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ABSTRACT
We consider the problem of embedding an undirected graph
into hyperbolic space with minimum distortion. A funda-
mental problem in its own right, it has also drawn a great
deal of interest from applied communities interested in em-
pirical analysis of large-scale graphs. In this paper, we es-
tablish a connection between distortion and quasi-cyclicity
of graphs, and use it to derive lower and upper bounds
on metric distortion. Two particularly simple and natu-
ral graphs with large quasi-cyclicity are n-node cycles and
n × n square lattices, and our lower bound shows that any
hyperbolic-space embedding of these graphs incurs a multi-
plicative distortion of at least Ω(n/ log n). This is in sharp
contrast to Euclidean space, where both of these graphs can
be embedded with only constant multiplicative distortion.
We also establish a relation between quasi-cyclicity and δ-
hyperbolicity of a graph as a way to prove upper bounds
on the distortion. Using this relation, we show that graphs
with small quasi-cyclicity can be embedded into hyperbolic
space with only constant additive distortion. Finally, we also
present an efficient (linear-time) randomized algorithm for
embedding a graph with small quasi-cyclicity into hyperbolic
space, so that with high probability at least a (1 − ε) frac-
tion of the node-pairs has only constant additive distortion.
Our results also give a plausible theoretical explanation for
why social networks have been observed to embed well into
hyperbolic space: they tend to have small quasi-cyclicity.

1. INTRODUCTION
Metric embeddings have been a topic of intense research

in many areas of computer science, including geometry, the-
ory, databases and machine learning, during the past few
decades. Besides their fundamental nature and rich mathe-
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matical content, these embeddings have also become a ma-
jor tool in the analysis of high-dimensional data: the general
idea is to embed a high-dimensional metric space into a much
smaller-dimensional space without creating large distortion
in pair-wise distances. A celebrated result in this area is the
Johnson-Lindenstrauss Lemma [7], showing that metrics in-
duced by n points in an Euclidean space can be embedded
with (1 + ε) distortion into O(ε−2 log n)-dimensional space.
The reader may consult the book by Matoušek [13] for an
excellent survey and exposition to many elegant results on
metric embeddings.

In a different context, researchers in the networking com-
munities have also explored geometric embeddings for net-
work measurements and geographic routing [8, 17, 18, 20].
A number of network services use shortest path distances to
implement application level multicast trees or routes [8, 14,
17]. While maintaining the full matrix of pairwise distances
is infeasible in Internet scale networks, a geometric embed-
ding gives a highly compact representation of those dis-
tances. Similarly, virtual coordinates and geographic rout-
ing are an elegant way to avoid the need for full network
topology at each network router. There is also a great deal of
interest in estimating pair-wise distances in social networks,
as a means to measure influence, to recommend friends, and
to show selective profiles, but running all-pair shortest path
algorithms is infeasible at their scale. Fortunately, a number
of empirical studies have shown that simple geometric em-
beddings are good enough for estimating (most) pair-wise
network distances in large graphs [19, 20]. The embedding
dimension is typically small (e.g. 10), and therefore the dis-
tance between any two nodes can be calculated in constant
time. Interestingly, these experimental results also show
that hyperbolic-space embeddings lead to higher accuracy
(lower distortion) than Euclidean space [18, 20]. Kleinberg’s
well-known result [8] that every connected finite graph has
a greedy embedding into the hyperbolic plane, while many
graphs do not admit such an embedding in the Euclidean
plane, also underscores the relative advantage of hyperbolic
space. Some researchers have even argued that the “hidden
space” of the Internet and social networks is naturally the
negatively curved hyperbolic space [12].

Our work is a theoretical counterpart to this line of em-
pirical research. We are interested both in establishing the
worst-case distortion bounds for hyperbolic space embed-
ding in general, and in discovering useful characterizations
of graphs that may explain the observed low distortion in
hyperbolic embedding of large-scale social networks. We
begin with some formal definitions necessary to formulate
the problem and state our results.
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1.1 Metric Spaces and Embeddings
A metric space is a tuple (X , d) where X is the underlying

space and d : X × X → R is the metric (or distance func-
tion) measuring the distance between two elements of X .
A metric embedding (or simply embedding) of (X1, d1) into
(X2, d2) is a map f : X1 → X2. In this paper, we are primar-
ily concerned with embedding the graph metric (V, dG) of
an undirected graph G = (V,E) into k-dimensional hyper-
bolic space (Hk

, dH), where dG measures the length of the
shortest path between two nodes in G, and dH is the stan-
dard metric of Hk. In all our embeddings, the dimension k

of the target space is a constant, independent of the size of
the input graph. When the metric is clear from the context,
we simply refer to it as X or G.

The quality of an embedding is measured by the worst-
case distortion over all the distances in the metric, either
in relative or absolute terms. In particular, let f be an
embedding of the metric space (X1, d1) into the metric space
(X2, d2). We say that f has multiplicative distortion c, for
c ≥ 1, if

d2(f(x), f(y)) ≤ d1(x, y) ≤ c d2(f(x), f(y)) ∀x, y ∈ X1 (1)

The embedding f has additive distortion c if

|d1(x, y)− d2(f(x), f(y))| ≤ c ∀x, y ∈ X1 (2)

All our lower bounds in Section 3 are shown using multi-
plicative distortion, which implies similar (in fact, stronger)
lower bounds on the additive distortion as well. Our up-
per bounds and algorithms, however, produce results with
additive distortion.

Remark. Some papers on embeddings allow the input
distances to be scaled before constructing the embedding,
which may produce smaller distortion especially for the ad-
ditive measure. We also utilize such a scaling by a constant
factor for our upper bounds and algorithms. We do not con-
sider scaling of distances by a non-constant factor because
our intention is to investigate the intrinsic difference between
hyperbolic and Euclidean space: after all, hyperbolic space
behaves like Euclidean space in the limit at small distances.
For the sake of simplicity, we do not use scaling in our lower
bounds, although the results hold with any constant factor
scaling. Finally, we point out that, by definition, our em-
beddings (for multiplicative distortion) are non-expanding :
the distances in the target space are upper-bounded by the
input space distances. This restriction does not influence
our lower bounds but simplifies the presentation.

1.2 Results
We begin with a simple lower bound result: any embed-

ding of an n-node cycle in hyperbolic space has multiplica-
tive distortion at least Ω(n/ log n). This may seem surpris-
ing since the cycle is trivially embedded in Euclidean space
with distortion π/2. We extend this lower bound using the
concept of quasi-cyclicity : any graph with quasi-cyclicity n

has multiplicative distortion Ω(n/ log n) in hyperbolic space.
An example graph with large quasi-cyclicity but no large in-
duced cycle is the

√
n ×

√
n regular lattice. This graph

also embeds with constant distortion in Euclidean space,
but is shown to require Ω(

√
n/ log n) distortion in hyper-

bolic space.
Next, we establish a relation between quasi-cyclicity and

δ-hyperbolicity (see Section 2 for a formal definition) of a
graph as a way to prove upper bounds on the distortion.

Using this relation, we show that graphs with small quasi-
cyclicity can be embedded into hyperbolic space with only
constant additive distortion. Finally, we present an efficient
(linear-time) randomized algorithm for embedding a graph
with small quasi-cyclicity into hyperbolic space, so that at
least a (1 − ε) fraction of the node-pairs have constant ad-
ditive distortion, with high probability.

1.3 Related Work
The body of research on hyperbolic space and its connec-

tions to various network properties and dynamics is large.
Due to lack of space, we just mention a few papers that
are algorithmic in nature and explore questions similar to
the ones discussed in our paper. In [11], Krauthgamer and
Lee present algorithms for approximate nearest-neighbors
and low-stretch routing, as well as a PTAS for the Travel-
ing Salesman Problem in hyperbolic space. Their results
also apply to δ-hyperbolic spaces. In [3], Chepoi et al.
present schemes for computing an additive approximation
of the diameter, center, and radius of δ-hyperbolic spaces
and graphs. They also show that several graph classes are
δ-hyperbolic and present a linear-time algorithm for approx-
imating trees of n-node δ-hyperbolic graphs with O(δ log n)
additive distortion. In [16], Sarkar shows that every finite
tree admits an embedding into H

2 with only 1 + ε multi-
plicative distortion, for any ε > 0; for this result, however,
the input metric needs to be scaled by a factor that depends
on both ε and the maximum degree of the tree, which may
be non-constant. Nonetheless, this suggests a natural ap-
proach to embed graph metrics into hyperbolic space: first
embed the graph metric into a tree metric, and then embed
the tree metric into H

2 using the result of [16]. Some graph
metrics (e.g. the n-cycle), however, require Ω(n) distortion
when embedded into a tree metric, as shown in [15]. On the
other hand, under a relaxed model where the target metric
is not a single tree but rather a distribution over several tree
metrics, one can achieve an expected distortion O(log n), as
shown by Fakcharoenphol et al. [4]. In our paper, we only
consider embedding the graph into a single target metric
(hyperbolic space), with the goal of minimizing the worst-
case distortion.

The hyperbolic-space embeddings have also proved use-
ful for greedy routing : in [8], Kleinberg proves that every fi-
nite graph admits a greedy embedding into hyperbolic space,
which is known not to be possible in Euclidean space.

2. PRELIMINARIES
We begin by establishing several technical preliminaries

necessary for our proofs, including formal definitions of hy-
perbolic space. Given two points x, y ∈ X of a metric space
(X , d), we use [x, y] to denote a shortest path (geodesic) from
x to y. A metric space is geodesic if, for every x, y ∈ X , all
points on the shortest path from x to y are in X , where the
shortest path is seen as a continuous curve. A graph met-
ric is not geodesic, but can be made geodesic by adding all
edges as continuous curves to the metric space. Hence, for a
graph metric, [x, y] actually denotes a shortest path in the
geodesic version of the graph metric.

The distance between two sets A,B ⊆ X is written as
d(A,B), that is, d(A,B) = minx∈A,y∈B d(x, y).

The hyperbolic space is a type of non-Euclidean geometry
with negative curvature. Formally speaking, real hyperbolic
k-space H

k is a k-dimensional Riemannian manifold with
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Figure 1: A δ-thin triangle.

constant sectional curvature −1. There are several models
of hyperbolic space, including the hyperboloid model, Klein
model, and Poincaré disc/half-plane models. Our results
are model-independent and rely only on general properties
of hyperbolic space. Because Hk is a manifold, angles locally
behave as in Euclidean space but, in contrast to Euclidean
space, the angles of a triangle satisfy (α+β+γ) < π in hyper-
bolic space. The difference π−(α+β+γ) is called the defect
of a triangle, and it equals the area of the triangle in H

k.
One can define a more general notion of hyperbolic spaces

called δ-hyperbolic spaces. The following definition is due
to Gromov [6]. For a metric space (X , d) and p, x, y ∈ X ,
the Gromov product of x and y at p, denoted by (x|y)p is
defined as:

(x|y)p =
1
2
(d(p, x) + d(p, y)− d(x, y)) (3)

A metric space (X , d) is δ-hyperbolic for some δ ≥ 0 if the
following holds for all p, x, y, z ∈ X :

(x|z)p ≥ min((x|y)p, (y|z)p)− δ (4)

Another definition for geodesic metric spaces is due to Rips.
For three points x, y, z ∈ X , a geodesic triangle consists
of [x, y], [y, z], and [x, z]. A geodesic triangle is δ-thin if
for every p ∈ [x, y], we have d(p, [y, z] ∪ [x, z]) ≤ δ (and
symmetrically for p ∈ [x, z] and p ∈ [y, z]). See Fig. 1. A
metric space is δ-hyperbolic if all geodesic triangles are δ-
thin. These two definitions are equivalent upto a constant
factor of δ, do not change the asymptotic bounds of our
theorems, and therefore we use them interchangeably.

We callG a δ-hyperbolic graph if its metric is δ-hyperbolic.
For instance, trees are 0-hyperbolic, cliques are 1

2 -hyperbolic
(if we include points on edges), and a graph with diameter
D is D

2 -hyperbolic. Unless stated otherwise, if we say a

metric space is δ-hyperbolic, then we assume that δ is a
constant. The definitions of δ-hyperbolic metric spaces give
only an upper bound on δ. When proving lower bounds, we
say a metric space or graph is strictly δ-hyperbolic if it is
δ-hyperbolic and not δ�-hyperbolic for δ� < δ. In this defini-
tion we generally allow δ to depend on the input size (e.g.,
the number of vertices of the graph metric).

3. LOWER BOUNDS ON DISTORTION
In this section, we prove that some simple graphs require

large distortion in any hyperbolic space embedding. In the
process we introduce the notion of quasi-cyclicity, which
turns out to be closely related to the distortion. Let Cn

be the cycle graph with n nodes v0, . . . , vn−1, with edges
of the form (vi, vi+1). We refer to the graph metric of Cn

as the cycle metric of size n, denoted by (Cn, dC). Our
proof uses the following result of Knaster, Kuratowski and
Mazurkiewicz [10].

Lemma 3.1 ([10]). Consider an n-dimensional simplex
∆n with vertices V = {v0, . . . , vn}, and a closed set Sv for
each v ∈ V . If, for each subset A ⊆ V , the union

�
v∈A Sv

covers the face of ∆n spanned by the vertices in A, then�
v∈V Sv �= ∅.

Lemma 3.2. Let p ∈ H
k and let P : [0, 1] → H

k be a
curve such that ∠P (0)pP (1) = α and dH(p, P (t)) ≥ R for
0 ≤ t ≤ 1. Then the length of P is at least α sinh(R).

Proof. Our proof, which is straightforward but techni-
cal, is presented in Appendix A, to maintain the conceptual
flow of the discussion.

The following lemma presents our key lower bound, namely,
that an n-cycle suffers a large distortion in any hyperbolic
space embedding.

Lemma 3.3. Any embedding of Cn into H
k has multi-

plicative distortion Ω( n
logn ).

Proof. Let us assume n is a multiple of 3, and consider
the nodes u1 = v0, u2 = vn

3
, and u3 = v 2n

3
. We have

dC(ui, uj) = n
3 , for 1 ≤ i < j ≤ 3. Let f be an embedding

of Cn into H
k, for some k ≥ 2, with pi = f(ui) as the image

of ui, for 1 ≤ i ≤ 3. We focus on the geodesic triangle T

formed by p1, p2, and p3 in H
k, and let αi be the angle of T

at pi. See Fig. 2(a) for illustration.

u1

u2u3

Cn

p1

p3 p2

T
α3 α2

α1

p1

p3 p2

β1

β2 β3

p

(a) (b)

P1

P3P2

P

Figure 2: (a) A metric embedding of Cn into H
k
. (b) Subdividing T into three triangles.
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First, suppose one of the angles, say α1, is at least 2π
3 .

Consider the polygonal curve P : [0, 1] → H
k that is the im-

age of the geodesic segment [u2, u3] in H
k under f , where

P (0) = p2 and P (1) = p3. Since distances do not ex-
pand under f , the length of P is at most n

3 . On the other
hand, by Lemma 3.2, the length of P is at least α1 sinh(R),
where R is the minimum distance between p1 and P . Since
sinh(x) = (ex − e

−x)/2, we get that if α1 sinh(R) = O(n),
then R = O(log n). Let p ∈ P be the point such that
dH(p1, p) = R. Although p may not be the image of one
of the nodes of Cn, there must exist a node u ∈ [u2, u3] such
that dH(p, f(u)) ≤ 1 (distances do not expand under f), and
so dH(p1, f(u)) = O(log n) by the triangle inequality. This
leads to the desired lower bound: the node-pair u, u1 has
graph distance dC(u, u1) ≥ n

3 , but hyperbolic-space distance
O(log n), and therefore suffers a multiplicative distortion of
at least Ω( n

logn ).

The above argument also works if α1 = Ω(1). If none of
the angles of triangle T is at least of size Ω(1), then we need
a different argument (recall that the sum of the angles of
a hyperbolic triangle is less than π, and possibly o(1)). In
this case, consider a point p in the interior of T , and the
three triangles formed by the geodesic segments [p, pi]. See
Fig. 2(b). Let βi be the angle at p opposite of pi. We define
the closed set Si (1 ≤ i ≤ 3) as the set of points p such
that βi ≤ 2π

3 . It is easy to verify that the sets Si satisfy
the conditions of Lemma 3.1, and therefore there exist a
point p such that βi ≤ 2π

3 for all 1 ≤ i ≤ 3. Since those
three angles sum to 2π, we must have β1 = β2 = β3 =
2π
3 . Let P1, P2, P3 : [0, 1] → H

k be the polygonal curves
obtained by embedding [u2, u3], [u1, u3], and [u1, u2] into
H

k, respectively. Using the same line of arguments as above,
there must be nodes v1 ∈ [u2, u3], v2 ∈ [u1, u3], and v3 ∈
[u1, u2] such that dH(p, f(vi)) = O(log n) for 1 ≤ i ≤ 3. By
the triangle inequality, this implies that dH(f(vi), f(vj)) =
O(log n) for 1 ≤ i < j ≤ 3. Finally, since there must be
a pair of nodes (vi, vj) such that dC(vi, vj) ≥ n

3 , we again
find a node-pair that suffers a multiplicative distortion of at
least Ω( n

logn ) under the embedding f . This concludes the
proof.

The lower bound of the preceding lemma is asymptotically
tight: embed the nodes of Cn on a hyperbolic circle of radius
O(log n) by ensuring that each adjacent pair of points on
the circle has distance 1. The lower bound is independent of
the dimension of the target hyperbolic space, and the result
extends to any metric space that includes Cn as an induced
submetric. However, there are graphs that do not contain
large cycle submetrics and yet require large distortion. One
such metric space is the

√
n ×

√
n lattice graph Ln whose

largest cycle submetric has size only 4, but we show below
that any embedding of Ln intoHk has Ω(

√
n

logn ) multiplicative
distortion. In fact, we introduce a generalization of cycle
metrics, called quasi-cycles, which allows us to extend the
lower bound to a much larger class of graphs.

Quasi-cycles. A quasi-cycle is a metric space that is similar
to the cycle metric in which some shortcuts are allowed, but
those shortcuts do not reduce the distances by more than a
constant factor1. More precisely, a quasi-cycle of size n is
a metric space (Cn, d) for which there is a constant α > 0,

1We should note that our quasi-cycles are unrelated to the
λ-quasi-circles defined in [2].

L ≥ βn

≥ αL

Figure 3: An (α, β)-quasi-cycle.

such that the following inequality holds:

αdC(u, v) ≤ d(u, v) ≤ dC(u, v) ∀u, v ∈ Cn, (5)

where α defines the quasiness of the quasi-cycle. For techni-
cal reasons we also introduce the notion of weak quasi-cycles
where the bound of Inequality (5) holds only if dC(u, v) ≥
βn, for some constant 0 ≤ β ≤ 1

2 . See Figure 3 for illustra-
tion. The constant β is the weakness of a quasi-cycle (for
strong quasi-cycles, β = 0). We refer to strong quasi-cycles
as α-quasi-cycles and weak quasi-cycles as (α, β)-quasi-cycles.

Lemma 3.4. Any embedding of an (α, β)-quasi-cycle
(Cn, d), where α > 0 and β ≤ 1

3 , into H
k has multiplica-

tive distortion at least Ω( n
logn ).

Proof. The proof is analogous to that of Lemma 3.3.
Given any embedding f of (Cn, d) into H

k, there are two
nodes u, v ∈ Cn whose distance in the cycle is dC(u, v) ≥ n

3
but whose distance in hyperbolic space is dH(f(u), f(v)) =
O(log n). By definition of quasi-cycles, we have d(u, v) ≥ α

n
3

if β ≤ 1
3 , and so the multiplicative distortion of node-pair

u, v in f is at least Ω( n
logn ).

Returning to the
√
n ×

√
n lattice graph Ln, consider the

submetric induced by the outer cycle of Ln. It has O(
√
n)

nodes and it is a 1
2 -quasi-cycle. Therefore, by Lemma 3.4,

any embedding of Ln into H
k has Ω(

√
n

logn ) multiplicative
distortion.

If we define the quasi-cyclicity of a metric space (X , d) as
the size of the largest induced (α, β)-quasi-cycle with α > 0
and β ≤ 1

3 , then we have the following general lower bound.

Theorem 3.5. Let m be the quasi-cyclicity of a metric
space (X , d). Then any embedding of (X , d) into H

k has
multiplicative distortion at least Ω( m

logm ).

Remark. Naturally, the quasi-cyclicity m of a metric space
depends on the value of α, and to a lesser extent on the
value of β. As a function of α, the lower bound for the
multiplicative distortion is Ω( αm

logm ), which matches Ω( m
logm )

for any constant value of α.

4. QUASI-CYCLES AND δ-HYPERBOLIC
SPACES

In this section we show a counterpart to Theorem 3.5: ev-
ery metric space with small quasi-cyclicity admits an embed-
ding with small distortion into H

k. We do this by establish-
ing a relation between quasi-cyclicity and δ-hyperbolicity.

4



q
q1 q2

r1 r2

δ
4

δ
4

≥ 3δ
2

≥ δ
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Case (i) Case (ii)

Figure 4: The cases of Theorem 4.1.

Theorem 4.1. If a geodesic metric space (X , d) is strictly
δ-hyperbolic, then (X , d) must contain an (α, 1

3 )-quasi-cycle
of size Ω(δ) for some constant α > 0.

Proof. We prove the result using Rips’ definition of δ-
hyperbolic metric spaces. By definition of strict δ-hyper-
bolicity, there must be three points p1, p2, p3 ∈ X and a point
q ∈ [p1, p2] such that d(q, [p1, p3] ∪ [p2, p3]) = δ. Then, for
any given 0 ≤ x ≤ δ, there must exist points q1 ∈ [p1, q] and
q2 ∈ [q, p2] such that d(q1, [p1, p3]∪ [p2, p3]) = d(q2, [p1, p3]∪
[p2, p3]) = x. There are two cases to consider.

Case (i). There exists a point q1 ∈ [p1, q] such that
d(q1, [p2, p3]) = δ

4 . Note that we can switch p2 and p1

without loss of generality, so this also covers the symmetric
case. Let q1 ∈ [p1, q] be the point closest to q such that
d(q1, [p2, p3]) = δ

4 . Define q2 in the same way, where q2 ∈
[q, p2]. Let r1 ∈ [p2, p3] be the point such that d(q1, r1) = δ

4

and let r2 ∈ [p2, p3] be the point such that d(q2, r2) = δ
4 (see

Fig. 4 left). The points q1, r1, r2, and q2 form a geodesic
quadrilateral C. Since d(q, [p2, p3]) ≥ δ, the triangle in-
equality implies that d(q, q1) ≥ 3δ

4 and d(q, q2) ≥ 3δ
4 , and

hence d(q1, q2) ≥ 3δ
2 . This also means that d(r1, r2) ≥ δ,

since otherwise d(q1, q2) < 3δ
2 . Hence the length of C is at

least 3δ. For now we assume that the length of C is also
O(δ). We show that if the distance along C between two
points x, y ∈ C is at least δ, then d(x, y) ≥ δ

4 . This im-
plies that C is an (α, 1

3 )-quasi-cycle. By construction we
directly get that d([q1, q2], [r1, r2]) ≥ δ

4 . By the triangle
inequality we get that d([q1, r1], [q2, r2]) ≥ δ. Finally con-
sider points x ∈ [q1, q2] and y ∈ [q1, r1] such that the dis-
tance between x and y along C is at least δ. In that case
d(x, q1) ≥ 3δ

4 . Again, by the triangle inequality we get that
3δ
4 ≤ d(x, q1) ≤ d(x, y) + d(y, q1) ≤ d(x, y) + δ

4 and hence
d(x, y) ≥ δ

2 . The other cases are symmetric. Thus C is an
(α, 1

3 )-quasi-cycle of size Ω(δ).

Case (ii). We have d([p1, q], [p2, p3]) >
δ
4 and

d([p2, q], [p1, p3]) >
δ
4 . Let q1 ∈ [p1, q] be the point clos-

est to q such that d(q1, [p1, p3]) = δ
8 . Define q2 in the

same way, where q2 ∈ [q, p2] and d(q2, [p2, p3]) = δ
8 . Let

r1 ∈ [p1, p3] be the point such that d(q1, r1) = δ
8 and let

r2 ∈ [p2, p3] be the point such that d(q2, r2) = δ
8 . As in

Case (i) we can derive that d(q1, q2) ≥ 7δ
4 . We also get that

d(r1, r2) ≥ 3δ
2 . Instead of using the geodesic [r1, r2], we find

points s1 ∈ [r1, p3] and s2 ∈ [r2, p3] such that d(s1, s2) = δ
16

and d([r1, s1], [r2, s2]) ≥ δ
16 . Note that these points must ex-

ist. Now the points q1, r1, s1, s2, r2, and q2 form a geodesic
hexagon C with length at least 7δ

2 (see Fig. 4 right). Again
we assume that the length of C is O(δ). We now show
that if the distance along C between two points x, y ∈ C

is at least δ
2 , then d(x, y) ≥ δ

16 . This implies that C is
an (α, 1

3 )-quasi-cycle (actually, it is an (α, 1
7 )-quasi-cycle).

It is easy to see that d([q1, q2], [r1, s1] ∪ [r2, s2]) ≥ δ
8 and

d([r1, s1], [r2, s2]) ≥ δ
16 . The following cases remain (sym-

metric cases are ignored).

(a) x ∈ [q1, q2] and y ∈ [q1, r1]. Because the distance along
C is at least δ

2 , we get that d(x, q1) ≥ 3δ
8 . Now, by the

triangle inequality, d(x, y) ≥ δ
4 .

(b) x ∈ [q1, q2] and y ∈ [s1, s2]. By construction and the
triangle inequality we get that δ

8 ≤ d(x, s1) ≤ d(x, y)+
d(y, s1) ≤ d(x, y) + δ

16 . Thus d(x, y) ≥
δ
16 .

(c) x ∈ [q1, r1] and y ∈ [r1, s1]. Similar to Case (a).

(d) x ∈ [q1, r1] and y ∈ [s1, s2]. If d(x, y) ≤ δ
16 then

d(q1, s2) ≤ d(q1, x)+d(x, y)+d(y, s1) ≤ δ
4 . That means

that we should be in Case (i), so d(x, y) ≥ δ
16 .

(e) x ∈ [q1, r1] and y ∈ [r2, s2]. Similar to Case (d).

(f) x ∈ [q1, r1] and y ∈ [q2, r2]. By the triangle inequal-
ity we get that 7δ

4 ≤ d(q1, q2) ≤ d(q1, x) + d(x, y) +
d(y, q2) ≤ δ

4 + d(x, y). Thus d(x, y) ≥ 3δ
2 .

(g) x ∈ [r1, s1] and y ∈ [s1, s2]. Similar to Case (a).

Thus, C is an (α, 1
3 )-quasi-cycle of size Ω(δ).

Finally we consider the case that the length of C in Case (i)
or Case (ii) is ω(δ), or in particular, at least 37δ. This can
happen only if d(q1, q2), d(r1, s1), or d(r2, s2) is at least 12δ.
Without loss of generality we assume that d(q1, q2) ≥ 12δ.
Now it is easy to see that we can find points q�1, q

�
2 ∈ [q1, q2]

with the following properties: (1) 6δ ≤ d(q�1, q
�
2) ≤ 12δ, and

(2) there exist r
�
1, r

�
2 ∈ [p1, p3] or r

�
1, r

�
2 ∈ [p2, p3] such that

δ
8 ≤ d(q�1, r

�
1), d(q

�
2, r

�
2) ≤ δ. (Note that, for each x ∈ [q1, q2],

either d(x, [p1, p3]) ≤ δ or d(x, [p2, p3]) ≤ δ.) Hence, the cy-
cle C formed by q

�
1, r

�
1, r

�
2, q

�
2 has length Θ(δ) and is a scaled

version of Case (i). Thus, C is an (α, 1
3 )-quasi-cycle of size

Ω(δ).

Remark. The result easily extends to graph metrics of
unweighted graphs (which are not geodesic). This follows
because the proof works for the geodesic version of the graph
metric, and all distances involved in the proof change by at
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most 1 when considering the original graph metric (since
each edge has length 1).

In the preceding theorem, we considered (α, β)-quasi-cycles
with β = 1

3 , which is sufficient to bound the quasi-cyclicity
of a strictly δ-hyperbolic metric space. But we can play with
the constants to obtain the same result for other values of β,
leading to a tradeoff between α, β, and the size of the quasi-
cycle. Theorem 4.1 also implies that, if the quasi-cyclicity
of a metric space (X , d) is O(1), then (X , d) is δ-hyperbolic.
(We remind the reader again that by convention δ is con-
stant for δ-hyperbolicity.)

4.1 An Upper Bound for Distortion
Unfortunately, not all δ-hyperbolic metric spaces embed

well into H
k, and we need some additional assumptions to

achieve low distortion embeddings into hyperbolic space.
In Euclidean space, good embeddings are associated with
bounded doubling dimension: for example, the beacon-based
embedding of [9] requires bounded doubling dimension to
achieve constant (multiplicative) distortion. However,
bounded doubling dimension alone does not guarantee low
distortion: the cycle metric has bounded doubling dimen-
sion yet it embeds very poorly into hyperbolic space. On
the other hand, if we assume δ-hyperbolicity then a weaker
condition than doubling dimension, called bounded growth
at some scale and discussed below, suffices for a good upper
bound on distortion.
Given a metric space (X , d) and a point x ∈ X , define

the ball Bx(r) = {y ∈ X | d(x, y) ≤ r}. The doubling
dimension of (X , d) is the smallest k such that every ball in
(X , d) of radius r can be covered by at most 2k balls of radius
r
2 . We also say (X , d) is 2k-doubling, or simply doubling, if
k is constant.2 A metric space (X , d) has bounded growth
at some scale if there exist constants R > r > 0 such that
every ball of radius R can be covered by K balls of radius r
for some constant K. It is easy to see that this is a weaker
condition than doubling.

In the context of graph metrics, it turns out that bounded
node degree implies bounded growth at some scale, and so
that is the assumption we make for our graphs. (The
bounded degree assumption is typically satisfied in most
practical graphs, including social networks, but can also
be theoretically justified: we argue in Lemma A.1 (Ap-
pendix A) that without the bounded degree assumption,
one cannot achieve constant (multiplicative) distortion, in
constant-dimensional hyperbolic space using only a constant
factor scaling.) Finally, for our upper bound, we also allow
a constant-factor scaling of the input metric: this affects
neither our lower bounds nor the intrinsic behavior of hy-
perbolic space.

For the sake of brevity, we define a good additive (multi-
plicative) embedding as an embedding with constant additive
(multiplicative) distortion subject to rescaling of the metric
by only a constant factor. We can now state the main result
of this section.

Theorem 4.2. Let G be a graph metric with bounded de-
gree and constant quasi-cyclicity. Then, there exists a good
additive embedding of G into H

k.

2The doubling dimension is closely related to the Assouad
dimension, see [1]. A metric space is doubling if and only if
it has finite Assouad dimension.

Proof. The proof follows from Theorem 4.1 in combi-
nation with the following result of Bonk and Schramm [2]
(with our notation3): Any δ-hyperbolic metric space (X , d)
with bounded growth at some scale admits a good additive
embedding into H

k.

5. A LINEAR TIME ALGORITHM FOR
HYPERBOLIC EMBEDDING

We now address the algorithmic question of efficiently em-
bedding graph metrics into hyperbolic space. Throughout
this section we assume that the input is a δ-hyperbolic graph
metric G = (V,E) with bounded degree. Our goal is to com-
pute an embedding of G into H

k with small distortion, for
some constant k.

The result by Bonk and Schramm [2] is constructive but
not algorithmic. Since we are interested in embedding large-
scale graphs, such as social networks, their size rules out the
feasibility of quadratic-time algorithms. Our main result in
this section is a simple randomized algorithm that runs in
linear O(|V |+ |E|) time, and achieves constant additive dis-
tortion for all but an ε fraction of the node-pairs of G. The
idea of ensuring good distortion for most of the node-pairs
is widely used in practice [17, 18, 20], with a rigorous theo-
retical treatment by Kleinberg et al. [9] for Euclidean space.
We also follow this beacon-approach, however, we cannot
apply their algorithm directly because our input graphs do
not have bounded doubling dimension, and our target space
is hyperbolic space instead of Euclidean space.

Our algorithm is inspired by the results of [2]. The main
idea is to consider the so-called Gromov boundary of a metric
space. The boundary ∂G of G is doubling, and the bound-
ary ∂H

k of Hk resembles R
k−1. We can therefore use the

beacon-approach of Kleinberg et al. to compute an embed-
ding f of ∂G into ∂H

k. We then use results of [2] to extend
f to an embedding F of G into H

k (see Fig. 5; more details
are explained in Section 5.1). Intuitively, the boundary of a
metric space (X , d) can be seen as the set of geodesic rays
of X originating from a fixed base point in X . Thus, f is
an embedding of the set of geodesic rays of G into the set of
geodesic rays of Hk, and F extends this embedding to points
on the geodesic rays. Interestingly, if f is a good multiplica-
tive embedding, then F is a good additive embedding.

Our algorithm consists of the following steps:

1. Compute the boundary ∂G.

2. Compute an embedding f of ∂G into Euclidean space
(Rk−1).

3. Extend f to an embedding F of G into H
k.

For step (3) we use the results of [2], which we describe in
Section 5.1. Since ∂G may contain a quadratic number of
node-pairs, we cannot compute ∂G in linear time. Therefore,
the key challenge is to compute f without fully constructing
∂G. Before we can describe this algorithm in detail, we first
need to review the key concepts used in the result of [2].

3The result of [2] actually requires the metric space to be
geodesic, but this restriction can be ignored using [2, Theo-
rem 4.1]. We point out that our graph metrics are 1-almost
geodesic using their notation.
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k

∂Hk
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∂G

Con(∂G)

∂Hk ≈ R
k−1

H
kCon(Rk−1)

f

f̂g h

b

G

b

F = h ◦ f̂ ◦ g

Figure 5: A schematic representation of the embedding of G into H
k
.

5.1 Embedding δ-hyperbolic Metric Spaces
into H

k

Gromov boundary. The boundary ∂X of a δ-hyperbolic
metric space (X , d) is defined as follows. Given a point
b ∈ X , we say a sequence {xi} ⊆ X converges at infin-
ity if limi,j→∞(xi|xj)b = ∞, where (y|z)x is the Gromov
product of y and z at x. Two sequences {xi} ⊆ X and
{yi} ⊆ X that converge at infinity are called equivalent if
limi→∞(xi|yi)b = ∞. The elements of ∂X are the equiva-
lence classes of sequences that converge at infinity. As men-
tioned above, the elements of ∂X correspond (roughly) to
geodesic rays originating from b. An example with X = H

2

(in the Poincaré disc model) is shown on the right of Fig-
ure 5. Using limits we can easily extend the definition
of the Gromov product (y|z)x to the boundary ∂X , i.e.,
y, z ∈ X ∪ ∂X and x ∈ X (see [2] for details).

The notion of a boundary does not make sense for finite
graphs, which are our primary interest, and so we extend a
graph metric G as follows. Let b ∈ V be an arbitrary node,
called the base of G, and consider the shortest path tree of
G rooted at b. Let L(G) ⊂ V be the set of leaves of this tree.
To each leaf u ∈ L(G) we attach a chain of nodes γu that
extends to infinity, and let G� be the resulting metric space
(see Fig. 5 left). Each element of ∂G� can be identified with
γu for some u ∈ L(G). The definition of the Gromov product
implies that (γu|γv)b = (u|v)b, and so, considering only the
Gromov product, we can simply identify the boundary ∂G

with L(G).4

Returning to general boundaries, we can define a metric
d∂X = db,� on a boundary ∂X . This metric depends on the
choice of the base point b ∈ X and a constant � > 0, and is
defined as follows:

d∂X (x, y) = inf

�
m�

i=1

e
−�(xi−1|xi)b

�
for x, y ∈ ∂X (6)

where the infimum is taken over all finite sequences x =
x0, x1, . . . , xm = y in ∂X , and where e

−∞ = 0. Note that
d∂X depends only on Gromov products in ∂X , and hence
extends to the set of leaves L(G) of a (finite) graph metric
G, as described above. The following important property

4Using the terminology of [2], our construction implies that
the set of geodesic rays starting from b is cobounded in the
geodesic version of the graph metric (since each node is on
a geodesic ray). This avoids the method employed in [2]
to deal with finite metrics, and results in a more natural
approach to deal with unweighted graph metrics.

was shown in [5, p. 285].

Lemma 5.1. There exists a constant �0 such that, if X is
δ-hyperbolic and �δ ≤ �0, then

1
2
e
−�(x|y)b ≤ d∂X (x, y) ≤ e

−�(x|y)b ∀x, y ∈ ∂X

Throughout the rest of the paper, we simply write d∂X for
the boundary metric, implicitly assuming that our choice of
� satisfies Lemma 5.1, since all other relevant properties of
d∂X do not depend on the choice of b or �. The following
property of the boundary is crucial.

Lemma 5.2 ([2, Proposition 6.2 & Theorem 9.2]).
If (X , d) is δ-hyperbolic and has bounded growth at some
scale, then (∂X , d∂X ) is doubling and has a bounded diame-
ter.

Hyperbolic extension. One can also define a metric space
that acts as the “opposite” of the boundary. Let (X , d) be a
bounded metric space with diameter D. The hyperbolic ex-
tension Con(X ) of (X , d) is the metric space (X × (0, D], de)
where

de((x, h), (x
�
, h

�)) = 2 log

�
d(x, x�) + max(h, h�)√

hh�

�
(7)

for (x, h), (x�
, h

�) ∈ X × (0, D]

It can easily be shown that Con(X ) is δ-hyperbolic. Fur-
thermore, there exists a good additive embedding of X into
Con(∂X ) and vice versa (see [2, Theorem 8.2]). Finally, if
there is a good multiplicative embedding f of X1 into X2,
then we can find a good additive embedding f̂ of Con(X1)
into Con(X2) (see [2, Theorem 7.4]).

We are now ready to describe step (3) of our algorithm.
Given a good multiplicative embedding f of ∂G into ∂H

k ≈
R

k−1, we can compute a good additive embedding f̂ of
Con(∂G) into Con(∂Hk). We can further compute good ad-
ditive embeddings g and h from G into Con(∂G) and from
Con(∂Hk) into H

k, respectively. The extension F of f is
simply given by F = h ◦ f̂ ◦ g, which is a good additive
embedding of G into H

k (see Fig. 5). Furthermore, the em-
bedding F can be computed using f in linear time, since f̂ ,
g, and h are explicitly stated in [2].5

5These embeddings require diameters of ∂G and f(∂G),
which cannot be computed in linear time, but an approx-
imation of the diameters suffices for our purpose. In partic-
ular, a 2-approximation of the diameter D of (X , d) is easily
computed in linear time, since D ≤ 2maxy∈X d(x, y) ≤ 2D
for all x ∈ X .
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5.2 Beacon-based Embedding for δ-hyperbolic
Graphs

In this section, we show how to efficiently compute the em-
bedding f of ∂G into R

k−1. In order to compute f , we adapt
the algorithm of Kleinberg et al. [9], where a fixed number of
nodes (beacons) are used to embed a doubling metric space
into a fixed-dimensional Euclidean space. Since we cannot
efficiently compute a metric on ∂G, we need a modified ap-
proach. Before we describe our method, however, let us
briefly review the beacon-based scheme of [9].

Given a doubling metric space (X , d), we pick a constant
number of beacons B ⊆ X , and consider only the distances
between pairs in EB = B × X . Kleinberg et al. [9] show
that, for a suitably chosen set B, if f is a good multiplicative
embedding of X into Euclidean space for pairs in EB, then it
is also a good multiplicative embedding on most pairs of X .
This can be formalized by the concept of an (ε, β)-base. A
set of beacons B is an (ε, β)-base if for all but an ε-fraction
of the pairs (u, v) ∈ X × X , there exists a b ∈ B such that
min(d(u, b), d(v, b)) ≤ βd(u, v). If X is s-doubling, then a
random sample of O( 1ε log

1
ε )(

2
β )

2 log s beacons is an (ε, β)-

base with high probability. In addition, if B is an (ε, β)-
base, and f is an embedding of X into Euclidean space with
multiplicative distortion ∆ ≤ 1

4β on EB, then f has O(∆)
multiplicative distortion on all but an ε fraction of node-
pairs in X . Furthermore, f can be computed efficiently using
only the distance pairs in EB.

We now describe how to utilize this beacon approach to
our setting. We pick an arbitrary node b ∈ V of the graph
G, and compute the shortest path tree rooted at b, which
takes linear time using breadth-first search. We identify
∂G with the set of leaves L(G), using the metric in Equa-
tion 6. We then randomly pick a constant number of bea-
cons B ⊆ L(G), and compute distances from the beacons
to all the nodes of V , which also takes linear time. Let
EB = B × L(G). Using the shortest paths trees from the
beacon nodes, we can also compute (u|v)b for (u, v) ∈ EB.
Let d̃(u, v) = 1

2e
−�(u|v)b , for � small enough. By Lemma 5.1

we have d̃(u, v) ≤ d∂G(u, v) ≤ 2d̃(u, v). Unfortunately d̃

may not be a metric, but we can easily fix that problem by
considering the weighted graph G̃ = (L(G), EB) with the
weights given by d̃, using the shortest path metric d̄ on G̃.

Lemma 5.3. We can compute d̄ for (u, v) ∈ EB in linear
time and d̄(u, v) ≤ d∂G(u, v) ≤ 2d̄(u, v).

Proof. First, it is clear that d̄(u, v) ≤ d̃(u, v) ≤ d∂G(u, v).
Now let u = u0, u1, . . . , um = v be the shortest path from u

to v in G̃. Then we get the following:

d∂G(u, v) ≤
m�

i=1

d∂G(ui−1, ui) ≤ 2
m�

i=1

d̃(ui−1, ui) = 2d̄(u, v)

Next we compute d̄ by updating the weights w(u, v) of G̃.
First we compute new weights defined by
w

�(u, v) = minx∈L(G)\Bw(u, x) + w(v, x) for u, v ∈ B. This
step runs in O(|B|2|L(G)|) time. If w�(u, v) < w(u, v), then
we replace w(u, v) by w

�(u, v). Next we compute shortest
paths for all pairs of nodes on the subgraph of G̃ induced
by B, and update the weights accordingly. This step runs in
O(|B|3) time. Since the shortest path between u, v ∈ B in G̃

cannot contain two consecutive nodes of L(G)\B, the weight
w(u, v) now corresponds to the distance d̄(u, v) for u, v ∈ B.

Finally we can compute d̄(u, v) = minx∈B w(u, x) + w(x, v)
for u ∈ L(G) \ B and v ∈ B. This is correct, since the
first node (after u) of the shortest path in G̃ between u

and v must be in B (it can be v itself). This step runs in
O(|B|2|L(G)|) time. Since B = O(1), the algorithm runs in
linear time.

The metric d̄ is the one for which we can compute the
beacon-based embedding of [9] in linear time. Because
d̄(u, v) ≤ d∂G(u, v) ≤ 2d̄(u, v), the embedding also achieves
constant multiplicative distortion with respect to the metric
d∂G(u, v), for all but an ε fraction of node-pairs in ∂G. Let f
be this embedding, and let F be its extension, as described
in Section 5.1. The embedding f essentially maps geodesic
rays (or shortest paths) in G = (V,E) to geodesic rays in H

k.
For u ∈ ∂G, let A(u) be the set of nodes v ∈ V such that v
is on the geodesic ray corresponding to u. Note that v can
be on multiple geodesic rays; in that case we can assign v to
one of those rays arbitrarily. If f has constant multiplica-
tive distortion on a pair (u1, u2) for u1, u2 ∈ dG, then F has
constant additive distortion on all pairs in A(u1) × A(u2).
So, if A(u1) and A(u2) are both very large, and (u1, u2)
is a pair with bad distortion, we may get many pairs with
bad distortion under F . To remedy this issue, we sample
beacons based on the size of A(u), i.e., the probability of
choosing u ∈ ∂G as a beacon is |A(u)|/|V |. We now obtain
the following result.

Theorem 5.4. Given a δ-hyperbolic graph metric G with
bounded degree, and any constant ε > 0, we can compute in
linear time an embedding F of G into H

k such that, with
high probability, F is a good additive embedding for all but
an ε fraction of all node-pairs in G.

Proof. We use the algorithm described in Section 5.2.
The running time directly follows from Lemma 5.3 and the
discussion in Section 5.2. We need to show that F achieves
constant additive distortion for all but an ε fraction of dis-
tance pairs in G. Let f be the embedding of ∂G into R

k−1

used to construct F . Now imagine replacing each u ∈ dG

by the set A(u) placed arbitrarily close to the original u in
the metric space, without changing the doubling constant
(we can use a metric representing points on a line for the
distances among A(u)). Let (X , d) be the resulting metric
space. We can run the beacon-based algorithm on X ; let f �

be the corresponding embedding. Let B� be a sample set of
beacons of X (chosen uniformly to construct f

�), and let B
be the corresponding sample set of beacons of ∂G (to con-
struct f) such that u ∈ B if A(u) ∩ B� �= ∅. Note that the
probability of choosing B� is the same as the probability of
choosing B (assuming we can choose the same beacon mul-
tiple times), since the probability of choosing u ∈ ∂G as a
beacon is |A(u)|/|X |.

Let u1, u2 ∈ ∂G where u1 �= u2, and let v1 ∈ A(u1) and
v2 ∈ A(u2). We know that all but an ε fraction of distance
pairs (v1, v2) of X have constant multiplicative distortion
under embedding f

�. Let ∆ be the multiplicative distortion
of f � on pairs in B�×X . By construction, we can assume that
∆ is also the multiplicative distortion of f on pairs in B×∂G.
Recall that (v1, v2) has O(∆) distortion under f � if there ex-
ists a b

� ∈ B� such that min(d(v1, b
�), d(v2, b

�)) ≤ βd(v1, v2),
for some β ≤ 1

4∆ . By construction, it must also hold that
there exists a b ∈ B such that min(d∂G(u1, b), d∂G(u2, b)) ≤
βd∂G(u1, u2). Hence, the pair (u1, u2) of ∂G must have
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O(∆) multiplicative distortion under f . As a result, the
corresponding pair (v1, v2) of G must have constant additive
distortion under F . Thus, F is a good additive embedding
for all but an ε fraction of all node-pairs in G.

Remark. An astute reader may have noticed that our em-
bedding algorithm requires knowledge of δ of the graph G,
just as the beacon-based Euclidean embedding of [9] requires
knowledge of the doubling constant of the input metric. In
practice, the value of δ is neither known nor computable in
linear time, but empirical evidence suggests that it is typi-
cally small, and so randomly choosing a sufficiently large but
constant number of beacons B ⊆ ∂G is enough for comput-
ing an embedding F of G into H

k. Indeed, our mathematical
framework can be viewed as lending theoretical justification
for beacon-based hyperbolic-space embeddings, like the one
implemented in [20].

6. CONCLUSION
In this paper, we explored the problem of embedding undi-

rected graphs into hyperbolic space with low distortion. The
wide-spread use of hyperbolic space for network analysis and
routing, including low-distortion embedding of Internet scale
graphs [17, 18, 20] and greedy routing [8], naturally begs a
theoretical investigation of these phenomenon from a worst-
case perspective. Our lower bounds give a definitive neg-
ative answer to the question: can all graphs be embedded
in hyperbolic space with small distortion (multiplicative or
additive)? On the positive side, we identified a fundamental
measure of graphs, quasi-cyclicity, and showed that graphs
with small distortion must also have small quasi-cyclicity.
The structure of many graphs, including social networks
and Internet, may naturally limit the quasi-cyclicity of those
graphs, offering one possible explanation for their nice em-
bedding into hyperbolic space. We also presented a sim-
ple and fast algorithm for embedding large bounded-degree
graphs into hyperbolic space so that all but an ε fraction of
the nodes have a constant additive distortion as long as the
input graph is δ-hyperbolic, or has constant quasi-cyclicity.

Our work suggests a number of open problems and re-
search directions. First, is the converse of Theorem 4.1 also
true, i.e., is an (α, β)-quasi-cycle of size n always strictly
Ω(n)-hyperbolic? This can easily be shown for α >

1
2 , but

the problem is open for other values of α (and β). On a re-
lated note, Theorem 3.5 and its counterpart Theorem 4.2 are
not exactly converses. Is it possible to obtain a tight upper
bound on the distortion as a function of the quasi-cyclicity
of a metric space? Finally, it would be interesting to eval-
uate how well our embedding algorithm works in practice.
Can it improve upon existing, more direct algorithms to em-
bed graphs into hyperbolic space, like the one implemented
in [20]?
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APPENDIX
A. ADDITIONAL PROOFS
Lemma 3.2. Let p ∈ H

k and let P : [0, 1] → H
k be a

curve such that ∠P (0)pP (1) = α and dH(p, P (t)) ≥ R for
0 ≤ t ≤ 1. Then the length of P is at least α sinh(R).

Proof. As for Euclidean space, we can define polar coor-
dinates for H

k, using the distance and angles w.r.t. a fixed
point in H

k. We need the formula to compute the arc length
of a curve P (t) = (r(t), φ(t)) (0 ≤ t ≤ 1) in polar coordinates
in H

2, which is as follows:

|P | =
� 1

0

��
dr

dt

�2

+ sinh2(r(t))

�
dφ

dt

�2

dt (8)

Now consider the hyperbolic plane through p, P (0), and
P (1). Choose polar coordinates (r, φ) for this hyperbolic
plane such that p is at the center (r = 0). We can extend
these polar coordinates to H

k, but the remaining coordinates
can be ignored for our bound. If we write P (t) = (r(t), φ(t)),
then we obtain the claimed bound using Equation 8:

|P | ≥
� 1

0

��
dr

dt

�2

+ sinh2(r(t))

�
dφ

dt

�2

dt

≥
� 1

0

�

sinh2(R)

�
dφ

dt

�2

dt

= sinh(R)

� φ(1)

φ(0)

dφ

≥ α sinh(R)

Lemma A.1. Consider the metric space (Sn, λdS), where
Sn is the star graph with center v0 and leaves v1, . . . , vn,
and λ is a scaling factor of the standard metric. If there ex-
ists an embedding f of (Sn, λdS) into H

k with only constant
multiplicative distortion, then λk = Ω(log n).

Proof. Let pi = f(vi) be the embedded points in H
k.

Since f is non-expansive, we get that dH(p0, pi) ≤ λ for
1 ≤ i ≤ n. If the embedding f has multiplicative distortion
ρ, then the balls in H

k with radius λ
ρ centered at the points

pi (1 ≤ i ≤ n) must be interior disjoint. Furthermore, all
these balls must lie inside the ball with radius 2λ centered
at p0. The volume of a ball with radius r in H

k is Vr =
G(k)

� r

0
sinhk−1(s) ds, where G is a function depending only

on k. This can also be written as Vr = G(k)2Θ(rk). Since ρ

is constant and n balls with radius λ
ρ must fit in a ball with

radius 2λ, there must be constants c2 > c1 > 0 such that
the following inequality holds:

G(k)n2c1λk ≤ G(k)2c2λk

log n+ c1λk ≤ c2λk

From the above inequality we can directly conclude that
λk = Ω(log n).
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