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ABSTRACT
In the context of auctions for digital goods, an interesting
Random Sampling Optimal Price auction (RSOP) has been
proposed by Goldberg, Hartline and Wright; this leads to
a truthful mechanism. Since random sampling is a popu-
lar approach for auctions that aims to maximize the seller’s
revenue, this method has been analyzed further by Feige,
Flaxman, Hartline and Kleinberg, who have shown that it
is 15-competitive in the worst case – which is substantially
better than the previously proved bounds but still far from
the conjectured competitive ratio of 4. In this paper, we
prove that RSOP is indeed 4-competitive for a large class
of instances in which the number λ of bidders receiving the
item at the optimal uniform price, is at least 6. We also
show that it is 4.68 competitive for the small class of re-
maining instances thus leaving a negligible gap between the
lower and upper bound. Furthermore, we develop a robust
version of RSOP – one in which the seller’s revenue is, with
high probability, not much below its mean – when the above
parameter λ grows large. We employ a mix of probabilis-
tic techniques and dynamic programming to compute these
bounds.
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1. INTRODUCTION
In recent years, there has been a considerable amount of

work in algorithmic mechanism design. One of the primary
constraints that much of this work tries to enforce is in-
centive compatibility, which means that being truthful is
the best for each agent. In this work, we study a popu-
lar random-sampling-based incentive-compatible mechanism
(“RSOP”) for auctions of digital goods where we aim to max-
imize the auctioneer’s expected revenue; we prove by a mix
of analytical methods and computing-based approaches (the
latter based on rigorous mathematical arguments) that this
mechanism has a much better competitive ratio than was
known before, and place limits on how good this mechanism
can be in the worst case. Further, RSOP as defined, can
deliver a very low revenue to the auctioneer with noneligible
probability: we develop a more robust version which inherits
the good properties of RSOP, and will additionally return a
good-quality solution with high probability (and not just in
expectation) as the number of winning bidders in an optimal
solution grows.

Our basic problem is as follows. A seller (also referred to
as auctioneer) has a good that she/he can make an unlim-
ited number of copies of – such as a digital good. We also
have N bidders with unknown valuations v1, v2, . . . , vN for
the good; this means that bidder i will buy the good iff it
is offered at a price of at most vi to him/her. We aim to
design a (randomized) incentive-compatible mechanism that
will maximize the seller’s expected total revenue. (We as-
sume that the seller can make up to N copies if necessary
at negligible cost, so that the seller’s revenue equals her/his
profit.) A classical work of Myerson has studied this problem
under the Bayesian setting, where we assume a distribution
on the bids vi; knowledge of the prior information about the
bid distribution is essential to his work [11]. Here, we will
work throughout with the classical “computer science” ap-
proach to this problem, which is to assume the worst case:
this is the “prior-free” variant of our problem where we al-
low an arbitrary (unknown and worst-case) distribution of
the bids. In the spirit of the competitive analysis of online
algorithms, this naturally leads to the following notion of
competitive ratio. Note that if the bids v1 ≥ v2 ≥ · · · ≥ vN
are known in an instance I, then profit-maximization is triv-
ial: letting λ = argmaxi≥2 i ·vi, we sell the good at price vλ,



to get an optimal revenue OPT (I) = λ·vλ.1 The competitive
ratio of an incentive-compatible mechanism is defined to be
the largest possible value, taken over all possible instances
I, of OPT (I) divided by the expected profit obtained by our
mechanism on I. Note that this ratio is at least 1.

The prior-free variant of our problem has been first in-
vestigated in [6, 5]. Random sampling is one of the most
natural methods that is used in prior-free settings when the
objective is to maximize the auctioneer’s revenue. The work
of [6] develops a natural random-sampling-based approach
for our problem, Random Sampling Optimal Price (RSOP).
In RSOP, the bidders are partitioned into two groups uni-
formly at random and the optimal price of each set is offered
to the other set. It has been shown that RSOP returns a
profit very close to optimal for many classes of interesting
inputs ([12], [1]). There has also been a fair amount of work
analyzing the competitive ratio of RSOP. In [5], Goldberg
et al. showed that the competitive ratio of RSOP is 7600,
and conjectured that the competitive ratio should be 4; note
that this value of 4 cannot be lowered further since RSOP
attains a value of 4 when we have N = 2 and v1 = 2v2.
Later, Feige et al. improved the analysis and showed that
this ratio is at most 15 [3]. There are at least two reasons
for trying to prove that RSOP’s competitive ratio is 4. First,
RSOP is very natural and giving a tight analysis appears to
be of inherent interest. Second, RSOP is very easily im-
plementable and hence easily adaptible to different settings
(e.g., double auctions [2], online limited-supply auctions [8],
combinatorial auctions [1], [5], and for the “money burning”
problem [9]).

Summary of our results:.
To describe our results, we will need the notion of “win-

ners” (w.r.t. the optimal single-price auction). In our def-
inition of OPT (I) where we set λ = argmaxi≥2 i · vi, let
λ be the largest index that satisfies this definition. Recall
that in the “offline” case where we know all the vi and com-
pute λ as this maximizing index, we sell at the single price
vλ, which is then bought by bidders 1, 2, . . . , λ to give an
optimal revenue OPT (I) = λ · vλ to the auctioneer. Since
the number of bidders who get the good in this case is λ,
we refer to λ as the number of “winners” (w.r.t. the optimal
single-price auction). Note that λ is determined uniquely by
the values v1 ≥ v2 ≥ · · · ≥ vN .

Many of our results are motivated by the following ques-
tion: the instance seen above where n = λ = 2 and the
competitive ratio of RSOP is 4, seems quite unique. In par-
ticular, when selling a digital good, one expects the typical
number of buyers to be “large”. Does RSOP do much better
than known before, when λ is large? Our main results are
four-fold as follows, and are obtained by an improved prob-
abilistic analysis aided by a dynamic programming compu-
tation and correlation inequalities:

I. Improved upper bounds: We prove that the com-
petitive ratio of RSOP is:

• less than 4.68, improving upon the upper-bound
15 of Feige et al. [3];

• less than 4 if the number of winners λ is at least
6;

1There is a subtlety here that requires λ ≥ 2 in the definition
of OPT (I), an issue that we will discuss later.

• upper-bounded by a quantity that approaches 3.3
as λ→∞.

These results indicate that RSOP does much better
than known in the practically-interesting case where λ
is “large”, and that perhaps the only case where the
competitive ratio of 4 is attained is the case where
N = 2 and v1 = 2v2.

II. Lower bounds: We prove that even if λ gets arbi-
trarily large, one can construct instances I with such
λ, for which the competitive ratio is at least 2.65.

III. Combinatorial approach: We also present a com-
binatorial approach for the case where the bid values
are either 1 or h and show that the competitive ratio
of RSOP is at most 4 in this case.

IV. Robustness: The competitive ratio is the expected
value for a maximization problem, which in general is
not a sufficiently-good indicator of usability: a non-
negative random variable with a “large” mean can still
be very small with high probability. (This is in con-
trast with upper-bounds on the expectation for mini-
mization problems with non-negative objectives, where
Markov’s inequality bounds the probability of the ob-
jective becoming prohibitively high.) Indeed, RSOP
inevitably has a non-negligible probability of return-
ing zero profit, in cases where λ is small. Since the
case of “large”λ is a very natural one, we could ask: is
RSOP “robust” – the profit does not deviate much be-
low the mean – with high probability when λ is large?
It can be shown that this is not always the case. There-
fore, we develop a new incentive-compatible mecha-
nism RSOProbust(ε, δ) parameterized by ε, δ ∈ (0, 1),
which has the following two properties: (i) for any in-
put instance, the expected profit is at least one-tenth
the optimal profit for ε small enough (say, ε ≤ 0.1);
(ii) there is a value λ0(ε, δ) such that for any input
instance with λ ≥ λ0, the profit is at least (1/4 − ε)
times the optimal profit, with probability at least 1−δ.
Note that this protocol does not require any informa-
tion about the input instance (such as the value of λ),
and delivers a good solution with high probability for
the practically-interesting case of large λ.

Due to space-constraints, the proof of the last (“robust-
ness”) item above is deferred to the full version. Several
additional details and proofs are also omitted due to lack of
space. 2

2. PROBLEM DEFINITION
We consider auctioning digital goods to N bidders with

bid values v1, v2, . . . , vN . Without loss of generality, we as-
sume v1 ≥ v2 ≥ · · · ≥ vN . The Random Sampling Opti-
mal Price auction partitions the bids into two sets A and
B such that each bid vi independently goes to either of A
or B with probability 1/2. We then compute the optimal
price of each set (among the two sets A and B) and offer it
to the other set: note that the optimal price of a sequence
G = 〈u1 ≥ u2 ≥ · · · ≥ uk〉 of bids in nondecreasing order,
is uλG where λG = argmaxi≥1 iui. (Thus, we will use this

2The proofs are available in the online version which can be
found at http://www.cs.umd.edu/˜saeed/archive/rsop.pdf

http://www.cs.umd.edu/~saeed/archive/rsop.pdf


definition once with G = A when we compute the optimal
price for A and offer that price to B, and will use this defini-
tion again with G = B when we compute the optimal price
for B and offer that price to A.) For our input instance
I = v1, v2, . . . , vN of bids, we define the optimal profit of
I as OPT (I) = λvλ where λ = argmaxi≥2 ivi. Note that
we force λ ≥ 2 here: without this, it can be shown that
no incentive compatible mechanism can achieve a constant
fraction of the optimal profit in the case where v1 � v2 [7].
(Note that λG above is allowed to be one; it is only the λ
that we use in the definition of OPT (I) that is required to
be at least two, in order to disallow negative results [7].)

3. ASSUMPTIONS
To simplify the proofs we make the following assumptions

throughout the rest of this paper.

• WLOG, we assume we have an infinite number of bids
v1, v2, · · · in which all the bids after vN are zero so our
analysis will be independent of N .

• WLOG, to simplify the analysis, we assume thatOPT (I) =
1 since we can always scale all the bids by a constant
factor without affecting the mechanism.

• For the sake of notation we use E[RSOP] to denote the
expected profit of RSOP on an input instance where
the expectation is taken over random partitions of the
bids. Note that by our previous assumption thatOPT =
1 we have E[RSOP] ≤ 1 and the competitive ratio of
RSOP can be defined as maxI

1
E[RSOP]

.

• WLOG, we assume that v1 is always in set B since the
mechanism is symmetric for both A and B and so we
can relabel the sets.

• WLOG, we only consider the profit obtained from B
by offering the optimal price of A and we assume the
obtained profit from A when offered the optimal price
of B is 0. The justification for this assumption is that
we are computing the E[RSOP ] for the worst case
input. Note that for any given input instance we can
replace v1 with a very large bid such that the optimal
price of set B is v1 in which case by offering price of
v1 to set A we don’t obtain any profit.

4. THE BASIC LOWER BOUND
In this section, we give a basic lower bound that shows

RSOP is indeed 4-competitive for a large class of input in-
stances. In the next section, we improve this result using
a more sophisticated lower bound, but based on the same
idea. We start by stating the main theorem of this section:

Theorem 4.1. For any input instance I = {v1, v2, · · · }
where there are more than 10 bids above the optimal uniform
price (i.e. λ > 10), the expected profit of RSOP is at least
1
4

(i.e., E[RSOP] ≥ 1
4

). The actual computed lower bound
values can be found in Table 1.

We prove the theorem throughout the rest of this section.
The outline of the proof is as follows. First, we define a
lower bounding function (LBF) which, for each partition of
bids to two sets (A,B), returns a value which is less than
or equal to the profit of RSOP. Most importantly, our LBF

only depends on λ and on how the bids are partitioned but
is independent of the actual value of the bids v1, v2, · · · .
The expected value of the LBF is clearly a lower bound
for E[RSOP]. After defining the LBF function, in Subsec-
tion 4.1, we explain how we can compute the expected value
of the LBF for any given λ. We then compute the LBF
for all values of λ from 10 up to λ̄ = 5000 and show that
the expected value of LBF is indeed greater than 1

4
and

so is E[RSOP] for 10 ≤ λ ≤ λ̄. The computation of the
lower bound involves a combination of probabilistic tech-
niques and dynamic programming. Later, in Subsection 4.2,
we compute a lower bound on the expected value of the
LBF assuming that λ > λ̄ = 5000 and show that it is indeed
greater than 1

4
and that completes the proof of Theorem 4.1.

Before we start with the proof, let us make the following
observations which gives an intuition to our proof:

Observation 4.2. For a given i, roughly, we expect about
half of v1, · · · , vi to fall in set A and the other half to fall
in set B. In other words, let si = #{j|j ≤ i, vj ∈ A}, we
expect si ≈ i

2
.

Observation 4.3. The optimal profit of set A is at least
as much as the profit that we get if we offer vλ to A. Let
λA be the index of optimal price in A. The optimal profit of
set A is at least sλvλ. Since we assumed λvλ = OPT = 1,
essentially vλ = 1

λ
and therefore we can use sλ

λ
as a lower

bound on the optimal profit of set A. Formally, assuming
Prof(A, vλA) denotes the profit that we get from a set A by
offering the price vλA to it:

Prof(A, vλA) ≥ sλ
λ

(4.1)

Note that based on Observation 4.2 we expect this quantity
to be about 1

2
.

Observation 4.4. Define zi = i−si
si

which is the ratio

of the number of bids from v1, · · · , vi that fall in B to the
number of those that fall in A. It is easy to see that the ratio
of profit of set B when offered vλA to profit of set A when
offered the same vλA is the same as zλA . Formally:

Prof(B, vλA)

Prof(A, vλA)
= zλA (4.2)

Notice that λA depends on the actual value of the bids and
thus (4.2) is hard to work with. To work around that, we use
z = mini zi as a lower bound for zλA . Therefore:

Prof(B, vλA)

Prof(A, vλA)
≥ z (4.3)

The outline of the proof of our basic lower bound for
E[RSOP] is as follows. We combine Observation 4.3 and
Observation 4.4 to get the following:

E[RSOP] ≥ E[Prof(B, vλA)] (4.4)

≥ E[Prof(A, vλA)
Prof(B, vλA)

Prof(A, vλA)
] (4.5)

≥ E[
sλ
λ

z] (4.6)



Note that (4.6) allows us to compute the lower bound
regardless of the actual values of vi because the right hand
side of (4.6) is totally independent of the vi values except
for λ. Also note that for any given input instance I, λ
depends only on I and not on how we partition the bids so
in computing E[RSOP], λ is a constant (for a fixed I) and
not a random variable.

Ideally, we would like to separate E[ sλ
λ

z] to E[ sλ
λ

]E[z], but
since sλ

λ
and z are correlated we cannot do that. Neverthe-

less, the correlation decrease as λ increases which suggests
that for sufficiently large λ we can separate the two terms. In
Subsection 4.1, we present a dynamic programming method
for computing E[ sλ

λ
z] for any fixed λ. We then use the dy-

namic program to compute the lower bound on E[ sλ
λ

z] for

values of λ ≤ λ̄ = 5000. In Subsection 4.2, we give a lower
bound on E[ sλ

λ
z] for all values of λ > λ̄ = 5000 by separat-

ing the E[ sλ
λ

z] to E[ sλ
λ

]E[z] and subtracting the maximum
possible difference caused by that.

4.1 When there are a few bids above the opti-
mal uniform price

In this subsection we show the following:

• We show how we can compute a lower bound on E[ sλ
λ

z]
and therefore for E[RSOP] for any fixed λ.

• We compute the above lower bound for all values of λ
up to λ̄ = 5000 and verify that for 10 ≤ λ ≤ λ̄ it is
indeed better than 1

4
. The computed lower bounds for

various values of λ can be found in Table 1.

We can compute a lower bound for E[ sλ
λ

z] and therefore
for E[RSOP] by defining a set of events and then breaking
E[ sλ

λ
z] over those events using the law of total expectation.

As we showed before, E[RSOP] ≥ E[ sλ
λ

z] so we only need to
compute a lower bound on E[ sλ

λ
z]. Since sλ

λ
and z are corre-

lated random variables we cannot separate them in E[ sλ
λ

z].
The idea is that when we condition E[ sλ

λ
z] on any of these

events we can derive lower bounds for both sλ
λ

and z. We
then use the above method to compute a lower bound on
E[RSOP] for all the values of λ ≤ λ̄ = 5000 to show that for
10 ≤ λ ≤ λ̄ the lower is better than 1

4
. In the next subsec-

tion, we prove a lower bound of better than 1
4

for all values

of λ > λ̄.
First we define the following notation:

ETR : If T ⊂ N is a subset of indices and R is an interval
which is in [0,∞) and sup(R) is the supremum of R
then ETR is the event in which for all indices i ∈ T ,
we have si

i
≤ sup(R) and at least for one i in set T

we have si
i
∈ R. Formally, ETR = {∀i ∈ T : si

i
<

sup(R) ∧ ∃i ∈ T : si
i
∈ R}.

For example, we might use E [4,10]

[0.4,0.5] to denote the event

in which for 4 ≤ i ≤ 10 the si
i

is at most 0.5 and there

is some 4 ≤ j ≤ 10 such that
sj
j
∈ [0.4, 0.5]. As a

shorthand we might sometimes use a single number
instead of an interval to denote the interval from 0 up
to and including that number. We may also omit the
subset of indices altogether in which case we assume
[0,∞). So we can derive the following alternate nota-
tions: Ekα, Eα. We may also use one special notation
Ek,jα = {∀i ≤ k : si

i
≤ α ∧ sk = j}.

Pr[E ] : The probability of event E happening.

Ê[X|E ] : The normalized conditional expected value of a
random variable X which is:

Ê[X|E ] = E[X|E ]Pr[E ] (4.7)

We first show the following:

Lemma 4.5. For any sequence of α0, · · · , αm such that
0 = α0 < α1 < · · · < αm = 1, the following is a lower bound
on E[ sλ

λ
z]:

E[
sλ
λ

z] ≥
m∑
i=1

(Ê[
sλ
λ
|Eαi ]− Ê[

sλ
λ
|Eαi−1 ])

1− αi
αi

(4.8)

in which by definition Eαi is the event in which for any index
j, the fraction of the v1, · · · , vj that fall in set A is less than
αi.

We actually prove the following more general statement.
The proof is omitted due to lack of space.

Lemma 4.6. For any given positive random variable x
and any sequence of α0, · · · , αm such that 0 = α0 < α1 <
· · · < αm = 1, the following inequality always holds in which
the random variable z1 is defined as z1 = min(z, 1):

E[xz] ≥ E[xz1] ≥
m∑
i=1

(Ê[x|Eαi ]− Ê[x|Eαi−1 ])
1− αi
αi

(4.9)

In which by definition Eαi is the event in which for any
index j, the fraction of the v1, · · · , vj that fall in set A is
less than αi.

The intuition behind Lemma 4.6 is the following: We want
to find lower bounds on z so we break the expected value
over a set of small events. Under each event Eαi we have

z ≥ 1−αi
αi

based on the definition of Eαi . Roughly, Ê[x|Eαi ]−
Ê[x|Eαi−1 ] is the portion of the expected value for which the

best lower bound for z that we can guarantee is 1−αi
αi

.

The choice of m and α0, · · · , αm in Lemma 4.6 greatly
affects the value of the lower bound. Generally, increasing
m improves the lower bound but at the cost of more com-
putation. We will provide the values of αi and m that we
used to get our desired lower bound later.

We claim that the coefficient of each term Ê[x|Eαi ] on
the right hand side of (4.6) is positive and therefore we can

use a lower bound for each Ê[x|Eαi ] instead of its exact
value and the inequality still holds. We prove our claim
as follows. If we expand the sum on the right hand side

of (4.9), each Ê[ sλ
λ
|Eαi ] appears exactly twice except for

i = 0 and i = m. Since α0 = 0 and αm = 1, the value

of Ê[ sλ
λ
|Eα0 ] is 0 and also the coefficient of Ê[ sλ

λ
|Eαm ] is 0.

Except for those two, every other Ê[ sλ
λ
|Eαi ] has a coefficient

of 1−αi
αi
− 1−αi+1

αi+1
which is positive and proves our claim.

Therefore, we can relax the inequality by substituting each

Ê[ sλ
λ
|Eαi ] with its lower bound. Sofar, the problem has been

reduced to computing a lower bound on Ê[ sλ
λ
|Eαi ] which we

explain next. The proof of the following lemma is omitted
due to lack of space.



Lemma 4.7. For any random variable x such that x ∈
[0, 1] and any α ∈ [0, 1] and any n ∈ N the following always
holds:

Ê[x|Eα] ≥ Ê[x|Enα ]− Pr[Enα ](1− Pr[E(n,∞)
α ]) (4.10)

Intuitively, Lemma 4.7 is saying that if instead of com-

puting Ê[x|Eα] we can approximate it by Ê[x|Enα ], the max-
imum that we may over-approximate is at most Pr[Enα ](1−
Pr[E(n,∞)

α ]) which is the probability of the event in which for
any j < n, sj < αj and then there is some j′ > n such that
sj′ ≥ αj′. Note that since x ≤ 1, its normalized expected
value conditioned on any event is less than the probability of
that event. By choosing a large enough n we can make sure
that the over approximation upper bound gets close enough
to 0.

Again, in Lemma 4.7, increasing n improves the lower

bound, but the computation cost of Ê[ sλ
λ
|Enα ] and Pr[Enα ]

will increase.
To use Lemma 4.7 for x = sλ

λ
, effectively we need to be

able to compute Ê[ sλ
λ
|Enα ], Pr[Enα ] and Pr[E(n,∞)

α ]. Next we
show how to compute the first two exactly by using dynamic
programming. Later in Lemma 4.9 we show how to get a
lower bound on the third one. The proof of the following
lemma is omitted due to lack of space.

Lemma 4.8. The exact value of Ê[ sλ
λ
|Enα ] and Pr[Enα ] can

be computed using the following dynamic program. Recall
that Ek,jα is the event in which for all r ≤ k, the fraction
of v1, · · · , vr that fall in A is less than α and exactly j of
v1, · · · , vk fall in A:

Pr[Ek,jα ] =


1
2
Pr[Ek−1,j

α ]
j = 0

k > 0
1
2
Pr[Ek−1,j

α ] + 1
2
Pr[Ek−1,j−1

α ] 0 < j ≤ αk
0 j > αk

1 j = k = 0

(4.11)

Ê[
sλ
λ
|Ek,jα ] =


0 j = 0

1
2
Ê[ sλ

λ
|Ek−1,j
α ] + 1

2
Ê[ sλ

λ
|Ek−1,j−1
α ]

0 < j ≤ αk

k > λ

j
λ
Pr[Ek,jα ]

0 ≤ j ≤ αk

k = λ

(4.12)

Pr[Ekα] =

k∑
j=0

Pr[Ek,jα ] (4.13)

Ê[
sλ
λ
|Ekα] =

k∑
j=0

Ê[
sλ
λ
|Ek,jα ] (4.14)

Intuitively, (4.11) means the event Ek,jα happens if either
Ek−1,j
α happens and vj falls in set A (which happens with

probability 1
2
) or Ek−1,j−1

α happens and vj falls in set B

(again, with probability 1
2
). The intuition behind (4.12) is

very similar to (4.11) when k > λ. When k = λ, under the
event Ek,jα we know that exactly j of v1, · · · , vλ are in set A
and so sλ

λ
= j

k
.

Computing Ê[ sλ
λ
|Enα ] and Pr[Enα ] using the above recur-

rence relation and dynamic programming takes O(n2) time
and O(n) memory.

Finally, in order to complete our lower bounding method

we need to compute Pr[E(n,∞)
α ]. Next we show how we can

find a lower bound for Pr[E(n,∞)
α ]. The proof of the following

lemma is omitted due to lack of space.

Lemma 4.9. For any α ∈ [0.5, 1] and any n, n′ ∈ N such
that n < n′, the following two always hold:

Pr[E(n,∞)
α ] ≥ (1− Cα

n′+1

1− Cα
)

n′∏
k=n+1

(1− Cαk) (4.15)

in which :

Cα =
( 1
α
− 1)α

2(1− α)
(4.16)

(4.15) is based on a variant of Chernoff bound and gives a
very good lower bound when n and n′ are sufficiently large.

To get the desired lower bound for RSOP we set the pa-
rameters as the following. In using Lemma 4.6 we set m =
100, α1 = 0.5, αm = 1.0 and distributed the α2, · · · , αm−1

evenly on [0.5, 1.0] (that is αi−αi−1 = 0.5
m−1

). We then used

Lemma 4.7 to compute Ê[ sλ
λ
|Eαi ] for each i together with

Lemma 4.8 by setting n = 5000 and also used Lemma 4.9

to compute Pr[E(n,∞)
α ] by setting n′ = 100000.

The results of our computation for various choices of λ
is listed in Table 1. Notice that for λ > 10 we get a lower
bound better than 0.25 and thus a competitive ratio better
than 4.

4.2 When there are many bids above the opti-
mal uniform price

In this subsection we show the following:

• We show how to compute a lower bound on E[ sλ
λ

z]

that holds for all values of λ > λ̄.

• We compute the above lower bound for λ̄ = 5000 to
get a lower bound of 1

3.52
, thus showing that for all

λ > λ̄, E[RSOP] ≥ E[ sλ
λ

z] > 1
3.52

.

In the previous subsection, we showed how to compute a
lower bound for E[ sλ

λ
z] for any fixed value of λ and we used

that to compute the E[ sλ
λ

z] for all values of λ up to λ̄.

The idea is that when λ is large (i.e., λ > λ̄), the two ran-
dom variables sλ

λ
and z are almost independent and so the

expected value of their product is very close to the product
of their expected values. Also for a large λ the value of sλ

λ

is very close to 1
2

so E[ sλ
λ

z] would be roughly 1
2
E[z]. The

proof of the following lemma is omitted due to lack of space.

Lemma 4.10. For any α ∈ [0, 1] the following always holds:

E[
sλ
λ

z] ≥ α(E[z1]− Pr[E [λ,λ]
α ]) (4.17)

Intuitively, when λ is large, in (4.17) the Pr[E [λ,λ]
α ] is very

close to 0 even when α = 1
2
− ε it roughly gives a lower

bound of about 1
2
E[z1]. Next we show how to compute an

upper bound on Pr[E [λ,λ]
α ] to support our claim. The proof

of the following lemma is omitted due to lack of space.



Lemma 4.11. For any α ∈ [0, 0.5], the following always
holds:

Pr[E [λ,λ]
α ] ≤ 1− Cα′λ−1 (4.18)

in which :

Cα′ =
( 1
α′ − 1)α

′

2(1− α′) , α
′ = 1− α− 1

λ− 1
(4.19)

The only task that remains is to compute a good lower
bound on E[z1].

Theorem 4.12. E[z] ≥ E[z1] ≥ 0.61. Intuitively, z is a
measure of the least ratio of the number of bids in B to the
number of bids in A among any prefix of the bids. A larger
z indicates a more balanced partition. This is an important
statistic for any random sampling method in general (note
that z only depends on how we partition the bids and not the
value of the bids).

Proof. We can apply the Lemma 4.6 by plugging x = 1
to compute E[z1] = E[xz1] to get the following:

E[z1] ≥
m∑
i=1

(Ê[1|Eαi ]− Ê[1|Eαi−1 ])
1− αi
αi

(4.20)

E[z1] ≥
m∑
i=1

(Pr[Eαi ]− Pr[Eαi−1 ])
1− αi
αi

(4.21)

To get (4.21) from (4.20) we have used the definition of of

Ê[] from (4.7). Also, we have that Pr[Eα] ≥ Pr[Enα ]Pr[E(n,∞)
α ]

by the FKG inequality [4]. We can apply the FKG inequality

because the two events Enα and E(n,∞)
α are positively corre-

lated on the distributive lattice formed by partially ordering
the instances of the partitioning by a subset relation on set
A therefore their probability of their intersection is greater
than or equal to the product of their probabilities. Again,
if we substitute each Pr[Eαi ] with its lower bound the in-
equality still holds because of the following. The coefficient
of each Pr[Eαi ] term after rearranging the sum on the right
hand side of (4.21) is positive except for Pr[Eα0 ] which is
itself 0 because α0 = 0. By tuning the parameters as we will
explain at the end of this section we get a lower bound of
E[z] ≥ E[z1] ≥ 0.61. It is worth mentioning that by using a
similar method, we computed an upper bound of E[z] ≤ 0.63
which indicates that our analysis of E[z] is very tight.

That completes our method for computing a lower bound
on E[ sλ

λ
z] which is independent of λ for sufficiently large λ.

To compute E[z1] we used (4.21) which we derived from
Lemma 4.6 by setting x = 1, m = 100, α1 = 0.5, αm = 1.0
and distributing the α2, · · · , αm−1 evenly on [0.5, 1.0] (that
is αi − αi−1 = 0.5

m−1
). Together with that we also used

Lemma 4.9 by setting x = sλ
λ

, n = 60000 and n′ = 100000
and Lemma 4.8 by setting n = 60000 to compute Pr[Eαi ]
for each i.

To get our desired lower bound on E[ sλ
λ

z] when λ ≥ λ̄ =
5000, we used Lemma 4.10 to separate the z and sλ

λ
as in

(4.17). Using E[z] ≥ 0.61 together with Lemma 4.11 and

setting α = 0.52 we get that for any λ > 5000 , Pr[E [λ,λ]
α ] ≤

0.0183 and so E[RSOP] ≥ 0.284 which is equivalent to a
competitive ratio of 3.52 which is better than 4.

5. THE EXHAUSTIVE SEARCH LOWER-
BOUND

In the previous section, we showed that for λ > 10,
E[RSOP] ≥ 1

4
. In this section, we show the following:

• We show how to compute an improved lower bound on
E[RSOP] for any fixed 2 ≤ λ ≤ 10.

• We compute the above lower bound on E[RSOP] for all
2 ≤ λ ≤ 10 to get a lower bound of 1

4
when 6 ≤ λ ≤ 10

and a lower bound of 1
4.68

when 2 ≤ λ ≤ 6. The
computed values of our lower bound for all values of
2 ≤ λ ≤ 10 can be found in Table 2.

In the rest of this section we explain an Exhaustive-Search
approach for improving the lower-bound of RSOP for the
cases where λ is small (i.e., λ ≤ 10). The basic lower bound
of E[ sλ

λ
z] in Section 4 does not work well enough in these

cases mainly because sλ
λ

and z are negatively correlated and
their correlation is much stronger when λ is small. Also
because v1 is always in B and so s1 is always 0, the expected
value of sλ

λ
decreases as λ decreases such that for λ = 2

we have sλ
λ

= 1
4

which is far from 1
2
. The idea is to try

all possible values for the first few vi but instead of using
an exact value for each vi we use an interval for each vi
and we try all the possible combination of these intervals
to cover all the possible input instances. We then report
the lowest E[RSOP] of all the different combinations as the
lower bound.

Theorem 5.1. For any input instance I = {v1, v2, · · · }
where there are between 6 to 10 bids above the optimal uni-
form price (i.e. 6 ≤ λ ≤ 10), the expected profit of RSOP
is at least 1

4
(i.e., E[RSOP] ≥ 1

4
). Also, if there are be-

tween 2 to 5 bids above the optimal price, the expected profit
of RSOP is at least 1

4.68
. The actual computed lower bound

values can be found in Table 2.

Due to the complexity of the proofs and lack of space we
only give an outline of our method3.

First we define λ′ as the index of the winning price after λ
in the optimal single price auction (i.e., we are choosing the
winning price from the bids whose index are greater than
λ). Again we don’t take λ′ as a random variable. Instead
we provide a lower bound for RSOP for any fixed λ and
λ′ and another lower bound for sufficiently large λ′. Note
that λ′ depends on the set of bids as a whole and does not
depend on how the bids are partitioned by RSOP. Formally
λ′ = max argmaxi>λ ivi.

Algorithm 5.2. Exhaustive-Search(m,λ, λ′, r, r′)
For some given m ≥ λ we consider the first m highest bids,
that is v1, · · · , vm and also vλ′ . We then restrict each bid
vi where i ∈ S = {1, · · · ,m, λ′} to some interval [li, hi] as
we explain later and find a lower-bound for the utility of
RSOP assuming those restrictions. We try all the possible
combination of these intervals for the first m bids and for vλ′
so as to cover all possible cases (remember that vλ = 1

λ
since

we assumed that OPT = 1). Then we take the lowest lower
bound among all those combination and report it as the lower
bound of E[RSOP] for that specific choice of λ and λ′. We
will also provide a way of computing a lower bound which is

3The complete proof is about 2-3 times the length of the
proofs of the basic lower bound of Section 4.



independent of the actual λ′ when λ′ is greater than a certain
value. We then take the minimum of that for all choices of
λ′ and use it as a lower bound for E[RSOP] for the specific
choice of λ (remember that we are only interested in λ ≤ 10
since for λ > 10 the basic lower bound of Section 4 is already
better than 0.25).

In order to try all the combination of intervals we do the
following. Since OPT = 1, each bid vi is always in the in-
terval [0, 1

i
]. For some given parameter r, we divide this in-

terval to r smaller intervals [ 0
r

1
i
, 1
r

1
i
], · · · , [ r−1

r
1
i
, r
r

1
i
] . For

each i ∈ S, we set [li, ui] to one of the mentioned r intervals.
We will do the same thing for vλ′ except that we divide it to
r′ different intervals for some given r′. As a result we can
have either r′(m − 2)r or r′(m − 1)r possible combinations
depending on whether λ′ ≤ m or λ′ > m. Note that vλ is
always restricted to be exactly 1

λ
because OPT = 1. Also

note that some of these combinations might be partially or
even entirely impossible because they should satisfy the con-
straint of vi−1 ≥ vi and λ′vλ′ > ivi for all i > λ. So we
discard or refine some combinations (for example by setting
ui ← min(ui, ui−1)).

Next we show how we compute the lower bound based on
the range restrictions of Algorithm 5.2.

Algorithm 5.3. ˙
Restricted-RSOP-Lowerbound(m,λ, λ′, r, r′, {(li, ui)})
Here we use E[u′Az′] as a lower bound for E[RSOP] in which
again u′A is a random variable indicating the lower bound on
the utility of set A and z′ a random variable indicating the
restricted least prefix ration of B to A which is slightly dif-
ferent from z. In z′ we are considering the range restrictions
that we explain next. To compute the lower-bound, we enu-
merate all 2m−1 possible ways of partitioning v1, · · · , vm and
refer to them with events D1, · · · ,D2m−1 . Then based on the
law of total expectation we can compute a lower-bound by

E[RSOP] ≥ E[u′Az′] =
∑2m−1

i=1 Ê[u′Az′|Di]. Basically, un-
der each event Di, we fix the partitioning of the first m bids
and then apply all the previous techniques that we discussed
in Section 4 to the tail of the bids that is vm+1, vm+2, · · ·
with some modification which we explain next. First, in-
stead of using sλ

λ
as a lower bound for the utility of set A we

use u′A = maxi∈S sili as a lower bound on the profit of set A.
We also modify the (4.11), (4.12), (4.13), (4.14) to condi-
tion them on event Di. Also we replace the term j

λ
Pr[Ek,jα ]

in (4.12) with u′APr[Ek,jα ]. The most important change in
the computations from Section 4 is that whenever the value
of z is conditioned on an event ETα (as defined in Subsec-
tion 4.1) if αλ′uλ′ < maxi∈{1,··· ,m} sili we can argue that
because by definition of λ′, λ′vλ′ ≥ ivi for all i > λ, then
the winning price in set A should be among v2, · · · , vm (be-
cause for all j > m we have αjvj < maxi∈{1,··· ,m} sili and
αjvj is the maximum utility one can possibly get in set A by
choosing vj as the winning price under event ETα ).

By choosing m = 11, r = 3, r′ = 100 and the rest of
the parameters as in Section 4 we get a lower bound of
0.213845 for λ = 2 over all values of λ′ which is equiva-
lent to a competitive ratio of 4.68 which is also the upper
bound of competitive ratio of RSOP over all λ. Table 2
shows the exhaustive search lower-bounds for 2 ≤ λ ≤ 10.
In our computations, we noticed that λ′ = λ + 1 was the
worst case among all choices of λ′.

6. AN UPPER BOUND FOR THE PERFOR-
MANCE OF RSOP FOR ANY λ

In previous works, it has been shown that E[RSOP] is
1
4

for some instances (e.g. [3], [5]). However in all those
instances, λ = 2. In this section, we show that the lower
bound for E[RSOP] cannot be improved further than 3/8
for any value of λ.

Theorem 6.1. For any λ there exists an input instance
I for which E[RSOP] ≤ 3

8
.

Before proving the theorem we define the following.

Definition 6.2 (Equal Revenue Instance). We re-
fer to the input instance with N bidders in which vi = 1

i
as

Equal Revenue with N bidders. Notice that choosing any of
the vi as the winning price yields a profit of 1.

Observation 6.3. For an equal revenue input instance,
RSOP always offers the worst price to the other set. In other
words, the optimal price of set A is the worst price that we
could offer to set B and vice versa.

The previous observation suggests that an equal revenue
instance might actually be the worst case input instance for
RSOP however that is not quite true at least for small values
of N . Furthermore, analyzing the performance of RSOP on
equal revenue instances for general N is not easy. Therefore,
we define a modified version of RSOP, call it RSOP′ which is
very similar to RSOP and yields about the same profit. We
then analyze the performance of RSOP′ on equal revenue
instances and use that to upper bound the performance of
RSOP. In RSOP′, as in RSOP, we partition the bidders
into two sets at random and then offer the best single price
of each set to the other set. The only difference is in the
case that one of the sets is empty. In this case, in RSOP′,
the offered price from the empty side to the other set will
be 1

N
instead of 0.

Lemma 6.4. E[RSOP′] on an equal revenue instance with
N bidders is decreasing function of N .

Proof. The proof is by induction. Assume ∀i, j : i <
j ≤ N − 1, E[RSOP′] for an equal revenue instance with
i elements is larger than E[RSOP′] for an equal revenue
instance with j elements. Now, we need to show ∀i, j : i <
j ≤ N this property holds as well. It is enough to show that
E[RSOP′] for an equal revenue instance with N bidders is
less than E[RSOP′] for an equal revenue instance with N−1
bidders. Consider the random partitions of the instance with
N bidders. As before, WLOG assume that v1 ∈ B. Now,
categorize partitions to two groups:

1. Partitions in which vN ∈ B. These partitions can be
built by considering all the partitions for N−1 bidders
and adding vN to B in each partition. Call the original
partitions for N − 1 bidders, A′ and B′.

2. Partitions in which vN ∈ A. Again we can build all
these partitions by considering the partitions for N−1
bidders and adding vN to A. Call the original parti-
tions without vN , A′and B′.

Each of the above cases can happen with probability 1
2
. We

compare the expected profit of each case with E[RSOP′]
for equal revenue instance with N − 1 bidders. In fact, we



will show that the expected profit of partitions belonging to
case 1, is exactly the same as E[RSOP′] for equal revenue
instance withN−1 bidders. Also, we show that the expected
revenue of cases of partitions belonging to case 2, is at most
equal to E[RSOP′] of the equal revenue instance with N −1
bidders.

There is a one-to-one correspondence between the parti-
tions belonging to case 1 and partitions of the equal revenue
instance with N − 1 bidders. We can see that the profit of
each partition is exactly the same as the profit of its corre-
sponding partition with N − 1 bidders. Consider the parti-
tion A and B and its corresponding partition A′ and B′. If
A′ 6= ∅ (and correspondingly A 6= ∅) , the offered price to B′

is the same as the offered price to B by A and it is always
larger than 1

N
. It means that the profit obtained from the

elements in B′ that belongs to B is also the same and we
don’t obtain any profit from vN since it is smaller than the
the offered price. If A = A′ = ∅, the offered price to the
other set, for the equal revenue case with N − 1 bidders, is

1
N−1

and the obtained profit from B′ is (N − 1). 1
N−1

= 1.
For the case with N bidders, the offered price to the other
set is 1

N
however we have also N bidders in B so the total

profit obtained from B is N. 1
N

which gives the same profit.
We have also a one-to-one correspondence between parti-

tions in case 2 and the partitions of the equal revenue in-
stance with N − 1 bidders. If A′ 6= ∅, then the obtained
profit from B is at most equal to the obtained profit from
B′. There are two possible cases here. Either the offered
price to B and B′ are the same, in which case the obtained
profit from both sets are the same as well. In the other case,
adding 1

N
to A′ ( to obtain A) has changed the best price

for A. In the latter case, the offered price by A to B should
be 1

N
. Also note that, in the partition of an equal revenue

instance, the best price for set A is the worst offered price for
set B, which means that we are only reducing the profit ob-
tained from B when we change the selected price in A to 1

N
from the selected price for A′. Also if A′ = ∅, the obtained
profit in the equal revenue instance with N − 1 bidders is 1.
However in the corresponding instance, containing vN = 1

N

in A, the offered price to B is 1
N

and we have only N − 1
elements in B in this case. So the total obtained profit is
n−1
n

< 1. So the expected profit of all the partitions belong-
ing to the second category is less than E[RSOP′] for equal
revenue instances with N − 1 bidders. Putting both cases
together, we can conclude that the total expected profit is
only decreased when the number of bidders is increased.

It can be shown that for equal-revenue instances, E[RSOP] =
E[RSOP′]− 1

2N−1 . The profit obtained by both methods are
always the same except for the case that A = ∅. This event
happens with probability 1

2N−1 and the obtained profit is 1.

(The obtained profit in RSOP′ is 1 and the profit of RSOP
is 0 in this case.)

It can be shown that for N ≤ 6, for the equal revenue
instances, E[RSOP′] ≤ 1

2.65
. Using Lemma 6.4, we can con-

clude that E[RSOP] ≤ 1/2.65 for the equal revenue instance
for any N . Finally, for any given winner index j, we show
how to find an instance for which we have λ = j and also
E[RSOP] for that instance is equal to E[RSOP] for the equal
revenue instance with j bidders. For a given j, we define its
corresponding instance as follows (and refer to it as perturbed
equal revenue): Consider the equal revenue instance with j
bidders. Construct the perturbed equal revenue instance by

changing only vj to 1
j

+ ε instead of 1
j
. (The value of the

rest of the bids are similar to the equal revenue instance.)
It is easy to see that the benefit obtained by RSOP from

the equal revenue instance with j bidders is converging to
the benefit obtained from perturbed equal revenue instance
when ε→ 0 which completes the proof of the theorem.

7. THE INTERESTING CASE OF H AND 1

In this section, we describe a combinatorial approach which
shows that E[RSOP] is at least 1

4
of the optimal profit for all

the instances where bidders have only one of the two possi-
ble valuations, 1 and h. We call an instance, an equal profit
instance, if selecting either 1 or h as the uniform price re-
turns the same profit. In the rest of this section, for a given
instance of input, we denote the number of h bids by Nh
and the number of 1 bids by N1. Also the profit obtained
from a set S by offering price p, is represented by Prof(S, p).
We first show that:

Lemma 7.1. For an equal profit instance, E[RSOP] ≥
1
4
OPT + h

4
.

Proof. The proof is based on induction on Nh. We first
show that for the base case of Nh = 1, we have E[RSOP] ≥
h
2

= h
4

+ h
4

.
Because this is an equal profit instance, when Nh = 1, it

should be that N1 = h − 1. Now consider the partitioning
of the bidders into two groups A and B. WLOG, assume
that v1 ∈ B which means the optimal price of set B which
is offered to set A is h and Prof(A, h) = 0. On the other
hand, since the valuations of all bidders in set A are 1 the
optimal price of set A which is offered to set B is always
1. To compute Prof(B, 1) it is enough to compute E[|B|].
Since bidders are partitioned uniformly at random, we can
conclude that E[|B|] = h−1

2
+ 1 ≥ h/2 which completes the

proof for Nh = 1.
To prove the induction step for Nh, we assume that for all

values of Nh ≤ k, E[RSOP] ≥ OPT/4 + h/4. Now consider
an equal profit instance I with Nh = k + 1. We can write
all the possible ways of partitioning the bids in this new
instance as the cartesian product of all the possible ways to
partition the bids into two equal profit instances, one with
Nh = 1 and the other with Nh = k. In other words, call
the instance with Nh = 1, I1 and the instance with Nh = k,
I2. Construct all the possible partitions of bidders into two
groups (A and B) for the equal revenue instance with Nh =
k + 1. We can see that any possible partition in I can be
constructed by combining exactly one partition of I1 and one
partition of I2(one-to-one mapping). For a given partition
A and B of an instance I, call the corresponding partitions
from I1, A1 and B1 and the corresponding partition from
I2, A2 and B2, so A = A1 ∪ A2 and B = B1 ∪ B2. In the
rest of this section, we use the simple observation that in
any equal profit instance I, if the optimal price for set A is
1, then the optimal price for B has to be h and vice versa.
In the rest of the proof, we use the notion of price pair to
present the optimal prices of each side of a partition. (e.g.
price pair (1, h) means that the optimal price for set A is 1
and the optimal price for set B is h.)

We have 4 possible price pair ’s for a combination of two
partitions taken from I1 and I2. However, 2 of these 4 cases
can be reduced to the other 2 by renaming A and B, so we
only consider the first 2 cases:



• The price pair of both (A1, B1) and (A2, B2) are (1, h).
Call the combination of these partitions (A,B). We
can see that the price pair for (A,B) would be (1, h) as
well. So the extracted profit from each side, is exactly
equal to the sum of the profits obtained from (A1, B1)
and (A2, B2).

• The price pair of (A1, B1) is (1, h) but the price pair
for (A2, B2) is (h, 1). Since, we are considering an
equal profit instance, we know that price pair for (A,B)
should be either (1, h) or (h, 1) as well. WLOG as-
sume the price pair of (A,B) is (1, h). We can see
that, the profit extracted from bidders in I1 in (A,B)
partition is exactly the same as the extracted profit
in (A1, B1) instance since the offered prices to each
side are the same. Now, for the bidders belonging to
I2, the extracted profit in (A,B) is at least as high as
the extracted profit in (A2, B2) partition. The reason
is that, in I2 the offered price to B2 is h however the
best price for B2 is 1.( Since the price pair for (A2, B2)
was (h, 1)) So by offering price 1 to B2, the extracted
profit from bidders on the B2 side is only increased.
Also by using the same argument, offering price h to
elements in A2 is only increasing the extracted profit
from them. So we can conclude that, in this case, the
extracted profit in (A,B), is at least as high as the sum
of the extracted profit from (A1, B1) and (A2, B2).

We can rewrite E[RSOP] as the sum of the expected profit
obtained from bidders in I1 and the expected profit obtained
from bidders in I2. Since every partition of bidders in I1 ap-
pears in the same number of partitions of I and by using the
above argument, we can conclude that the expected profit
obtained from bidders in I1, is at least as much E[RSOP]
for the equal profit instance I1. Using similar argument for
I2, we can see that E[RSOP] for the equal profit instance
I, is at least as much as the sum of the E[RSOP] for equal
profit instances I1 and I2. Now, by using induction, we have
EI [RSOP] ≥ EI1 [RSOP]+EI2 [RSOP] ≥ h−1

4
+ h

4
+ h

4
+ h

4
>

OPT/4 + h/4.

Next, we show how to use lemma 7.1 to prove that:

Lemma 7.2. The competitive ratio of RSOP for any in-
stance with only two kind of valuations is at most 4.

In lemma 7.1, we proved that the competitive ratio of RSOP
is at most 4 for equal profit instances. Here, we show that in
fact, we can generalize the result to any instance consisting
of 1 and h bids. We face two scenarios here:

1. Either n1 ≥ nh(h− 1) which means that our instance
is a combination of an equal profit instance and a extra
set of bidders with value 1.

2. Or n1 < nh(h− 1). That means, we have an instance
which is a combination of an equal profit instance and
some extra (at least 1) bidder(s) with valuation h and
less than h− 1 extra bidder(s) with valuation 1.

We give the proof for each scenario separately. Again, we
denote the original instance by I, the equal profit part of I,
by I1 and the rest by I2. Also, for a partition (A,B) of I,
we denote the part of A belonging to I1 by A1 and the part
belonging to I2 by A2. (Similarly for B with B1 and B2.)

In scenario 1, either the price pair of (A1, B1) is (1, h) or
it is (h, 1). In the first case , we can conclude that (A,B)
is either (1, 1) or (1, h) which means that the offered price
from A to B is always 1. So the obtained profit from set B
is equal to the sum of the profits of B1 and B2 in I1 and
I2 instances. If the offered price from B to A is 1, with
the similar argument given in Lemma 7.1, we can see that
the profit obtained from B is at least as much as the total
profit of B1 and B2 in I1 and I2 instances. However if the
offered price is h, we get the same profit from the elements
that were coming from A1 and we loose all the profit that
was obtained from A2. However the amount of loss can be
upper bounded by the number of 1’s in I2 which is at most
h. The conclusion is that the obtained profit from (A,B) for
instance I, is at least as much as the the profit that we could
obtain from (A1, B1) for instance I1. By using lemma 7.1
we know that the obtained profit by RSOP from (A1, B1) is
at least Nh/4 · h+ h/4. Also the optimal profit that can be
obtained from (A,B) is at most Nh ·h+h. That means that
we already obtained 1/4 of the optimal profit by RSOP.

In scenario 2, the best price for I is h. We call the number
of h bids in I1 by N1

h and the number of h bids belonging
to I2 by N2

h . The optimal profit can be defined by Nh · h.
Here we are in one of the following cases:

• Either the price pair of (A1, B1) is (1, h) and for (A2, B2)
is (1, h) ( which means that the number of h bids in A2

is 0). In this case, the price pair of (A,B) is (1, h). This
means that the benefit that we obtain from bidders in
I1 in (A,B) is the same as the profit we obtained in
(A1, B1). However, we are loosing the profit from h
bids in B2.

• Or (A1, B1) = (1, h) and (A2, B2) = (h, h). There
are two possibilities here: Either price pair of (A,B)
is (h, h) or it is (1, h). If the price pair is (h, h), the
profit obtained from A1 in (A,B) is the same as the
obtained profit in I1 with partition (A1, B1). However
the benefit obtained from B1 can only increase since
we offer price h. Also, in this case, we extract all the
profit from h bids in I2.

On the other hand, if (A,B) = (1, h) we again extract
the same profit from the instance I1 and also we obtain
all the profit from the h bids in A2.

So in both cases, the profit extracted in I from the bidders
belonging to I1, is at least as much as the amount extracted
in RSOP from those bidders in I1 instance. Also we always
extract all the profit from bidders with h value that are
belonging to A2. Assuming that we are partitioning the
bidders always uniformly at random, we can conclude that
the expected number of h bids belonging to A2 is N2

h/2. So
the total profit obtained by RSOP from I is at least the profit
obtained by RSOP from I1 plus h · N2

h/2. In other words
the profit that will be obtained in this scenario is at least
h·N1

h/4+h/4+N2
h/2 > h·Nh/4. Thus, E[RSOP] ≥ OPT/4

for all instances with only two different bid values.

8. CONCLUSION
We have further improved upon the bounds on the com-

petitiveness of RSOP through a mix of probabilistic tech-
niques and computer-aided analysis. More specifically, we
have proved that the competitive ratio of RSOP is: (i) less
than 4.68, (ii) less than 4 if the number of winners λ is



at least 6; and (iii) upper-bounded by a quantity that ap-
proaches 3.3 as λ → ∞, and (iv) has a robust version as λ
gets large. These indicate that RSOP does much better than
known in the practically-interesting case where λ is “large”,
and that perhaps the only case where the competitive ratio
of 4 is attained is the case where n = 2 and v1 = 2v2. It is an
interesting open problem to pin down the competitive ratio
as a function of λ. We have also shown that even if λ gets
arbitrarily large, one can construct instances I with such λ,
for which the competitive ratio is at least 2.65. Finally, our
work presents a combinatorial approach for the case where
the bid values are chosen from {1, h}, and shows that the
competitive ratio of RSOP is at most 4 in this case.
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APPENDIX
A. RESULTS

λ E[RSOP ] Competitive-Ratio

2 0.125148 7.99
3 0.166930 5.99
4 0.192439 5.20
5 0.209222 4.78
6 0.221407 4.52
7 0.230605 4.34
8 0.237862 4.20
9 0.243764 4.10
10 0.248647 4.02
11 0.252774 3.96
15 0.264398 3.78
20 0.273005 3.66
30 0.282297 3.54
50 0.290384 3.44
100 0.296993 .37
200 0.300549 .33
300 0.301784 .31
500 0.302792 .30
1000 0.303560 .29
1500 0.303818 .29
2000 0.303949 .29

Table 1: The result of using the basic lower-bound
by choosing n = 5000

λ E[RSOP ] Competitive-Ratio

2 0.2138 4.68
3 0.2178 4.59
4 0.238 4.20
5 0.243 4.11
6 0.2503 3.99
7 0.2545 3.93
8 0.2602 3.84
9 0.2627 3.81
10 0.2669 3.75

Table 2: The result of using the exhaustive-search
lower-bound by choosing m = 11, r = 3, r′ = 100
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