ ∈ S

∗
ℓ , iℓ �

+
Ω ij.

• Construction of λ
∗. We construct λ∗ = (λ∗

i )i∈N
in a piecewise fashion as follows. For each

equivalence class S∗
r ∈Σ

∗, consider the following two cases:

(1) |S∗
r |= 1. In this case, for i∈ S∗

r , set λ
∗
i to an arbitrary strictly positive number.

(2) |S∗
r |= k > 1. Let S∗

r = {i1, i2, . . . , ik}. S
∗
r is an equivalence class determined by the relation

=+
Ω , the transitive closure of =Ω. So, by definition, it must be that for some permutation

of its elements, without loss of generality the identity permutation, i1 =Ω i2 =Ω . . .=Ω ik.
Using the definition of =Ω from (75), this means,

(∀ 1≤ j < k) (∀ W ∈W) (∀ Tj ∈ T
W+
ij ij+1

) {ij , ij+1} ⊆ S
W,Tj

1

For each 1≤ j < k, pick any15 Wj ∈W and Tj ∈
(
T j+
ij ij+1

)min

. To begin with, set
(
λ∗
i1
, λ∗

i2

)
=

(
λ1,T1
i1

, λ1,T1
i2

)
. If k= 2, we are done. Otherwise, for 3≤ j ≤ k, recursively set:

λ∗
ij
=

λ
j−1,Tj−1
ij

λ
j−1,Tj−1

ij−1

λ∗
ij−1

(76)

Example 17. Let N = {i, j, k, ℓ,m,n} be the set of players, and let there be just one local
welfare function W , T W = {TW

1 = {i, j}, TW
2 = {j, k, ℓ}, TW

3 = {m,n}, TW
4 = {i,m,n}}. Also, let f

be a distribution rule that guarantees the existence of an equilibrium in all games G∈G(N,f,W ),

described by the sequence of weight systems Ω=
{
ωW,Ti = (λW,Ti ,ΣW,Ti)

}4
i=1

, where,

λ
W,T1 =λ

W,T3 = (1,2) λ
W,T2 =λ

W,T4 = (1,2,3)

ΣW,T1 = {{i, j},{}} ΣW,T2 = {{j, k},{ℓ}} ΣW,T3 = {{m,n},{}} ΣW,T4 = {{i},{m,n}}

Using the definitions in (74) or (75), it can be seen that the players are related as follows:

i =+
Ω j =+

Ω k �+
Ω ℓ and i �+

Ω m =+
Ω n

Using the construction above, it can be seen that for Σ∗, both {{i, j, k},{m,n},{ℓ}} and
{{i, j, k},{ℓ},{m,n}} are admissible orderings of the three equivalence classes of =+

Ω (they do not
violate �+

Ω). As for the weights, we get λ
∗ = (1,2,4, a,1,2), where a can be any strictly positive

number. Any strictly positive scaling of λ∗ would also be admissible.

15 At least one such (Wj , Tj) pair is guaranteed by the definitions in (74).
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Before proceeding to show that ω∗ as constructed above is equivalent to all the weight systems
in Ω, we prove an important property of λ∗ in a quick lemma:

Lemma 12. With λ
∗ as derived above, for any S∗

r ∈ Σ∗ with |S∗
r | > 1, for any two players

i, j ∈ S∗
r , for any W ∈W, for any coalition T ∈ T W+

ij with {i, j} ⊆ SW,T
1 ,

λW,T
i

λW,T
j

=
λ∗
i

λ∗
j

(77)

Proof. Let |S∗
r | = k > 1. Equivalently, we show that for all m ∈ {1,2, . . . , k − 1}, for all ℓ ∈

{1,2, . . . , k−m}, (77) holds for players i= iℓ and j = iℓ+m. The base case, where m= 1 follows by
construction (76), and by using Corollary 2(b)(ii). Form≥ 2, suppose there exists a welfare function
W ∈W and a coalition T ∈ T W+

ij , with {i, j} ⊆ SW,T
1 . Recall the welfare functions and coalitions

(Wj, Tj), 1 ≤ j < k, that were picked for constructing λ
∗. From Corollary 2(b), it is sufficient to

prove this lemma for T ∈
(
T W+
ij

)min
. Now, using the definitions in (74), j =Ω i. Therefore, it follows

that the players i= iℓ, iℓ+1, . . . , iℓ+m = j form a cycle in =Ω, i.e., iℓ =Ω iℓ+1 =Ω . . .=Ω iℓ+m =Ω iℓ. This
means that, iℓ ∈ S

ℓ,Tℓ
1 , iℓ+1 ∈ S

ℓ+1,Tℓ+1
1 , . . . , iℓ+m−1 ∈ S

ℓ+m−1,Tℓ+m−1
1 , iℓ+m ∈ S

W,T
1 . Applying Corollary

3(b) and (76), we have:

(
ℓ+m−1∏

j=ℓ

λ
j,Tj

ij

λ
j,Tj

ij+1

)
λW,T
iℓ+m

λW,T
iℓ

=1 =⇒
λW,T
i

λW,T
j

=

ℓ+m−1∏

j=ℓ

λ
j,Tj

ij

λ
j,Tj

ij+1

=⇒
λW,T
i

λW,T
j

=

ℓ+m−1∏

j=ℓ

λ∗
ij

λ∗
ij+1

=⇒
λW,T
i

λW,T
j

=
λ∗
i

λ∗
j

This concludes the proof. �

Now we present the final lemma that establishes the global consistency of Ω.

Lemma 13. Given any set of local welfare functions W, if fW are budget-balanced distribution
rules that guarantee equilibrium existence in all games G ∈ G(N,fW,W), where, for each W ∈W,

fW :=
∑

T∈T W

qWT fW,T
GWSV [ω

W,T ], then, there exists a weight system ω∗, such that,

(∀ W ∈W) (∀T ∈ T W ) fW,T

GWSV [ω
W,T ] = fT

GWSV [ω
∗] (78)

Proof. We prove that ω∗ as constructed above satisfies (78). Consider any welfare function
W ∈W and any coalition T ∈ T W . Let k = min{r|S∗

r ∩T 6= ∅}. Then, we need only show the
following:

(i) SW,T
1 ⊆ S∗

k

(ii) SW,T
2 ∩S∗

k = ∅

(iii)
(
∀i, j ∈ SW,T

1

) λ
W,T
i

λ
W,T
j

=
λ∗
i

λ∗
j

Of these, the first two are immediate from the construction of Σ∗, and the third follows from
Lemma 12. This completes the proof. �
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Appendix B: Proof of Proposition 2. First, note that we only need to prove one direction,
since from (8) and (9) in Table 2, it follows that,

q′T =




∑

j∈T

λj



 q′′T ⇐⇒ q′Tf
T
GWSV [ω] = q′′Tf

T
GWMC [ω] (79)

To prove the other direction, it suffices to show that,

fW ′

GWSV [ω] = fW ′′

GWMC [ω] =⇒ (∀ T ⊆N) q′T =



∑

j∈T

λj


q′′T

with the understanding that qT =0 whenever T /∈ T , for T = T ′,T ′′. The proof is by contradiction.
Suppose fW ′

GWSV [ω] = fW ′′

GWMC [ω], and let T be a smallest subset for which q′T 6= (
∑

j∈T
λj)q

′′
T , and

i∈ T . Then, we have,

fW ′

GWSV [ω] = fW ′′

GWMC [ω] =⇒ fW ′

GWSV [ω](i, T ) = fW ′′

GWMC [ω](i, T )

=⇒
∑

S⊆T

q′Sf
S
GWSV [ω](i, S) =

∑

S⊆T

q′′Sf
S
GWMC [ω](i, S)

=⇒ q′Tf
T
GWSV [ω](i, T )+

∑

S(T

q′Sf
S
GWSV [ω](i, S)

= q′′Tf
T
GWMC [ω](i, T )+

∑

S(T

q′′Sf
S
GWMC [ω](i, S)

=⇒ q′T =



∑

j∈T

λj


q′′T

(
from (79)

)

which contradicts our assumption. This completes the proof. �

Appendix C: Generalized weighted potential games. In Hart and Mas-Colell [18], the
authors show that weighted Shapley values result in weighted potential games, by explicitly con-
structing a potential function (in a recursive form, almost identical to the one in (11)). The authors
claim that their result extends to generalized weighted Shapley values, but do not provide a proof.
In this section, we fill this gap by showing that generalized weighted Shapley values result in a slight
variant of weighted potential games, which we call generalized weighted potential games, defined as
follows:

Definition 1. A finite game G=
(
N,{Ai}i∈N

,{Ui}i∈N

)
is a generalized weighted poten-

tial game if there exists a potential function Φ : A→ Rm (where m is some positive integer),
and a positive weight wi > 0 for each agent such that for every agent i ∈N , for every a−i ∈ A−i,
and for every a′

i, a
′′
i ∈Ai,

Ui (a
′
i, a−i)−Ui (a

′′
i , a−i) =wi

(
Φk(i) (a

′
i, a−i)−Φk(i) (a

′′
i , a−i)

)
, (80)

where k(i) denotes the index of the first nonzero term of Φ (a′
i, a−i)−Φ (a′′

i , a−i).
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Generalized weighted potential games are a special subclass of the weaker, more general class of
ordinal potential games, where the difference in the potential function (right hand side of (80)) is
merely required to be of the same sign as the difference in the utility function (left hand side of
(80)). Note that weighted potential games are simply generalized weighted potential games with a
one-dimensional potential function (m= 1).
Definition 1 applies to any finite noncooperative game in normal form. However, recall from

Section 2 that, in our model, the agent utility functions are separable, given by

Ui(a) =
∑

r∈ai

f r(i,{a}r) (81)

Hence, in searching for a potential function for G, it is natural to seek a separable potential function
Φ : A→Rm (where m is some positive integer), given by

Φ(a) =
∑

r∈R

φr({a}r) (82)

where φr : 2N →Rm is the ‘local’ potential function at resource r. Therefore, to show that Φ is a
potential function for G, it is sufficient to show that for every agent i ∈N , there exists a positive
weight wi > 0 such that, for every resource r ∈R, for every player subset S ⊆N containing i,

f r(i, S) =wi

(
(φr)k(i) (S)− (φr)k(i) (S−{i})

)
, (83)

where k(i) denotes the index of the first nonzero term of φr(S)− φr(S − {i}). Verifying this is
quite straightforward; use (81)-(83) to check that (80) is satisfied.
We now state our formal result. Recall that a weight system ω = (λ,Σ) consists of a strictly

positive vector of player weights λ∈RN
++, and an ordered partition Σ= (S1, S2, . . . , Sm) of the set

of players N .

Theorem 3. For any welfare sharing game G =
(
N,R,{Ai}i∈N

,{f r}
r∈R

,{Wr}r∈R

)
and any

weight system ω, if for every r ∈R, the distribution rule f r = f
W ′

r
GWSV [ω] = f

W ′′
r

GWMC [ω] with W ′
r,W

′′
r

being any two ground welfare functions related according to (12), then, G is a generalized weighted
potential game, with player weights λ, and the local potential function at resource r, φr[ω](S) =
((φr[ω])1 (S), (φr[ω])2 (S), . . . , (φr[ω])m (S)), where, for all 1≤ k ≤m, (φr[ω])k (S) is given in terms
of W ′

r in the following recursive form:

(φr[ω])k (S) =
1∑

i∈S
λi

(
W ′

r(Sm−k+1)+
∑

i∈S

λi (φr[ω])k (S−{i})

)
, (84)

and in terms of W ′′
r in the following closed form:

(φr[ω])k (S) =W ′′
r (Sm−k+1), (85)

where Sk = S−∪k−1
ℓ=1Sℓ.

Proof. First, we use the closed form expression in (85) to show that φr[ω] satisfies (83). This
involves proving, for any 1≤ k≤m, for any subset S containing a player i∈ Sk, the following two
steps:

(a) k(i) =m− k+1, i.e., W ′′
r (Sℓ)−W ′′

r

((
S−{i}

)
ℓ

)
= 0 for all k+1≤ ℓ≤m

(b) f
W ′′

r
GWMC [ω](i, S) = λi

(
W ′′

r (Sk)−W ′′
r

((
S−{i}

)
k

))
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Observe that
(
S−{i}

)
ℓ
= Sℓ−{i} for all 1≤ ℓ≤m. Part (a) is straightforward, since if i∈ Sk, then

by definition, i /∈ Sℓ for all k+1≤ ℓ≤m. We now focus on part (b), which is exactly the definition

of f
W ′′

r
GWMC [ω] in Table 1. Hence, the following is simply an exercise in verifying the equivalence of

the two definitions of f
W ′′

r
GWMC [ω] from Tables 1 and 2, using the basis representation discussed in

Section 3.2. Evaluating the left hand side, we get,

λi

(
W ′′

r (Sk)−W ′′
r

((
S−{i}

)
k

))
= λi




∑

T∈T ′′(Sk)

q′′T −
∑

T∈T ′′(Sk−{i})

q′′T




where, for any player subset S ⊆N , T ′′(S) denotes the set of all coalitions T ∈ T ′′ that are contained
in S (T ⊆ S). Notice that Sk does not contain any players in S1 ∪S2 ∪ . . . Sk−1. Therefore, T

′′(Sk)
consists of those coalitions contained in S that do not contain any player in S1 ∪ S2 ∪ . . . Sk−1.
Similarly, T ′′(Sk − {i}) consists of those coalitions contained in S − {i} that do not contain any
player in S1 ∪ S2 ∪ . . . Sk−1. Therefore, the collection T ′′(Sk)− T

′′(Sk − {i}) consists precisely of
those coalitions T ∈ T ′′(S) that do not contain any player in S1∪S2∪ . . . Sk−1, but contain player i.
Since i∈ Sk, this is the same as saying that the collection T ′′(Sk)−T

′′(Sk−{i}) contains precisely
those coalitions T ∈ T ′′(S) for which i∈ T . So, we get,

λi

(
W ′′

r (Sk)−W ′′
r

((
S−{i}

)
k

))
= λi




∑

T∈T ′′(Sk)

q′′T −
∑

T∈T ′′(Sk−{i})

q′′T





=
∑

T∈T ′′(S) : i∈T

q′′Tλi

=
∑

T∈T ′′

q′′Tf
T
GWMC [ω](i, S)

(
from (9)

)

= f
W ′′

r
GWMC [ω](i, S)

To complete the proof, observe that when W ′
r and W ′′

r are related according to (12), then, for all
1≤ k≤m, and all S ⊆N , the expression for (φr[ω])k (S) (85) satisfies the recursion (84). �
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