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Abstract. We considerk-Facility Location games, where strategic agents report their locations on the
real line, and a mechanism maps thenktéacilities. Each agent seeks to minimize his connection, cos
given by a nonnegative increasing function of his distancthé nearest facility. Departing from previous
work, that mostly considers the identity cost function, we iaterested in mechanisms without payments
that are (group) strategyproof for any given cost functemd achieve a good approximation ratio for the
social cost and/or the maximum cost of the agents.

We present a randomized mechanism, calledskL. CosT, which is group strategyproof and achieves a
bounded approximation ratio for alandn, for any given concave cost function. The approximatioiorat
is at most2 for MAx CosTand at most: for SociAL CosT. To the best of our knowledge, this is the first
mechanism with a bounded approximation ratio for instamgsk > 3 facilities and any number of agents.
Our result implies an interesting separation between ohétéstic mechanisms, whose approximation ratio
for MAax CosTjumps from2 to unbounded whek increases fron2 to 3, and randomized mechanisms,
whose approximation ratio remains at mastor all k. On the negative side, we exclude the possibility
of a mechanism with the properties ofgEAL COST for strictly convex cost functions. We also present
a randomized mechanism, calledcR THE LOSER which applies to instances withfacilities and only

n = k + 1 agents. For any given concave cost functioltgPTHE L OSERIs strongly group strategyproof
and achieves an approximation ratio2dior SociAL COST.
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1 Introduction

We considerk-Facility Location gameswherek facilities are placed on the real line based on the
preferences of strategic agents. Such problems are motivated by naturabsios in Social Choice,
where the government plans to build a fixed number of pubtidifies in an area (see e.d., [12]). The
choice of the locations is based on the preferences of la@blp, oragents Each agent reports his
ideal location, and the government applies a (determingstrandomizedjnechanisnihat maps the
agents’ preferences fofacility locations.

The agents evaluate the outcome of the mechanism accoalihgit connection costgiven by
a nonnegative increasing functietd) of the distancel of their ideal location to the nearest facility.
Agents seek to minimize their connection cost, and may mdsteheir ideal locations in an attempt of
manipulating the mechanism. Therefore, the mechanismlagt@strategyproafi.e., should ensure
that no agent can benefit from misreporting his location, vemeyroup strategyproofi.e., should
ensure that for any coalition of agents misreporting thegations, at least one of them does not
benefit. The government’s goal is to minimize an objectivecfion of the agents’ connection cost.
Most prominent among them are the objective afcsaL CosT, which considers the total cost of
the agents, and the objective ofaM CosT, which considers the maximum cost of an agent. So, in
addition to (group) strategyproofness, the mechanismldhather optimize or achieve a reasonable
approximation to the designated objective function, tmseng that the outcome is socially efficient.

Previous Work. The numerous applications and the elegance of the modeldiaaeted a signifi-
cant volume of research on the problem. In Social Choiceethphasis has been on characterizing
the class of (group) strategyproof mechanisms for locaismgle facility if the agents’ preferences
aresingle-peakedRoughly speaking, an agent has single-peaked preferériuesas an ideal loca-
tion (or peak, and consistently prefers less the locations farther fitofowever, the strength of his
preference for locations closer to his peak is not expjicjtiantified by any function of the distance.
For general single-peaked preferences, a classical fuibulin [13] shows that the class of deter-
ministic strategyproof mechanisms for locating a singlglitst on the line coincides with the class
of generalized median mechanisms (see also the surveysioéme2] and Sprumont [18], and [14,
Chapter 10]). Schummer and Vohta [17] extended this cheniaation to tree metrics, and proved
that for non-tree metrics, any onto strategyproof mecmanisust be a dictatorship. More recently,
Dokow et al. [3] obtained similar characterizations fordting a single facility on the discrete line
and on the discrete circle.

Adopting an optimization viewpoint to Facility Location mas, Procaccia and Tennenholtz![16]
introduced the framework ddipproximate mechanism design without monBye basic idea is to
consider game-theoretic versions of optimization prolslesuch as-Facility Location, where effi-
ciency is quantified by an objective function (instead ofoédficy related properties, such as onto,
non-dictatorship, and Pareto-efficiency, typically saatin Social Choice). Then, any reasonable ap-
proximation to the optimal solution can be regarded as aalipaesirable outcome, and one seeks
to determine the best approximation ratio achievable atesyyproof mechanisms. As for the prefer-
ences of the agents, with respect to which strategyprosfisedefined, this line of research adopted
the standard definition of Facility Location problems frompetations Research (see elg.][11]). Thus,
it implicitly abandoned the setting of general single-peghkreferences, in favor of the more restricted
(and technically easier to handle) case where the agergsicgiven by a linear function(d) = ad
of their distancel to the nearest facility. Translated into this frameworle thsults of[[18,17] imply
a deterministic strategyproof mechanism that minimizesShciaL CosT for 1-Facility Location
on the line and in tree metrics. On the negative side, the ssipoity result of [17] implies that the
best approximation ratio achievable for the objective oE&L CosT by deterministic strategyproof



Max CosT

k=1 k=2 2<k<n-1 k=n-—1
Deterministic 2 [16] 2 [16] oo [6] oo [6]
Randomized 1.5 [16] [1.5,5/3] [16] [1.5, 2] [here] 1.5 4]
SocIAL CosT
k=1 k=2 2<k<n-—-1 k=n-—1
Deterministic 1[13] n — 2 [6], [16] oo [6] oo [6]
Randomized 1[13] [1.045, 4] [10], [9] [1.045, n] [here] [1.045, 2] [here]

Fig. 1. Summary of known results on the approximabilitykefacility Location on the line (with linear cost functiorfey

the objectives of Mx CosTand ScIAL CosST. In each cell, we have either the precise approximatiom (#tknown)

or the interval determined by the best known lower and uppemnds. In cells with two references, the first is for the
lower bound and the second for the upper bound. We note thadwer bound on the approximation ratio of deterministic
mechanisms fok > 3 is only shown for anonymous mechanisms. The randomizedruypads proven in this work are
shown in bold and hold for any concave cost function.

mechanisms for 1-Facility Location in general metrica is 1. However, the explicit quantification
of agents’ preferences now allows for randomized mechanthat are strategyproof with respect to
the agents’ expected cost (a.k.a. incentive compatiblgpe&ation, see e.gl, [14, Section 9.5.6]) and
may achieve better approximation ratios.

Since [16], there has been a considerable interest in dyiagtithe best approximation ratio
achievable by strategyproof mechanisms Keffacility Location on the line and in general metric
spaces. As a result, the approximability lefacility Location (with linear cost functions) by deter-
ministic and randomized strategyproof mechanisms hasnbeeeell understood in many interesting
cases (see also Fig. 1). The main message is that deteimatisttegyproof mechanisms can only
achieve a bounded approximation ratio if we have at radatilities [16.6]. On the other hand, ran-
domized mechanisms achieve better approximation ratrasFacility Location, and also a bounded
approximation ratio if we havke > 2 facilities and onlyn = k + 1 agents[[4]. Notably, such instances
are known to be hard for deterministic mechanisms. In pagicthe inapproximability ok-Facility
Location by anonymous deterministic strategyproof mergmas, for allk > 3, was proved in[6] for
instances with only» = k£ + 1 agents.

Motivation and Contribution. Our work is motivated by two natural questions related taaxmate
mechanism design without money fesfacility Location. The first question is about the approsim
bility of k-Facility Location by randomized strategyproof mecharsgor instances with any number
of facilities and any number of agents. Prior to this work, vee only known randomized mecha-
nisms with a bound&lapproximation ratio if we have either at most 3 facilitieskofacilities and
only n = k + 1 agents. Most importantly, all the randomized upper boundsig.[1 are achieved
by mechanisms that balance between strategyproofnesdfaiehey using different approaches (see
e.g., [16.,9.4]).

The second question is whether the restriction to linear foogtions is a necessary price to pay
for adopting the elegant optimization framework of Proéa@nd TennenholtZ [16] and aiming at
a reasonable approximation ratio. In fact, we can imagir@narfatural scenarios where the agents’
cost is best described by a convex or a concave non-deageessh functionc(d) of their distancel
to the nearest facility. For example, a convex cost functiaptures the fact that the growth rate of

% The approximation ratio of a mechanism fefFacility Location is bounded if it is a function ef andk. We highlight
that this property is essentially objective-independsinice any mechanism with a bounded approximation ratio.tpr e
Max CosrT also has a bounded approximation fan@aL CosT and for the objective of minimizing thé, norm of
the agents’ costs, for any> 1, and vice versa.



the people’s disutility from commuting increases with thstahce (e.g., in addition to cost and time
considerations, people get more and more tired if they commwver long distances). On the other
hand, a concave cost function captures the fact that thetlynate of the traveling time decreases
with the distance (e.g., people walk over short distand&s, dver medium distances, drive over long
distances, and take a plane over really long ones). To darcestient, a setting where the agents’ cost
function is not fixed, but is given as part of the input, woudddboser to the setting of general single-
peaked preferences in Social Choice. Then, a mechanisndsheustrategyproof, or even group
strategyproof, for any given cost functienjust as generalized median mechanisms are strategyproof
for any collection of single-peaked preferences, whileapproximation ratio may also depend on
some quantitative properties (e.g., the derivative}.dfiotably, this holds for the class of percentile
mechanisms_[19], which decide on the facility locationsdohaen the ordering of the agents on the
line, are group strategyproof, and include the optimal .(tyn¢ approximation ratio for linear cost
functions) deterministic mechanisms forand 2-Facility Location on the line. However, percentile
mechanisms have an unbounded approximation ratio fdr 2ll3. In contrast, the strategyproofness
of known randomized mechanisms crucially depends on tleallity of the cost function (see e.g.,
[16, Mechanism 1] which is not strategyproof e.g., #ad) = /d).

In this work, we make significant progress in both researobctions above. Our main technical
contribution consists of two randomized mechanisms, dadlguaL CosT and RCK THE LOSER
that are group strategyproof and achieve a bounded appativimratio for any number of facilities
and any given concave cost function.

EQuAL CosT, presented in Sectidn 3, applies to instances with any nuofliacilities £ and any
number of agents, and is the first (group) strategyproof mechanism with a bedrapproximation
ratio for all k andn. Its approximation ratio is at mo&tfor MAx CosT and at most for SOCIAL
Cost, for all concave cost functione Combined with the lower bound df [16] for the objective of
Max CosT, this implies that the best approximation ratio achievdilyleandomized mechanisms for
k-Facility Location on the line and is at leaktt and at mos®, for all £ and for all concave cost
functions. Moreover, we obtain an interesting separatieivben deterministic mechanisms, whose
approximation ratio for Mx CosT jumps from2 to unbounded wheh increases fron2 to 3, and
randomized mechanisms, whose approximation ratio rengagnsall constant for ak.

From a technical viewpoint, AL CosT works by equalizing the expected cost of all agents.
The mechanism first covers the agents’ locations witlisjoint intervals of lengtlf, wheref is chosen
so thatc(¢) is at most twice the optimal maximum cost of an agent. Thekingathe cost function
c into account, it computes a random variab{ein [0, ¢], so that all locations: € [0, ¢] have the
same expected cost, undeif x is connected to a facility distributed jf, /] according taX. Finally,
EQuAL CosT places a facility in each interval according to the randomiatde X so that all agents
have an expected cost equal to the expectatiarn 5.

The key technical claim in the analysis oEAL CosT s that if the cost function: is concave
and piecewise linear, a random variatewith the desired properties exists and can be computed
efficiently as the solution to a homogeneous system of lirgaations (Lemmia_3.2). This claim can
be generalized to any continuous concave function, buttttenical details have to do with techniques
for the solution of integral equations and are beyond the@ead this work. We show that GAL
CosrTis (resp. strongly) group strategyproof for any given (resspctly) concave cost functiory and
that the agents’ expected cost is at most the maximum cost afjant in the optimal solution for
the objective of Mix CosT (Lemma3.b). In addition to implying the approximation carstees, the
upper bound on the expected cost of the agents indicatethth&cility allocation of EUAL COST
is fair in expectation, and does not unnecessarily incréasagents’ disutility.
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To demonstrate the natural behavior aplaL CosT for typical cost functions, we derive the
exact form of the random variabl€ for three important cases: linear cost functions, piece\igear
cost functions with two pieces, and exponential cost famstiof the form:(d) = 1—e~*¢ (Sectior 4).
Moreover, we show how to implementQbAL CosT if the agents and the facilities should lie in a
bounded interval (Sectidd 5). This implies thapEaL CosT can be applied to instances where the
agents lie on a circle metric, with the same approximatioargutees, but rather surprisingly, with
group strategyproofness carrying over only if the numbdadiities is even.

On the negative side, we exclude the possibility of a medmaniith the properties of GUAL
Cosr for strictly convex cost functions (Sectign 5.2). Specificave show that the expected cost of
the agents in the same interval cannot be equalized if thfwodtion ¢ is strictly convex. Moreover,
employing an exponential cost function, we show (Lerima th&)there does not exist a randomized
strategyproof mechanism with a bounded approximatioo fatiany given convex cost function (note
that the approximation ratio here may also depend on thefwastion).

In Section[6, we focus on the simpler and elegant setting eviaer havek facilities and only
n = k + 1 agents. This setting was motivated and studied_in [4], arsgrdes special attention
not only because such instances are among the hardest ortEtdoministic mechanisms (see e.qg.,
[6, Theorem 7.1]), but also because they maksukL CosT perform poorly for the objective of
SociaL CosT. We present thelRK THE LOSERmMechanism that allocates facilities to all but a single
agent, designated as the loser. The probability distobuticcording to which the loser is chosen is
motivated by the probability distribution used hy [8] forheduling on selfish unrelated machines.
Our key technical contribution here is to show that® THE LOSERIs strongly group strategyproof
for any given concave cost function (Lemmal6.1). We also sttmtv Rck THE LOSER achieves
an approximation ratio o for the objective of ®ciAL CosT. Thus, we significantly improve on
the previously best known approximation ratiorgf2 achieved by theNVERSELY PROPORTIONAL
mechanism of.[4] for this class of instances. Moreover, thalsapproximation ratio of RK THE
LosERnicely complements the poor performance afiiAL CosT for such instances.

Other Related Work. For the objective of Mx CosT, Alon et al. [1] almost completely character-
ized the approximation ratios achievable by randomizeddaterministic mechanisms for 1-Facility
Location in general metrics and rings. For the objective ©o€8L CosT, Nissim et al.[[15] and Fo-
takis and Tzamos [7] considered imposing randomized mestmarthat achieve an additive approx-
imation of o(n) and an approximation ratio dft for k-Facility Location on the line and in general
metric spaces, respectively. FoFacility Location on the line and the objective of mininmgithe L
norm of the agents’ distances to the facility, Feldman anfd \3/i proved that the best approximation
ratio is 1.5 for randomized an@ for deterministic mechanisms. Moreover, they presenteldss of
randomized mechanisms that includes all known strategypnechanisms for 1-Facility Location on
the line.

2 Notation, Definitions, and Preliminaries

For a random variabl&’, we letIE[ X ] denote thexpectatiorof X. For an evenf’ in a sample space,
we letIPr[E] denote the probability thaf occurs.

Instances.We considerk-Facility Location withk > 1 facilities andn > k + 1 agents on the real
line. We letN = {1,...,n} be the set of agents. Each agerg N resides at a location; € IR,
which isi’s privateinformation. Aninstanceis a tuple(z, ¢), wherex = (x1,...,z,) € R" is the
agents’ locations profile and: IR>( — IR>¢ is a cost function that gives the connection cost of each
agent. The cost functionis public knowledgend the same for all agents. Normalizingve assume
thatc(0) = 0. If the cost functiorr is clear from the context, we let an instance simply condiat.o
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For ann-tuplex = (z1,...,z,) € R", welete_; = (x1,...,zi-1, Tit+1,. - ., Tn) bex without
x;. For a non-empty sef of indices, we letcs = (z;)ics andxz_s = (z;);zs. We write (x_;, a) to
denote the tuple: with a in place ofz;, (z_g; j1, a, b) to denote the tuple with a in place ofz; and
bin place ofz;, and so on.

Mechanisms.A deterministic mechanisrf for k-Facility Location maps an instande:, c) to a k-
tuple (y1,...,y:) € R¥, y1 < --- < y, of facility locations. We letF'(x, ¢) (or simply F(z),
wheneverc is clear from the context) denote the outcomefofor instance(x, ¢), and letF(x, c)
denotey;, i.e., thej-th smallest coordinate if'(x, c). We writey € F(x,c) to denote that'(x, c)
has a facility at locationy. A randomized mechanisfi maps an instancér, ¢) to a probability
distribution overk-tuples(yi, . .., y) € R

Connection Cost, Social Cost, Maximum CostGiven ak-tupley = (y1,...,yx), 11 < -+ <

yi, Of facility locations, the connection cost of agentvith respect toy, denotedcost(z;,vy), is
cost(z;,y) = c(minj<;<y |z; — y;|). Given a deterministic mechanisimand an instancéz, c), we

let cost(z;, F'(x, c)) (or simply,cost(x;, F(x)), if ¢ is clear from the context) denote the connection
cost of agent with respect to the outcome &f(x, ¢). If F'is a randomized mechanism, the expected
connection cost of agents

cost(z;, F(x, ¢)) = By p(a,c)[cost(zi, y)]
The Max CosT of a deterministic mechanisifi for an instancéx, c) is
MC[F(z, ¢)] = max;en cost(z;, F'(x,c))
The expected Mx CosTof a randomized mechanisiifor an instancéx, c) is
MC[F(z, c)] = IEyp(a,c) [maxien cost(zi, y)]

The optimal Max CosT, denotedMC*(x, ¢), is MC* (@, ¢) = min, cr max;en cost(zi, y).

The (resp. expected) & IAL CoST of a deterministic (resp. randomized) mechanisirfor
an instancgx, ¢) is SC[F(z,c)] = Y., cost(z;, F(z,c)). The optimal ®cIAL CosT, denoted
SC*(z, c), IsSC*(z, ¢) = min, gk Y i cost(w;,y).

Approximation Ratio. A (randomized) mechanisif' for k-Facility Location achieves aapproxi-
mation ratioof p > 1 for a class of cost functionS and the objective of Mx COST (resp. S CIAL
Cosn), if for all cost functionsc € C and all location profiles, MC[F'(x, ¢)] < p MC*(x, ¢) (resp.
SC[F(x,c)] < pSC*(z,c)).

Strategyproofness and Group StrategyproofnessA mechanismF’ is strategyprooffor a class of
cost functiongC if no agent can benefit from misreporting his location. Fdiynd" is strategyproof
if for all cost functionsc € C, all location profilese, any agent, and all locations,

cost(x;, F(x,c)) < cost(z;, F((x—i,y),c)).

A mechanisn¥ is (weakly)group strategyproofor a class of cost functionif for any coalition
of agents misreporting their locations, at least one of thees not benefit. Formally; is (weakly)
group strategyprooff for all cost functionsc € C, all location profilese, any non-empty coalitiory,
and all location profileg s for S, there exists some agent S such that

cost(z;, F(x,c)) < cost(z;, F((x_g,ys),¢)).
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A mechanismF is strongly group strategyproofor a class of cost function§ if there is no
coalition S of agents misreporting their locations where at least oeatag S benefits and the other
agents inS do not lose from the deviation. Formally, is strongly group strategyproof if for all cost
functionsc € C and all location profiles:, there do not exist a non-empty coalitihand a location
profile ys for S, such that for ali € S,

COSt(mia F(m> C)) > COSt(xb F((m—57 yS)v C)) )
and there exists some agent S with

cost(z;, F(x,c)) > cost(z;, F((x_s,¥ys),¢)) .

3 The EQUAL-CosT Mechanism

In this section, we present and analyze tlggyEL CoST mechanism. At the conceptual level BaL
CosrT, or EC, in short, works by equalizing the expected cost of all ageBtven an instancér, c)
of k-Facility Location on the lineEC works as follows:

Step 1 It computes an optimal covering of all agent locations vkittisjoint intervals/c;, «; 4 ¢] that
minimizes the interval length (wlog., we assume that; < a;1).

Step 2 It constructs a random variablg(¢) € [0, ¢] such that all locations € [0, /] have the same
the expected connection cdBfc(|z — X|)].

Step 3 For every intervalo;, o; + ¢], EC places a facility aty; + X, if ¢ is odd, or aty; + ¢ — X, if
1 is even.

We proceed to establish the main propertieEGf summarized by the following theorem. For the
proof, we examine, in the following sections, each step efrttechanism separately.

Theorem 3.1. For the class of all concave cost functiodSQUAL COST is group strategyproof and
achieves an approximation ratio @ffor the objective oMaAx CosT, and an approximation ratio of
n for the objective oSociAL CosT. Moreover, for every instancex(c), with ¢ concave, and every
agenti, cost(z;, EC(x, ¢)) < MC*(x, ¢).

3.1 Step 1: Partitioning the Instance in Intervals

We can compute the minimum feasible interval lengtily checking all possible candidate values.
The value of? is equal to the distance; — z; for some agent locations; < z;. So, there are at
mostn? /2 candidate values faf. For each candidate val#g we can check feasibility and compute
a covering of all locations ir: with intervals of length?’ as follows:

While there are uncovered agents, find the leftmost uncdwagenti, and create a new inter-
val [z;, z; + ¢'].

The above algorithm computes the minimum number of intereéllength?’ to coverz. If this
number is at mosk, we set/ = ¢'. We can also speed up the algorithm by binary search over the
space of candidate values.

We observe that the partitioning into intervals of lengtis closely related to the optimal maxi-
mum costMC*(x, ¢). In fact, an optimal solution can be obtained by placing difaat the midpoint
of each interval. Thus, the cost of the optimal solutiobMi§™*(x, ¢) = ¢(¢/2).
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3.2 Step 2: Constructing the Random Variable

We next show that for any given cost functienwe can construct a family of random variables
X (¢) € [0,7] such the expected cost of every pointin/] is the same. For convenience, we denote
this cost ag” (¢). We note thaC'(¢) = IE[c(| X (¢) — z|)], for all € [0, ¢]. In particular, forz = 0,

we getC'(¢) = E[e(X (£))].

We assume that the cost functions piecewise-linear with pieces of lengthand growth rates
A0y A1y -- -5 Ay - -, Where),; is the growth rate in the interval, i — 1). For alli, A\; > 0 and\; > A\;41,
because is strictly increasing and concave. Our result applies ttega concave functions either by
discretizing appropriately, or by solving a continuouslagaf the homogeneous linear system below
through an integral equation. The technical details asdedIto the solution of integral equations and
are beyond the scope of this work.

The supportS of the random variablé& (¢) is every point and? — i, for integeri = 0,. .., [£].

We note that if¢ is an integer, we have only5| = ¢ + 1 points in the support, instead 0| =
2(|¢]+1) points in general. The crucial observation is that the @itie of the expected cost function
in every interval between consecutive points in the suppaoigt bed. So, to compute the probability
p; assigned to each poirtin the support ofX (¢), we write a set ofS| — 1 linear equations and
|S| unknowns (the probability; of each point;j in the support) requiring that the derivative of the
expected cost function in each intervabisSo, we get the homogeneous linear systgpn= 0. If ¢

is an integer, the matriA is:

Ao —Ao —AL.o—Ag
Al Ao —Ao .- —A2

A—1 M2 Ap—3 ... =X

Namely, the elements of the matrikare A; ; = \;_;, if i > j, andA; ; = \;j_;_y, if ¢ < j, for
alli=0,...,£—1andj =0,...,¢, where), denotes the growth rate of the piecewise-linear cost
function ¢ at the support point.

If £is not an integer, the elements of the matidare A; ; = A|;_jy/2), if i > j, and 4, ; =
AlG—i-1)/2), if i <j,foralli=0,...,2[¢|andj = 0,...,2[¢| + 1. Thus,

A0 —A0 A0 —A1 =A==y ... —)\w_l —)\LgJ_l —)\w
Ao Ao Ao —do —Ag —A1 —A1 —A —X R —)\LgJ_l —)\w_l
)\w )\w_l )\w_l B SRSt Ao Ao -

We now show that in both cases there is a unique symmetri@piidly distribution that satisfies
the system of equations. For this purpose, we use the two é&nmlow. The first lemma is about a
class of diagonally dominant matrices. It shows that we carglany such matrix in a triangular form
by performing Gaussian elimination, such that all diagaaients are positive and all off-diagonal
elements are less than or equalto

Lemma3.1. Let A be ag x n, ¢ < n matrix so thatd;; > 0, forall: = 1,...,¢, A;; <0, for
alli #j,and)>! | A;; >0, forall j =1,...,q. Then, by performing elementary row operations
(Gaussian elimination) onl, we can get a row-echelon foraf WhereA;J >0, forali=1,...,q,

A ;=0 foralli> j,andA;; <0, foralli < j.



Proof. We use induction og. The base case, whege= 1, is already in the desired form. Assuming
that the lemma holds fay > 1, we show that it holds fog + 1.
T
We have thatd = <a u

v B > with ¢ > 0 and all elements ofi andv non-positive. With a single

T

u
step of Gaussian elimination, we (et ) To conclude the induction step, we show that
0 B ’UX’LL

the submatrixB’ = B — 24" gatisfies the propertles of the lemma. Since all elemenfisx)fu
are non-negative, we still ha\lé’ < 0, for all i # j. So, we need to show that?_,; ; >0, for
all columnsj =1, ..., ¢, which also implies thaB’ >0,foralli=1,...,q.For any columrj, we
have that:

q

q q q
> Bli=> (Bij—viujja) =Y Bij— 2> v > —u; - F(-a) = 0.
=1 i=1 i=1

1=1

For the last inequality, we use that < 0, and the hypothesis thﬁ:‘ﬂrl A; j > 0, which implies that
a+ Y7, v; >0andthat; +>°7 | B;; > 0. O

The next lemma shows that for the special class of matricassing in our case, there is a solution
to the homogeneous linear systelp = 0 that defines a probability distribution.

Lemma 3.2. Let A be an x (n+1) matrix defined asl; ; = a;—;, wherea_,,, ..., a,—1 iS a sequence
of positive numbers such that,_ | = —a_,,, for all m > —n, anda,,,—1 > a,, forall m > 1. Then,
the systerdp = 0 has a symmetric solution withy = p,,—;, > - p; = 1, andp; > 0. Moreover, there
is a unique symmetric solutigmthat satisfies these conditions.

Proof. We letd,,, = a,,,—1 — a,, > 0, for m > 1. Then, the matrix4 can be written as:

-1
ay —apg—ai ... —QaQp_—1 ap —ap —ag + dl . —ap + Zn d
2
a1 apg —aqg...—ap—2 ag — dy agp —ayg . —ag + E n- d
—1
Ayl vee eee e —ag ao—gnmzldm... —ag

Taking the difference of every pair @fs consecutive rows, we obtain tlie — 1) x (n+ 1) matrix

—d1 2&0 —d1 e _dn—l
—d2 —dl 2a0 ‘e —dn_g
A = : : : : :
~dpg —dp_3 ... —dy —dy

_dn—l —dn_g 2&0 —d1

To establish the lemma, we first use Lenima 3.1 and show thhe(ijullspace ofi’ contains a unique
symmetric probability vectop, and then show that (ii) the particular vecis also in the nullspace
of A.

As for claim (i), we first show that each coordinaig of any vectorp in the nullspace of4’
can be expressed as a non-negative linear combination afotbrelinatespy and p,,. Formally, we
show that for any coordinatg; of any solutionp of A’p = 0, there existr;, p; > 0, such that
p; = mjpo + p;jpn. TO this end, we consider the: — 1) x (n + 1) matrix A”, which is obtained
from A’ by moving the first column ofl’ to the end. We observe thdt’ satisfies the conditions of
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Lemmd3.1, sian:Z;I1 dpm = ag—an_1 < ag, and thukag — 2 Eﬂlll d, > 0. Hence, by applying
Gaussian elimination td”, we get an — 1) x (n+ 1) matrix G in a row-echelon form witltz; ; > 0,
forall i, G; ; = 0, for alli > j, andG; ; < 0, for all 7 < 5. Moreover, the nullspace of’ essentially
consists of the solutions to the homogenous linear syst&rx: = 0. More precisely, any solutioa
of Gz = 0 corresponds to a solutignof A’p = 0, wherepy = z,,, p1 = o, ...,Pn = Tpn_1, and
vice versa.

Due to the special form aff, we can find all solutiong: of G = 0 by assigning values to the
free variables:,,_; andx,, and performing backwards substitution so that we uniquetgrnine the
values of the variablesy, ..., z,,_o. Furthermore, due to the special form@fthis procedure results
in expressing each variablg as a non-negative linear combinationagf_; andzx,,. Specifically, we
can calculater;, forall j = n — 2, ... ,0, from the equatiory ;" , G, ;z; = 0. Solving forz;, we get
xj = — > 1Giawi/Gjj, sinceGy; > 0 andGj; = 0, for all j > 4. Moreover, all coefficients
—Gj,i/Gj ; are non-negative becau6g ; < 0, for all j < i, andG; ; > 0. By induction, if everyz;,

J' > j, is a non-negative linear combination of_; andz,, the same holds far;. Therefore, any
coordinater; of any solutionx to G = 0 can be expressed as a non-negative linear combination of
the free variables:,,_; andz,,. Due to the aforementioned correspondence between thiossip

of A’p = 0 and the solutiong of Gz = 0, we obtain that for any coordinagg of any solutionp to

A,p = 0, there EXiSﬁTj, pj = 0, such thapj = T;iPo + PjDn-

Hence, the nullspace of’ is spanned by the vectogs' and p? determined by setting the free
variablespy andp,, to (1,0) and to(0, 1), respectively. By the discussion above, all the coordmafe
p' andp? are non-negative. To conclude the proof of claim (i), we obsé¢hat due to the symmetry
of the homogeneous linear systetfp = 0, we have thap} = pi_j, forallj =0,...,n. Therefore,
there is unigue symmetric vector in the nullspacedbfvith L; norm equal tol, namely the vector
p= (' +p°)/Ip" + P

We proceed to show claim (ii), namely that the unique symimegtrobability vectorp in the
nullspace ofA4’ is also in the nullspace of. To this end, we define the x n matrix

1 0 0 1
—-11 0 ...0
M = Toor o
0...-110
0...0 —-11

We observe that the determinant/af is equal ta2, and thusM is non-singular. Therefore, the linear
systemAp = 0 is equivalent to the linear systemd Ap = 0. So, we letd; and A,, be the first and
the last row ofA, and further observe that/ A is an x (n + 1) matrix with its first row equal to
A1+ A, and its remaining rows in one-to-one correspondence tatlis of A’. Sincep is the unique
symmetric probability vector satisfyind’p = 0, we only need to show tha#; + A,,)p = 0, which
follows immediately from the symmetry @f. This completes the proof of claim (ii) and the proof of
the lemma. O

For every/, the homogeneous linear systeip = 0 satisfies the conditions of Lemima3.2. Hence,
there exists a uniqgue symmetric probability distributsuch that the expected cdBfc(| X (¢) —z|)]
is the same for every location € [0, ¢]. Next, we think of this unique symmetric solutignas a
function of¢, and establish a nice continuity property of it.

To this end, we fix an integern > 0, and show that the random variab}¥(¢) converges in
probability to the random variabl& (m), as¢ — m™. We observe that the linear system determining
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p is the same for alf € (m,m + 1). So, we letp]” be the probability assigned to each integer point
i, 0 < i < m. By symmetry, the probability assigned to each pdinrti, 0 < i < m, is alsop]".
The limitlim,_,,,+ X (¢) = X is a random variable distributed according to a probabidligtribution
that assigns probability]* + p_, to each integer point, 0 < 7 < m. Since the distribution is
symmetric and achieves the same expected cost for all peirts|0, m], it is, by Lemmd3.R, the
unique distribution with these properties. Therefore, westhatX (m) = X. By the same argument,
we can show that the random variab{¢/) converges in probability to the random variablém+1),
asl — (m+1)".

By the continuity property above, the expected a0$t) = IE [c (X (¢))] at each location: €
[0, ¢] is a continuous function df. Moreover, the discussion above implies that fora [m, m+1),
C(t) = 3" p™(c(i) + c(£ — 1)). Using these properties, we now show th&Y) is an increasing
function of/.

Lemma 3.3. The expected cost(¢) is an increasing function of the interval length

Proof. SinceC is continuous, we only need to show tliais increasing in each intervalh, m + 1),
wherem > 0 is any integer. To this end, we léte [m, m + 1), and consider any € (¢, m + 1).
Then, we have that:

C(0) = E[e(X(0)] = Y pi(c(i) + et — i) < D pi(e(i) + (¢ — i) = C(¢),
=0 =0
where the inequality holds becauge> ¢ and the cost function is increasing. O

3.3 Step 3: Establishing Group Strategyproofness

We next prove that the random facility placement, in Step B@bAL CosT, is group strategyproof.
The correlation of the facility placement, in Step 3, ensubhat if an ageni is located ay, his closest
facility is always the one assigned to his closest inteflialjustify this, let us consider any sample
of the random variabl&'. We recall that the facilities are placedaat+ x, s + ¢ — x, ag+x, . . .. Let
us assume that; + ¢ — x <y < a;41 + =. Then, the distance aftoo; + ¢ — zisy — (a; + £ — z),
while the distance of to o; 11 + x is ;41 + x — y. Hence, ageni prefers the facility at interval if
and only ify — (a; + ¢) < a;41 — v, i.€., the right endpoint of intervalis closer toy than the left
endpoint of intervat + 1.

To show that UAL CoOSTis group strategyproof, we consider a coalition of agéfiisat deviate
to improve their cost. Let the original interval length, lviespect to the true agents’ locations,/be
and let the new interval length, after the deviation/b&Ve now consider the two possible outcomes
when the agents misreport their locations:

Case wher¢’ > /. Leti be any agent. If's true location is covered by some interval of the new
covering,i incurs an expected cost 6f(¢') > C(¢). Otherwise, agent incurs an expected cost no
less tharC'(¢'), which is greater thaty'(¢).

Case wherd’ < ¢. We consider the distance of any agent to the nearest midpbanrt interval. The
locations of the truthful agents iN'\ S are covered by some interval of the new covering. Hence, thei
distance to the nearest midpoint of some interval is at rfig&t On the other hand, if we consider
the true locations of all agents and any feasible coverinthefm with k intervals, there is some
agent whose distance to the midpoint of the interval cogehim is at least/2. Therefore, there is
an agent whose distancé to the nearest midpoint of some interval in the new coverafte( the
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deviation) is at least/2. Hence, agent must be in the deviating coalitioi, and his true location
must not be covered by the intervals of the new covering.ifhdhse, Lemmia 3.4 below implies that
the expected cost of agenéfter the deviation, which iB[c(d — ¢/ /2 + X (¢))], is at least as large as
E[c(X(2d))] = C(2d) > C(¢). This implies that BUAL COSTis group strategyproof.

Lemma 3.4. For all a, a’, b, with0 < a < o’ < b, it holds that
E[c(b — a+ X (2a))] > E[c(b—d + X (2d"))]
Moreover, the inequality is strict, if the functiaris strictly concave.
Proof. Letm > 0 be any integer. We only need to show that the lemma holdslifarél € [%, mtly

2
with 0 < a < @’ < b. For all suchg, a’, b, we have that:

Ele(b—a+ X(2a)] =Y p"(c(b—a+i)+c(b+a—1i))
=0

> ST pP(e(b—d + i) + b+ d — 1)) = Ble(b — ' + X(2d'))]
=0

where the inequality holds because< o’ andc is concave. In fact, the inequality is strictdfis
strictly concave. O

3.4 Approximation Ratio

In this section, we analyze the approximation ratio QAL COST.

Lemma 3.5. For any concave cost functiaf) any locations profilec, and any agent, it holds that
cost(z;, EC(x, c)) < MC*(z, ¢).

Proof. We let/ be the minimum interval length in Step 1 oQEAL CosT, and letm = |¢]|. We
recall thatMC*(x, ¢) = ¢(¢/2). Moreover, we have that:

C(0) = D pi(e(i) +e(t =) < Y 2pfe(t/2) = c(¢/2)
1=0

i=0
where the inequality follows from the concavity of the casgtdtionc. O

Lemma 3.6. For every concave cost functienEQUAL CosThas an approximation ratio of at most
2 for the objective oMAax COST.

Proof. Let (x, c) be any instance with a concave cost functigmnd let/ be the minimum interval
length in Step 1 of BUAL CosT. In EC(z, ¢), every agenti has a facility at distance at mosto x;.
On the other hand\IC*(z, ¢) = ¢(¢/2). Therefore, the approximation ratio is at most:

c(l) c(l) +¢c(0)  2¢(£/2)

WD) - ) S )

where we use that(0) = 0, by normalization, and the concavity af O

Lemma 3.7. For every concave cost functienEQUAL CosST has an approximation ratio of at most
n for the objective oSociaL CosT.
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Proof. For every locations profile, MC*(x, ¢) < SC*(x, ¢). Then,

SC(x,c) = Zcost(:ci,EC(m,c)) < nMC*(x,c) <nSC*(x,c),
1EN

where the inequality follows from Lemnia 8.5. O

4 Applications

In this section, we consider three typical examples of cemcast functions, and derive closed form
solutions for the corresponding random variabled).

Linear FunctionsThe literature mostly focuses on linear cost functiefi = Ad, where the agents’
cost is proportional to their distance to the nearest fgciln this case X (¢) has a nice closed form:

it is either( with probability 1/2 or ¢ with probability 1/2. Then, the expected connection cost of any
locationz € [0, 4] is:

c(x)/24+cl —x)/2=Xx/2+ A\l —x)/2 =2\/2,

which does not depend an
Two-Piece Piecewise Linear Functio®®r some\; > Ay > 0, let the cost functior be:

o(d) = Aid ford <1
a )\2d+(>\1—)\2) ford > 1

To achieve the same expected cost at all locations, we/fihet m = |¢], and compute the
probability distribution ofX (¢) by solving the following linear system:

o’

m

A=A —AL —A2 —A2 —Xo —Ag ... —Az—da — Ao Pm
VD VS VI VIS VIS V) DI VNP Vi o) P1
.. P [ =0
PYED VIS VEENEUEESURD VD VED VR VR v o

o’

Taking the difference between every two consecutive row# aemmad 3.2, we find that:

AL — A :
P = 12)\1 2(p, +py) forallintegersi 0 <i <m,

where we defing]” = 0, for all integersi ¢ [0, m]. Then, the solution of the recurrence is:

m+1—1 m+1—1
m P + Po

p; = . .
1
25275 (o] + 02)

A VAT = (A = Ag)? and py — M= VA= (M = Mo)2

h —
where p; N N
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Exponential FunctionsA concave cost function that results in a continuous prditalaistribution
X(¢) is the exponential function(d) = 1 — e~*. Then, X (¢) is 0, with probability 75, ¢, with
probabilityﬁ, and uniform in(0, ¢), with probability%.

We let X (¢) be 0, with probability ﬁ ¢, with probability ﬁ and uniform in(0, ¢), with

probability ;2. We next show that the expected connection cost of any tweatic [0, ] does not

depend onx. In particular, the expected connection cost of any locatids:

1 1 YS!
c(w)+£)\+2c(€—w)+w\+2/o Zc(!t—x!)dt:

c(x) +c(f — x) A /m A /Z B
D12 gz, Wit Tt mde=

_A\x —A(l—z x ¢
S 5)\162 - + 6)\)—\1- 2 </ Lo e * / b G_A(t_x)dt> N
0 xX

-z —A(l—z T Y4
2—e E/\:_Z (t—2) n g/\)_\k2 (ﬁ—/ e—)\(;p—t)dt+/ e—A(t—m)dt> _
0 T

2 — e M _ pmAl—T) . A / l—e ™ 11— A2 12
A+ 2 A+ 2

A A N+ 2

which does not depend an

5 Extensions and Limitations

5.1 EQUAL CosTin Bounded Intervals

Our results about the properties ohEAL CosT apply to the real lind—oo, co) and to the half-line
[0,00). If the metric space is a bounded intery@l L], it could be that in the construction of the
covering, in Step 1, the last interval does not fit entireljyOnZ|. The following lemma shows that
even in this case, we can adjust the covering with disjoitgrimls of the same length, computed in
Step 1, so that all intervals fit iif, L].

Lemma 5.1. Given a locations profilec in [0, L], there is an optimal covering af with & disjoint
intervals of the same (minimum) length that all lie entirglyo, L.

Proof. We consider a covering af with k disjoint intervals of the same minimum lengthcomputed
as in Section 3]1. As in Step 1 ofloAL CosT, we number the intervals from left to right, and let the
i-th interval belay;, v + £]. Since all the locations & lie in [0, L], we obtain that < L/k. Moreover,
by construction, we have that > 0, for all 1 < i < k. However, it could bey; + ¢ > L for some
intervali. In this case, we construct a new covering using the intefwal o, +¢],7 = 1, ..., k, where

o = min{a;, L — (k4 1 —4)¢}. To show that this is indeed an admissible coveringofre observe
that:

(i) All intervals lie entirely in[0, L]: For everyi, o > 0, sincec;; > 0, andL — (k +1 — )¢ > 0,
becaus¢ < L/k. Furthermoreq, + { < L — (k+1—i){+¢ <L — (k—1i)¢{ < L.
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(ii) All intervals are disjoint: For any two consecutive énvals:; and: + 1, we have that:

oy — o =min{aj, L — (k+1—i—1)} —min{ey, L — (k+1—14)(}
>min{a; + 0, L — (k+1—i— 1)} —min{a;, L — (k+1—14)¢}
={+min{a;, L — (k+1— i)} — min{ay, L — (k+ 1 —14)¢}

=/

(iii) The intervals cover all locations af: Let us consider a location € [o;, oy + ¢]. If o, = o, @
is covered since the interval does not change. Otherwise; L — (k + 1 — 4)¢. Thus, the interval
[}, L] has a length of. — o/, = (k + 1 — ¢)¢, and consists of + 1 — 7 disjoint intervals of lengtH.
Therefore, the intervalgy;, o’ + /], for j > i, entirely cover the intervgh, L] O [, L], and thus,
they also cover the location O

LemmdX5.1 implies that if the agents lie on a circle, we caa etsver their locations with disjoint
intervals of the same minimum length Then, we can apply Steps 2 and 3 to the resulting intervals
on the circle. But rather surprisingly,doAL CoST is guaranteed to be strategyproof foFacility
Location on the circle only it is even. Otherwise, some agents in the first interval mayepibe
facility placed in the last interval, which violates the peoty that each agent always prefers the facility
in his own interval.

5.2 Convex Cost Functions

The approach of BUuAL CosT does not apply to strictly convex functionsbecause it is no longer
possible to equalize the expected cost of all agents. Tchigddt us consider the intervil, ¢], and

the expected cost of two agents, one locate@latd the other at. SincelE[¢(X)] + E[c¢({ — X)] >
IE[2¢(¢/2)] = 2¢(¢/2), by the strict convexity of, at least one of them incurs an expected cost greater
thanc(¢/2). However, a third agent located@® incurs an expected cost no greater théiy2), since

his distance to the facility is at moét2. Moreover, we can show that:

Lemma 5.2. There is no randomized strategyproof mechanism that aghiasbounded approxima-
tion ratio for the class of all convex functions.

Proof. We recall that the property of a bounded approximation ratiobjective-independent. So,
we next focus on the objective of Ak CosT. For the proof, we consider the convex cost function
c(d) = e and instances with agents and a single facility. For sake of contradiction, sgume that
there exists a randomized strategyproof mechanism thahesshan approximation ratio offor such
instances. Next, we leX denote the random variable that determines where the misohalaces
the facility.

We first consider an instance = (z1,x3), with zo > 21, If the facility is placed at location
t < (w1 +z2)/2, agent2 incurs the maximum cost equal¢& . If the facility is placed at > (z; +
12)/2, agentl incurs the maximum cost equal ¢1. In both cases, the maximum cost is equal to
e(r2=21)/2+[t=(z1+22)/2| gnd the expectation of the maximum coslg:(72—#1)/2+X = (@1+22)/2] <
re(*2=#1)/2 which implies thafE[el X —(#1+22)/2]] < 7.,

Let us now consider the probabilitigs = Pr(X < £i422] andp, = IPr[X > #1322] Since
p1+ pr > 1, one of them is at leadt/2. Wlog., let us assume that > 1/2, which implies that agent
2 incurs an expected cost of at legst®2—=1)/2,

Next, we consider an instaneg¢ = (2}, 2}), with 2§ = 27 andz}, = 2z5 — z;. By the choice
of @/, E[el X~ (#1+22)/2]] = [E[elX—(21+222=21)/2]] = [E[elX—22]), Working as before, we obtain that
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E[elX—(@1+22)/2l] = TE[elX—221] < r, due to the approximation ratio of the mechanism. Moreover,
IE[el¥—2I] is the expected cost of an agent located-atand due to strategyproofness, is no less than
the expected cost of agedtin instancex. Otherwise ager would have an incentive to repart,,
instead ofz,. Therefore [E[elX —22I] > le(@2=1)/2  Combining the upper and the lower bound on
IE[elX—2I], we obtain that(*2—1)/2 < 2, This leads to a contradiction if we consider an instance
x with zo — 21 > 21n(2r). 0

5.3 Other Cost Functions

EQuAL CosT can also apply to some other (non-convex) cost functiomsyfiach the expected cost
of all agents can be equalized. A notable such example istdwudion ¢, (d) which is0, if d < r,
and1 otherwise. Thusg;, correspond to agents that only care about getting a fagiiitlyin a radiusr
from their location. In this case, one could applg@aL CosT as follows: First, we find a covering
of the agent locations with intervals of lengthas in Step 1. Then # < 2r, we place a facility at the
midpoint of each interval. Otherwise, we do not place anilifess (and let each agent incur a cost of
1). This clearly satisfies the equal cost property since tts iocurred by all agents is eithéror 1.
The mechanism is optimal for the objective ofal CosT because every agent incurs a cost of

the optimal solution satisfies all agents, and a codt otherwise. On the other hand, the mechanism
is n approximate for the objective ofc® 1AL COST, since in case where the optimal solution satisfies
all but one agents, resulting in a social costlpthe mechanism does not place any facilities, and
incurs a social cost of.

6 ThePick THE LoSERMechanism

EqQuaL CosTtperforms well for the objective of kix CosT, but may perform poorly for the objective
of SociAL CosT. An extreme case is when we hakvdacilities and onlyn = k 4+ 1 agents. Then,
there are many facilities, and one could easily satisfy atlldne agents. Neverthelessp&aL COST
causes all agents to incur a high cost (equal to the min-mstxfaplinear cost functions).

In certain cases, this might not be acceptable, and one nedidsl a more efficient mechanism.
In this section, we present a mechanism that, for instandsonly n = k£ + 1 agents, selects the
loser, i.e., the agent not allocated a facility at his lamatin a group strategyproof way. We also show
that this mechanism is quite efficient for th@ &AL CosT objective, which for such instances, is
equal to the cost of the loser.

Given an instancéx, ¢) of k-Facility Location on the line with only: = k + 1 agents, the
Pick-THE-LoSER mechanism, oPtL in short, works as follows:

Step 1 It numbers the agents according to their reported locatsued thatr; < z;.1, and letsi
andO be the sets of even and odd numbered agents, respectivelgvény odd-numbered agent
i € O, PtL places a facility at:;.

Step 2 For each even numbered agenPtL. samples a numbey; uniformly in (0, 1), and computes
i’s current cosk; = min;; c(|z; — x;|) andi’s scaled cosk; = k;/s;.

Step 3 PtL finds the agent with the smallest scaled cost, and declarethbioser. Then,PtL places
facilities at the locations of all other agents.

In the following, we first show that IPK THE LOSERis strategyproof (Lemmia_§.1). Then, in
Sectior 6.2, we use strategyproofness, and deal with tleevdasre a coalition of agents may deviate,
thus establishing that the mechanism is strongly groupestyaroof. Finally, in Section 6.3, we prove
the mechanism’s approximation guarantee. Thus, we obtain:
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Theorem 6.1. For the class of all concave cost functio®8CK THE LOSERIs strongly group strate-
gyproof and achieves an approximation ratio2dior the SociaL CosT objective.

For the proof, we assume wlog. that the agent locations adistihct. Otherwise, we allocate a
facility to all distinct locations, thus being trivially tiooptimal and group strategyproof. We tgtx)
denote the probability that agers designated as a loser. We have that) = 0 for all odd numbered
agents inz. For an even numbered agentve can compute this probability by the following thought
experiment: With all the samples € (0,1) fixed, agent: is selected if for allj € E, &; > k&;,
or equivalently ifs; < s;x;/k;. This happens with probabilitﬂjeE\{i} min{1, s;x;/k;}. Setting
t = s;/k; and taking the expectation over all different valueg,afie have that

1/kq
gi(x) = /ii/ H min{1, x;t}dt
O jeB\{i}

6.1 Strategyproofness

The following lemma implies thatiBK THE LOSERIs strategyproof for the class of all concave cost
functions. Next, in Sectioh 6.2, we use this property, taldsth that Fck THE LOSERIis strongly
group strategyproof for the class of all concave cost fomsti

Lemma 6.1. Let(x, ¢) be any instance with a concave cost functi@nd onlyn = k+1 agents occu-
pyingn distinct locations. Then, for every agerand every location:] # x;, cost(x;, PtL(x,c)) <
cost(x;, PtL((z—;, %), ¢)).

(2
Proof. For convenience, we lat' = (x_;, z;). We also recall that by normalizing we assume that
¢(0) = 0. If agenti is an odd numbered agent, he strictly pretersver z’, because irx, there is a
facility at z; and agent incurs0 cost, while inz], there is no facility at:;, and thus agentincurs a
positive cost.

If 7 is an even numbered agent, wedet min;;{|z; — z;|} andd’ = min;j,{|«] — x;|} denote
the minimum distance of the reported locatiori &b the location of another agent. In the instange
if agenti is not allocated a facility at;, he incurs a cost of(0). Otherwise, agent incurs0 cost.
Sinced > 0 and the cost function in increasing we have that(§) > 0. We next consider three
different cases, and show that in each case, agemefersz to =’.

Case wherer, & (z; — d,x; + d). Then, ina’, agent; incurs an expected cost of at least), while
in x, he incurs an expected cost less thé#), since he is allocated a facility at; with positive
probability.

Case wherer, € (z; — d,z; + 0) andd’ < 4. In this case, the probability; (') that agent is not
allocated a facility at}, in instancex’, is greater than or equal tg(x). This holds becausés cost
in ', which isx, = ¢(¢'), is less than or equal tds cost inx, which isx; = ¢(d). Therefore, for
any sampled numbey;, agent; has a smaller scaled cost in instancex’ than his corresponding
scaled cost; in instancex, which in turn, implies a greater probability thats designated as the
loser. Moreover, if in instance’, agent is allocated a facility at;, he incurs a positive cost, sine¢
is different from his true location;. Thus, putting everything together, we obtain that agesttictly
prefersz to x’:

(1 = qi(2")) (|} — i) + qi(2")c(8) > qi(x)e(8) > gix)c(d)

Case where, € (x; — 6, z;+0) andd’ > 4. The probabilityg; (') is now greater than the probability
qi(x). However, if agent is allocated a facility at, in instancex’, he incurs an additional cost of
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c(|z; —z4|) > (&' —0), due to the distance of; to i's true locationz;. Thus, we obtain the following
lower bound on the expected cost of ageintinstancer’:
(1= ai(a") el — @) + qi(@)e(0) = (1 — qi(@)) (c(6') — e(8)) + as(@')e(d),
where the inequality follows from(¢’) < ¢(d) 4 ¢(¢6' — §), which in turn, follows from the concavity
of c¢. Hence, to conclude that agendtrictly preferse to ', we need to show that:
(1= ai(a") (c(0") = ¢(0)) + qi(®")e(d) > qi(x)c(d) (1)

To this end, for each even numbered aggwe letx; andn;. denote the cost of computed by
the mechanism for the instancesandx’, respectively. By the definition of the mechanism, we have
thatx; = «, for any agenyj € E'\ {i}, and thats; = ¢(J) andx] = c(¢'). Hence, the probability
gi(x') can be calculated as follows:

1/K
a@) =i [ ] minf sty @)
0 jer\{}
To prove [1), we show that expected cost is increasing witt}. To prove this, we show that the
partial derivative of’s cost with respect ta/ is positive. Formally, we show that:

d
@[(1 —qi(2)) (W] — #i) + qi(x')Ri] > 0 3)
We first substitutey; (x'), with the use off(R), and the left-hand-side [Gf (3) becomes:
1/k; 1/K} 7
% 1— &, H min{1, x;t}dt | (k) — K;) + ki | K] H min{1, k;t}dt
! 0 JEE\{i} 0 JeB\{i}

Next, we calculate the partial derivative with respectfoand the quantity above becomes:

1/k
) K 2(K} — ki) . Kj .
1—. Hﬁnn{l,ﬁ—?}—kT | H-mm{l,ﬁ—?}—/{; / Hmln{l,ﬁjt}dt
JEE\{i} ‘ ‘ JEE\{i} ! 0 JEBE\{i}

U_sing that.HjeE\{.i} min{1, k;t} < ]_[jeE\_{Z.} min{l,nj/mg}, which h_olds for allt € [0,1/x}], and
with strict inequality fort < 1/x!, we obtain that the quantity above is greater than:
1/K!
. I . .
1—Hmin{1,%}+w Hmin{l,%}—/{; Hmin{l,%}/ldt
JEE\{i} ! ‘ JEE\{i} ‘ JEE\{i} 70
Simplifying the quantity above and returning back(tb (3),a@aclude that:
0
5 [(1= a(@)) (5 = r) + (@] > 1= [ minfLr;/xi} >0
! JEE\{i}

Therefore, the expected cost of agéit increasing with:,. Hence, we obtain that

(1 —aqi(@") (8 — ki) + qi(@')R; > qi(@)mi

which is identical to[(lL). This proves that in the third caasgent: strictly prefersz to ', and con-
cludes the proof of the lemma. O
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6.2 Strong Group Strategyproofness

Proving that Fck THE LOSERIs strong group strategyproof requires some additionalraemnts and
case analysis, where we use that the mechanism is stratedypemmd 6.11).

Throughout this section, we consider an instamceith » distinct locations, where the agents
are numbered as they appear on the line, from left to righhclewe have that; < z;.1, for
alli =1,...,n — 1. We prove that there is no coalition of agents that can behgfihisreporting
their location. For sake of contradiction, let us assumé thbah a coalition exists. In particular, we
let S be such coalition of minimum size, and ket = (x;,z_g) be the new instance, where the
agents inS misreport their location. By the definition of strong groumategyproofness, for alle .S,
cost(z;, PtL(2', ¢)) < cost(z;, PtL(x, c)), and the inequality is strict for at least one agen§in

We observe that for every odd numbered agent € =’. Otherwise, agentwould incur a positive
cost inz’, and would prefere to x’. Since Pck THE LOSERIis anonymous, i.e., does not take the
agent identities into account, we can assume wlog. that x;, which implies that the deviating
coalition S doesn’t contain any odd numbered agents.

Furthermore, we observe that for every even numbered dg#rere is a location i’ lying in
the interval(z; 1, x;11), Wherez,, is defined to bex. Otherwise agentwould incur an expected
cost ofcost(z;, PtL(x', ¢)) > min{e(x; — x;—1), c(x;41 — x;)}, which is greater than his expected
cost for instancer, wherex; is allocated a facility with positive probability. Againinse RCk THE
LosERis anonymous, we can assume wlog. thate (z;—1,x;+1), which implies that the relative
order of the agents im’ is the same as im.

Let us now consider an agefte S, and letx; and x denote the cost of computed by the
mechanism for the instancasandz’, respectively. Next, we exclude the possibility théat> ;.
Specifically, we show that i; > «;, the instancer” = (x’,, ;) is strictly preferable tax’ for
all agents inS. That holds because, i, agent: has costs; < «,, and therefore, the probability
that he is designated as the loserzdt is greater than the corresponding probabilityzh Hence,
for every ageny € F \ {i}, the probability that agent is designated as the loseraf is less than
the corresponding probability ia’, which implies that agent strictly prefers the instance” to the
instancex’. Also by Lemma 6.1, Rk THE LOSERis strategyproof, and thus, agergtrictly prefers
the instancer” to the instancer’. However, since the number of agents misreporting theatlons
in " is one less than the corresponding numbez/inthis contradicts the hypothesis thitis the
smallest coalition of agents that can benefit from misrepgtheir location.

So, let us now assume thet < «;, for allagents € S, and letp = min{x;/x,} > 1. We consider
an instancer” where the cosk! computed by the mechanism for all agents S is equal topx).
Such an instance” can be obtained if we let all agents S report locations closer to their original
location. We next prove that for every agent .S, the probabilityg; () thati is designated as the
loser inz” is less than the probability; (') thati is designated as the loseradn. More precisely:

qi(x") = Prli] < /},Yj & S|k} < &},Vj € S\ {i}] - Pr[& < &7, v.765\{2}]
= Pr[pkj < &,V ¢S!pf<a-<pﬁ-,w€5\{z}] Pr(pi; < pi;, V5 € S\ {i}]
= Pr[&} < I{/p,Vj ¢ S|k < &),V €S\ {i}] - Pr[a; < &},Yj € S\ {i}]
< Pr[i; < A}, Vj & S|k} <& vjeS\{z‘}]-IPr[/%§</%;,\1jeS\{z’}]
= gi(z)

Since for every agent € S, (i) the probability that is designated as the loser is smalletrh
than inz, i.e., q;(z") < ¢;(2'), (ii) the reported location of in =" is closer to his true locatiom;
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than his reported location i, i.e., |z — x;| < |2} — x;|, and (iii) there are no odd numbered agents
in S, all agents € S strictly preferz” to x'.

Therefore, we can assume that in the instanGehere is an agente S with x, = ;. We now
consider the instance” = (z’_,, z;), where the agentis removed from the deviating coalitio$.
We note that for every agerite S, the probability that agentis designated as the loserai is the
same as the corresponding probabilityaif) i.e., ¢;(z”) = g¢;(«’). Therefore, the expected cost of
every agenj € S\ {i} in 2" is the same as his expected costinMoreover, by Lemm&a®6l1, Bk
THE LOSERIs strategyproof, and thus, the expected cost of agient:” is less than his expected cost
in z’. Therefore, if the agents in the coalitichcan benefit by misreporting their locations, the same
holds for theS'\ {i}. However, this contradicts the hypothesis thas the smallest coalition of agents
that can benefit from misreporting their location. Hence haee shown that such a coalitiGhdoes
not exist, and thus, the mechanisntR THE L OSERis strongly group strategyproof.

6.3 Approximation Ratio

Lemma 6.2. For all concave cost function®ICK THE LOoSERachieves an approximation ratio of at
most2 for the objective oSociAL CosT, and an approximation ratio of at mogtfor the objective
of MAX COST.

Proof. Let (x, c) be any instance with concaveand letq be an agent with, = min;{x;}. Then,
SC*(x, c) = kq, While the ScIAL CosT of the mechanism is equal to:

1/k4
S
i 0

1/kq

H min{l, k;t}dt < kg + Z/{Z/ Ki H min{1, x;t}dt
JEB\E) i#g 0 JEB\)

1/k4
= Kq + ZFLZ’/O Kikql H min{1, k;t}dt

i7#q JjeBE\{i,q}

1//62'
g + Z ,{Z./ Fig H min{1, x;t}dt
i#q 0 j€E\{i,q}
1/k;
< kg + Ry Z/ ri JI min{1 syt
i#q 0 j€E\{i.q}
= kg + fyq Z]Pr[/%i < kj,Vj & {i,q}]dt
i#q
:f{q+liq'1:2"<’q

IN

Moreover, since is concaveMC*(z,¢) > k,/2 = 2K,/4 > MC(PtL(x, ¢)) /4. 0

7 Open Problems

There are a few interesting open problems arising from oukwkirst, since BUAL CoOST crucially
depends on the linear structure of the instances, it wouidtbeesting to have a mechanism that can
be applied to more general metric spaces, and retains thepniperties of BUAL COST. Another
intriguing open problem has to do with the approximabilifySmciaL CosT by randomized strate-
gyproof mechanisms. Despite the considerable interebeiptoblem, we do not know whether there
exists a randomized mechanism fofacility Location that achieves an approximation ratio@f)
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for all £ > 3. Another, more general, direction for further research wwaycern the role of the cost
function ¢, which we assume here to be the same for all players. It wauldtBresting to investigate
the approximability ofk-Facility Location on the line if each agehimay have a different concave
cost functione; (d). A good starting point in this direction may be a simple settivhere each agent
is associated with a tuple:;, r;), with possibly bothz; andr; being private information, and there is
some fixed small cost incurred by agénif there is a facility within a distance of; to x;, and some
fixed large cost incurred by agentotherwise.
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