
ar
X

iv
:1

40
6.

01
17

v1
 [

cs
.S

E
]

31
 M

ay
 2

01
4

EACOF

EACOF: A Framework for Providing Energy Transparency
to enable Energy-Aware Software Development

Hayden Field, Glen Anderson, Kerstin Eder

University of Bristol
Department of Computer Science

Merchant Venturers Building
Woodland Road

Bristol, BS8 1UB, UK

{hayden-field.2011, glen.anderson.2011, kerstin.eder}@bristol.ac.uk

Abstract
Making energy consumption data accessible to software de-
velopers is an essential step towards energy efficient soft-
ware engineering. The presence of various different, bespoke
and incompatible, methods of instrumentation to obtain en-
ergy readings is currently limiting the widespread use of
energy data in software development. This paper presents
EACOF, a modular Energy-Aware Computing Framework
that provides a layer of abstraction between sources of en-
ergy data and the applications that exploit them.EACOF re-
places platform specific instrumentation through two APIs—
one accepts input to the framework while the other provides
access to application software. This allows developers to
profile their code for energy consumption in an easy and
portable manner using simple API calls. We outline the de-
sign of our framework and provide details of the API func-
tionality. In a use case, where we investigate the impact of
data bit width on the energy consumption of various sort-
ing algorithms, we demonstrate that the data obtained using
EACOFprovides interesting, sometimes counter-intuitive, in-
sights. All the code is available online under an open source
license.http://github.com/eacof

Categories and Subject Descriptors D.2.8 [Software Engi-
neering]: Metrics—complexity measures, performance mea-
sures; D.2.2 [Software Engineering]: Design Tools and
Techniques—modules and interfaces, software libraries;
D.2.13 [Software Engineering]: Reusable Software—reusable
libraries

[Copyright notice will appear here once ’preprint’ option is removed.]

General Terms Measurement, Performance, Energy Con-
sumption

Keywords Abstraction, EACOF, Energy Aware Comput-
ing, Energy Profiling, Energy Transparency

1. Introduction
Limiting energy use is important in situations such as
robotics, portable devices and data centres. Traditionally,
reductions in energy usage have been achieved through im-
proved hardware design, however hardware designers must
make conservative assumptions about usage patterns to en-
sure that their devices remain suitable for a wide range of
use cases. There is a far greater potential for energy saving
when the requirements of software are considered [8]. This
is because the control over the computation ultimately lies
within the software and algorithms running on the hardware.

Developers can produce more energy efficient software
by implementing their data structures and algorithms appro-
priately, basing decisions on their knowledge of the needs of
a particular application with respect to runtime, space utili-
sation and energy consumption. Knowledege of a user’s spe-
cific usage patterns and priorities provides further opportu-
nity to reduce energy consumption either by passively moni-
toring a user’s interaction with a device and adapting accord-
ingly [10], or by providing direct feedback about the energy
needed to perform different tasks, enabling users to make
informed decisions about their behaviour [12].

In order to leverage this domain specific knowledge to
produce more energy efficient software, developers first need
to know how much energy is required to execute their code.
Energy usage profiles must be created separately for each
targeted platform as it is not possible to generalise from one
to another [6]. In some instances it is possible to create these
profiles through the use of static analysis [3]; however, in
general, dynamic measurement of energy usage is required
due to the limited availability and usability of static tech-
niques. While dynamic measurement techniques are more

A Framework for Providing Energy Transparency to enable Energy-Aware Software Development1 2018/9/23

http://arxiv.org/abs/1406.0117v1
http://github.com/eacof

widely available than static analyses, the overhead of instru-
menting code is greatly increased by the low level of ab-
straction at which energy usage is measured, analogous to
requiring machine-specific code to measure execution time.

This paper presentsEACOF, our modularEnergyAware
COmputingFramework, which provides a layer of abstrac-
tion between sources of energy data and the applications
that exploit them, allowing developers to profile their code
for energy consumption in a simple and portable manner.
This abstraction replaces platform specific instrumentation
through the use of two APIs. The first is used to make en-
ergy information available to other software in a portable
way while the second is used to access energy information
without the need for bespoke instrumentation on each plat-
form. By separating these two key tasks in a modular man-
ner, our framework is designed to both be easily extensible
and encourage the development of maintainable code.

EACOF is designed to be used on a general purpose multi-
process Operating System with functional Inter-Process
Communication capabilities. It allows sophisticated data
collection methods to provide energy consumption data to
applications through a simple API. The provided data can
be as specific as per-process values for individual hardware
components. This energy data may be utilised by a devel-
oper during the development process for energy consump-
tion testing. Alternatively, it may provide the end user with
indications about energy consumption at run time or allow
the development of applications which adapt based on mea-
sured energy consumption.

The rest of this paper is structured as follows. Existing
work upon whichEACOF builds is discussed in Section 2.
The characteristics of the different sources of energy infor-
mation that are available toEACOF are considered in Sec-
tion 3. The various components that make upEACOF, and
their interactions, are described in Section 4. The APIs to
allow interaction between components are specified in Sec-
tion 5. In Section 6 we present a use case showing how
EACOF can be used to analyse sorting algorithms to help a
developer to select the most appropriate algorithm or data
type for a given task. Section 7 concludes and gives an out-
look on future work.

2. Background
Tools, such as PowerScope [1], provide functionality to
monitor the energy usage of code, while requiring additional
hardware for this task. On Android devices, AppScope [13]
estimates energy consumption of each process based on a
static model; however, this data is not available to the ap-
plication itself. The Intel Power Gadget API [5] allows for
the measurement of energy consumption on modern Intel
CPUs, although does not provide access to data from other
hardware components. JouleUnit [11] is designed to be a
generic framework, however has a specific focus on testing
during development. The authors of Eprof [7] describe the

challenges in attributing the energy usage of hardware to the
correct application.

Each of these systems, many of which are designed for
mobile devices, uses a bespoke method of instrumentation
tailored to a specific source of data. WithEACOF, we pro-
vide a standard method of accessing sources of energy data,
including these and others, designed primarily for desktop
systems. We also address the stated limitations of each ex-
isting source.

3. Data Source Considerations
For EACOF to succeed as an abstraction layer for sources
of energy information, it is important that its design does
not preclude the use of any particular data source since
doing so would force developers to use platform specific
instrumentation in their applications. Below we outline the
considerations that different data sources place onEACOF.
Section 4.1 shows howEACOF has been designed to meet
these considerations.

Resolution. The operating system on a laptop might pro-
vide a new value for the current charge of the battery once
per second, while counters built into a CPU may update
thousands or millions of times per second.

Precision. The values regarding the current charge of a
battery may only be specified to 3 or 4 significant figures
within system files, while hardware counters can be signifi-
cantly more precise.

Accuracy. While some data sources take measurements
directly from hardware, others utilise a more indirect ap-
proach. Tools such as PowerTOP [4] are able to provide
estimates of energy consumption based on usage statistics
provided by the operating system, after a calibration period.
Because the data is not gathered directly from hardware, ac-
curacy needs to be taken into account when making use of
the provided values.

Probes. A Probe is a means of defining one or more
hardware sources of energy data (devices). Energy data can
cover a range of devices. This can range from individual
CPU cores to an entire system, with various steps along the
way. Sometimes, a single hardware probe will be attached to
multiple devices, causing the energy information providedto
be an aggregate of a number of devices.

Units. The units in which data is collected can vary from
one source to another—one source might provide energy
data in Joules while another provides power data in Watts.

Temporal Continuity. Some sources of data may tem-
porarily be unavailable when attempts are being made to use
them. For example, plugging a laptop in to charge will elim-
inate the ability to use the discharge rate of the battery as a
measure of whole system energy usage.

Proliferation. As we place greater demands on systems
to be energy-efficient, we will see an increasing number of
sources of energy data built directly into the hardware plat-

A Framework for Providing Energy Transparency to enable Energy-Aware Software Development2 2018/9/23

forms we use. Many of these will have a higher resolution
and accuracy than current data sources.

4. System Architecture
In this section we describe the components of our framework
and how they interact with each other.

Providers (§ 4.1) abstract the details of a data source,
making it available to higher level components in a portable
manner. Consumers (§ 4.2) of energy data are able to ac-
cess the information made available by Providers. The Cen-
tral Authority (§ 4.3) marshals data between the Providers
and Consumers as well as providing several additional ser-
vices. Each of these components can be developed and com-
piled independently and run as separate system processes,
providing a simple method of modularly extending the func-
tionality of EACOF. Our device classification system (§ 4.4)
provides a common method for the components ofEACOF

to describe the hardware being monitored. We have utilised
various strategies (§ 4.5) to minimise the overhead incurred
from use ofEACOF.

A library, libeacof , is provided to abstract the mecha-
nisms underlying the communication between components
from the programmer,providing procedures that can be read-
ily integrated into portable application code. The two APIs
provided bylibeacof are described in Section 5.

4.1 Data Providers

CPU

HDD

CPU monitor

lib
ea

co
f

HDD monitor

lib
ea

co
f

ProvidersData Sources

Central
Authority

Figure 1. Central Authority with multiple Providers
A Provider is software that provides energy information

to EACOF. The Central Authority acts as a single point of
contact between all components inEACOF. Figure 1 shows
how a Provider acts as a wrapper for a source of energy in-
formation, collecting data in a platform specific way before
passing this data to the Central Authority in a portable for-
mat. It is relieved of the need to separate out per-process data
by the Central Authority, which undertakes this task on be-
half of all Providers. Since Providers act as a wrapper for a
data source, they are designed to handle possible variations
between existing and future sources of data. The following
describes our solutions to considerations about data sources:

Resolution. Providers push their data to the Central Au-
thority rather than waiting for it to be requested. This ensures
that sampling is performed in the most appropriate way for a
given data source. For example, if a data source updates in a
non-linear manner, the Provider can ensure that the Central
Authority always has the latest data no matter what the gap
between updates.

Precision. Use ofdoubles for energy consumption data
provides precision for decimal values with up to 15 signif-
icant digits, as specified in IEEE 754. This is the greatest
level of precision obtainable with portable data types.

Accuracy. Since a Provider may encapsulate any data
source,EACOF provides no guarantees about the accuracy
of a Provider’s data. It is up to the developer of a Provider
to ensure the data output is as accurate as possible and
the developers of Consumers to cope with data of varying
accuracy.

Probes. Providers defineProbes that specify their func-
tionality. Section 4.4 describes in detail the method by which
devices may be defined withinEACOF.

Units. It is a role of a Provider to convert the value
gathered from its data source into Joules before passing it on
to the Central Authority. This ensures that Consumers only
need to handle a single unit, Joules.

Temporal Continuity. A Provider lets other components
know when its capabilities change, either temporarily or per-
manently. Section 5.1 describes the API we have specified to
allow this functionality.

Proliferation. New sources of energy information can
be supported through the development of new Providers.
These new Providers can be integrated intoEACOF without
the need to modify the Central Authority or pre-existing
Providers due to the modular framework design. Our device
classification system (§ 4.4) ensures that Consumers can
automatically make use of new Providers without alteration.

4.2 Data Consumers

Central
Authority

lib
ea

co
f

Video Player

lib
ea

co
f

Web Browser

lib
ea

co
f

Background
File Sync

Consumers

Figure 2. Central Authority with multiple Consumers

A Consumer is an application that makes use of energy
data provided byEACOF. Figure 2 shows how the Central
Authority is able to connect to a number of Consumers
simultaneously. Each Consumer has no awareness of the
Providers that feed energy information intoEACOF—as far
as it is concerned, all the information accessed is provided
by the Central Authority itself.

Consumers determine their energy consumption through
the use of Checkpoints.Checkpoints are a means of sampling
the energy used by a combination of one or more devices
between multiple points in time. They are added into an
application’s code through the use of the Consumer API
(§ 5.2), allowing the energy consumption of sections of code

A Framework for Providing Energy Transparency to enable Energy-Aware Software Development3 2018/9/23

to be determined. There are three key points in the timeline
of a Checkpoint: creating, sampling, and deleting.

To use a Checkpoint, it must first be created, setting a
point in time to use as a baseline for the energy being mea-
sured. When creating a Checkpoint, the devices and pro-
cesses that are to be measured must be specified. A Check-
point can be used to measure the Consumer itself or all run-
ning processes. Upon creation of a Checkpoint, the Con-
sumer must communicate with the Central Authority to ac-
quire a unique identifier for the Checkpoint and to ensure
that the requested devices can be monitored.

To obtain energy readings, a Checkpoint must be sam-
pled. When a Consumer samples a Checkpoint, the Central
Authority will provide the number of Joules used by the
specified processes on associated devices since the Check-
point was last sampled by the same Consumer. Creating a
Checkpoint is deemed to be the first sample point.

It is possible for a single Consumer to have multiple
active Checkpoints, each monitoring one or more devices.
Likewise, it is possible for multiple Consumers to be moni-
toring the same device.

4.3 Central Authority

CPU

HDD

CPU monitor

lib
ea

co
f

HDD monitor

lib
ea

co
f

ProvidersData Sources

Central
Authority

lib
ea

co
f

Video Player

lib
ea

co
f

Web Browser

lib
ea

co
f

Background
File Sync

Consumers

Figure 3. EACOF System Architecture

The Central Authority acts as a single point of contact
between all other components inEACOF. Figure 3 shows
how these components fit together, with data flowing from
a data source all the way through to a Consumer, as directed
by the arrows.

By communicating with all other components, the Cen-
tral Authority is able to perform operations that Providers
and Consumers would be unable to complete alone. For ex-
ample, let there be two Probes defined by Providers—one
measuring both the CPU and Memory, the other measuring
only the Memory. If a Consumer then defines a Checkpoint
to track energy consumption of the CPU, the Central Author-
ity is able to derive this requested information by reading
data from both Probes and calculating the difference.

The Central Authority is also able to keep track of recent
readings from multiple Providers and extrapolate from them
to estimate future energy consumption even if the resolution
of available Providers is low. A Consumer could perform
this task, however, performing it in a central location makes

System

CPUs

Socket 0

Core 0

Core 1

. . .

Core N

Socket 1

. . .

Socket N

HDDs

HDD 0

HDD 1

. . .

HDD N

. . .

Figure 4. Classification of a subset of devices

it easier to integrate the full capabilities ofEACOF into an
application.

4.4 Device Classification

The definition of a particular device is key to a clear common
understanding between components withinEACOF. A device
classification system must be precise enough that data re-
ceived by Consumers meets their expectations while also be-
ing flexible enough to allow switching of Probes with equiv-
alent functionality in a manner transparent to Consumers.

Figure 4 shows a subset of the classification system used
by EACOF. While starting at a very high System level, our
classification system provides scope to zoom in on specific
components. Energy can be provided and consumed for de-
vices at any level of this classification tree, for example at
the whole System level, for all CPUs, or for a single core of
a particular CPU.

The classification system sets expectations ofwhat is be-
ing monitored rather thanhow it is being monitored. For ex-
ample, readings from energy counters in the CPU in Socket 0
and the power supply to Socket 0 itself would both be clas-
sified as Socket 0.

It is the responsibility of a Provider to specify which
devices theProbes it contains represents. Similarly, it is up
to each Consumer to make it known to other components
which devices it is interested in obtaining data for.

4.5 Dealing with Overheads

When running with a single Provider sampling CPU energy
consumption at a rate of 50Hz,EACOF increases system
power consumption by less than 1 Watt on an 2012 Mac-
bookPro 13” with a 2.5GHz Intel Core i5. This is lower
than the idle power consumption of many common appli-
cations [9].

WhenEACOF is used to profile code during development,
these overheads are of little concern as they will not be
incurred by the final application. However, whenEACOF is

A Framework for Providing Energy Transparency to enable Energy-Aware Software Development4 2018/9/23

an integral part of the application it is vital that developers
are able to mitigate these overheads when necessary. This
can be achieved by sampling fewer devices less frequently
or by instrumenting only the most critical sections of code.

The overheads incurred when usingEACOF must always
be weighed against the benefits. While static analysis can
deliver results without runtime overhead, there are limitsto
what can be determined in this manner. In such situations,
the only alternative is to use a method of dynamic analysis
such asEACOF, where the inherent overheads are necessary
to achieve the desired outcome.

The Central Authority plays a key role in minimising the
overheads incurred when usingEACOFby reducing the num-
ber of communication channels that need to be established.
More formally, let the number of Consumers beC and the
number of Providers beP . In a naive configuration, where
Consumers communicate directly to Providers,O(C ∗ P)
communication channels are required. This is reduced to
O(C + P) by introducing the Central Authority. In adding
an extra step between the Provider and Consumer, latency
is increased, however this design prevents a poorly designed
Provider blocking a Consumer request for a long period—it
is easier to ensure predictable latency within a single Central
Authority than within many Providers.

5. Interface
To allow components ofEACOF to interact with each other
we have developed two APIs—one for Providers, the other
for Consumers. The Provider API (§ 5.1) is used to extend
the framework with additional sources of energy informa-
tion independently of the development and compilation of
the framework itself. The Consumer API (§ 5.2) is used by
software developers wishing to exploit the gathered informa-
tion, either for the purposes of profiling or as an integral part
of the design of their application—perhaps to provide energy
awareness to end users. These APIs have been designed to
work together and may be used simultaneously by a single
application.

Our implementation of the API is available in an online
repository at:http://github.com/eacof

5.1 Provider API

A Probe is an abstract data type representing a capability
of a Provider and can be thought of as a virtual description
of a physical Probe used to monitor one or more devices.
The API functions shown in Figure 5 are used to create,
manipulate and deleteProbes.

createProbe() is a variadic function used to specify the
configuration for aProbe. libeacof will allocate a newProbe
and populate it with the devices provided by the caller. A
unique identifier for the newProbe is acquired from the
Central Authority and the address of the newProbe is stored
in the location pointed to bynewprobe.

While a Probe is inactive to begin with,activateProbe()
and deactivateProbe() may be used to toggle whether it
is active. Once finished with,deleteProbe() will delete a
Probe and stop further attempts at trying to access the data
it provides.

addSample() provides the amount of energy used, in
Joules, by the devices associated with the suppliedProbe.
The sample is the amount of energy used since the latter of
a) the last point at which theProbe was activated; orb) the
last point at which a sample was added.

The return value of all API functions in this section and
the following is an error code. This allows users of the API
to know when a requested operation failed, making it clear
when alternative action, such as retrying the function callor
entering a non-energy-aware state, should be taken.

5.2 Consumer API

A Checkpoint is an abstract data type representing a Check-
point as described in Section 4.2. The API functions shown
in Figure 6 are used to create, sample and deleteCheckpoints.

setCheckpoint() is a variadic function used to specify a
set of devices to be monitored along with the processes they
should be monitored for, creating a Checkpoint with the
given configuration.pspec should either beALL or SELF de-
pending on whether the caller wishes to monitor all running
processes or itself respectively.

sampleCheckpoint() is used to query the amount of en-
ergy in Joules used by the process-device combination spec-
ified by checkpoint since the latter ofa) the last call to
sampleCheckpoint(); or b) the point at which the Checkpoint
was created.

deleteCheckpoint() is used to signal that theCheckpoint
checkpoint is no longer required, deleting it so it may not be
used again until recreated.

6. Use Case Example
As an example, this section demonstrates howEACOFcan be
applied to gain insight into the energy usage of code. While
energy-efficient software design is beyond the primary goals
of EACOF, the framework makes energy consumption dur-
ing computation transparent, so as to enable developers to
gain an insight into the energy usage of code. This use case
demonstrates that our framework provides data for develop-
ers to make more informed decisions about software energy
consumption. It is not, however, designed to provide an ex-
haustive demonstration of all the capabilities ofEACOF—
a demonstration of multi-provider and multi-platform func-
tionality is available in the online repository.

We use a Provider based on the Intel Power Gadget API,
with a resolution of 20ms, to measure the energy usage of
the CPU in Joules.

Our application is a Consumer designed to sort an array
of integers in the range[0,255]. The same array of numbers
is represented using data types containing varying numbers

A Framework for Providing Energy Transparency to enable Energy-Aware Software Development5 2018/9/23

1 i n t c r e a t e P r o b e (Probe ** newprobe , DeviceCount dcount , . . .) ;
2 i n t d e l e t e P r o b e (Probe ** probe) ;
3 i n t a c t i v a t e P r o b e (Probe * probe) ;
4 i n t d e a c t i v a t e P r o b e (Probe * probe) ;
5 i n t addSample (Probe * probe , double j o u l e s) ;

Figure 5. Provider API Function Prototypes

1 i n t s e t C h e c k p o i n t (Checkpoint ** newcheckpo in t , P r o c e s s S p e c i f i e r pspec , DeviceCount dcount ,
. . .) ;

2 i n t sampleCheckpo in t (Checkpoint * checkpo in t , double * j o u l e s) ;
3 i n t d e l e t e C h e c k p o i n t (Checkpoint * c h e c k p o i n t) ;

Figure 6. Consumer API Function Prototypes

Data Type
uint8 t uint16 t uint32 t uint64 t

Total Total Average Total Total Average Total Total Average Total Total Average
Time Energy Power Time Energy Power Time Energy Power Time Energy Power

Algorithm Num Elements (s) (J) (W) (s) (J) (W) (s) (J) (W) (s) (J) (W)
Bubble Sort 50,000 5.53 66.66 12.03 5.39 65.29 12.09 5.66 69.05 12.19 5.78 71.83 12.41

Insertion Sort 200,000 7.98 ∎102.18 12.75 7.98 ∎103.00 12.85 7.46 ∎98.81 13.21 7.54 ∎105.03 13.89
Quicksort 2,000,000 5.51 61.73 11.20 5.53 61.90 11.19 5.52 61.60 11.15 5.51 62.90 ☀11.42

Merge Sort 60,000,000 ●6.06 ●72.33 11.93 6.07 72.46 11.93 6.12 75.65 12.36 ●5.93 ●76.98 ☀12.98
qsort 100,000,000 ●5.84 ●72.39 12.37 6.15 76.90 12.48 6.79 86.29 12.69 ●5.69 ●73.25 12.86

Counting Sort 200,000,000 0.23 ⧫2.92 12.75 0.24 ⧫3.16 13.23 0.25 ⧫3.58 14.15 0.35 ⧫5.12 14.44

Table 1. Comparison of the energy required to sort integers of different bit widths

of bits and sorted using a number of standard deterministic
sorting algorithms. Checkpoints are set and sampled directly
before and after the sorting occurs. This setup allows us
to examine the difference in energy consumption caused
by using different data types to perform a task, a typical
problem that a developer may wish to useEACOF to solve.
Since the focus is that of differences between data types,
comparisons between rows should not be made for Time or
Energy in Table 1.

We ran the code on a 2012 MacbookPro 13” with a 2.5
GHz Intel Core i5 and 8GB RAM running OS X 10.8.4
to gather results. All code was compiled on the target ma-
chine using the vendor’s standard compiler with an op-
timisation level of -O3. The instrumented code used to
gather the results is available in an online repository at:
http://github.com/eacof

Table 1 shows the results gained from running our pro-
gram. Time is measured in Seconds (s) and Energy is mea-
sured in Joules (J). The average power consumption, en-
ergy over time, is measured in Watts (W). Each algorithm
was run with the specified number of elements200 times
for each data type. The displayed figures are the calculated
means over all200 runs. We keep run time similar by pro-
viding each algorithm a different length array as input, so as
to allow measurement of algorithms of differing algorithmic
complexities. Counting Sort takes significantly less time per
run than the other algorithms because it is memory limited
and would require an array containing around 4 billion el-
ements to take a similar amount of time as the others. The
standard deviation of all result values is low, apart from for

Insertion Sort where the standard deviation for both Time
and Energy is around 10% of the mean values.

The data collected withEACOFdemonstrates that, against
common intuition, time and energy consumption are not nec-
essarily directly correlated. It can be seen in the cells marked
with a ● in Table 1 that with Merge Sort andqsort() from
stdlib [2], sorting 64 bit values takes less time than sorting
values with fewer bits, however more energy is consumed in
the process.

It can also be seen that the average power consumption
when using a single data type varies between algorithms
(☀). In a situation where there is a limited power supply,
it may be desired to choose an algorithm with lower power
consumption even if it means the time taken or energy used
is higher.

Another insight that can be gained is that the amount of
energy used to perform a sorting task will generally increase
as the number of bits in the data type increases. In our data,
marked with a⧫, Counting Sort uses 75% more energy to
sort the same 200 arrays of numbers when they are repre-
sented as 64 bit rather than 8 bit values. Similar increases
are not consistent for all algorithms—Insertion Sort broke
an otherwise increasing trend when values were represented
using a 32 bit data type (∎).

Each of these examples highlight insights that can be
gained by having access to the energy consumption informa-
tion provided byEACOF. To take a step further, one would
want to investigate why Insertion Sort uses less energy when
using 32 bit values. This investigation is beyond the scope

A Framework for Providing Energy Transparency to enable Energy-Aware Software Development6 2018/9/23

of this project, however the issue would not have come up
without access to the data.

7. Conclusions and Future Work
We have createdEACOF, a framework which allows access
to information about the energy consumption of software
through the use of simple API calls. This allows the develop-
ment of code that may portably provide energy transparency
to both the end user and developer. In turn, it enables in-
formed decisions to be made with respect to trade-offs re-
garding energy consumption.

EACOF is designed to separate the two tasks of collecting
and utilising dynamic energy consumption data through the
use of Providers and Consumers. This separation allows for
a clear distinction of the two tasks, reducing the development
and maintenance overhead required for the successful com-
pletion of each task. In addition, our modular design allows
for functionality to improve over time without recompilation
of all existing system components.

As demonstrated in our use case (Section 6), our frame-
work provides the functionality required to obtain values re-
garding software energy consumption.

We intend to continue developingEACOF and use it to
study the improvements in energy-efficiency that can be
gained in real-world applications. We also intend to perform
analysis similar to our use case with a range of Providers on a
variety of hardware set-ups with respect to other algorithms,
data structures and software constructs. Alongside, we will
perform further validation of the figures provided byEACOF

to determine how best to obtain accurate data.

8. Acknowledgments
The authors would like to acknowledge the contributions
of Benji Barash, Charlie McNeil, James Pedlingham, Tom
Ryczanowski and Gary Noble to the initial development
of EACOF. The research leading to these results has re-
ceived funding from the European Union’s Seventh Frame-
work Programme (FP7/2007-2013) under grant agreement
no 611004, project ICT-Energy.

References
[1] J. Flinn and M. Satyanarayanan. Powerscope: A tool for

profiling the energy usage of mobile applications. InMo-
bile Computing Systems and Applications, 1999. Proceedings.
WMCSA’99. Second IEEE Workshop on, pages 2–10. IEEE,
1999.

[2] B. Kernighan and D. Ritchie. C Program-
ming Language, pages 251–253. Pearson Ed-
ucation, 1988. ISBN 9780133086218. URL
http://books.google.co.uk/books?id=Yi5FI5QcdmYC.

[3] U. Liqat, S. Kerrison, A. Serrano, K. Georgiou,
P. Lopez-Garcia, N. Grech, M. V. Hermenegildo, and
K. Eder. Energy consumption analysis of programs
based on xmos isa-level models. In23rd Interna-
tional Symposium on Logic-Based Program Synthesis

and Transformation. Springer, September 2013. URL
http://www.cs.bris.ac.uk/Publications/Papers/2001680.pdf.

[4] Intel. PowerTOP.https://01.org/powertop/ .

[5] Intel. Intel power gadget API.http://software.intel.com/en-
us/blogs/2012/12/13/using-the-intel-power-gadget-api-on-
mac-os-x, 2012.

[6] J. Pallister, S. Hollis, and J. Bennett. Identifying compiler
options to minimise energy consumption for embedded plat-
forms. arXiv preprint arXiv:1303.6485, 2013.

[7] A. Pathak, Y. C. Hu, and M. Zhang. Where is the energy spent
inside my app?: fine grained energy accounting on smart-
phones with eprof. InProceedings of the 7th ACM european
conference on Computer Systems, EuroSys ’12, pages 29–42,
New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1223-3.
. URL http://doi.acm.org/10.1145/2168836.2168841.

[8] K. Roy and M. C. Johnson.Low power design in deep sub-
micron electronics, chapter Software design for low power.,
pages 433–460. Kluwer Academic Publishers, Norwell, MA,
USA, 1988.

[9] B. Steigerwald, C. Lucero, C. Akella, and A. Agrawal.Energy
Aware Computing: Powerful Approaches for Green System
Design, chapter Impact of Software on Energy Consumption,
pages 51–57. Intel Press, 2012. ISBN 9781934053416. URL
http://books.google.co.uk/books?id=60xsLwEACAAJ.

[10] S. te Brinke, S. Malakuti, C. Bockisch, L. Bergmans, and
M. Akşit. A design method for modular energy-aware soft-
ware. InProceedings of the 28th Annual ACM Symposium on
Applied Computing, pages 1180–1182. ACM, 2013.

[11] C. Wilke, S. Götz, and S. Richly. Jouleunit: a generic frame-
work for software energy profiling and testing. InProceedings
of the 2013 workshop on Green in/by software engineering,
pages 9–14. ACM, 2013.

[12] C. Wilke, C. Piechnick, S. Richly, G. Püschel, S. Götz, and
U. Aßmann. Comparing mobile applications’ energy con-
sumption. InProceedings of the 28th Annual ACM Sympo-
sium on Applied Computing, pages 1177–1179. ACM, 2013.

[13] C. Yoon, D. Kim, W. Jung, C. Kang, and H. Cha. Appscope:
Application energy metering framework for android smart-
phone using kernel activity monitoring. InUSENIX ATC,
2012.

A Framework for Providing Energy Transparency to enable Energy-Aware Software Development7 2018/9/23

http://books.google.co.uk/books?id=Yi5FI5QcdmYC
http://www.cs.bris.ac.uk/Publications/Papers/2001680.pdf
https://01.org/powertop/
http://doi.acm.org/10.1145/2168836.2168841
http://books.google.co.uk/books?id=60xsLwEACAAJ

	1 Introduction
	2 Background
	3 Data Source Considerations
	4 System Architecture
	4.1 Data Providers
	4.2 Data Consumers
	4.3 Central Authority
	4.4 Device Classification
	4.5 Dealing with Overheads

	5 Interface
	5.1 Provider API
	5.2 Consumer API

	6 Use Case Example
	7 Conclusions and Future Work
	8 Acknowledgments

