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Generalized Second Price (GSP) auctions are widely used by search engines today to sell their ad slots.
Most search engines have supported broad match between queries and bid keywords when executing GSP
auctions, however, it has been revealed that GSP auction with standard broad-match mechanism they are
currently using (denoted as SBM-GSP) has several theoretical drawbacks (e.g., its theoretical properties
are known only for the single-slot case and full-information setting, and even in this simple setting, the
corresponding worst-case social welfare can be rather bad). To address this issue, we propose a novel broad-
match mechanism, which we call the Probabilistic Broad-Match (PBM) mechanism. Different from SBM
that puts together the ads bidding on all the keywords matched to a given query for the GSP auction, the
GSP with PBM (denoted as PBM-GSP) randomly samples a keyword according to a predefined probability
distribution and only runs the GSP auction for the ads bidding on this sampled keyword. We perform a
comprehensive study on the theoretical properties of the PBM-GSP. Specifically, we study its social welfare
in the worst equilibrium, in both full-information and Bayesian settings. The results show that PBM-GSP
can generate larger welfare than SBM-GSP under mild conditions. Furthermore, we also study the revenue
guarantee for PBM-GSP in Bayesian setting. To the best of our knowledge, this is the first work on broad-
match mechanisms for GSP that goes beyond the single-slot case and the full-information setting.

Categories and Subject Descriptors: J.4 [Computer Applications]: Social and Behavioral Sci-
ences—Economics

General Terms: Economics, Theory

Additional Key Words and Phrases: Auction Theory, Mechanism Design, Price of Anarchy, Sponsored Search

1. INTRODUCTION

Online advertising has become a key revenue source for many businesses on the In-
ternet. Sponsored search is a major type of online advertising, which displays paid ad-
vertisements (ads) along with organic search results. Generalized Second Price (GSP)
auction is one of the most commonly used auction mechanisms in sponsored search,
which works as follows. When a query is issued by a web user, the search engine ranks
all the ads bidding on this query (or keywords related to the query) according to their
bid prices, and charges the owner of a clicked ad by the minimum bid price for him/her
to maintain the current rank position.1

If only the ads that exactly bid on the query are included in the auction, we call the
corresponding mechanism an exact-match mechanism. The GSP auction in this spe-
cific setting has been well studied in the literature [Babaioff and Roughgarden 2010;
Lahaie and Pennock 2007; Goel and Munagala 2009; Varian 2007; Aggarwal et al.
2006; Caragiannis et al. 2011; Edelman et al. 2007], and has been shown to have a
number of nice theoretical properties: (1) It possesses an efficient (welfare-maximizing)
Nash equilibrium; (2) Its social welfare in equilibrium is fairly good even in the worst
case : the pure price of anarchy (PoA) is bounded by 1.282 and the Bayes-Nash PoA is
bounded by 2.927; (3) In the Bayesian setting, the GSP auction paired with the Myer-

1In practice, the predicted click-through rate is also used in the ranking and pricing rules. However, it can
be safely absorbed into the weighted bid prices without influencing the theoretical analysis on the GSP
auctions.
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son reserve price generates at least a constant fraction (i.e., 1/6) of the optimal revenue
in its Bayes-Nash equilibria for MHR distribution.

Despite the fruitful and positive results, the exact-match mechanism is not suffi-
cient when we are faced with practical requirements in commercial search engines.
First, the query space is extremely large (billions of queries are issued by web users
every day), so it is practically impossible for advertisers to bid on every query related
to their ads. Second, even if advertisers are capable enough to bid on the huge number
of related queries, the search engine might not be able to afford it due to the scalability
and latency constraints. Due to these reasons, commercial search engines usually use
a broad-match mechanism to enhance the GSP auction. A broad-match mechanism
requires advertisers to bid on at most κ keywords instead of an arbitrary number of
queries, and matches the keywords to queries using a query-keyword bipartite graph
(in which the number of keywords is significantly smaller than the number of queries).
The broad-match mechanism is friendly to advertisers since they only need to consider
a relatively small number of keywords in order to reach a large number of related
queries. The mechanism is also friendly to the search engine since it restricts the com-
plexity of the bidding language and therefore that of the auction system.

Today, most search engines implement the broad-match mechanism in a straight-
forward manner. That is, when a query is issued, all the ads bidding on the keywords
that can be matched to the query on the query-keyword bipartite graph will be put
together for the GSP auction. And for every advertiser, the bids on the matched key-
words will be transformed to the bid on the query using some pre-defined heuristics
(e.g., the maximum bid on the matched keywords). For ease of reference, we call the
broad-match mechanism described above as the Standard Broad-Match GSP mecha-
nism, or SBM-GSP for short.

Although this mechanism effectively addresses the problems with the exact-match
mechanism, as far as we know, it has several theoretical drawbacks.

— The social welfare of the SBM-GSP mechanism was studied in [Dhangwatnotai 2011],
for the single-slot case and full-information setting only. By using the notion of ho-
mogeneity (denoted as c) to measure the diversity of an advertiser’s valuations over
different queries that can be matched to a keyword, an almost-tight pure PoA bound
was derived, whose order is Θ(c2). Considering that c is usually large in practice, it
can be concluded that the social welfare of the SBM-GSP mechanism can be rather
bad in its worst equilibrium.

— One has not obtained a complete picture about the theoretical properties of the SBM-
GSP mechanism: no results are available regarding the multi-slot case (which is,
however, more practically important since most search engines sell multiple ad slots
per query), and even for the single-slot case, the social welfare and revenue in the
Bayesian setting are not clear.

Given the aforementioned limitations of the SBM-GSP mechanism, a natural ques-
tion to ask is whether we can design a broad-match mechanism with better guarantees
on its performance, in terms of both social welfare and revenue, for both single-slot and
multi-slot cases, and in both full-information and Bayesian settings. This is exactly the
focus of our work.

In this paper, we propose a new broad-match mechanism, which we call Probabilistic
Broad-Match mechanism. Its basic idea is as follows. For each query, our mechanism
assigns a matching probability to every keyword that can be matched to this query on
the query-keyword bipartite graph. When the query is issued by a user, the mecha-
nism randomly chooses a keyword according to the matching probability distribution
and runs the GSP auction only upon those ads that bid on the chosen keyword. For
simplicity, we also use PBM-GSP to refer to the above mechanism.
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We perform a comprehensive study on the social welfare in equilibrium of the PBM-
GSP mechanism, for both single-slot and multi-slot cases, and in both full-information
and Bayesian settings. We also derive a revenue bound for the PBM-GSP mechanism
for both single-slot and multi-slot cases in the Bayesian setting. To the best of our
knowledge, this is the first work on broad-match mechanisms that goes far beyond the
single-slot case and the full-information setting.

Our Results. The contributions of our work can be summarized as follows.

— (Section 3) We propose a novel broad-match mechanism (i.e., the PBM mechanism)
for multi-slot sponsored search auctions.

— (Section 4) We analyze the social welfare in equilibrium of the PBM-GSP mecha-
nism in both full-information and Bayesian settings. We define a new concept, called
keyword-level expressiveness (denoted as β), which can better characterize the ex-
pressiveness of the bidding language in the PBM-GSP mechanism than the concept
of expressiveness proposed in previous work [Dhangwatnotai 2011].
— (Section 4.1) We extend the concept of homogeneity c defined in [Dhangwatnotai

2011] to the Bayesian setting, and prove that the Bayes-Nash PoA of PBM-GSP is

at most ec(1+β)
(e−1)β in the multi-slot case. The bound can be further optimized to c(1+β)

β

in the single-slot case.
— (Section 4.2) We prove that in the full-information setting, the pure PoA of PBM-

GSP is at most c(1+β)
β

when there are multiple slots to display ads. And the bound

can be improved to c
β

in the single-slot case (which is tight with respect to each

factor). Furthermore, we show that the pure PoA bound of PBM-GSP is better than
that of SBM-GSP in the same setting under mild conditions.

— (Section 5) We analyze the revenue bound of PBM-GSP in the Bayesian setting.
We prove that by using the Myerson reserve price to each keyword, PBM-GSP can
achieve a revenue at least β

1+β
1

2η(ce)2 of the optimal social welfare with MHR distri-

bution, where η is the maximum derivative of the virtual value function.

2. PRELIMINARIES

In this section, we introduce the basics about broad-match auctions, and some prelim-
inary concepts that will be used in our theoretical analysis.

2.1. Broad-Match Auctions

According to [Feldman et al. 2007; Broder et al. 2009; Even Dar et al. 2009;
Dhangwatnotai 2011], a broad-match mechanism can be defined on a query-keyword
bipartite graph. Denote Q as the query space, and denote P as a probability distribu-
tion over Q, which indicates the probability that query q is issued by users. Denote
S as the keyword space. In practice, the size of Q is much larger than the size of S.
Denote G = (Q,S, E) as a (undirected) bipartite graph between queries and keywords,
in which an edge (q, s) ∈ E if and only if query q can be matched to keyword s (or equiv-
alently, s can be matched to q). Denote NG(v) as the neighborhood of vertex v ∈ Q ∪ S,
i.e., for any query q, NG(q) = {s : (q, s) ∈ E} represents the set of keywords that can be
matched to the query, and for any keyword s, NG(s) = {q : (q, s) ∈ E} represents the set
of queries that can be matched to the keyword. Without loss of generality, we assume
NG(s) 6= ∅, for all s and NG(q) 6= ∅, for all q.
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Assume there are n advertisers and n slots. Denote wk as the click probability asso-
ciated with the k-th ad slot2, which satisfies wi ≥ wj i.f.f i < j. We assume advertiser i
has a private valuation vqi for query q ∈ Q if his/her ad is clicked by the users, denote

v = (v1, v2, ..., vn) as the valuation profile of advertisers in which vi ∈ R
|Q|
+ is the vector

indicating the i-th advertiser’s valuation for all the queries, and v−i as the valuations
of the other advertisers. We assume for any query q, there is at least one advertiser
that positively valuates it. Define Qi = {q ∈ Q : vqi > 0} as the query set that advertiser
i has positive values on. For ease of reference, in the rest of the paper, we will call the
queries (keywords) that an advertiser positively valuates positive queries (keywords).

Denote b = (b1, b2, ..., bn) as the advertisers’ bid profile, where bi ∈ R
|S|
+ is a vector

indicating the i-th advertiser’s bid prices on all the keywords in S, and denote b−i as
the bids of advertisers excluding i. According to the industry practice, we assume that
each advertiser can only bid on up to κ keywords. As a result, for each bi, there are at
most κ positive values. Denote bsi as the bid price of advertiser i on keyword s and b

s

as all the advertisers’ bids on keyword s.
Based on the notations above, SBM-GSP can be described as follows. When a query

q is issued, the SBM-GSP mechanism first finds all the keywords that can be matched
to the query. Second, it includes all the ads that bid on these keywords into the auction
and uses the following formula to transform the bid prices on keywords of advertiser
i to his/her bid price on the query: bqi = maxs∈NG(q) b

s
i . In the end, the GSP auction is

run upon the ads with their query-level bids, i.e., all the ads are ranked by their bids,
and the payment of a clicked ad equals the bid of the ad ranked right below it.

2.2. Solution Concepts

In this paper, we consider rational behaviors under various assumptions on the in-
formation availablity to the advertisers. In general, the advertisers are engaged as
players in a game defined by the auction mechanism (in the remaining of the paper,
we use “advertiser” and “player” interchangeably). Every advertiser aims at selecting
a bidding strategy that maximizes his/her utility. According to the availability of the
information, we can categorize the settings into the Bayesian setting (partial informa-
tion setting) and the full-information setting respectively.

In the Bayesian setting, we assume that the valuation (type) profile v is drawn from
a publicly known distribution F. A strategy for player i is a (possibly randomized)

mapping bi : R
|Q|
+ −→ R

|S|
+ , mapping his/her type vi to a bid vector bi(vi). We use

b(v) = (b1(v1), b2(v2), ..., bn(vn)) to denote the corresponding bid profile when b(·) is
applied to v. Denote ui(b) as the utility function of advertiser i. We say a strategy b(·)
is a Bayes-Nash equilibrium for distribution F, if for all i, all vi, and all alternative
strategies b′i(·),

Ev−i,b[ui(bi(vi),b−i(v−i))|vi] ≥ Ev−i,b[ui(b
′
i(vi),b−i(v−i))|vi].

In other words, in a Bayes-Nash equilibrium, each player maximizes his/her expected
utility using strategy bi(·), assuming that the others bid according to strategies b−i(·).

In the full-information setting, the valuation profile v is known and fixed. In this
setting, a pure strategy of any advertiser corresponds to a bid vector bi. we say that
a bid profile b is a (pure) Nash equilibrium if there is no deviation from which the
players can be better off, i.e., for all advertiser i, for all b′i,

ui(bi,b−i) ≥ ui(b
′
i,b−i).

2In real world, the slot number is usually bounded by a constant K. In this case, we can define wk = 0, k > K
without loss of any generality.
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3. PROBABILISTIC BROAD-MATCH MECHANISM

As discussed in the introduction, the SBM-GSP mechanism has several drawbacks
from a theoretical perspective. In this paper, we develop a new broad-match mech-
anism with better theoretical guarantee, which we call Probabilistic Broad-Match
(PBM-GSP) mechanism. The detail of the PBM-GSP mechanism is described in Al-
gorithm 1, and can be explained as below.

ALGORITHM 1: Probabilistic Broad-Match Mechanism with GSP Auction (PBM-
GSP)

Input: Advertiser’s bid profile b, matching probability πq(s) for any query q,
keyword s.

Output: The ads to show for each query and the prices to charge from advertisers.
for each query q submitted to search engine do

Sample keyword s according to distribution πq(s);
Set bqi to be bsi ;
Run the GSP auction on bq1, · · · , b

q
n;

end

Given the query-keyword bipartite graph G, for each query q ∈ Q, we impose a
matching probability distribution πq(s) whose support is NG(q), i.e., πq(s) > 0 if and
only if s ∈ NG(q), and

∑
s∈NG(q) πq(s) = 1. With this matching probability distribution,

for any issued query q, the mechanism randomly samples a keyword s ∈ NG(q), and
selects the ads bidding on the keyword s into the auction. For each selected ad, the bid
price on keyword s will be directly used as the bid price on query q during this round
of auction, 3 i.e., bqi = bsi , where s ∼ πq, and then a GSP auction is run to determine the
ad allocations and prices.

For ease of description, we define σs,b(k) as the advertiser who is ranked at position

k and σ−1
s,b(i) as the ranking position of advertiser i, for any keyword s and bid profile

b. For sake of rigorousness, we define σs,b(k) = ∞ if there are fewer than k positive
bids on keyword s, and define bs∞ = vq∞ = 0, for any query q and keyword s. We also
define σ−1

s,b(i) = ∞ if advertiser i does not bid on keyword s, and define w∞ = 0. Define

ps,b(i) as the price charged to player i when keyword s is sampled and a user clicks
on the ads, i.e., for PBM-GSP, if advertiser j is ranked right below advertiser i, then
ps,b(i) = bsj . With the aforementioned notations, the expected utility of advertiser i can
be defined as

ui(b) =

∫
q∈Q

∑
s∈NG(q)

πq(s)wσ
−1
s,b

(i)
(vqi − ps,b(i))dP

As a common way to rule out unnatural equilibria [Caragiannis et al. 2012b;
Lucier et al. 2012a; Caragiannis et al. 2011; Dhangwatnotai 2011], we only consider
conservative bidders in the theoretical analysis. It is easy to show that for any adver-
tiser i on any keyword s, a bidding price bsi > vsi is always weakly dominated by the bid

3One may have noticed that due to the probabilistic sampling, an advertiser can only get access to a fraction
of the whole query volume if he remains bidding on the same set of keywords as he/she does with SBM-GSP.
Therefore, some advertisers may have to bid on more keywords so as to maintain the same visibility of their
ads to the users. Fortunately, since the number of keywords is always significantly smaller than the number
of queries, the situation will not be as serious as in exact-match mechanism.
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bsi = vsi (see Lemma 3.1), in which vsi is the expected value of keyword s for advertiser

i and defined as vsi , E[vqi |s] =

∫
q∈NG(s)

πq(s)v
q

i
dP

∫
q∈NG(s)

πq(s)dP
.

LEMMA 3.1. (Conservative bidder) For any advertiser i, a bid price bsi > vsi for key-

word s is always weakly dominated by bsi = vsi , where vsi , E[vqi |s] =

∫
q∈NG(s)

πq(s)v
q

i
dP

∫
q∈NG(s)

πq(s)dP
.

PROOF. Note that with the PBM-GSP mechanism, advertisers will not compete
across keywords. For advertiser i, denote us

i (b) =
∫
q∈NG(s)

πq(s)wσ
−1
s,b

(i)(v
q
i − ps,b(i))dP

as his/her utility obtained from keyword s. It is easy to see that ui(b) =
∑

s∈S us
i (b).

For any bidding profile b−i, if advertiser i bids a value larger than vsi on keyword s
and get the same position k as bidding vsi , changing his/her bid to vsi will not hurt
his/her total utility. If he/she bids a larger value and obtains a better position k′,
he/she will suffer a payment larger than vsi when his/her ad is clicked, and therefore
his/her expected utility on keyword s must be less than

∫
q∈NG(s)

πq(s)wk′ [vqi − vsi ]dP =

wk′ [
∫
q∈NG(s) πq(s)v

q
i dP − vsi

∫
q∈NG(s) πq(s)dP ] = 0, and the theorem follows.

In PBM mechanism, bids for different keywords will not be mixed up in the same
auction, it is easier for advertisers to evaluate their payoffs on each keyword. As a
result, they could develop more accurate bidding strategies to reflect their valuations
on each keyword. For example, it can be easily shown that in single-slot setting, the
dominant strategy for an advertiser is to truthfully report the expected valuation on
the keyword that he/she chooses to bid.

COROLLARY 3.2. When there is only one slot to display Ads, for any advertiser i, the
weakly dominant strategy for keyword s is bsi = vsi .

In the next sections, we show this probabilistic matching can eventually improve the
performances of the auction system.

4. SOCIAL WELFARE ANALYSIS

In this section, we present our theoretical results on the social welfare (efficiency)
of the proposed PBM-GSP mechanism. Specifically, we study the ratio between the
optimal social welfare and the worst-case welfare in equilibrium, which is also known
as the Price of Anarchy (PoA) [Koutsoupias and Papadimitriou 1999; Giotis and Karlin
2008; Christodoulou et al. 2008; Bhawalkar and Roughgarden 2011]:

— Bayes-Nash PoA : In the Bayesian setting, we assume every advertiser i privately
knows his/her own valuation vector vi for the queries, and only knows a prior dis-
tribution of other advertisers’ valuation vectors. Assume the valuation profile v is
drawn from a public distribution F and the Bayes-Nash PoA is defined as

Bayes-Nash PoA = max
F,b(·): a Bayes-Nash equilibrium

Ev[SW (OPT (v))]

Ev,b(v)[SW (b(v))]
,

where SW (OPT (v)) refers to the social welfare of the optimal allocation that allo-
cates slot k of any query q to the player with the k-th largest value, i.e.,

SW (OPT (v)) =

∫
q∈Q

n∑
k=1

wkv
q

[k] dP, (1)
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where vq[k] is the k-th largest value among the valuations of query q. Similarly, SW (b)

refers to the social welfare of the PBM-GSP mechanism with bidding profile b, i.e.,

SW (b) =

∫
q∈Q

∑
s∈NG(q)

πq(s)

n∑
k=1

wkv
q

σs,b(k)dP. (2)

— Pure PoA : In the full-information setting, the valuation of each advertiser on each
query is fixed and the pure PoA can be mathematically defined as follows:

pure PoA = max
v,b: a pure Nash equilibrium

SW (OPT (v))

SW (b)
.

In order to characterize the influence of the maximum number of bid keywords, i.e.,
κ, we use expressiveness to measure the capacity of the bidding language. The concept
of expressiveness has been widely used in the literature of auction theory [Sandholm
2007; Cramton et al. 2006; Lahaie et al. 2008; Boutilier et al. 2008], and its theoreti-
cal foundation has been established in [Benisch et al. 2008]. In this paper, we use a
new notion of expressiveness, which we call the keyword-level (KL) expressiveness. As
will be seen in later sections, the KL-expressiveness will affect both the social wel-
fare and search engine revenue for the PBM-GSP mechanism. The formal definition of
KL-expressiveness is given as below.

Definition 4.1. (Keyword-Level Expressiveness) Given a valuation profile v, we call
the auction system β-KL-expressive, if for any advertiser i, κ keywords can cover at
least β fraction of his/her positive keywords, i.e., κ ≥ β|{s : NG(s) ∩ Qi 6= ∅}|. We
call an auction system β-KL-expressive (in the Bayesian setting), if for any valuation
profile sampled from F, the auction system is β-KL-expressive. When β = 1, we say
the auction system is fully KL-expressive4.

4.1. Bayes-Nash Price of Anarchy

In this subsection, we analyze the Bayes-Nash PoA for the PBM-GSP mechanism.
We first extend the concept of homogeneity proposed in [Dhangwatnotai 2011] to the
Bayesian setting. We call the extended concept expected homogeneity, which measures
the diversity of advertisers’ valuations on the queries matched to the same keyword
in an expectation sense. For completeness, we list the definitions for both homogeneity
and expected homogeneity as follows (in the full-information setting, expected homo-
geneity will trivially reduce to homogeneity).

Definition 4.2. (Homogeneity) [Dhangwatnotai 2011] A keyword s is c-
homogeneous if for every advertiser i and two arbitrary queries q1, q2 ∈ NG(s),
vi(q1) ≤ cvi(q2). The auction system is c-homogeneous if every keyword s ∈ S is
c-homogeneous.

Definition 4.3. (Expected Homogeneity) A keyword s is c-expected-homogeneous
if for any advertiser i, two arbitrary queries q1, q2 ∈ NG(s), P (vq1i ≤ cE[vq2i ]) = 1.
The auction system is c-expected-homogeneous if every keyword s ∈ S is c-expected-
homogeneous.

We leverage the technique developed in [Caragiannis et al. 2012b], which is used to
analyze the PoA bound for the GSP auction.

4In real sponsored search systems, the number of keywords that an advertiser can bid on is usually large
enough to satisfy most of his/her needs. For example, in Google Adwords, advertisers are allowed to bid up to
3 million keywords, which can be regarded as quite a large number. In this case, we can consider the system
as fully KL-expressive.
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LEMMA 4.4. [Caragiannis et al. 2012b] We say that a game is (λ, µ)-semi-smooth
if for each player i there exists some (possibly randomized) strategy b′i(·) (depending
only on the type of the player) such that

∑
i Eb′

i
(vi)[ui(b

′
i(vi), b−i] ≥ λ · SW (OPT (v)) −

µ · SW (b) holds for every pure strategy profile b and every (fixed) type vector v (The
expectation is taken over the random bits of b′i(vi)). If a game is (λ, µ)-semi-smooth and
its social welfare is at least the sum of the players’ utilities, then the price of anarchy
with uncertainty is at most (µ+ 1)/λ.

With the above definitions and lemmas, we give an upper bound for the Bayes-Nash
PoA of the PBM-GSP mechanism.

THEOREM 4.5. If the auction system is β-KL-expressive and c-expected-
homogeneous, and the GSP auction is a (λ, µ)-semi-smooth game, the Bayes-Nash PoA

for the PBM-GSP mechanism is at most c(βµ+1
βλ

).

To prove the theorem, we use the welfare generated from a truthfull bidding profile v to
connect the optimal welfare and the welfare in any Bayes-Nash equilibrium. Here the
truthfull bidding profile v denotes the situation when all advertisers bid their expected
values on any keyword and there is no κ constaint, i.e., vsi = vsi . In this situation,
SW (v) equals

∫
q∈Q

∑
s∈NG(q) πq(s)

∑n
k=1 wkv

s
[k]dP , where vs[k] is the k-th largest value

among all the expected valuations on keyword s.

PROOF. We prove the theorem in two steps. First, we bound the ratio between
Ev,b(v)[SW (b(v))] and Ev[SW (v)], and then bound the ratio between Ev[SW (v)] and
Ev[SW (OPT (v))]. The proof details of the two steps are given below.

For the first step, we show if the GSP auction is a (λ, µ)-semi-smooth game, for any
Bayes-Nash equilibrium b(·) of the PBM-GSP mechanism, the following bound holds,

Ev[SW (v)]

Ev,b(v)[SW (b(v))]
<

βµ+ 1

βλ
. (3)

Note that with the PBM-GSP mechanism, advertisers will not compete across key-
words. For each advertiser i, define the utility on any positive keyword s as us

i (b
s) =∫

q∈NG(s) πq(s)wσ
−1
s,b

(i)(v
q
i − ps,b(i))dP . By the defininition of vsi , this utility function can

be rewritten as us
i (b) =

∫
q∈NG(s)

πq(s)wσ
−1
s,b

(i)(v
s
i − ps,b(i))dP . Thus for this particular

keyword, the advertiser’s utility is exactly that for the GSP auction with true value
defined as vsi

∫
q∈NG(s)

πq(s)dP . Denote Si as the set of positive keywords for advertiser

i. Considering that the game within a given keyword is (λ, µ)-semi-smooth, there must
exist a (randomized) strategy hs

i (·) on keyword s satisfying, for every pure strategy b,

∑
i:s∈Si

Ehs
i
(vs

i
)[u

s
i (h

s
i (v

s
i ),b

s
−i))] ≥ λSW (v, s)− µSW (b, s), (4)

where SW (b, s) is the welfare generated from keyword s, i.e., SW (b, s) =∫
q∈NG(s)

πq(s)
∑n

k=1 wkv
s
σs,b(k)

dP , and SW (b) =
∑

s∈S SW (b, s).

On this basis, we design a randomized strategy b′i(·) for advertiser i as follows. The
randomized strategy b′i(·) first randomly samples κ keywords from Si, and plays the
strategy hs

i (·) if keyword s is sampled. Considering that the auction system is β-KL-
expressive, the probability of any keyword s ∈ Si sampled by the strategy b′i(·) is larger
than β.
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Then it is straightforward to attain

Eb′(v)[

n∑
i=1

ui(b
′
i(vi),b−i(v−i)))] ≥ β

n∑
i=1

∑
s∈Si

Ehs
i
(vs

i
)[u

s
i (h

s
i (v

s
i ),b

s
−i(v−i)))]

= β
∑
s∈S

∑
i:s∈Si

Ehs
i
(vs

i
)[u

s
i (h

s
i (v

s
i ),b

s
−i(v−i))))]

≥ β
∑
s∈S

(λSW (v, s)− µSW (b, s))

= βλSW (v)− βµSW (b). (5)

Given the fact that the social welfare is at least the total utility of all the players, for
any Bayes-Nash equilibrium b(·),we have

Ev,b(v)[SW (b(v))] ≥ Ev,b(v)[
n∑

i=1

ui(b(v))] ≥ Ev,b(v),b′(v)[
n∑

i=1

Eb′
i
(vi)

[ui(b
′
i(vi),b−i(v))]]

≥ βλEv[SW (v)]− βµEv,b(v)[SW (b(v))].

Then inequality (3) follows.

For the second step, we show that Ev[SW (OPT (v))]
Ev[SW (v)] ≤ c. Considering

Ev[SW (OPT (v))]− cEv[SW (v)] =

∫
q∈Q

∑
s∈NG(q)

πq(s)(

n∑
k=1

Ev[wkv
q

[k]]− c

n∑
k=1

Ev[wkv
s
[k]])dP, (6)

it suffices to prove for any keyword s and any query q ∈ NG(s),
∑n

k=1 Ev[wkv
q

[k]] −

c
∑n

k=1 Ev[wkv
s
[k]] ≤ 0. Since the auction system is c-expected-homogeneous, the follow-

ing result holds with probability one,

cEv[v
s
i ] = Ev[

∫
q′∈NG(s)

cv
q′

i πq′(s)dP∫
q′∈NG(s)

πq′(s)dP
] =

∫
q′∈NG(s)

cEv[v
q′

i ]πq′(s)dP∫
q′∈NG(s)

πq′(s)dP

≥

∫
q′∈NG(s)

v
q
i πq′(s)dP∫

q′∈NG(s)
πq′(s)dP

= v
q
i . (7)

Without loss of generality, we assume that Ev[v
s
1] ≥ Ev[v

s
2] ≥ · · ·Ev[v

s
n] for keyword

s. Then we have
n∑

k=1

Ev[wkv
q

[k]]− c

n∑
k=1

Ev[wkv
s
[k]] ≤ c

n∑
k=1

Ev[wkEv[v
s
k]]− c

n∑
k=1

Ev[wkv
s
[k]]

= cEv[
n∑

k=1

wkv
s
k −

n∑
k=1

wkv
s
[k]] ≤ 0. (8)

Applying (8) to (6), we can prove Ev[SW (OPT (v))]
Ev[SW (v)] ≤ c. Then the theorem follows by

combining the two steps.

In [Caragiannis et al. 2012b], it is shown that the GSP auction is (1 − 1
e
, 1)-semi-

smooth. Furthermore, it is trivial to obtain that the GSP auction in the single-slot case
is a (1, 1)-semi-smooth game. Therefore, we can obtain the following two corollaries.

COROLLARY 4.6. If the auction system is β-KL-expressive and c-expected-

homogeneous, the Bayes-Nash PoA for the PBM-GSP mechanism is at most e
e−1

β+1
β

c.
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COROLLARY 4.7. If the auction system is β-KL-expressive and c-expected-
homogeneous and there is only one slot to display ads, the Bayes-Nash PoA for the

PBM-GSP mechanism is at most β+1
β

c.

4.2. Pure Price of Anarchy in Full-Information Setting

In this subsection, we analyze the pure PoA for the PBM-GSP mechanism. In par-
ticular, based on the notions of KL-expressiveness and homogeneity, we derive the
following pure PoA bound.

THEOREM 4.8. If the auction system is β-KL-expressive and c-homogeneous, the

pure PoA of PBM-GSP mechanism for the multi-slot case is at most β+1
β

c.

PROOF. Similar to Theorem 4.5, the proof of Theorem 4.8 contains two steps. For

the first step, we prove maxv,b:a pure Nash equilibrium
SW (v)
SW (b) <

1
β
+ 1.

Denote Oi as the set of (keyword, position) pair that advertiser i wins when all ad-
vertisers truthfully bid, i.e., Oi = {(s, k) : σs,v(k) = i, wk > 0}, denote Si as the keyword
set in Oi. Given any bid profile b, denote O′

i as the (keyword, position) set that adver-
tiser i actually bids and wins, i.e., O′

i = {(s, k) : σs,b(k) = i, wk > 0}, denote S′
i as the

set of keywords in O′
i, whose size is no larger than κ.

We divide advertisers into three categories, I1, I2, I3: (1) advertisers in I1 bid on κ
keywords and Si \ S′

i 6= ∅; (2) advertisers in I2 bid on κ keywords and Si \ S′
i = ∅; (3)

advertisers in I3 bid on fewer than κ keywords. We apply the equilibrium conditions to
the three categories respectively.

1. For any advertiser i in category I1, by definition, advertiser i wins a position in
any keyword in S′

i.
So, first, advertiser i will not increase his/her payoff by changing his/her strategy

from bidding a keyword with position (s′, k′) ∈ O′
i to any keyword s ∈ Si \ S′

i with
position k, where (s, k) ∈ Oi. Considering all advertisers are conservative, we have∫

q∈NG(s′)

πq(s
′)wk′v

q
i dP ≥

∫
q∈NG(s′)

πq(s
′)wk′(vqi − ps,b(i))dP

≥

∫
q∈NG(s)

πq(s)wkv
q
i dP −

∫
q∈NG(s)

πq(s)wkb
s
σs,b(k)dP

≥

∫
q∈NG(s)

πq(s)wkv
q
i dP −

∫
q∈NG(s)

πq(s)wkv
s
σs,b(k)dP. (9)

Summing up both sides over all advertisers i ∈ I1, (s, k) ∈ Oi where s ∈ Si \ S′
i and

(s′, k′) ∈ O′
i, we have

κ
∑
i∈I1

∑
(s,k):s∈Si\S

′

i
,(s,k)∈Oi

∫
q∈NG(s)

πq(s)wkv
q
i dP

≤
∑
i∈I1

∑
(s,k):s∈Si\S

′

i
,(s,k)∈Oi

∑
(s′,k′):(s′,k′)∈O′

i

∫
q∈NG(s′)

πq(s
′)wk′v

q
i dP

+ κ
∑
i∈I1

∑
(s,k):s∈Si\S

′

i
,(s,k)∈Oi

∫
q∈NG(s)

πq(s)wkv
s
σs,b(k)dP. (10)

Second, advertiser i will not increase his/her payoff by changing his/her strategy from
bidding on keyword s with position k′ to bidding the same keyword with position k,
where (s, k′) ∈ O′

i, (s, k) ∈ Oi, and s ∈ Si ∩ S′
i. Similar to (9), we have∫

q∈NG(s)

πq(s)wkv
q
i dP ≤

∫
q∈NG(s)

πq(s)wk′v
q
i dP +

∫
q∈NG(s)

πq(s)wkv
s
σs,b(k)dP. (11)
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Summing up both sides over all advertisers i ∈ I1, (s, k) ∈ Oi and (s, k′) ∈ T ′
i where

s ∈ Si ∩ S′
i, we have

∑
i∈I1

∑
(s,k):s∈Si∩S′

i
,(s,k)∈Oi

∫
q∈NG(s)

πq(s)wkv
q
i dP ≤

∑
i∈I1

∑
(s′,k′):s′∈Si∩S′

i
,(s′,k′)∈O′

i

∫
q∈NG(s′)

πq(s
′)wk′v

q
i dP

+
∑
i∈I1

∑
(s,k):s∈Si∩S′

i
,(s,k)∈Oi

∫
q∈NG(s)

πq(s)wkv
s
σs,b(k)dP.(12)

Summing up (10) and κ times (12), we have

κ
∑
i∈I1

∑
(s,k)∈Oi

∫
q∈NG(s)

πq(s)wkv
q
i dP ≤ κ

∑
i∈I1

∑
(s′,k′):s′∈Si∩S′

i
,(s′,k′)∈O′

i

∫
q∈NG(s′)

πq(s
′)wk′v

q
i dP

+
∑
i∈I1

∑
(s,k):s∈Si\S

′

i
,(s,k)∈Oi

∑
(s′,k′):(s′,k′)∈O′

i

∫
q∈NG(s′)

πq(s
′)wk′v

q
i dP

+ κ
∑
i∈I1

∑
(s,k)∈Oi

∫
q∈NG(s)

πq(s)wkv
s
σs,b(k)dP. (13)

Considering that |Si \ S′
i| ≤

κ
β
− κ, and {(s′, k′) : s′ ∈ Si ∩ S′

i, (s
′, k′) ∈ O′

i} ⊂ {(s′, k′) :

(s′, k′) ∈ O′
i}, we obtain

κ
∑
i∈I1

∑
(s,k)∈Oi

∫
q∈NG(s)

πq(s)wkv
q
i dP ≤

κ

β

∑
i∈I1

∑
(s′,k′)∈O′

i

∫
q∈NG(s′)

πq(s
′)wk′v

q
i dP

+ κ
∑
i∈I1

∑
(s,k)∈Oi

∫
q∈NG(s)

πq(s)wkv
s
σs,b(k)dP. (14)

2. For advertiser i in category I2 and I3, since b is a Nash equilibrium, it is clear that
Si ⊂ S′

i, and for ∀s ∈ Si, (s, k) ∈ Oi, (s, k
′) ∈ O′

i, the following holds,∫
q∈NG(s)

πq(s)wkv
q
i dP ≤

∫
q∈NG(s)

πq(s)wk′v
q
i dP +

∫
q∈NG(s)

πq(s)wkv
s
σs,b(k)dP. (15)

By summing over all advertisers i ∈ I2 ∪ I3, (s, k) ∈ Oi and (s, k′) ∈ O′
i, we have

κ
∑

i∈I2∪I3

∑
(s,k)∈Oi

∫
q∈NG(s)

πq(s)wkv
q
i dP ≤ κ

∑
i∈I2∪I3

∑
(s′,k′):(s′,k′)∈O′

i

∫
q∈NG(s′)

πq(s
′)wk′v

q
i dP

+ κ
∑

i∈I2∪I3

∑
(s,k)∈Oi

∫
q∈NG(s)

πq(s)wkv
s
σs,b(k)dP. (16)

Since SW (v) =
∑

i

∑
(s,k)∈Oi

∫
q∈NG(s)

πq(s)wkv
q
i dP , by summing (14) and (16) together,

we obtain the following inequality and thus complete the first step.

κSW (v) ≤
κ

β
SW (b) + κSW (b). (17)

For the second step, it is easy to show SW (OPT (v))
SW (v) ≤ c still holds in the full-information

setting. Then by combining the two steps, we prove the theorem.

Note that the pure PoA bound given by the above theorem is for the general multi-slot
case. The result can be further optimized if we are only interested in the single-slot
case (see the following theorem). We leave the proof of the theorem to the Appendix.

THEOREM 4.9. If the auction system is β-KL-expressive and c-homogeneous, and
there is only one slot to display ad, the pure PoA for the PBM-GSP mechanism is at
most c

β
, and the bound is tight with respect to the factors.
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PROOF. It is easy to see for any advertiser i, bidding the expected value vsi on s is
the dominant strategy if he/she bids s in single-slot setting, thus it suffices to consider
the equilibria in which each winner of each keyword bid the true value. Similar to
Theorem 4.8, our proof contains two steps.

For the first step, we prove that for an arbitrarily given valuation profile v,

max
b:a pure Nash equilibrium

SW (v)

SW (b)
<

1

β
. (18)

Denote Si as the keyword set that advertiser i wins when all advertisers truthfully
bid, i.e., Si = {s : σs,v(1) = i}. Given any bid profile b, denote S′

i as the keyword set
that advertiser i actually bids on, i.e., S′

i = {s : bsi > 0}, whose size is no larger than κ.
We divide advertisers into three categories, I1, I2, I3: (1) advertisers in I1 bid on κ

keywords and Si \ S′
i 6= ∅; (2) advertisers in I2 bid on κ keywords and Si \ S′

i = ∅; (3)
advertisers in I3 bid on fewer than κ keywords. We apply the equilibrium conditions to
the three categories respectively.

1. For any advertiser i in category I1, since Si \ S′
i 6= ∅, it is easy to show that

advertiser i wins all keywords in S′
i (otherwise, alternatively bidding on a keyword in

Si \ S′
i will lead to a better payoff), which yields

σs′,b(1) = i, b
s′

i = v
s′

i .∀s′ ∈ S
′
i, ∀i ∈ I1. (19)

Moreover, advertiser i will not increase his/her payoff by changing his/her strategy
from bidding on s′ ∈ S′

i to any s ∈ Si \ S′
i, that is,∫

q∈NG(s)

πq(s)(v
q
i − b

s
σs,b(1))dP ≤

∫
q∈NG(s′)

πq(s
′)(vqi − ps,b(i))dP. (20)

By dropping ps,b(i) from the RHS of (20) which is non-negative and using the fact that
bs
σs,b(1)

≤ vs
σs,b(1)

, we have
∫
q∈NG(s)

πq(s)v
q
i dP ≤

∫
q∈NG(s′)

πq(s
′)vqi dP +

∫
q∈NG(s)

πq(s)v
q

σs,b(1)dP.

Summing up both sides over all advertisers i ∈ I1, s ∈ Si \ S′
i and s′ ∈ S′

i, we have,

κ
∑
i∈I1

∑
s∈Si\S

′

i

∫
q∈NG(s)

πq(s)v
q
i dP ≤

∑
i∈I1

∑
s∈Si\S

′

i

∑
s′∈S′

i

∫
q∈NG(s′)

πq(s
′)vqi dP

+ κ
∑
i∈I1

∑
s∈Si\S

′

i

∫
q∈NG(s)

πq(s)v
q

σs,b(1)dP. (21)

Considering that |Si \ S′
i| ≤

κ
β
− κ, we apply (19) to the first term in the RHS of (21),

which yields,

κ
∑
i∈I1

∑
s∈Si\S

′

i

∫
q∈NG(s)

πq(s)v
q
i dP ≤ (

κ

β
− κ)

∑
i∈I1

∑
s′∈S′

i

∫
q∈NG(s′)

πq(s
′)vq

σs,b(1)dP

+ κ
∑
i∈I1

∑
s∈Si\S

′

i

∫
q∈NG(s)

πq(s)v
q

σs,b(1)dP. (22)

Since
∑

i∈I1

∑
s′∈S′

i

∫
q∈NG(s′)

πq(s
′)vq

σs,b(1)
dP ≤ SW (b), by adding

κ
∑

i∈I1

∑
s∈Si∩S′

i

∫
q∈NG(s)

πq(s)v
q
i dP to both sides of (22), we have

κ
∑
i∈I1

∑
s∈Si

∫
q∈NG(s)

πq(s)v
q
i dP ≤ (

κ

β
− κ)SW (b) + κ

∑
i∈I1

∑
s∈Si

∫
q∈NG(s)

πq(s)v
q

σs,b(1)dP. (23)
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2. For advertiser i in category I2 and I3, since b is a Nash equilibrium, it is clear that
Si ⊂ S′

i, and for ∀s ∈ Si, σs,b(1) = i. Therefore

κ
∑

i∈I2∪I3

∑
s∈Si

∫
q∈NG(s)

πq(s)v
q
i dP = κ

∑
i∈I2∪I3

∑
s∈Si

∫
q∈NG(s)

πq(s)v
q

σs,b(1)dP. (24)

According to the definitions of SW (v) and SW (b), we can prove

maxb:a pure Nash equilibrium
SW (v)
SW (b) <

1
β

by summing up (23) (24) together.

For the second step, we have SW (OPT (v))
SW (v) ≤ c. Then by combining the two steps, we

prove the theorem.

4.3. Comparison between PBM-GSP and SBM-GSP

In this subsection, we make comparisons between PBM-GSP and SBM-GSP. The over-
all conclusion is that the PBM-GSP mechanism has a better social welfare in equlibir-
ium than the SBM-GSP mechanism. The detailed analysis is given as follows.

To the best of our knowledge, the theoretical analysis on SBM-GSP [Dhangwatnotai
2011] only covers the welfare in the full-information setting and the single-slot case.
Therefore, we will compare PBM-GSP with SBM-GSP in this setting. Furthermore, in
[Dhangwatnotai 2011], the same definition of homogeneity but a different definition of
expressiveness is used. To avoid confusions, we refer to the expressiveness defined in
[Dhangwatnotai 2011] as Query-Level (QL) Expressiveness, whose definition is copied
as follows.

Definition 4.10. [Dhangwatnotai 2011] (QL-Expressiveness) We call an auction sys-
tem α-QL-expressive, if for any advertiser i, and any query set Q satisfying Q ⊂ Qi,
|Q| ≤ α|Qi|, there always exist κ keywords that can coverQ through the query-keyword
bipartite graph G. When α = 1, we say the auction system is fully QL-expressive.

Based on the above concepts, an almost-tight pure PoA bound for the SBM-GSP mech-
anism in the single-slot case is derived in [Dhangwatnotai 2011], as shown below.

THEOREM 4.11. [Dhangwatnotai 2011] If the auction system is α-QL-expressive and

c-homogeneous, the pure PoA of the SBM-GSP mechanism is at most c2+c
α

.

If we compare this PoA bound with the corresponding PoA bound of the PBM-GSP
mechanism, we will have the following discussions.

First, since different notions of expressiveness are used, if we want to compare
the bounds, we need to characterize the relationship between KL-expressiveness
and QL-expressiveness. Actually, a natural question is why not also using the QL-
expressiveness to analyze the theoretical properties of PBM-GSP. The following ex-
ample, which shows that the pure PoA of the PBM-GSP mechanism could be irrel-
evant to QL-expressiveness, justifies the necessity to introduce the concept of KL-
expressiveness.

Example 4.12. Suppose there is only one advertiser who is allowed to bid on at
most one keyword. Consider there is a fixed set of positive queries, and each query is
matched to a shared keyword and other N different keywords. We consider a PBM-
GSP mechanism that matches a query to keywords with uniform probability. In this
case, the auction system is always fully QL-expressive since the advertiser can use the
shared keyword to reach all queries, but the welfare in equilibrium can be arbitrarily
bad in PBM-GSP as N approaches infinity.

Furthermore, according to our theoretical and empirical studies (details are given in
the Appendix), given the query-keyword bipartite graph, the QL-expressiveness α and
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KL-expressiveness β are actually comparable in their values (i.e., they only differ by a
small constant). Therefore the difference in these two notions of expressiveness should
not affect the comparison between the two PoA bounds by much.

Second, the two PoA bounds have different orders with respect to the homogeneity
c. As aforementioned, homogeneity describes the diversity of advertiser’s valuations
on different queries matched to the same keyword. Take the keyword “spider” as an
example. It can be matched to multiple queries, such as “spider movie”, “get rid of
spider”, and “crystal spider”, which have quite different semantic meanings. If each
advertiser is only interested in one type of these semantic meanings, the homogeneity
quantity c will be very large due to the high valuations on some queries and the low
valuations on the other queries. In this case, different orders of c will lead to significant
difference in the overall PoA bounds. In particular, the pure PoA bound of PBM-GSP
is much better than that of SBM-GSP, since the former is linear to c but the latter is
quadratic.

5. REVENUE ANALYSIS

In this section, we study the Bayes-Nash revenue with reserve price [Myerson 1981;
Dhangwatnotai et al. 2010; Hartline and Lucier 2010] for the PBM-GSP mechanism.
We show that with a naturally-defined reserve price rs on each keyword s, the worst-
case ratio between the optimal social welfare and the revenue of PBM-GSP, defined as
below, can be upper bounded.

max
v,b(·): a Bayes-Nash equilibrium

Ev[SW (OPT (v))]

Ev,b(v)[Rr(b(v))]
,

where Rr(b) presents the revenue with bid b and reserve price vector r, i.e.,Rr(b) =∫
q∈Q

∑
s∈NG(q) πq(s)

∑n

k=1 wk max{rs, bsσs,b(k+1)}I[b
s
σs,b(k)

≥ rs]dP .

In this paper, we assume that the auctioneer (search engine) has a public prior dis-
tribution F on any advertiser’s valuation vector, and any advertiser i’s valuation vector
vi is i.i.d. sampled from this distribution, i.e., F = Fn. Considering that for any adver-
tiser, the valuation on keywords are the weighted averages of the valuations on the
queries that the keyword can be matched to, it could be easily proved that an ad-
vertiser’s expected valuation vector on keywords can also be considered as i.i.d. sam-
pled. Thus we define, for any advertiser, the keyword valuation vector is i.i.d sampled
from a distribution T (induced from F and the mechanism), and define the (marginal)
cumulate distribution function of valuation on keyword s as Ts and the probability
density function on keyword s as ts. As in common practice, we consider a particular
class of distributions for T , which is called monotone hazard rate (MHR) distribution
[Dhangwatnotai et al. 2010; Hartline and Roughgarden 2009; Lucier et al. 2012b].

For the reserve price, we employ a naturally-defined reserve price vector r, which
is a direct extension of the Myerson reserve price [Lucier et al. 2012b; Chawla et al.
2007; Myerson 1981] : For any keyword s, the reserve price rs is the Myerson reserve
price, which satisfies φs(rs) = 0, where φs(v) is defined as the virtual value of any type

v on keyword s, i.e., φs(v) , v − 1−Ts(v)
ts(v)

.

Different from the GSP auction with the Myerson reserve price, it is easy to construct
an example to show that, even in a single-slot case, when there is a constraint on the
total number of bid keywords (i.e., κ), the ratio between the revenue of PBM-GSP with
the Myerson reserve price and optimal social welfare can become arbitrarily bad.

Example 5.1. The high-level idea of the example is to construct a case in which
there are only two keywords, a single slot, and one advertiser, and the advertiser can
only bid on one keyword. We assume that one of the keywords guarantees high welfare
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but low utility for the advertiser, and the other guarantees low welfare but high utility.
Thus in any Bayes-Nash equilibrium, the revenue will be very low compared to the
optimal welfare since the advertiser is likely to bid on the low-welfare high-utility
keyword (thus low revenue to search engine) to be better off.

Denote q1 and q2 as two queries, and denote s1 and s2 as two keywords. We assume
that the two queries are equally likely to be issued, and assume that in the query-
keyword bipartite graph s1 is only matched to q1 and s2 is only matched to q2. Assume
there is only one advertiser who is only allowed to bid on one keyword, and the adver-
tiser’s valuation on each query (keyword) is independent. Considering the one-to-one
mapping between queries and keywords, we use query and keyword interchangeably
in the following descriptions.

Let ǫ1 > 0, ǫ2 > 0, and M > 0 be some fixed values satisfying ǫ1 < 1
10 , ǫ2 < ǫ1

10 ,
and M > 10. For keyword s1, denote the valuation density function as t1(x) which
is supported on [0, 2ǫ1 − ǫ21]; For keyword s2, the valuation density function t2(x) is
supported on [0, 2M ]. We assume t1(x) has the following properties: (1) t1(x) is an in-
creasing and differentiable function; (2) t1(x) =

1
ǫ1

when x ∈ [ǫ1, 2ǫ1 − ǫ21). We assume

t2(x) has the following proprieties: (1) t2(x) is an increasing and differentiable func-

tion; (2) t2(2
M − ǫ2) =

1
2M+1 ; (3) t2(2

M − ǫ2
2 ) =

1
2M ; (4)

∫ 2M

2M−ǫ2
t2(x)dx = 1− ǫ2. It is easy

to check the existence of such probability density functions.
First, we show under the above conditions, the expected homogeneity value c is

smaller than a constant. For query q1, since ǫ1 < 1
10 , we have

E[vq1 ] ≥ P(vq1 > ǫ1)E[vq1 |vq1 > ǫ1] =

∫ 2ǫ1−ǫ21

ǫ1

1

ǫ1
xdx = (1− ǫ1)

ǫ1 + (2ǫ1 − ǫ21)

2
≥ ǫ1 ≥

1

2
(2ǫ1 − ǫ

2
1).

For query s2, considering ǫ2 < 1
10 and M > 10, we have

E[vs2 ] ≥

∫ 2M

2M−ǫ2

t2(x)xdx ≥ (1− ǫ2)(2
M − ǫ2) ≥

1

2
2M . (25)

As a consequence, we come to the conclusion that c is always bounded by 2.
Second, we show that rs1 < ǫ1 and 2M − ǫ2 < rs2 < 2M − ǫ2

2 . Considering the value

distribution is a MHR distribution, it suffices to prove φ1(ǫ1) > 0 and φ2(2
M − ǫ2) < 0 <

φ2(2
M − ǫ2

2 ), which can be directly obtained from below.

φ1(ǫ1) = ǫ1 −
1− T1(ǫ1)

t1(ǫ1)
= ǫ1 −

1− ǫ1
1
ǫ1

= ǫ
2
1 > 0 (26)

φ2(2
M − ǫ2) = 2M − ǫ2 −

1− T2(2
M − ǫ2)

t2(2M − ǫ2)
= 2M − ǫ2 − 2M+1(1− ǫ2) < 0 (27)

φ2(2
M −

ǫ2

2
) = 2M −

ǫ2

2
−

1− T2(2
M − ǫ2

2
)

t2(2M − ǫ2
2
)

> 2M −
ǫ2

2
− 2M (1− ǫ2) > 0 (28)

Finally, we give a lower bound of welfare and an upper bound of revenue in Bayes-
Nash equilibrium. Since the reserve price on keyword s1 is smaller than ǫ1 while the
reserve price on keyword s2 is larger than 2M − ǫ2, if the valuation vs1 is larger than
ǫ1 + ǫ2, the utility of advertiser will be larger than ǫ2, and bidding keyword s1 will be
the dominant strategy. As a consequence, we have

E[Rr(b(v))] ≤
1

2
P(vs1 > (ǫ1 + ǫ2))rs1 +

1

2
P(vs1 ≤ (ǫ1 + ǫ2))rs2 ≤ (1− ǫ1 −

ǫ2

ǫ1
)
ǫ1

2
+ (ǫ1 +

ǫ2

ǫ1
)2M−1

.(29)
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The first inequality holds since rs1 < rs2 . Similarly, we can lower bound the expected
optimal welfare by

E[SW (OPT (v))] ≥
1

2
P(vs1 > rs1)rs1 +

1

2
P(vs2 > rs2)rs2 ≥ (1− ǫ2 −

ǫ2

2

1

2M
)
2M − ǫ2

2
. (30)

Fixing M and letting ǫ1 and ǫ2
ǫ1

approach zero, we have

lim
ǫ1→0,

ǫ2
ǫ1

→0

E[Rr(b(v))]

E[SW (OPT )(v)]
≤ lim

ǫ1→0,
ǫ2
ǫ1

→0

(1− ǫ1 −
ǫ2
ǫ1
) ǫ1

2
+ (ǫ1 +

ǫ2
ǫ1
)2M−1

(1− ǫ2 −
ǫ2
2

1
2M

) 2
M−ǫ2

2

= 0 (31)

To obtain meaningful results, we consider φs(v) with Lipchitz condition, which is
defined as below.

Definition 5.2. (MHR distribution with bounded derivative) We say a distribution T
is an MHR distribution with bounded derivative η, if for any keyword s, the following
conditions hold: (1) φ′

s(v) ≥ 1, for all v ≥ 0, (2) φ′
s(v) ≤ η, for all v ≥ rs.

The following theorem shows that when the distribution is MHR with bounded deriva-
tive, we can obtain a bound for the ratio between optimal social welfare and worst-case
revenue.

THEOREM 5.3. If any advertiser’s keyword valuation vector is i.i.d. drawn from an
MHR distribution T with bounded derivative η, the auction system is β-KL-expressive
and c-expected-homogeneous, then the revenue obtained by the PBM-GSP mechanism

with the Myerson reserve price is at least β
1+β

1
2η(ce)2 of the optimal social welfare.

The theorem can be proved in three steps. First, we use Lemma 5.4 to bound the ratio
between the revenue and the welfare of PBM-GSP with the Myerson reserve price.
Second, we use Lemma 5.5 to bound the ratio between the welfare of PBM-GSP and
the revenue of PBM-VCG with the Myerson reserve price. Here PBM-VCG is defined
as the VCG mechanism in which bidding the expected value on any keyword is the
dominant strategy and there is has no constraint on the total number of bid keywords.
Finally, we bound the ratio between the revenue of PBM-VCG with the Myerson reserve
price and the optimal welfare. For ease of reference, we use SWr(b) to denote the social
welfare of PBM-GSP, and use RPBM−VCG

r (v) to denote the revenue of PBM-VCG, when
reserve price vector r is associated with these mechanisms.

The basic idea of the proof can be explained as follows.

Ev,b(v)[Rr(b(v))] → Ev,b(v)[SWr(b(v))] → Ev[R
PBM−VCG
r (v)] → Ev[SW (OPT (v))]

LEMMA 5.4. If any advertiser’s keyword valuation vector is i.i.d. drawn from an
MHR distribution T with bounded derivative η, the auction system is β-KL-expressive
and c-expected-homogeneous, then for any Bayes-Nash equilibrium of PBM-GSP with
the Myerson reserve price, the expected revenue is at least 1

ce
of the expected welfare.

PROOF. For any Bayes-Nash equilibrium b(·), the expected social welfare of PBM-
GSP with reserve price r can be reformulated as follows:

Ev,b(v)[SWr(b(v))] = Ev,b(v)[
∑
s

∫
q∈NG(s)

πq(s)dP

n∑
k=1

wkv
s
σs,b(v)(k)

I[bsσs,b(v)(k)
≥ rs]]. (32)

Since the auction system is c-expected-homogeneous, the following inequality holds
with probability one,

cEv[v
s
i ] = Ev[

∫
q∈NG(s)

cv
q
i πq(s)dP∫

q∈NG(s)
πq(s)dP

] =

∫
q∈NG(s)

cEv[v
q
i ]πq(s)dP∫

q∈NG(s)
πq(s)dP

≥

∫
q∈NG(s)

v
q
i πq(s)dP∫

q∈NG(s)
πq(s)dP

= v
s
i .
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Considering T is an MHR distribution, we have Ev[v
s
i ] ≤ ers(1− Ts(rs)), which yields,

P (vsi ≤ rsce) = 1. (33)

Applying Eqn (33) to Eqn(32), we have

Ev,b(v)[SWr(b(v))] = Ev,b(v)[
∑
s

∫
q∈NG(s)

πq(s)dP
n∑

k=1

wkv
s
σs,b(v)(k)

I[bsσs,b(v)(k)
≥ rs]]

≤ ceEv,b(v)[
∑
s

∫
q∈NG(s)

πq(s)dP
n∑

k=1

wkrsI[b
s
σs,b(v)(k)

≥ rs]]

≤ ceEv,b(v)[Rr(b(v))].

Then the lemma follows.

LEMMA 5.5. If any advertiser’s keyword valuation vector is i.i.d. drawn from an
MHR distribution T with bounded derivative η, the auction system is β-KL-expressive
and c-expected-homogeneous, then the expected welfare in any Bayes-Nash equilibrium

of PBM-GSP with the Myerson reserve price is at least β
1+β

1
2η of the expected revenue of

PBM-VCG with the Myerson reserve price.

PROOF. The proof technique we use here can be regarded as a variation of that in
[Leme and Tardos 2010; Roughgarden 2009]. Without loss of generality, we assume
that if any advertiser bids on any keyword s, his/her bid price is larger than rs.

Given the Myerson reserve prices on any keyword, denote Si as the set of keywords
that advertiser i can win a slot when all advertisers truthfully bid. We consider ad-
vertiser i with a specific randomized strategy b′i(·) that randomly chooses κ keywords

from Si and bid b′
s
i (vi) =

vs
i+rs
2 if keyword s is sampled by the strategy.

Given any pure bid profile b, any value profile v and any position k, given any sam-
pled keyword s by the strategy b′i(vi), if advertiser i changes his/her bid to b′i(vi) and
the position he/she gets is not lower than position k, his/her per-click utility must be
larger than vsi − b′

s
i (vi); otherwise, the value of the advertiser ranked at the position k

must be larger than b′
s
i (vi). Then we have

u
s
i (b

′s
i (vi),b

s
−i) ≥ I[b′

s
i (vi) > b

s
σs,b(k)]wk

∫
q∈NG(s)

πq(s)(v
s
i − b

′s
i (vi))dP

− I[b′
s
i (vi) ≤ b

s
σs,b(k)]wk

∫
q∈NG(s)

πq(s)(v
s
σs,b(k) − b

′s
i (vi))dP.

≥ wk

∫
q∈NG(s)

πq(s)(v
s
i − b

′s
i (vi))dP − wk

∫
q∈NG(s)

πq(s)v
s
σs,b(k)dP. (34)

Since distribution T is an MHR distribution with bounded derivative η, we have vsi −

b′
s
i (vi) =

vs
i−rs
2 ≥ φs(v

s
i )

2η , which yields,

u
s
i (b

′s
i (vi),b

s
−i) ≥ wk

∫
q∈NG(s)

πq(s)
φs(v

s
i )

2η
dP −wk

∫
q∈NG(s)

πq(s)v
s
σs,b(k)dP. (35)

Let k be the position of advertiser i on keyword s when all advertiser truthfully bid,
i.e., k = σ−1

s,v(i). By summing over all advertisers and all keywords, and taking expec-
tation over the valuation profile v, bidding strategy b(v) and the strategy b

′(·), we
have



18

Ev,b(v),b′(v)[

n∑
i=1

ui(b
′
i(vi),b−i(v−i)] ≥ βEv,b(v)[

n∑
i=1

∑
s∈Si

u
s
i (b

′s
i (vi),b

s
−i(v−i)]

≥ βEv,b(v)[

n∑
i=1

∑
s∈Si

w
σ
−1
s,v(i)

∫
q∈NG(s)

πq(s)
φs(v

s
i )

2η
dP ]

− βEv,b(v)[
n∑

i=1

∑
s∈Si

w
σ
−1
s,v(i)

∫
q∈NG(s)

πq(s)v
s

σs,b(σ−1
s,v(i))

dP ]

≥ βEv,b(v)[
n∑

i=1

∑
s∈S

w
σ
−1
s,v(i)

∫
q∈NG(s)

πq(s)
φs(v

s
i )I[φs(v

s
i ) > 0]

2η
dP ]

− βEv,b(v)[

n∑
k=1

∑
s∈Si

wk

∫
q∈NG(s)

πq(s)v
s
σs,b(k)dP ]

≥
β

2η
Ev[R

PBM−VCG
r (v)]− βEv,b(v)[SWr(b(v))]

Similar to the proof of Theorem 4.5, we have for any Bayes-Nash equilibrium b(·),

Ev,b(v)[SWr(b(v))] ≥ Ev,b(v)[ui(b(v))] ≥ Ev,b(v),b′(v)[
∑
i

ui(b
′
i(vi),b−i(v−i))]

≥
β

2η
Ev[R

PBM−VCG
r (v)]− βEv,b(v)[SWr(b(v))]. (36)

Then the lemma follows.

Now we give the overall proof of Theorem 5.3.

PROOF OF THEOREM 5.2. Combining Lemma 5.4 and Lemma 5.5, we have for any
Bayes-Nash equilibrium b(·) of PBM-GSP with the Myerson reserve price, the follow-
ing holds:

Ev,b(v)[Rr(b(v))] ≥
β

2ce(β + 1)η
Ev[R

PBM−VCG
r (v)]. (37)

Denote RPBM−VCG
r (v, s) as the revenue obtained from keyword s of the VCG mecha-

nism with reserve price vector r, and denote SW (v, s) as the welfare obtained from
keyword s of with the VCG mechanism. For any given keyword s, denote zsi (x) =
Ev[wσ

−1
s,v(i)

|vsi = x]. Then it is easy to see that zsi (x) is an increasing function since

advertiser will obtain a better postion in a welfare-maximizing allocation with a
larger valuation. Denote φ+

s (x) = φs(x)I[φs(x) > 0]. According to Lemma 5.1 in
[Kleinberg and Yuan 2013], we have

Ev[φ
+
s (v

s
i )wσ

−1
s,v(i)

]

Ev[vsiwσ
−1
s,v(i)

]
=

Ev[φ
+
s (v

s
i )Ev[wσ

−1
s,v(i)

|vsi ]]

Ev[vsiEv[wσ
−1
s,v(i)

|vsi ]]
=

Ev[φ
+
s (v

s
i )z

s
i (v

s
i )]

Ev[vsi z
s
i (v

s
i )]

≥
Ev[φ

+
s (v

s
i )]

Ev[vsi ]
≥

1

e
(38)

That is, Ev[φ
+
s (v

s
i )wσ

−1
s,v(i)

] ≥ 1
e
E[vsiwσ

−1
s,v(i)

]. By summing over all advertisers and sum-

ming over all keywords, we have Ev[RPBM−VCG
r (v)] ≥ 1

e
Ev[SW (v)]. According to the

second step of the proof for Theorem 4.5, we have Ev[SW (v)] ≥ 1
c
Ev[SW (OPT (v))]. By

combining with (37), we prove the theorem.

Theorem 5.3 can be further improved if we are only interested in the single-slot case.
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THEOREM 5.6. If any advertiser’s keyword valuation profile is i.i.d. drawn from an
MHR distribution T with bounded derivative η, the auction system is β-KL-expressive
and c-homogeneous, and there is only one ad slot to sell, then the revenue obtained by

the PBM-GSP mechanism with the Myerson reserve price is at least β
1+β

1
η(ce)2 of the

optimal social welfare.

PROOF. We only need to slightly modify the proof of Lemma 5.5 and get
(β + 1)E[SWr(b(v))] ≥

β
η
E[RPBM−VCG

r (v)]. in the single-slot case.

Denote Si as the set of keywords that advertiser i can win when all advertisers
truthfully bid, we consider advertiser i and a specific randomized strategy b′i(·) that
randomly chooses κ keyword among Si and bid vsi if keyword s is sampled.

For any pure strategy b and any value profile v, it can be proven that for any given
sampled keyword s by the strategy b′i(v

s
i ),

u
s
i (b

′s
i (vi),b

s
−i) ≥ I[bsσs,b(1) ≥ rs]

∫
q∈NG(s)

πq(s)(v
s
i − b

s
σs,b(1))dP (39)

+ I[bsσs,b(1) < rs]

∫
q∈NG(s)

πq(s)(v
s
i − rs)dP (40)

≥

∫
q∈NG(s)

πq(s)(v
s
i − rs − v

s
σs,b(1))dP. (41)

Since distribution T is an MHR distribution with bounded derivative η, we have

u
s
i (b

′s
i (vi),b

s
−i) ≥

∫
q∈NG(s)

πq(s)(
φs(v

s
i )

η
− v

s
σs,b(1))dP. (42)

The proofs follows by proceeding other parts of the proof of Lemma 5.5

6. RELATED WORKS

In this section, for the sake of completeness, we give an overview of the related works
to the paper. Overall, the related works can be categorized into three groups.

First, there have been a rich literature of theoretical analysis on GSP auctions.
For example, [Leme and Tardos 2010; Lucier and Paes Leme 2011; Caragiannis et al.
2011] analyze the PoA when bidders are conservative, they show that the pure
PoA is at most 1.282, mixed-strategy PoA is at most 2.310 and Bayes-Nash PoA is
at most 2.927 in GSP auction. Some other works analyze the revenue of GSP. In
[Edelman and Ostrovsky 2007; Varian 2007], it is shown that GSP’s revenue is at least
as good as VCG in envy-free equilibrium. In [Lucier et al. 2012b; Caragiannis et al.
2012a], the revenue of GSP over all Bayes-Nash equilibrium is studied and a ratio
bound (4.72 for regular distribution and 3.46 for MHR distribution) is given between
the optimal auction and GSP with a proper reserve price in the Bayesian setting.

Second, there are a few works that pay attention to the broad-match mechanism, and
in particular the SBM mechanism. There have been several pieces of work that study
the optimization problems regarding SBM. For example, in [Feldman et al. 2007], the
budget optimization problem is considered and a (1 − 1/e)-approximation algorithm
is developed. In [Even Dar et al. 2009], it is shown that the bid optimization problem
regarding SBM is NP-Hard and is inapproximable with any reasonable approxima-
tion factor unless P = NP . Some other works perform PoA analysis on the SBM-GSP
mechanism. In [Dhangwatnotai 2011], by assuming advertisers to play undominated
strategies, the authors develop an almost-tight bound for the pure PoA of SBM-GSP in
the single-slot case.

Third, the design principle of our proposed PBM mechanism is also related to the
probabilistic single-item auctions with mixed signals [Bro Miltersen and Sheffet 2012;
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Table I. Summary of Social Welfare Analysis for the PBM-GSP Mechanism

Multi-slot Single-slot

Social welfare
Bayesian (e−1)β

ec(β+1)
SW (OPT ) β

c(β+1)
SW (OPT )

Full-information β
c(β+1)

SW (OPT ) β
c
SW (OPT )

Table II. Summary of Revenue Analysis for the PBM-GSP Mechanism

Multi-slot Single-slot

Revenue Bayesian β

(1+β)(ce)22η
SW (OPT ) β

(1+β)(ce)2η
SW (OPT )

Emek et al. 2012; Dughmi et al. 2013]. A probabilistic single-item auction is defined
as follows. The auctioneer wishes to sell the items drawn from an item set Q accord-
ing to a known distribution P to n bidders. Each bidder i has a valuation of vi(q) on
item q, but he/she cannot directly observe the item before he/she bids. At each time,
the auctioneer draws an item and broadcasts a signal to the bidders according to a
signaling scheme defined at the very beginning of the auction. The signaling scheme
can be probabilistic, and can be strategically designed by the auctioneer. After receiv-
ing the signals, the bidders submit their bids on the signals, and the item will be
allocated and charged to one of the bidders by using the second price auction. If we
define the item set as the query space, define the signals as the keywords, and define
the signaling scheme based on the query-keyword bipartite graph and the matching
probability distribution πq, then the above problem will become very similar to our
PBM problem. However, we would like to point out three critical differences between
them. (1) In [Bro Miltersen and Sheffet 2012; Emek et al. 2012], the whole signaling
scheme can be strategically chosen by the auctioneer, but in our setting, the signals
(keywords) that can be broadcasted given an item (query) is restricted according to the
bipartite graph. The strategy of the auctioneer only lies in the design of the matching
probability distribution. (2) In [Dughmi et al. 2013], the author analyzed the situation
that each signal has one winner, like the single slot in our case and assumed that all
participants will truthfully report their value on it. With this, the author try to opti-
mize a matching probability distribution, which is restricted according to the bipartite
graph, and it has constant approximation to the optimal social welfare and revenue
bound. (3) In our problem, each bidder is allowed to bid on only up to κ signals (key-
words) and, for each keyword, auctioneer will conduct a GSP on it. As a result, the
truth telling will not be (always not) a dominant strategy any longer. These additional
constraints will increase the difficulty of the problem and the techniques developed
in [Bro Miltersen and Sheffet 2012; Emek et al. 2012; Dughmi et al. 2013] need to be
enhanced or extended to fit into our setting.

7. CONCLUSION

In this paper, we propose a probabilistic broad-match mechanism for sponsored search.
We show that this new mechanism has better theoretical guarantees than the cur-
rently used broad-match mechanism in terms of both social welfare and search engine
revenue. We have summarized our key results in Table I, Table II for ease of reference.

For future work, we plan to work on the following topics. First, we will work on the
optimization of the matching probability in the proposed mechanism so as to maximize
the social welfare or revenue. Second, we will investigate if there is a tighter bound for
our results. Third, we will perform more theoretical analysis on the currently used
broad-match mechanism, which is far from complete in the literature.
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A. APPENDEX: COMPARISON BETWEEN PBM-GSP MECHANISM AND SBM-GSP
MECHANISM

A.1. Theoretical Comparison Between Two Expressiveness Measures

There are both differences and connections between KL-expressiveness and QL-
expressiveness. First, KL-expressiveness is focused on the coverage of positive key-
words while QL-expressiveness is focused on the coverage of positive queries. Second,
given the query-keyword bipartite graph G, each advertiser’s positive query set Qi, and
κ, the value of KL-expressiveness can be computed in linear time, while determining
the value of QL-expressiveness is NP-Hard in general (since the set cover problem is its
sub routine). Given the same query-keyword bipartite graph, the KL-expressiveness
and QL-expressiveness are actually tightly coupled due to the mutual bounds given in
the following proposition.

PROPOSITION A.1. If the maximum degree of the query-keyword bipartite graph G
is bounded by γ, and the auction system is α-QL-expressive and β-KL-expressive, then
α
γ2 ≤ β ≤ γα.

PROOF. First we prove β ≤ γα. It is clear that any κ queries can be covered by κ
keywords, thus we have α ≥ mini

κ
|Qi|

. Considering that |Qi| should be smaller than γ

times |{s : NG(s) ∩Qi 6= ∅}|, which is the number of positive keywords for advertiser i,

we have α ≥ mini
κ

|Qi|
≥ mini

κ
γ|{s:NG(s)∩Qi 6=∅}| =

β
γ

. Next we prove α
γ2 ≤ β. By definition,

β = mini
κ

|{s:NG(s)∩Qi 6=∅}| . Considering κ keywords can cover at most κγ queries, we

have β = mini
κγ

|{s:NG(s)∩Qi 6=∅}|γ ≥ mini
α|Qi|

|{s:NG(s)∩Qi 6=∅}|γ ≥ α
γ2 .

The bounds given in Proposition A.1 depend on γ, the degree of the query-keyword
bipartite graph. When γ is large, the bounds become useless. In this case, it would
be more meaningful to directly compare the values of QL-expressiveness and KL-
expressiveness. This is exactly what we do in the next subsection.

A.2. Empirical Comparison Between Two Expressiveness Measures

We base our empirical study on the log data obtained from a commercial search en-
gine, which contains the query-keyword bipartite graph and advertiser’s bid keywords
in a one-week time frame. Please note that even with this real data, it is still highly
non-trivial to conduct empirical study due to the following reasons. (1) The computa-
tion of the QL-expressiveness is NP-Hard in general (since the set cover problem is its
sub routine), which prevents us from doing experiments on very large data. (2) Both
definitions of expressiveness require knowledge about the positive queries for an ad-
vertiser, which is unknown in practice (we only know the bid prices on the keywords).
To tackle these challenges, we have designed our experiments as follows.
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Fig. 1. Expressiveness values w.r.t. size of micro market

First, we restrict our empirical study to small micro markets. A micro market refers
to the queries and ads (and also their bid keywords) that concentrate on a specific
product. A micro market can be roughly considered as a closed system, and the expres-
siveness in different micro markets can be treated separately. For example, the queries
and ads about “insurance” form a micro market. Other examples of micro market in-
clude “travel”, “hotel”, and “car”. In this work, we employ a simple and straightforward
method to identify micro markets, and define the size of a micro market using the
number of keywords in it.5 To ensure that the computation of the QL-expressiveness
is feasible, we randomly sample 1000 micro markets whose sizes are smaller than 20,
and use them for our experimental study.

Second, we simulate the value on a query using a similarity based approach. Specif-
ically, we assume that if a query is similar enough (measured by a threshold) to the
keyword that an advertiser bids on, it will be a positive query. In our experiment, we
compute the similarity between query q and keyword s based on the Levenshtein dis-
tance d(q, s), which is popularly used in information retrieval and usually referred to
as the edit distance. Informally speaking, the Levenshtein distance equals the minimal
number of single-character edits required to change query q to keyword s. Based on the

Levenshtein distance, we define the similarity function as Sim(q, s) = 1− d(q,s)
maxlength(q,s) .

Then if we observe that advertiser i bids on keywords {s1, s2, · · · , sm} in the histori-
cal auction logs, we define the set of positive queries as follows,

Qi(θ) = {q ∈ Q : ∃s ∈ {s1, s2, · · · , sm},Sim(q, s) > θ}. (43)

When κ and θ are given, the values of both KL-expressiveness β and QL-
expressiveness α for each micro market can be computed. In our experiments, we
change θ from 0.9 to 0 and change κ from 1 to the size of the micro market, so as to
generate a large number of (α, β) pairs. We conduct some statistical significance test on
these data points, and find that β is larger than α/3 with a p-value= 0.01. This gives
a very accurate quantitative relationship between the two notions of expressiveness
based on real data.

To get a more friendly view of the data points, we create Tables III and IV. Since
the sizes of different micro markets can vary largely, we normalize κ with the size
of the micro market and quantify the values into ten buckets. For each bucket we

5We simply use term sharing as the rule to define micro markets. That is, if a set of keywords and queries
contain the same term A (e.g., insurance), we will consider them to belong to the same micro market. We take
this simple approach because we did not find previous works that can be used to fulfill the task. We believe
different ways of defining micro markets will not significantly affect our experimental results; however, we
are willing to adopt more advanced approaches when they are available in the future. Furthermore, we use
the number of keywords to define the size of a micro market because it is the most critical factor in the
computation of QL-expressiveness.
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Table III. QL-expressiveness on real data
P
P
P
P
PP

θ
κ/size

0-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% 80-90% 90-100%

0.9 0.518 0.743 0.878 0.952 0.980 0.990 0.996 0.999 0.999 1
0.8 0.432 0.670 0.826 0.923 0.964 0.982 0.993 0.998 0.999 1
0.7 0.247 0.492 0.687 0.834 0.917 0.960 0.983 0.990 0.996 0.999
0.6 0.123 0.290 0.485 0.658 0.803 0.875 0.942 0.972 0.991 0.999
0.5 0.080 0.179 0.314 0.481 0.653 0.727 0.838 0.915 0.969 0.998
0.4 0.055 0.115 0.203 0.326 0.509 0.571 0.710 0.808 0.920 0.994
0.3 0.044 0.094 0.157 0.243 0.409 0.428 0.586 0.691 0.842 0.981
0.2 0.039 0.084 0.141 0.207 0.277 0.360 0.501 0.617 0.770 0.973
0.1 0.038 0.083 0.138 0.201 0.260 0.351 0.485 0.590 0.756 0.968
0 0.038 0.082 0.138 0.200 0.259 0.349 0.484 0.587 0.753 0.965

Table IV. KL-expressiveness on real data
P
P
P
P
PP

θ
κ/size

0-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% 80-90% 90-100%

0.9 0.222 0.431 0.633 0.765 0.858 0.915 0.950 0.974 0.991 0.999
0.8 0.202 0.404 0.607 0.745 0.840 0.902 0.941 0.967 0.988 0.999
0.7 0.167 0.342 0.536 0.682 0.794 0.866 0.913 0.953 0.980 0.998
0.6 0.126 0.261 0.425 0.570 0.705 0.796 0.862 0.922 0.963 0.996
0.5 0.101 0.211 0.345 0.473 0.613 0.720 0.800 0.878 0.941 0.994
0.4 0.085 0.177 0.292 0.403 0.535 0.643 0.731 0.829 0.912 0.990
0.3 0.078 0.162 0.266 0.369 0.491 0.592 0.681 0.781 0.881 0.986
0.2 0.075 0.156 0.257 0.357 0.474 0.571 0.658 0.759 0.860 0.982
0.1 0.074 0.155 0.255 0.355 0.470 0.567 0.655 0.755 0.855 0.980
0 0.074 0.155 0.255 0.354 0.470 0.567 0.655 0.755 0.855 0.980

calculate the average α and β values as listed in the tables. From the tables, we can
see that in each bucket, with the increasing number of positive queries, both α and β
become smaller. On the other hand, if the number of positive queries is fixed, when the
normalized κ grows, both α and β become larger.

Due to the computational complexity, we only use the micro markets whose sizes
are smaller than 20 in our experiments. One may doubt whether our conclusion can
be generalized to larger micro markets. Our answer is positive. This is because the
values of α and β have become stable when the size of the micro markets is around 10.
For each element in Tables III and IV, we can plot a figure showing the comparison
between α and β with respect to the size of the micro market. We find that the figures
for all the elements demonstrate the same trend. Here we give one example in Figure
1 (corresponding to θ = 0.2 and κ = 0.4 · size). From the figure, we can see that β
approaches 0.45 and α stabilizes to around 0.25 very quickly. 6 Therefore we can expect
that the comparison between α and β has stabilized and the conclusion will not change
by much for larger micro markets.

6For completeness, we put all the figures at http://research.microsoft.com/en-us/people/tyliu/ec2013-appendix.zip

http://research.microsoft.com/en-us/people/tyliu/ec2013-appendix.zip
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