
1

Patterns for Measuring Performance-related QoS Properties in
Service-oriented Systems

ERNST OBERORTNER, Distributed Systems Group, Information Systems Institute, Vienna University of

Technology, Austria, e.oberortner@infosys.tuwien.ac.at

UWE ZDUN, Software Architecture, Faculty of Computer Science, Vienna University, Austria,

uwe.zdun@univie.ac.at

SCHAHRAM DUSTDAR, Distributed Systems Group, Information Systems Institute, Vienna University of

Technology, Austria, dustdar@infosys.tuwien.ac.at

In service-oriented systems, clients can access services via a network. Service level agreements (SLA) can exist, which specify
— among other things — performance-related Quality of Service (QoS) properties between the client and the server, such as
round-trip time, processing time, or availability. For a service provider serious financial consequences or other penalties can
follow in case of not fulfilling the SLAs. The service consumer wants to evaluate that the provider complies with the guaranteed
SLAs. Designing and developing a QoS-aware service-oriented system means facing many design challenges, such as where and
how to measure the performance-related QoS properties. This paper presents design practices and patterns for measuring such
QoS properties by extending and utilizing existing patterns. The focus of the patterns lies on the QoS measuring impact on
the client’s or service’s performance, the extend of separation of concerns, the property of reusability, and the preciseness of
the measured QoS properties. The patterns help to build efficient solutions to measure performance-related QoS properties in
a service-oriented system.

Categories and Subject Descriptors: D.2.11 [Software Architectures] Patterns

General Terms: Measurement, Performance, Reliability

1. INTRODUCTION

In a service-oriented system, service level agreements (SLA) between service provider and consumer can exist. An

SLA is a contract over a period of time that contains — among other things — agreements on performance-related

properties when the consumer invokes the provider’s services over a network. SLAs assure that the consumers get the

service they pay for and that the service provider fulfills the SLA guarantees. If the server provider can not meet the

goals, then serious financial consequences and a diminished reputation can follow. Service providers need to know

what they can promise within the SLAs and what their IT infrastructure can deliver. On the other hand, a service

consumer wants to observe and validate that the service provider does not violate the guaranteed SLAs during the

SLA’s validity [The Service Level Agreement Zone 2007; Oberortner et al. 2009].

In this work we concentrate on SLA clauses that contain agreements on performance-related Quality of Service

(QoS) measurements. During the development of an appropriate QoS monitoring infrastructure, many challenging

design decisions must be taken. We concentrate on the design decision about where to measure the SLA’s performance-

related QoS properties. QoS properties can be measured in various layers on the client-side or the server-side, as well

as in intermediary components of the network communication. We have discovered in a thorough literature review

Author’s address: E. Oberortner, Argentinierstrasse 8/184-1, 1040 Vienna, Austria, email: e.oberortner@infosys.tuwien.ac.at

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise,

to republish, to post on servers or to redistribute to lists, requires prior specific permission. A preliminary version of this paper was presented in

a writers’ workshop at the 17th Conference on Pattern Languages of Programs (PLoP). PLoP’10, October 16-18, Reno, Nevada, USA. Copyright

2010 is held by the author(s). ACM 978-1-4503-0107-7



1:II •

(such as[Zeng et al. 2008; Keller and Ludwig 2003; Sahai et al. 2002; Michlmayr et al. 2010; Hauck and Reiser

2000; Aurrecoechea et al. 1998]) the following requirements on measuring performance-related QoS properties: The

QoS measuring solution should (1) not impact the overall system’s performance, (2) deliver precise QoS measurements

and should not falsify other QoS measurements, (3) provide separation of concerns in order to not modify the client’s

or service’s implementation, and (4) be reusable for new clients and services.

We document design practices and patterns of measuring performance-related QoS properties, such as round-trip

time, network latency, or processing time [O’Brien et al. 2007a; Rosenberg et al. 2006; Ran 2003; Yu et al. 2007].

The paper evaluates the presented patterns against the challenging design problems and gives advice in the decision

making for building QoS-aware distributed systems. The background of this work are established patterns, presented

in the Gang of Four (GoF) book [Gamma et al. 1995], the Pattern-Oriented Software Architecture (POSA) series

[Buschmann et al. 1996; Schmidt et al. 2000; Buschmann et al. 2007], and the Remoting Patterns book [Voelter

et al. 2004]. The patterns described herein are meant for software architects and developers who have to design and

develop distributed systems and decide how to measure performance-related QoS properties within the distributed

system.

The main focus of the patterns lies on service-oriented systems where clients invoke services that reside on servers.

The patterns can be applied in synchronous invocations and must be slightly modified in order to be usable in asyn-

chronous invocations. Patterns for message-oriented distributed systems, such as presented in the Enterprise Integra-

tion Patterns book [Hohpe and Woolf 2003], can be utilized and extended to implement a QoS-aware communication

between the clients and the services. The presented patterns do not take into account how to store or evaluate the

measurements.

This paper is organized as follows: In the next section, Section 2, we explain background information about existing

patterns in distributed systems, SLAs, and performance-related QoS properties. In Section 3 we present the patterns,

its forces and consequences, for measuring the performance-related QoS properties in service-oriented systems. For

a better understanding, we exemplify the patterns’ implementation in Section 4. In Section 5 we discuss the patterns

regarding model-driven development (MDD) to generate the patterns automatically. We conclude the paper in Section

6.

2. BACKGROUND

This section gives some needed background information on basic patterns in distributed systems that build the basis

of the presented patterns within this paper. First, the basic patterns and their relationships are described. The second

part of this section explains the background on performance-related QoS properties used in this paper’s patterns.

2.1 Basic Patterns in Distributed Systems

In Figure 1 we illustrate the typical activities within a distributed system when a client invokes some server’s remote

object. Mostly, a middleware manages the communication between the client and the server, hiding the heterogenity of

the underlying platforms and providing transparency of the distributed communications. The middleware can access

the network services offered by the operating system for accessing and transmitting requests to the server’s remote

objects over the network [Voelter et al. 2004].

For accessing the client’s middleware, the REQUESTOR pattern can be used [Voelter et al. 2004]. The REQUESTOR

invokes the remote object’s operation using the underlying middleware. Also, the client’s application can access the

middleware following the CLIENT PROXY pattern [Voelter et al. 2004] to provide a good separation of concerns

and to attach additional information to the client’s requests. The CLIENT PROXY invokes the middleware using the

REQUESTOR pattern. The implementation of the client’s middleware can follow the CLIENT REQUEST HANDLER

pattern [Voelter et al. 2004], to send the requests over the network to the server and to handle the server’s response.

The implementation of the server’s middleware can follow the SERVER REQUEST HANDLER pattern [Voelter et al.

2004]. A SERVER REQUEST HANDLER receives the incoming requests, performs additional processing, and forwards

the requests to the INVOKER of the remote objects. The INVOKER [Voelter et al. 2004] receives the requests from



• 1:III

Remote

ObjectRemote
Object

Client

Client Proxy

Requestor

Client 
Request Handler

Remote
Object

Invoker

Server 
Request Handler

Client Server

request

response

forward

invokeinvoke

forward

invokeinvoke

A
p

p
lic

a
ti
o

n

L
a

y
e

r

In
v
o

c
a

ti
o

n

L
a

y
e

r

M
e

s
s
a

g
in

g

L
a

y
e

r

M
a

c
h

in
e

 B
o

u
n

d
a

ry

Middleware Middleware

Invocation
Interceptor

Invocation
Interceptor

Fig. 1. An overview of existing patterns in distributed systems

the SERVER REQUEST HANDLER, can perform additional processing again, and dispatches the request to the corre-

sponding remote object. After the remote object processed the incoming request it sends the response back to the

INVOKER, which performs some additional processing, and forwards the response to the SERVER REQUEST HAN-

DLER. The SERVER REQUEST HANDLER can perform again some additional processing and forwards the response to

the requestor.

The INVOCATION INTERCEPTOR pattern [Voelter et al. 2004], which is based on the INTERCEPTOR pattern

[Schmidt et al. 2000], provides hooks in the invocation path to perform additionally required actions, such as logging

or securing the invocation data. Mostly, the client’s or server’s middleware provides functionalities for placing INVO-

CATION INTERCEPTORS into the invocation path. Hence, an INVOCATION INTERCEPTOR can process and manipulate

the available invocation data, which depends on the INVOCATION INTERCEPTOR’s place in the invocation path. The

middleware can provide the feature of attaching and changing an INVOCATION INTERCEPTOR dynamically during the

runtime of the system, such as by using an API or configuration files. As a consequence, the INVOCATION INTERCEP-

TOR implies a higher complexity of the middleware’s implementation. An INVOCATION INTERCEPTOR can attach the

context-specific information to the INVOCATION CONTEXT [Voelter et al. 2004] of the invocation data. In this paper,

we assume the usage of the INVOCATION CONTEXT pattern for storing the performance-related QoS measurements

during remote object invocations.

Client and server interactions can take place within a local area network (LAN) or over a wide area network (WAN),

such as the Internet. If a client wants to invoke a remote object that is not located in the same LAN, the client request

must be sent over a WAN to the corresponding remote object’s LAN. In this case, inside the LAN a proxy server can be

used, whose implementation follows the well-known PROXY pattern. Client and server can make use of the different

PROXY patterns, such as such as CLIENT PROXY, VIRTUAL PROXY, and FIREWALL PROXY [Buschmann et al. 2007].

Figure 2 illustrates the usage of the PROXY pattern for implementing a web proxy. In this scenario, every component

– client, server, and web proxy – features some middleware that manages the network access. For accessing a remote



1:IV •

WAN

Web Proxy

LAN

Server

Server

Server

Web Proxy

LAN

Client

Client

Client

Fig. 2. Using the WEB PROXY pattern

object over a WAN, the client-side WEB PROXY receives the requests from the clients within the LAN. It applies

additional processing to the client’s request, marshals it, and sends it into the WAN. A server-side WEB PROXY receives

requests over a WAN, unmarshals them, applies additional processing, and forwards it to the appropriate remote object

in the same LAN. After the remote object’s processing, the server-side WEB PROXY receives the response, marshals it,

applies additional processing, and sends it back to the client-side requestor. The client-side WEB PROXY receives the

server-side response, applies additional processing and forwards the response to the appropriate client.

2.2 Service Level Agreements (SLA)

SLAs are contracts between service providers and service consumers which assure that service consumers get the

service they paid for and that the service fulfils the SLAs requirements. In our work, we consider SLA clauses of

agreements about the services’ performance-related QoS properties (see Section 2.3). An SLA describes technical and

nontechnical characteristics of a service, including the services’ performance-related QoS properties [Lamanna et al.

2003; Sahai et al. 2001; jie Jin et al. 2002].

Typically, an SLA is defined over a specific time period [Frølund and Koistinen 1998; Lamanna et al. 2003; jie

Jin et al. 2002]. For a service provider it could result in serious financial consequences in case of violating the SLAs

[Oberortner et al. 2009]. It is therefor important to monitor the negotiated SLAs’ performance-related QoS properties

and to enforce the services’ quality during the SLA’s validity [O’Brien et al. 2007a]. A service consumer wants to

know if the service provider delivered the service quality as negotiated in the SLA. This is mainly of importance after

the SLA’s validity.

2.3 Performance-related QoS Properties

A service’s performance-related QoS attributes are non-functional properties of the service’s performance [O’Brien

et al. 2007b]. Service consumers invoke services over the Internet, making it challenging to deliver the service’s

quality because of the Internet’s dynamic and unpredictable nature [Mani and Nagarajan 2002].

Reported in the literature are many performance-related QoS properties that can be measured and monitored in a

service-oriented system [O’Brien et al. 2007a; Rosenberg et al. 2006; Ran 2003; Yu et al. 2007]. Within the service

consumer’s network, clients invoke services that reside in the service provider’s network and that are hosted on servers.

A server can host multiple services. In Figure 3 we show the basics of some existing remoting middlewares, such as

in web services frameworks like Apache CXF [The Apache Software Foundation c] or Apache Axis2 [The Apache

Software Foundation b]. The invocation data, between the client and the service, flows in the middleware through so-

called chains. A client and a server have an incoming and an outgoing chain – IN Chain and OUT Chain in Figure

3 – which are responsible for processing the incoming requests and the outgoing responses, respectively. Chains



• 1:V

consist of multiple phases, making it possible to specify precisely where to hook INVOCATION INTERCEPTORS into

the invocation path.

Marshaling 

Time

Un-marshaling 

Time

OUT Chain IN Chain

OUT ChainIN Chain

Marshaling

Time

Un-marshaling

Time
Round-Trip Time

Response
Time

Network

Latency

Network

Latency

Processing

Time

LAN / WAN

Client’s Middleware Service’s Middleware

Client Service

Execution
Time

Fig. 3. Measuring points of performance-related QoS concerns

In this work, we differentiate between negotiable and network-specific performance-related QoS properties. Nego-

tiable QoS properties deal with the elapsed time of processing a service request and how long it takes that the service

consumer receives a response. Mostly, SLAs do not contain agreements about network-specific QoS properties. For ex-

ample, a service consumer does not want to know how long it takes to marshal or un-marshal the transmitted data. But,

measuring network-specific QoS properties and can be useful to identify, for example, bottle-necks of long-running

service invocations.

2.3.0.1 Negotiable performance-related QoS properties

—Round-Trip Time

For a service consumer, it is important to know how long it takes to receive the requested data or results from the

service. The elapsed time between the sending of the client’s request and receiving the service’s response is referred

to the service’s round-trip time.

—Processing Time

On the server-side the processing time is the elapsed time for processing the client’s incoming request. It does

not take into account the performance-related QoS properties of processing the incoming requests and outgoing

response in the underlying middleware.

—Response Time

The response time is a client-side QoS property and measures the elapsed time between transmitting the marshaled

invocation data to the server and the reception of the server’s response. In the terminology of SLA, the response

time often refers to the elapsed time of responding to a problem in case the service is down.

2.3.0.2 Network-specific performance-related QoS properties

—Marshaling Time

The invocation data must be marshaled for its transmission over the underlying network. At the client-side, the

marshaling time measures the elapsed time of marshaling the outgoing invocation data of the service request. At

the server-side, the marshaling time measures the elapsed time of marshaling the invocation data of the service’s

response.



1:VI •

—Execution Time

The execution time is a server-side QoS property. It is a measure of the complete required time of a client’s request,

i.e., unmarshaling, processing, and marshaling.

—Network Latency

The required time for transmitting the marshaled invocation data over the network is called network latency. It

requires measuring points at the client- and the server-side. Network latency can be measured during the sending of

the client’s request and its reception at the server-side. Also, network latency is the elapsed time of transmitting the

marshaled service’s response from the service to the client over the network.

—Un-marshaling Time

The marshaled invocation data must be un-marshaled to be process-able in the overlying layers. At the server-side,

the un-marshaling time measures the elapsed time of un-marshaling the incoming invocation data of the service

request. At the client-side, the un-marshaling time measures the elapsed time of un-marshaling the invocation data

of the service’s response.

3. PATTERNS FOR MEASURING QOS IN SERVICE-ORIENTED SYSTEMS

In this section we present four patterns about how to instrument the clients’ and the services’ implementation to

measure the performance-related QoS properties of service invocations. This can be done in various ways and layers of

the network communication, such as in the application layer, the network layer, or by extending some used middleware.

Patterns for Measuring

performance-related

QoS properties

Pattern:
QOS INLINE

Pattern:
QOS WRAPPER

Pattern:
QOS INTERCEPTOR

Pattern:

QOS REMOTE PROXY

alternative alternative alternative alternative

can be implemented, using

Fig. 4. Requirements on measuring and relationships between the patterns

In Figure 4 we illustrate the relationship between the patterns. The QOS INLINE, QOS WRAPPER, and QOS INTER-

CEPTOR patterns are implemented locally at the clients or services. The QOS REMOTE PROXY pattern is a centralized

measuring solution within the service consumer’s or service provider’s network.

In the following we explain and analyse each pattern. Measuring the performance-related QoS properties should

deliver precise measurements, produce a minimal performance overhead, and should not decrease the system’s scala-

bility. The implementation of the measuring pattern should be de-coupled from the services’ or clients’ implementation

in order to provide separation of concerns and reusability.

3.1 Pattern: QOS INLINE

An SLA contains negotiated performance-related QoS properties where only the elapsed time of a service invocation

is relevant to the client, i.e., the round-trip time. For the server it is relevant to measure the elapsed time of processing

the client’s request, i.e., the processing time. The server may be interested to find some possible bottle-necks within

the service’s behaviour as well.



• 1:VII

How can the client’s and the service’s implementation be instrumented for measuring performance-related

QoS properties?

Consider a typical scenario of measuring performance-related QoS properties in a service-oriented system. The

client invokes some service via an underlying middleware (see Section 2.1). The middleware transmits the client’s

request to the service over a network. The service’s middleware receives the request, the service processes the request,

and returns the response back to the client. Now, the client’s and the service’s implementation have to be instrumented

to measure the SLA’s performance-related QoS properties.

Therefore,

Instrument the client’s and the service’s implementation with local measuring points and place them directly

into their implementation.

Client

M
a

c
h

in
e

 B
o

u
n

d
a

ry

Service

Middleware Middleware

Instrumentation 

Code

Instrumentation 

Code

Instrumentation 

Code

Instrumentation 

Code

Fig. 5. The QOS INLINE pattern

Figure 5 shows the QOS INLINE pattern. The client invokes the service via a middleware and wants to measure the

elapsed time of the service invocation. The client’s implementation can be instrumented for measuring the round-trip

time. On the server-side, the service receives the client’s request, processes it, and measures the processing time. The

service’s implementation can be instrumented directly with local measuring points.

On the client-side, the round-trip time can be measured precisely by calculating the elapsed time between sending

the service request and receiving the response. The QOS INLINE pattern does not affect the measurements of other

performance-related QoS measurements. The client-side implementation of the QOS INLINE pattern affects the client’s

performance only slightly. On the server-side, the QOS INLINE pattern can measure the processing time precisely

without influencing other performance-related QoS measurements. Multiple measurement points can be placed at

arbitratry places in the service’s implementation, making it possible to find, for example, bottle-necks within the

processing of the client’s request. Dependent on the number of measuring points, QOS INLINE pattern does not have

significant affect on the service’s performance.



1:VIII •

The QOS INLINE pattern does not provide a good separation of concerns because the measuring points are placed

into the implementation directly. Also, the QOS INLINE pattern is not a reusable solution because existing clients and

services must be instrumented and redeployed individually.

A general consequence of the QOS INLINE pattern is that not many performance-related QoS properties can be

measured. At the client-side, it is easy to measure the round-trip time, but, difficult to measure performance-related

QoS properties that have to be measured in some underlying network layers, such as the network latency. It is easy

to measure the processing time at the server-side, and the round-trip time at the client side. But on both sides it is

difficult to measure performance-related QoS properties that have to be measured in some underlying layers, such as

the network latency. Assuming a small number of measuring points, separate tools, such as packet sniffers, can be

utilized to measure the performance-related QoS properties that are not measurable with the QOS INLINE pattern.

Every source code can be extended with time measurements using the QOS INLINE pattern. The QOS INLINE pattern

can not be applied in service-oriented systems only, also in local function calls or object method invocations. Using

the QOS INLINE pattern is advisable if the QoS measurements are relevant in the client’s or service’s application layer.

Known Uses:

—Mani and Nagarajan [Mani and Nagarajan 2002] explain QoS in service-oriented systems by using the QOS INLINE

pattern to measure the elapsed time of a service invocation, i.e., the round-trip time.

3.2 Pattern: QOS WRAPPER

The negotiated SLAs between client and server include performance-related QoS properties with respect to the elapsed

times of service invocations. The client and services must be instrumented for measuring the performance-related

QoS agreements. The client’s and the service’s implementation should be instrumented with a reusable solution that

provides separation of concerns.

Which solution is reusable and provides a good separation of concerns for instrumenting the client’s and the

service’s for measuring performance-related QoS properties?

As proposed by the QOS INLINE pattern, measuring performance-related QoS properties during service invocations

can be done by placing measuring points into the client’s or service’s implementation directly. But, this solution does

not provide separation of concerns and reusability. It is not possible to attach the measuring of the performance-related

QoS properties to existing clients and services without redeployment. For improvement, the performance-related QoS

properties have to be measured separated from the client’s and service’s implementation.

Therefore,

Instrument the client’s and service’s implementations with local QOS WRAPPERS that are responsible for mea-

suring the performance-related QoS properties. Let a client invoke a service using a client-side QOS WRAPPER.

Extend a service with a server-side QOS WRAPPER that receives the client’s requests.

Figure 6 illustrates the QOS WRAPPER pattern. The client invokes a service using a client-side QOS WRAPPER that

offers the client the service’s operations, takes over the service invocation, and measures the performance-related QoS

properties. At the server-side, the QOS WRAPPER processes the incoming requests for the service, measures the server-

side performance-related QoS properties separated from the service’s implementation, and returns back the service’s

response to the requesting client.



• 1:IX

Client

QOS

WRAPPER

M
a

c
h
in

e
 B

o
u

n
d

a
ry

Service

QOS

WRAPPER

Middleware Middleware

Fig. 6. The QOS WRAPPER pattern

Every client and service can be instrumented with a local QOS WRAPPER, providing a uniform measuring of the

performance-related QoS properties and a reusable solution. A QOS WRAPPER provides separation of concerns be-

cause it measures the performance-related QoS properties separated from the client’s or the service’s implementation.

Furthermore, a QOS WRAPPER does not impact the overall system’s performance because it measures the performance-

related QoS properties locally in each client or service.

On the client-side, the service invocations are insignificantly lengthened because the client does not invoke the

service not directly, but via the QOS WRAPPER. A client-side QOS WRAPPER provides precise QoS measurements.

A server-side QOS WRAPPER can insignificantly lengthen the service invocations as well, but, it measures the QoS

properties precisely. The client’s QOS WRAPPER can measure the round-trip time and the server’s QOS WRAPPER

the processing time. The QOS WRAPPER pattern is not able to measure network-specific performance-related QoS

properties. But, separate tools, such as packet sniffers, can be utilized to measure network-specific performance-related

QoS properties.

The client-side QOS WRAPPER can be implemented following the CLIENT PROXY pattern [Buschmann et al. 2007],

whereas the server-side QOS WRAPPER can be implemented following the INVOKER [Voelter et al. 2004] pattern.

Known Uses:

—Afek et al. [Afek et al. 1996] implemented a framework for QoS-aware remote object invocations over an ATM

network. The authors extended the Java RMI interface by providing an API to the clients. Following the QOS

WRAPPER pattern, the client-side API ensures QoS by providing a good separation of concerns. A server-side QOS

WRAPPER server acquires and arranges the service with the desired QoS.

—Loyall et al. [Loyall et al. 1998] introduce Quality Objects (QuO) that are responsible for checking contractually

agreed QoS properties. A QuO is a QOS WRAPPER because it is located at the client’s or service’s machine, but, is

separated from the client’s or service’s implementation.

—Wohlstadter et al. [Wohlstadter et al. 2004] build a QOS WRAPPER that wraps the Apache Axis middleware for

measuring QoS.

—The Application Resource Measurement (ARM) API [SAS ] is a QOS WRAPPER to measure performance-related

QoS properties.



1:X •

—Rosenberg et al. [Rosenberg et al. 2006] utilize a QOS WRAPPER in order to measure the services’ performance-

related QoS properties.

3.3 Pattern: QOS INTERCEPTOR

Clients and services must be instrumented to performance-related QoS properties with a reusable, precise, from the

implementation separated solution. Access to the middleware is provided to measure negotiable and network-specific

performance-related QoS properties in order to detect, for example, bottle-necks in long-running service invocations.

How can the middleware be instrumented to measure performance-related QoS properties of service invoca-

tions?

In service-oriented systems, the client’s middleware transmits the invocation data of the service request to the service

over a network. The service’s middleware is responsible for receiving incoming data and to transmit the service’s

response to the client. The client’s middleware processes the incoming data and forwards it to the client’s application.

Let’s consider that access to clients’ and the services’ underlying middleware is provided. The middleware must be

instrumented to measure negotiable and network-specific performance-related QoS properties, providing reusability,

precise QoS measurements, and separation of concerns.

Therefore,

Hook QOS INTERCEPTORS into the middleware that intercept the message flow between the client and the

service. Let the QOS INTERCEPTORS measure the performance-related QoS properties of service invocations.

Figure 7 demonstrates the QOS INTERCEPTOR pattern that utilizes the INVOCATION INTERCEPTOR pattern [Voelter

et al. 2004]. A QOS INTERCEPTOR can be utilized on the client- and the server-side. Multiple QOS INTERCEPTORS

can be placed in the invocation path, where each of them is responsible to measure different performance-related QoS

properties, making it is possible to find, for example, bottle-necks of long-running service invocations.

Client

Middleware

M
a

c
h

in
e

 B
o

u
n

d
a

ry

beforeInvocation(...) afterInvocation(...)...

QOS

INTERCEPTOR

QOS

INTERCEPTOR

Middleware

beforeInvocation(...) afterInvocation(...)...

QOS

INTERCEPTOR

QOS

INTERCEPTOR

4

5

1

2
3

7 Service

6

Fig. 7. The QOS INTERCEPTOR pattern

Many middleware frameworks, such as Apache CXF [The Apache Software Foundation c] or .NET Remoting

provide possibilities in the middleware to attach a QOS INTERCEPTOR into the invocation path dynamically, using



• 1:XI

APIs or configuration files. But, the complexity of the middleware’s implementation increases by providing hooks or

interfaces to attach and change QOS INTERCEPTORS in the invocation path dynamically.

A QOS INTERCEPTOR delivers precise measurements of network-specific performance-related QoS properties. The

QOS INTERCEPTOR has the benefit that the client’s and remote object’s implementations do not have to be instru-

mented for measuring the performance-related QoS properties. The client’s and remote object’s middleware are in-

strumented to hook QOS INTERCEPTORS into the invocation path. A QOS INTERCEPTOR provides a good separation

of concerns because the measuring is separated from the client’s and remote object’s implementation. Because a

QOS INTERCEPTOR is hooked in the client’s or remote object’s local middleware, a precise measuring of almost all

performance-related QoS properties can be achieved. In addition, a QOS INTERCEPTOR is reusable because existing

QOS INTERCEPTORS can be attached dynamically into the middleware of existing clients and remote objects. A QOS

INTERCEPTOR does not provide performance overhead in the overall system because it measures the performance-

related QoS properties locally.

A QOS INTERCEPTOR does not measure the elapsed time of transferring the invocation data from the application

layer to the middleware as well as the required time of transferring the invocation data from the middleware to the

application layer. Hence, the measurements of negotiable performance-related QoS properties are slightly different

in comparison to using the QOS INLINE pattern. Placing multiple QOS INTERCEPTORS into the invocation path can

impact the preciseness of the QoS measurements. For example at the server-side, a QOS INTERCEPTOR that measures

the processing time can influence the measured round-trip time at the client (see Figure 3).

Known Uses:

—The OpenORB project [The Community OpenORB Project ] supports QOS INTERCEPTORS.

—The .NET Remoting framework [Microsoft ] introduces the RealProxy, that is a QOS INTERCEPTOR to intercept

remote object invocations.

—The Apache web service frameworks Axis [The Apache Software Foundation a], Axis2 [The Apache Software

Foundation b], and Apache CXF [The Apache Software Foundation c] provide the features to use QOS INTERCEP-

TORS to intercept the messages exchanged between clients and services for measuring performance-related QoS

properties.

—The QoS CORBA Component Model (QOSCCM) [Object Management Group (OMG 2008] uses the QOS INTER-

CEPTOR pattern to easily adapt an application for measuring performance-related QoS properties.

—The VRESCo runtime environment [Michlmayr et al. 2010] measures the performance-related QoS properties

using QOS INTERCEPTORS.

—Li et al. [Li et al. 2006] use QOS INTERCEPTORS to intercept the messages between clients and services for

measuring the performance-related QoS properties.

3.4 Pattern: QOS REMOTE PROXY

In service-oriented systems, service consumers and service providers have separated networks. Performance-related

QoS measurements must be measured uniformly for each client and service.

How to introduce a reusable, from the clients’ and services’ implementation separated, and uniform mea-

suring solution to measure performance-related QoS properties within the service consumer’s and service

provider’s networks?



1:XII •

Typically, the services are not located in the same network as the clients. A client must invoke the service via a wide

area network. Service consumers and service providers want to introduce a measuring infrastructure within their own

local area networks (LAN). The desired measuring solution should be uniform for each client and service, to enhance

the deployment of new QoS-aware clients or services.

Therefore,

Implement and setup a QOS REMOTE PROXY in the service consumer’s or service provider’s network. In the

service consumer’s network, let each client invoke the services via the QOS REMOTE PROXY. In the service

provider’s network, make each service only accessible via a QOS REMOTE PROXY.

Client

Client

QOS
REMOTE PROXY

QOS
REMOTE PROXY

Services

Services

Service Consumer’s 

Network

LAN / WAN

Service Provider’s 

Network

Fig. 8. The QOS REMOTE PROXY pattern

Figure 8 shows an typical service-oriented infrastructure where the clients and the services are not located in the

same network. The service consumer’s QOS REMOTE PROXY receives the client’s request, performs the required QoS

measurements, and forwards the request to the service. A QOS REMOTE PROXY within the service provider’s network

receives the client’s requests (directly or via the service consumer’s QOS REMOTE PROXY), performs the required

QoS measurements, and forwards the request to the appropriate service. After the service has processed the request, it

sends the response back to the QOS REMOTE PROXY that measures the required performance-related QoS properties

and forwards the response to the client. The service consumer’s QOS REMOTE PROXY receives the response (from the

service directly or from the service provider’s QOS REMOTE PROXY), measures performance-related QoS properties,

and forwards the response to the appropriate client.

A QOS REMOTE PROXY provides a separation of concerns because the measuring of the performance-related QoS

properties is separated from the clients’ and services’ implemenation. Also, there is no impact on the client’s and

server’s performance. In addition, a QOS REMOTE PROXY is a reusable solution. Each new client can be configured to

invoke the service via the QOS REMOTE PROXY. It is also possible to configure each service that it can only be invoked

via a QOS REMOTE PROXY.



• 1:XIII

At minimum one extra hop in the client’s and server’s LAN is needed because of accessing the QOS REMOTE

PROXY instead of invoking the service directly. The measurements of the performance-related QoS properties at the

QOS REMOTE PROXY differ from the client’s and service’s local QoS measurements, such as by using aforementioned

patterns.

In case of having a multitude of clients, a QOS REMOTE PROXY within the service consumer’s network can impact

the system’s performance because each client has to invoke the service via the QOS REMOTE PROXY. On the server-

side, a QOS REMOTE PROXY can affect the performance of the system in case of lots of parallel incoming requests.

To decrease the performance overhead, a QOS REMOTE PROXY inside the service provider’s network can be imple-

mented as a load-balancer [Buschmann et al. 2007]. A QOS REMOTE PROXY can also act as a gateway, reverse proxy,

dispatcher, or a firewall [Buschmann et al. 2007].

Known Uses:

—Wang et al. [Wang et al. 2005] introduce a QoS-Adaptation proxy that receives the clients’ requests, performs

the QoS measurements, and forwards the clients’ requests to their destinations. The clients’ applications remain

unchanged while the proxy performs the necessary adaptations and QoS measurements.

—The Corba IIOP specifications [Object Management Group (OMG) 2008] introduce the VisiBroker [Borland 2009]

environment that uses the QOS REMOTE PROXY pattern for measuring the performance-related QoS properties.

—The Apache TCPMon [The Apache Software Foundation d] tool can be instrumented to serve as a proxy between

the clients and the server’s remote objects. An implementation of the QOS REMOTE PROXY is to extend this tool for

measuring performance-related QoS properties.

—Sahai et al. [Sahai et al. 2002] introduce a QOS REMOTE PROXY for monitoring SLAs in web service-oriented

distributed systems.

—Badidi et al. [Badidi et al. 2006] present WS-QoSM, a QoS monitoring solution that measures the QoS properties

following the QOS REMOTE PROXY pattern.

—The Cisco IOS IP SLA [Cisco 2011] follows the QOS PROXY pattern that has the responsibility of measuring the

performance-related QoS properties.

4. SELECTED EXAMPLE: MEASURING PERFORMANCE-RELATED QOS PROPERTIES OF A WEB
SERVICE

This section exemplifies the presented patterns for measuring performance-related QoS properties within a service-

oriented system. We exemplify the patterns on a web service that offers the functionality to login into a remote system.

The service’s login operation receives a username and a password from the client and checks if the client is authorized

to enter. We have implemented the clients and services using the Apache CXF web service framework [The Apache

Software Foundation c]. In the following, we present the client-side implementation of the presented patterns.

4.1 Pattern: QOS INLINE

Figure 9 shows a code excerpt of a client that invokes a web service and measures the round-trip time following the

QOS INLINE pattern. We used the Apache CXF’s feature of implementing a dynamic client where we do not have to

use the wsdl2java tool for generating the web service’s stub explicitly.

The client offers a callLoginService method to invoke the web service’s Login operation. First, we have to

instantiate the JaxWsDynamicClientFactory, following the FACTORY pattern [Gamma et al. 1995]. Then, the

client is created by using the previously instantiated FACTORY. The client puts two QoS measuring points around the

actual web service invocation – client.invoke(...) – to measure the round-trip time of the web service invocation.



1:XIV •

public class LoginServiceClient {

public void callLoginService() {

JaxWsDynamicClientFactory dcf = 

JaxWsDynamicClientFactory.newInstance();

Client client = dcf.createClient("login.wsdl");

try {

/* measure current time */

long tBeforeInvocation = System.nanoTime();

/* call the web service */

client.invoke("login", new Object[]{"client","password"});

/* measure the round trip time */

long tRoundTrip = System.nanoTime() - tBeforeInvocation;

} catch (Exception e) {

e.printStackTrace();

}

}

}

LoginServiceClient + QOS INLINE

Fig. 9. Measuring the round-trip time following the QOS INLINE pattern

4.2 Pattern: QOS WRAPPER

In Figure 10 we illustrates a web service client that measures the round-trip of the web service invocation following

the QOS WRAPPER pattern. Instead of placing measuring points for the round-trip time in the client’s implementation

directly, the client invokes the web service via a local QOS WRAPPER. The implemented QOS WRAPPER offers the

same interface to the client as the remote object. In this example, the QOS WRAPPER takes over the responsibility of

measuring of the round-trip time of a web service invocation.

public class QoSWrapper {

private Client loginClient;

public QoSWrapper() {

/* initialize WS stubs */

JaxWsDynamicClientFactory dcf = 

JaxWsDynamicClientFactory.newInstance();

this.loginClient = dcf.createClient("login.wsdl");

}

public void login(String sUsername, String sPassword) {

/* measure current time */

long tBeforeInvocation = System.nanoTime();

/* call the requested service */

loginClient.invoke("login",

new Object[]{sUsername,sPassword});

/* measure time difference */

long tRoundTrip = System.nanoTime() - tBeforeInvocation;

}

}

public class LoginServiceClient {

public void callLoginService() {

/* invoke the Login Web service */

new QoSWrapper.login(

"client","password");

}

}

LoginServiceClient

QOS WRAPPER

Fig. 10. Measuring the round-trip time following the QOS WRAPPER pattern

Instead of invoking the web service directly, the client calls the invoke method of the QoSWrapper. Within the

invoke method, the QOS WRAPPER measure the elapsed time of the web service invocation, i.e., the round-trip time.



• 1:XV

4.3 Pattern: QOS INTERCEPTOR

The QOS INTERCEPTOR pattern can be implemented easily using the Apache Axis, Apache CXF web services frame-

work or in object-oriented RPC middlewares, such as CORBA, .NET Remoting, and Windows Communication Foun-

dation.

public class LoginServiceClient {

public void callLoginService() {

/* call requested service */

JaxWsDynamicClientFactory dcf = 

JaxWsDynamicClientFactory.newInstance();

Client client = dcf.createClient("login.wsdl");

/* hook the QOS INTERCEPTOR into the invocation path */

client.getOutInterceptors().add(

new RoundTripTimeInterceptor(Phase.SETUP));

client.getOutInterceptors().add(

new RoundTripTimeInterceptor(Phase.SETUP_ENDING));

/* call the Login Web service */

try {

res = client.invoke("login", 

new Object[]{"client","password"});

} catch (Exception e) {

e.printStackTrace();

}

}

}
public class RoundTripTimeInterceptor {

public RoundTripTimeInterceptor(String sPhase) {

super(sPhase);

}

public void handleMessage(Message msg) throws Fault {

if(this.getPhase().equalsIgnoreCase(Phase.SETUP)) {

/* set the current time in the invocation context */

QoSData qos = (QoSData)msg.get(QoSData.class);

if(qos==null) {

qos = new QoSData();

}

qos.setRoundTripTime(System.nanoTime());

msg.setContent(QoSData.class, qos);

} else if(this.getPhase().equalsIgnoreCase(Phase.SETUP_ENDING)){

QoSData qos=(QoSData)msg.getContent(QoSData.class);

if(qos!=null) {

/* set the round-trip time in the invocation context */

long tRoundTrip = System.nanoTime()-qos.getRoundTripTime();

qos.setRoundTripTime(tRoundTrip/1000000);

} else {

throw new Fault(...);

}

}

}

}

LoginServiceClient

QOS INTERCEPTOR

Fig. 11. Measuring the round-trip time following the QOS INTERCEPTOR pattern

Figure 11 shows an excerpt of the client’s implementation and the implemented QOS INTERCEPTOR for measuring

the round-trip time of a web service invocation. First, the client initializes the generated stubs of the web service,

creates objects of the interceptors, and defines where to place them into the invocation path. In our example, the

RoundTripTimeInterceptor measures the round-trip time between the SETUP and SETUP ENDING phases of the

client’s OUT chain. The Apache CXF web service framework provides facilities for attaching the interceptors to the

invocation path by calling the getOutInterceptors().add() method.

The handleMessage method of the RoundTripTimeInterceptor contains the business logic of the QOS IN-

TERCEPTOR. In the SETUP phase, the interceptor puts the current time into the INVOCATION CONTEXT – QoSData –



1:XVI •

of the message. In the SETUP ENDING phase, the interceptor calculates the time difference – the round-trip time – and

puts it again into the INVOCATION CONTEXT.

4.4 Pattern: QOS REMOTE PROXY

The QOS REMOTE PROXY offers interfaces to the clients to invoke remote objects and takes over the responsibility of

measuring the performance-related QoS properties. In comparison to the previously shown QOS WRAPPER example,

the client does invoke the web service via the QOS REMOTE PROXY over the LAN and not directly.

public class LoginServiceClient {

private Client qosRemoteProxy;

public LoginClient() {

/* initializze the QoS Remote proxy */

JaxWsDynamicClientFactory dcf = 

JaxWsDynamicClientFactory.newInstance();

this.qosRemoteProxy = dcf.createClient(

"http://my/qos-remote-proxy");

}

public void callLoginService() {

/* call the login Web service via the QoS remote proxy */

this.qosRemoteProxy.login("client","password");

}

}

Machine Boundary

public class QoSRemoteProxy {

private Client loginClient;

public Login() {

/* initialize WS stubs */

JaxWsDynamicClientFactory dcf = 

JaxWsDynamicClientFactory.newInstance();

this.loginClient = dcf.createClient("login.wsdl");

}

public boolean login(String sUserID, String sPassword) {

/* measure current time */

long tBeforeInvocation = System.nanoTime();

/* call the requested service */

boolean b = this.loginClient.login(sUserID,sPassword);

/* measure time difference */

roundtrip = System.nanoTime() - tBeforeInvocation;

/* Return the received response to the client */

return b;

}

}

LoginServiceClient

QOS REMOTE PROXY

Fig. 12. Measuring the round-trip time following the QOS REMOTE PROXY pattern

We illustrate our Apache CXF implementation of a QOS REMOTE PROXY in Figure 12. The client invokes the login

method of the QOS REMOTE PROXY instead of calling the web service’s login operation directly. As illustrated,

the QOS REMOTE PROXY performs the measuring of the performance-related QoS properties. In our example, the

implemented QOS REMOTE PROXY measures the round-trip time of the web service invocation.



• 1:XVII

5. DISCUSSION

In this section we discuss possible ways to implement the patterns and lists possibilities of future work to store and

evaluate the QoS measurements.

5.1 Aspect-oriented Implementation of the Patterns

A possible way to implement some of the presented patterns and to provide a good separation of concerns, is to follow

the aspect-oriented programming (AOP) paradigm. An aspect is a construct that contains the separated concern’s

implementation and a description of how to weave it into the code [Kiczales et al. 1997].

To improve the separation of concerns within the QOS INLINE pattern, its implementation can follow the AOP

paradigm. Implementing an aspect-oriented QOS INLINE solution results in a QOS WRAPPER. The aspects of measuring

performance-related QoS properties are separated from the client’s or remote object’s implementation, resulting in a

good separation of concerns. Furthermore, the measuring aspects can be reused and attached to new deployed clients

and remote objects.

The QOS INTERCEPTOR pattern can be implemented following the AOP paradigm. Such a solution is interesting if

the middleware does not provide hooks for placing a QOS INTERCEPTOR into the invocation path.

In the case where the QOS REMOTE PROXY has additional responsibilities to measuring performance-related QoS

properties, its implementation can follow the AOP paradigm. Hence, it is possible to separate the QOS REMOTE

PROXY’S QoS measuring from its business logic.

5.2 Model-driven Development (MDD) of the Patterns

Using model-driven development (MDD) makes it possible to generate schematic recurring code automatically [Stahl

et al. 2006; Schmidt 2006; Kelly and Tolvanen 2008]. In this section we discuss the automatic generation of the

presented patterns.

Following the QOS INLINE pattern, it is difficult to generate the measuring points into existing clients or remote

objects. Only clients and remote objects that have to be newly deployed can be generated automatically including the

measuring points. The client’s or the remote object’s implementation has to be developed manually. Following the

AOP paradigm, it is possible to generate the required aspects for measuring the performance-related QoS properties

automatically.

A QOS WRAPPER can be generated automatically and the generic parts of the client’s and remote object’s imple-

mentations for accessing the client or remote object via the QOS WRAPPER.

QOS INTERCEPTORS can be generated and attached to the client’s and remote object’s middleware automatically

for measuring the performance-related QoS properties. Existing clients and remote objects can be extended easily.

It is possible to generate a QOS REMOTE PROXY automatically. New clients can be generated and configured to

access the remote objects only via the generated QOS REMOTE PROXY. Also, it is possible to generate the remote

objects automatically and to configure them that they are only accessible via a QOS REMOTE PROXY. Existing clients

and remote objects have to be re-configuried or re-deployed.

5.3 Storing and Evaluating the QoS Measurements

The presented patterns cover the aspects of measuring performance-related QoS properties in service-oriented systems.

A further important aspect is how to store and evaluate the QoS measurements. Many possibilities of storing the QoS

measurements exist, such as using local log files or databases. It is also possible to forward the measurements to a QoS

monitor by using, for example communication channels [Hohpe and Woolf 2003]. The QoS monitor can be either

centralized or de-centralized, and can evaluate the QoS measurements immediately or at later stages.

The implementation of the QOS INTERCEPTORS can follow the INVOCATION CONTEXT pattern [Voelter et al.

2004] to store a service invocation’s performance-related QoS measurements. The available information of the INVO-

CATION CONTEXT depends on the interceptor’s location in the invocation path. To overcome this problem, the QOS



1:XVIII •

INTERCEPTOR submits the INVOCATION CONTEXT to some centralized QoS monitor that is responsible for storing

and evaluating the performance-related QoS measurements.

Evaluating performance-related QoS properties brings the necessity to avoid violations of the negotiated QoS con-

cerns within the SLAs. A monitoring component is required that measures the QoS properties in a predictive and

pro-active way to give warnings to the system users to avoid possible future violations. Many research challenge exist

to implement systems that react to the warnings and avoid violations automatically.

Some QoS monitoring infrastructures utilize an event-driven architecture to monitor performance-related QoS

agreements, such as [Michlmayr et al. 2010; Zeng et al. 2008; Tran et al. 2010]. In an event-driven architecture,

a complex event processing (CEP) engine receives events from the clients and services. The CEP evaluates the re-

ceived QoS events during the runtime against pre-defined QoS rules. For example, if a client sends an event when

invoking a service and the client does not send a second correlated event, then the CEP knows that the service is not

available or does not respond in the agreed time frame.

6. CONCLUSION

The contribution of this paper are four patterns that focus on measuring performance-related QoS properties in dis-

tributed systems. The patterns are extensions of well-known existing patterns, presented in the Gang of Four (GoF)

book [Gamma et al. 1995], the Pattern-Oriented Software Architecture (POSA) series [Buschmann et al. 1996;

Schmidt et al. 2000; Buschmann et al. 2007], and in the Remoting Patterns book [Voelter et al. 2004]. We highlighted

the patterns concerning their impact on the client’s or service’s performance, their reusability, the extent of separation

of concerns, the preciseness of the QoS measurements, and the vulnerability to forgery of the QoS measurements. The

patterns are summarized briefly in the Appendix A.

The paper gave background information on the existing patterns as well as on the pattern’s relevant performance-

related QoS properties. We exemplified the patterns for measuring client-side performance-related QoS properties in

web service-oriented distributed systems. As a future work we intend to describe and define patterns on storing and

evaluating the gathered QoS measurements. This paper’s patterns should help software architects and developers in

designing architectures for measuring performance-related QoS properties in a distributed system.

Acknowledgments

We would like to thank our shepherd Andy Carlson for his constructive and supporting help during the shepherding

process to improve the quality of the patterns and the paper itself. We also want to thank the participants of the writers’

workshop at the PLoP conference, Robert Hanmer, Eunsuk Kang, Matthew Hansen, Kiran Kumar, Cédric Bouhours,

and Shivanshu Singh. All of them gave great feedback to improve the quality of the patterns and the paper.

This work was supported by the European Union FP7 project COMPAS, grant no. 215175.

REFERENCES

AFEK, Y., MERRITT, M., AND STUPP, G. 1996. Remote Object Oriented Programming with Quality of Service or Java’s RMI over ATM.

AURRECOECHEA, C., CAMPBELL, A. T., AND HAUW, L. 1998. A survey of QoS architectures. Multimedia Systems 6, 138–151.

BADIDI, E., ESMAHI, L., SERHANI, M. A., AND ELKOUTBI, M. 2006. WS-QoSM: A Broker-based Architecture for Web Services QoS Manage-

ment. In Innovations in Information Technology, 2006. 1–5.

BORLAND. 2009. VisiBroker – A Robust CORBA Environment for Distributed Processing.

BUSCHMANN, F., HENNEY, K., AND SCHMIDT, D. C. 2007. Pattern-Oriented Software Architecture, Volume 4: A Pattern Language for Dis-

tributed Computing. Wiley.

BUSCHMANN, F., MEUNIER, R., ROHNERT, H., SOMMERLAD, P., AND STAL, M. 1996. Pattern-Oriented Software Architecture, Volume 1: A

System of Patterns. Wiley.

CISCO. 2011. Cisco IOS IP Service Level Agreements (SLAs). http://www.cisco.com/go/ipsla (last accessed: February 2011).

FRØLUND, S. AND KOISTINEN, J. 1998. Quality of Service Specification in Distributed Object Systems Design. In COOTS. USENIX, 1–18.



• 1:XIX

GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. 1995. Design Patterns: Elements of Reusable Object-Oriented Software. Addison-

Wesley Professional.

HAUCK, R. AND REISER, H. 2000. Monitoring Quality of Service across Organizational Boundaries. In Proceedings of the Third International

IFIP/GI Working Conference on Trends in Distributed Systems: Towards a Universal Service Market. Springer-Verlag, London, UK, 124–137.

HOHPE, G. AND WOOLF, B. 2003. Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solutions. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA.

JIE JIN, L., MACHIRAJU, V., AND SAHAI, A. 2002. Analysis on Service Level Agreement of Web Services. Tech. rep., HP Laboratories.

KELLER, A. AND LUDWIG, H. 2003. The WSLA Framework: Specifying and Monitoring Service Level Agreements for Web Services. Journal

of Network and Systems Management 11, 57–81. 10.1023/A:1022445108617.

KELLY, S. AND TOLVANEN, J.-P. 2008. Domain-Specific Modeling: Enabling Full Code Generation. John Wiley & Sons.

KICZALES, G., LAMPING, J., MENDHEKAR, A., MAEDA, C., LOPES, C. V., LOINGTIER, J.-M., AND IRWIN, J. 1997. Aspect–Oriented Pro-

gramming. In ECOOP. 220–242.

LAMANNA, D. D., SKENE, J., AND EMMERICH, W. 2003. SLAng: A Language for Defining Service Level Agreements. In Proceedings of the

The Ninth IEEE Workshop on Future Trends of Distributed Computing Systems. FTDCS ’03. IEEE Computer Society, Washington, DC, USA,

100–.

LI, Z., JIN, Y., AND HAN, J. 2006. A Runtime Monitoring and Validation Framework for Web Service Interactions. In Proceedings of the

Australian Software Engineering Conference. IEEE Computer Society, Washington, DC, USA, 70–79.

LOYALL, J., SCHANTZ, R., ZINKY, J., AND BAKKEN, D. 1998. Specifying and Measuring Quality of Service in Distributed Object Systems.

Object-Oriented Real-Time Distributed Computing, IEEE International Symposium on 0.

MANI, A. AND NAGARAJAN, A. 2002. Understanding quality of service for Web services – Improving the performance of your Web services.

http://www.ibm.com/developerworks/library/ws-quality.html, last accessed: February 2011.

MICHLMAYR, A., ROSENBERG, F., LEITNER, P., AND DUSTDAR, S. 2010. End-to-End Support for QoS-Aware Service Selection, Binding, and

Mediation in VRESCo. IEEE Transactions on Services Computing 3, 193–205.

MICROSOFT. .NET Remoting. http://msdn.microsoft.com/en-us/library/kwdt6w2k(v=vs.71).aspx.

OBERORTNER, E., ZDUN, U., AND DUSTDAR, S. 2009. Tailoring a model-driven Quality-of-Service DSL for Various Stakeholders. In MISE ’09:

Proceedings of the 2009 ICSE Workshop on Modeling in Software Engineering. IEEE Computer Society, Washington, DC, USA, 20–25.

OBJECT MANAGEMENT GROUP (OMG). 2008. Common Object Request Broker Architecture/Internet Inter-ORB Protocol (CORBA/IIOP).

OBJECT MANAGEMENT GROUP (OMG. 2008. Quality Of Service For CCM (QOSCCM).

O’BRIEN, L., MERSON, P., AND BASS, L. 2007a. Quality Attributes for Service-Oriented Architectures. In SDSOA ’07: Proceedings of the

International Workshop on Systems Development in SOA Environments. IEEE Computer Society, Washington, DC, USA, 3.

O’BRIEN, L., MERSON, P., AND BASS, L. 2007b. Quality Attributes for Service-Oriented Architectures. In SDSOA ’07: Proceedings of the

International Workshop on Systems Development in SOA Environments. IEEE Computer Society, Washington, DC, USA.

RAN, S. 2003. A Model for Web Services Discovery with QoS. SIGecom Exch. 4, 1, 1–10.

ROSENBERG, F., PLATZER, C., AND DUSTDAR, S. 2006. Bootstrapping Performance and Dependability Attributes of Web Services. In ICWS

’06: Proceedings of the IEEE International Conference on Web Services. IEEE Computer Society, Washington, DC, USA, 205–212.

SAHAI, A., MACHIRAJU, V., SAYAL, M., JIN, L. J., AND CASATI, F. 2002. Automated SLA Monitoring for Web Services. In IEEE/IFIP DSOM.

Springer-Verlag, 28–41.

SAHAI, A., SAHAI, A., DURANTE, A., DURANTE, A., MACHIRAJU, V., AND MACHIRAJU, V. 2001. Towards Automated SLA Management for

Web Services. Tech. rep., Software Technology Laboratory, HP Laboratories.

SAS. ARM – Application Response Measurement. (last accessed: February 2011).

SCHMIDT, D. C. 2006. Model-Driven Engineering. IEEE Computer 39, 2.

SCHMIDT, D. C., ROHNERT, H., STAL, M., AND SCHULTZ, D. 2000. Pattern-Oriented Software Architecture: Patterns for Concurrent and

Networked Objects. John Wiley & Sons, Inc., New York, NY, USA.

STAHL, T., VOELTER, M., AND CZARNECKI, K. 2006. Model-Driven Software Development: Technology, Engineering, Management. John Wiley

& Sons.

THE APACHE SOFTWARE FOUNDATION. Apache Axis. http://axis.apache.org/.

THE APACHE SOFTWARE FOUNDATION. Apache Axis2. http://ws.apache.org/axis2/.

THE APACHE SOFTWARE FOUNDATION. Apache CXF. http://cxf.apache.org/.

THE APACHE SOFTWARE FOUNDATION. Apache TCPMon. http://ws.apache.org/commons/tcpmon/.

THE COMMUNITY OPENORB PROJECT. OpenORB. http://openorb.sourceforge.net/.

THE SERVICE LEVEL AGREEMENT ZONE. 2007. SLA Information Zone. http://www.sla-zone.co.uk/ (last accessed: 09/2010).



1:XX •

TRAN, H., HOLMES, T., OBERORTNER, E., MULO, E., CAVALCANTE, A. B., SERAFINSKI, J., TLUCZEK, M., BIRUKOU, A., DANIEL, F., SIL-

VEIRA, P., ZDUN, U., AND DUSTDAR, S. 2010. An End-to-End Framework for Business Compliance in Process-Driven SOAs. In Proceedings

of SYNASC.

VOELTER, M., KIRCHER, M., AND ZDUN, U. 2004. Remoting Patterns – Foundations of Enterprise, Internet, and Realtime Distributed Object

Middleware. Wiley & Sons.

WANG, Q., YE, Q., AND CHENG, L. 2005. An Inter-Application and Inter-Client Priority-Based QoS Proxy Architecture for Heterogeneous

Networks. In ISCC ’05: Proceedings of the 10th IEEE Symposium on Computers and Communications. IEEE Computer Society, Washington,

DC, USA, 819–824.

WOHLSTADTER, E., TAI, S., MIKALSEN, T., ROUVELLOU, I., AND DEVANBU, P. 2004. GlueQoS: Middleware to Sweeten Quality-of-Service

Policy Interactions. In Proceedings of the 26th International Conference on Software Engineering. ICSE ’04. IEEE Computer Society, Washing-

ton, DC, USA, 189–199.

YU, W. D., RADHAKRISHNA, R. B., PINGALI, S., AND KOLLURI, V. 2007. Modeling the Measurements of QoS Requirements in Web Service

Systems. Simulation 83, 1, 75–91.

ZENG, L., LINGENFELDER, C., LEI, H., AND CHANG, H. 2008. Event-Driven Quality of Service Prediction. In Proceedings of the 6th Interna-

tional Conference on Service-Oriented Computing. ICSOC ’08. Springer-Verlag, Berlin, Heidelberg, 147–161.



• 1:XXI

A. SUMMARY OF THE PATTERNS

Requirements: - Minimal performance overhead
- Preciseness
- Reusability
- Separation of concerns

Pattern: QOS INLINE

Description: Instrument the client’s and the service’s implementation with local measuring points by placing them directly into
their implementation.

Forces: - minimal performance overhead
- precise QoS measurements
- does not influence other measurements

Consequences: - no separation of concerns
- not reusable

Known Uses: - Mani and Nagarajan [Mani and Nagarajan 2002]

Pattern: QOS WRAPPER

Description: Instrument the client’s and service’s implementations with local QOS WRAPPERS that are responsible for measuring
the performance-related QoS properties. Let a client invoke a service using a client-side QOS WRAPPER. Extend a
service with a server-side QOS WRAPPER that receives the client’s requests.

Forces: - minimal performance overhead
- separation of concern
- reusable
- precise QoS measurements

Consequences: - can not measure network-specific QoS properties

Known Uses: - Afek et al. [Afek et al. 1996]
- Quality Objects (QuO) [Loyall et al. 1998]
- Wohlstadter et al. [Wohlstadter et al. 2004]
- The Application Resource Measurement (ARM) API [SAS ]
- Rosenberg et al. [Rosenberg et al. 2006]

Solution Pattern: QOS INTERCEPTOR

Description: Hook QOS INTERCEPTORS into the middleware that intercept the message flow between the client and the service.
Let the QOS INTERCEPTORS measure the performance-related QoS properties of service invocations.

Forces: - minimal performance overhead
- separation of concerns
- reusable

Consequences: - access to middleware necessary
- can influences other measurements, hence
- can lead to not precise QoS measurements

Known Uses: - The OpenORB project [The Community OpenORB Project ]
- .NET Remoting [Microsoft ]
- Axis [The Apache Software Foundation a], Axis2 [The Apache Software Foundation b], and Apache CXF [The
Apache Software Foundation c]
- QoS CORBA Component Model (QOSCCM) [Object Management Group (OMG 2008]
- The VRESCo runtime environment [Michlmayr et al. 2010]
- Li et al. [Li et al. 2006]

Solution Pattern: QOS REMOTE PROXY

Description: Implement and setup a QOS REMOTE PROXY in the service consumer’s or service provider’s network. In the ser-
vice consumer’s network, let each client invoke the services via the QOS REMOTE PROXY. In the service provider’s
network, make each service only accessible via a QOS REMOTE PROXY.

Forces: - separation of concerns
- reusable
- can be implemented utilizing the QOS INLINE, QOS WRAPPER, or QOS INTERCEPTOR pattern

Consequences: - can have performance overhead
- can influence other measurements
- can lead to imprecise QoS measurements

Known Uses: - The QoS-Adaptation proxy [Wang et al. 2005]
- The VisiBroker [Borland 2009] environment of the Corba IIOP specifications [Object Management Group (OMG)
2008].
- The Apache TCPMon [The Apache Software Foundation d] tool
- Sahai et al. [Sahai et al. 2002]
- WS-QoSM [Badidi et al. 2006]
- The Cisco IOS IP SLA [Cisco 2011]

Table I. : PATTERNS TO MEASURE PERFORMANCE-RELATED QOS PROPERTIES


