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Transmission of disease, spread of information and rumors, adoption of new products, and many other net-
work phenomena can be fruitfully modeled as cascading processes, where actions chosen by nodes influence
the subsequent behavior of neighbors in the network graph. Current literature on cascades tends to assume
nodes choose myopically based on the state of choices already taken by other nodes. We examine the pos-
sibility of strategic choice, where agents representing nodes anticipate the choices of others who have not
yet decided, and take into account their own influence on such choices. Our study employs the framework
of |Chierichetti et al.|[2012]], who (under assumption of myopic node behavior) investigate the scheduling
of node decisions to promote cascades of product adoptions preferred by the scheduler. We show that when
nodes behave strategically, outcomes can be extremely different. We exhibit cases where in the strategic set-
ting 100% of agents adopt, but in the myopic setting only an arbitrarily small €% do. Conversely, we present
cases where in the strategic setting 0% of agents adopt, but in the myopic setting (100 — €)% do, for any
constant ¢ > 0. Additionally, we prove some properties of cascade processes with strategic agents, both in
general and for particular classes of graphs.

Categories and Subject Descriptors: J.4 [Social and Behavioral Sciences]: Economics; F.2.2 [Nonnumer-
ical Algorithms and Problems]: Sequencing and scheduling
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1. INTRODUCTION

A common topic in the study of network behavior is that of contagious or cascading
processes, in which a number of nodes, or agents, start with some property they then
spread to their neighbors according to some specified propagation rules. This naturally
represents phenomena such as the spread of trends, technologies, or influence among
people or groups, or cascading failures in structures such as power grids or banks.
Scientists have, for many years, observed that processes can be heavily influenced by
the network on which they occur [Schelling|{1971; Granovetter 1973, |1978; |(Coleman
1988]. This influence has been confirmed in the real world by experiments from a wide
array of fields [Coleman et al.[1957; Conley and Udry|2010; Lerman and Ghosh/2010;
Banerjee et al.|2013] including the study of product adoption [Bass|1969; Brown and
Reingenl|1987; Mahajan et al.|1990; |Goldenberg et al.[|2001].

Various models with simple spreading rules have been proposed [Arthur|{1989; Mor-
r1s([2000; [Watts [2002] to explain, for example, how breaking news spreads over the
Internet or how a new technology spreads in popularity. Such models can be roughly
classified in two categories, according to whether the spread is defined directly as a
stochastic process, or in terms of decisions by self-interested agents who derive utility
based on their choices and the choices of others in the network. In the latter case, the
cascade scenario can be framed as a game, and agent strategies cast as equilibria in
the game. Due to the complexity of such games, however, typical agent-based cascade
models assume that agents make decisions myopically, evaluating utility of alterna-
tive choices in the current state, without explicitly considering the future choices of
others, nor their own potential impact on those choices.
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Our goal in this research is to investigate the implications of more forward-looking,
or strategic agent behavior. In what way do cascade patterns differ if agents behave
strategically rather than myopically? How does the sophistication of agent decision
making affect one’s ability to influence a cascade process through scheduling of agent
decisions?

1.1. Approach

To address these questions, we employ the framework of |Chierichetti et al. [2012]], de-
scribed in Section [2| This prior work presents many interesting results about cascade
behavior of myopic agents, and demonstrates the striking power of a scheduler to in-
fluence myopic cascades. Under our new assumption of strategic behavior, we find that
even many simple cases of this game, such as pairwise agent interactions on a line,
seem intractable to analyze. Thus instead of solving the game generally, we take the
approach of bounding the difference in cascade outcomes between myopic and strate-
gic agent types. We find that cascade outcomes can be markedly different, as can the
potential influence of a scheduler, depending on the particular network setting. We are
able to obtain tight bounds through two easily analyzed graph families.

1.2. Results of Chierichetti et al. for myopic agents

Chierichetti et al. investigate a network of agents making choices between two options
with positive externalities, Y and N, under the influence of a scheduler. (We adopt
their model and describe it in detail in Section [2]) The primary contribution of these
authors is in analyzing the impact of the schedule: the order in which agents make
choices. They show that for any network there is some schedule which gets an expected
constant fraction of the agents to choose Y. They also give networks and schedules
which cause all but a constant number of agents to choose Y, in expectation. Lastly,
they show that nonadaptive (fixed-sequence) schedules can obtain 50% expected Y-
adoption at best.

1.3. Related work

Sequential voting and information cascades are two facets of a vast literature attempt-
ing to explain herd behavior [Choi||1997]. Sequential voting models [Alon et al.|2012;
Dekel and Piccione|2000] consider strategic agents aiming to choose the majority deci-
sion, but with an additional private preference. Information cascades [Banerjee||1992;
Bikhchandani et al.|[1992] consider strategic agents with a noisy signal, attempting to
determine the correct choice. Both of these models tend to simplify network effects by
placing agents on a complete graph.

Granovetter|[1978] introduces the threshold model, a foundational theory of network
cascades which has since been studied and extended by many others [Domingos and
Richardson/2001; Richardson and Domingos|2002; Kempe et al.[2003]. In the threshold
model, agents take an action if a certain number of their neighbors have taken the
same action. Altman et al.|[2013] give an example of self-interested agents behaving
in accordance with the threshold model, but in general self-interested behavior may
not align with set thresholds.

Some agent-based cascade models [Raub and Weesie| [1990; Morris| |2000] allow
agents to revise their decisions over multiple rounds of play. In each round, an agent
myopically adopts its best choice in the current state. Some research on such models
[Blume|[1993; Ellison|[1993] also introduces an element of noise in agent choice, and
investigates the convergence of cascades over time.

Galeotti et al.|[2010] introduce a model with strategic agents which have access to
incomplete information about the network outside their direct neighbors, thus making
strategic agent behavior tractable. Lastly, Chierichetti et al.|[2012]] introduce a cascade

2



scheduling problem on networks based on a model studied by/Arthur|[|[1989]], which also
assumes simple myopic agent decision making. Their model has been further extended
by |Cao et al.|[2013]] and [Hajiaghayi et al. [2013]].

2. MODEL

We model a game Q = (G, p, ) in which a collection of agents choose between two ac-
tions, Y (“yes”) and N (“no”). Agents make their choices one at a time in a sequence
determined by the scheduler. Once an agent has decided, it cannot change its action.
We refer to the collection of agents as V, the total number of agents as n = |V|, an indi-
vidual agent as i € V, and the choice agent i makes as ¢; € {Y, N}. Agents are vertices
on the finite simple graph G = (V| F), and we say that two agents are neighbors if they
are connected by an edge e € E. We denote the set of neighbors of i by nb(i) C V.

Each agent i has a preference type, t; € {Y, N}, which is independently randomly
assigned at the beginning of the game. An agent is assigned type Y with probability p
(a game parameter) and type N with probability 1 — p. We assume that Y is the less
likely preference, so p < .5. Types are private: only i knows the value of ¢; (until it is
possibly revealed by i’s choice).

Agents make their choices to maximize individual utility. An agent obtains utility
7w (a game parameter) for choosing its type (¢; = t;), and a unit of utility for each
neighboring node making the same decision that it does. Thus a node faces tension
between choosing its type and the type it expects the majority of its neighbors to choose
(when these types disagree). Formally, agent ¢’s total utility is:

ui(ti,ci,c,i) = 7TI|.(CZ' = tz) + |{j c TLb(’L) : Cj = Ci}|7

where 1 is the indicator function and vector c_; represents the choice of all other nodes.

We differentiate between two modes of agent decision making: myopic and strategic.
At the time agent i makes its decision, some nodes have already chosen and the re-
mainder are undecided. A myopic agent makes its decision based on only the choices
of decided nodes. It does not look into the future to consider the likely actions of un-
decided nodes, hence the term “myopic”. Let my (i) and my (i) denote the number of
neighbors of 7 who have chosen Y and N, respectively, at the time ¢ is scheduled to
decide. Then a myopic i chooses t; if |my (i) — my(i)| < 7, and the majority type among
its decided neighbors otherwise.

A strategic agent aims to maximize its expected utility at the end of the game. We
assume it knows the details of the game (G, p, and ), the schedule S (discussed below),
and the decisions of already-decided agents. The agent reasons about the likely choices
of undecided agents, assuming they all are strategic and play according to a perfect
Bayesian equilibrium (PBE). A profile of strategies accords with PBE if and only if
there exists a belief system, consistent with Bayesian updating, such that each agent’s
strategy is a best response to the other-agent strategies at every reachable information
set. In our setting, each agent moves exactly once and types are independent, so there
is no relevant updating. Under these conditions, each node of the game tree is essen-
tially a singleton information set, treatable as a subgame. Thus, the PBE concept here
corresponds exactly to game solution by backward induction. To determine an agent’s
utility-maximizing action in some game, one can first solve for the choice of the last
agent to move, in all possible subgames with only one agent left to move. Knowing the
choice of the last agent, one can solve for the choice of the penultimate agent, in all
subgames where all agents but two have moved. This reasoning can be repeated until
the behavior of all agents in all subgames is known, yielding a PBE.

We make the additional assumption that an agent chooses its preference type, ¢;, if
it would otherwise be indifferent between options. We show that any @ and schedule



combination correspond to exactly one PBE (see Theorem consistent with this
assumption. Thus the behavior of all strategic nodes is well defined.

Following (Chierichetti et al. [2012], our analysis includes a scheduler whose goal is
to determine a schedule S that maximizes the expected number of agents choosing Y.
A schedule determines the order in which agents make their decisions. We consider
two classes of schedule: nonadaptive and adaptive. A nonadaptive schedule is simply a
fixed ordering of nodes, that is, a permutation of V. An adaptive schedule, in contrast,
can select the next agent to choose based on previous agent decisions. Formally, adap-
tive schedule S is a function of agent choices, S : {Y,N,U}" — V, where U indicates
that the corresponding agent is as yet undecided.

We evaluate schedules by their performance, which is the expected number of nodes
choosing Y once all have decided. An optimal schedule has the greatest performance
among all schedules, or optimal performance. We use strategic and myopic to qualify
performance. For example, a schedule’s strategic performance is the performance of
the schedule for strategic agents. A state of a game in progress, in which some but not
necessarily all agents have decided, is a situation.

We say that a situation is a Y-cascade if every future agent chooses Y regardless of
type. We similarly define an N-cascade. A situation is a total cascade if the first agent
necessarily initiates a cascade of its type. A game is a predetermined Y -cascade if the
starting situation is a Y-cascade. We similarly define predetermined N-cascade.

3. ROADMAP OF RESULTS

The main result of this paper is a demonstration that cascade outcomes can vary dras-
tically depending on the assumption of myopic or strategic agents. Specifically, we show
that the difference in performance between myopic and strategic agents can be arbi-
trarily close to the maximum possible difference of 100% in either direction. In addi-
tion, we solve for equilibrium agent behavior in several particular game classes, pro-
vide miscellaneous results characterizing the behavior of cascade games with strategic
agents, and a result demonstrating the importance of the capabilities of the scheduler:

— In Section [4, we analyze the clique—both as a first example and as a way of intro-
ducing intuition, techniques, and results useful for subsequent sections. We present
instances in which strategic performance is 0%: strictly worse than the constant ex-
pected adoption guaranteed for myopic agents. We conversely present instances for
which strategic performance is greater than myopic performance.

— In Section [5), we show that myopic performance can be much larger than strategic
performance: the difference can be arbitrarily close to 100%. We prove this by ana-
lyzing a specific class of games which occur on a graph we call a council graph.

— In Section [6] we show the converse: strategic performance can be arbitrarily close to
100% greater than myopic performance. We show this by analyzing a class of games
which occur on a graph we call a cloud graph.

—In Section [7} we give several results. In particular we show that performance in
the nonadaptive setting is bounded by p for both myopic and strategic agents. This
improves upon the results of Chierichetti et al.|[2012] showing a myopic agent upper
bound of 1. We also demonstrate a family of graphs in which myopic performance is
always at least as great as strategic performance, no matter the parameter settings.

— In Section[8] we investigate the commitment power of the scheduler and show that, in
some cases, an ability to make non-credible threats can strictly enhance performance.

— Finally, in Section[9] we present an algorithm to compute the performance of a graph
with strategic agents that is efficient on a certain class of highly symmetric graphs.

Due to space limitations, the complete analysis of some results and several lemma
and theorem proofs are relegated to the appendix.
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4. CLIQUE ANALYSIS

A clique is a complete graph where every two agents are connected. We begin our
study of the difference between strategic and myopic performance with a description
of behavior on the clique because it is illustrative of the difference between the my-
opic and strategic settings, and is used in subsequent proofs. The clique is also easier
to analyze as nodes occupy indistinguishable positions in the network, rendering all
schedules identical.

4.1. An example

Let # = 1.1, p = 0.09, and our graph be a clique of size 3. We name the nodes in
the order that they are scheduled: 1, 2, and 3. Note that on a clique all nodes have
the same neighbors, so all schedules are identical. We reason about the behavior of
strategic agents in this game by backward induction.

First consider the behavior of the last node to choose, agent 3. If agents 1 and 2 have
both chosen N or have both chosen Y, 3 will match with them. Otherwise, c3 = t3.

Next consider the behavior of agent 2. If &, = N, ¢co = N no matter what. Even if
c1 = Y, agent 2 can expect to get a match from 3 with probability 0.91 if c; = N. Its
expected payoff would be 2.01 for c; = N versus2forcy =Y. Ifto =Y, co = Nifc; = N.
This is because agent 2’s expected payoff for c; = N is 2, versus 1.19 for c; = Y.

Knowing this behavior, ¢; = N regardless of ¢;. Suppose ¢t; = Y. Then agent 1 gets
payoff 2 for ¢; = N, or payoff 1.1 +0.91(0 + 0.09) + (0.09)2 = 1.3619 for ¢; =Y/, so is best
off choosing N.

Even this very simple graph demonstrates a qualitative difference between strategic
and myopic behavior. As |Chierichetti et al. [2012] show, the optimal schedule for any
graph with myopic agents achieves at least a constant fraction of Y-adoption, in ex-
pectation. In this example, myopic agents achieve over 6.7% expected adoption. Yet for
strategic agents, the example scenario yields zero adoption. We further characterize
the behavior of the clique graph in Section

4.2. Asymptotically large clique

We characterize the behavior of games on cliques in the limit of large clique size. For
the remainder of this section, we assume p and = to be fixed and represent a game
Q = (G, p, ) solely by its graph G. When G is a complete graph (clique) of size n, we
use K,,. Games on cliques can be divided into two classes of asymptotic behavior.

THEOREM 4.1. Forany fixed 0 < p < 1/2 and 7 > 0, there exists an M such that for
all n > M, K, gives either:

(1) A predetermined N-cascade (all agents always choose N), or
(2) A total cascade (first agent chooses its type t and the remaining agents match t,
starting a t-cascade).

We denote these two classes of behavior by Cpyc and Cro. The class a particular
game belongs to depends on p, , and n. The proof of this theorem, in Appendix [A]
follows from the fact that, as cliques become very large, a node prefers any guaranteed
cascade over a chance of being left out of a cascade.

We find cliques in both Cpyc (see Section and Crc (see below). Cpyc corre-
sponds to cases where myopic agents give higher performance than strategic agents,
and Cr¢c corresponds to the opposite. A clique transitions from Cr¢ to Cpye as p
decreases and 7 increases. On the boundary of this transition we find cases where a
clique alternates, depending on the parity of n, between Cpyc and Cr¢o. Computa-
tional confirmation of these results can be found in Section [4.3]
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Fig. 1. Strategic-to-myopic performance ratio on clique graph.

When Strategic Outperforms Myopic on a Clique. Section[4.1]presents an exam-
ple where strategic agents yield zero performance but myopic agents give positive per-
formance. One might expect the clique to always favor myopic performance, as strate-
gic agents are aware that Y-preference is less likely, and thus might be more likely
to choose N than their myopic counterparts. We show that this is not the case. When
1 <7 < 1+ p, myopic agents underperform strategic agents because two Y decisions
are required to start a myopic Y-cascade and only one is required to start a strategic

Y -cascade. Thus the probability of a Y-cascade is ﬁ ~ p? for myopic agents and
p for strategic agents.

THEOREM 4.2. Forany 1l < <1+ p, the probability of a Y-cascade with strategic
users on a clique graph is p.

Note that when © < 1, strategic performance is equal to myopic performance by
Lemma

Computational results in Section [4.3|suggest that for any = > 1, there exists settings
of p such that strategic performance is greater than myopic performance.

4.3. Clique computational solution

In Section |4.1| we prove that, under some parameter settings for the clique, strategic
agents result in a performance of zero. In Section we prove that other parame-
ter settings result in strategic agents outperforming myopic agents. In this section
we provide computational verification for these two scenarios. For the specifics of our
algorithm, please refer to Section [9}

Figure[1(a) displays results of a program which simulates a clique of 40 agents, each
making the optimal strategic or myopic decision. We calculate the strategic and myopic
performance for a variety of p and 7 combinations and plot their ratio in the figure. The
black region corresponds to the class Cpyc and the lighter regions correspond to the
class Cr¢. The band at the bottom for 7 < 1 results from the immediate total cascade
(LemmalA.I). The band just above = = 1 in Fig. [L(a)|corresponds to the region partially
described by Theorem[4.2] where one agent can start a strategic cascade but two agents
are necessary for a myopic cascade. Figure displays results of the same program,
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Fig. 2. A council graph, as described in the text, with intra-clique connections excluded. The large circle is
the council and the small circles are subcliques.

but with fixed p to examine the effect of varying n. The resulting black area is governed
by two simple bounds. The lower pink area results from 7= < 1 according to Lemma [A.]]
as described above. The left pink wedge appears when = is large relative to n and all
agents choose their preference. At the pink-black border we see non-trivial behavior.

5. MYOPIC OUTPERFORMS STRATEGIC

We exhibit a setting where myopic performance is (100 — €)% but strategic performance
is zero. Thus, unlike in the myopic case, where performance is always bounded above
some constant [[Chierichetti et al.[2012], it is possible to get zero strategic performance
while simultaneously having arbitrarily high myopic performance. This constitutes the
first half of our core result. We prove this bound constructively, by characterizing the
behavior of a family of graphs which have optimal strategic performance of 0% and an
optimal myopic performance which approaches 100% in the limit of large graph size.

Our graph is a modified version of a clique graph, which we call a council graph (see
Figure [2). It consists of a large clique, the council, of size K and M smaller subcliques
of size 5 M is o(K), for example, M = /K. Each of the subcliques is completely
connected to a unique node, its representative, from the council. This gives K — M
council nodes of degree K — 1, M council nodes of degree K + 4, and 5M subclique
nodes of degree 5.

Near 100% Myopic Performance. We demonstrate a schedule giving performance
tending to 100% in the limit of large graph size. We do not prove this schedule’s op-
timality, but it gives a lower bound sufficient for our purposes. We say a subclique is
fresh if none of its nodes have been scheduled. Our schedule, 5, is the following:

1 Choose any fresh subclique, ;.
Schedule nodes from j until one chooses N or all have chosen Y.
If all nodes in j have chosen Y, schedule j’s council representative, r;.
2 Repeat 1 until three representatives have been scheduled or no fresh subcliques
remain.
3 Schedule all council nodes without N-decided neighbors.
4 Schedule all remaining council nodes in any order.
5 Schedule all remaining subclique nodes in any order.

THEOREM 5.1. Forany p < .5, 2 < 7 < 3, the myopic performance of S approaches
100% as K — .

1 Any subclique of constant size > 5 will work.



PROOF. Our proof proceeds by a careful description of behavior at each point in the
schedule. First note that a myopic agent will choose its type if < 2 of its neighbors have
been scheduled, and Y if > 3 more of its neighbors have chosen Y than N.

So with probability p? a fresh subclique from Step 1 will be a Y-cascade and its
representative will also choose Y. With probability 1 — p? a fresh subclique from Step 1
will not be a Y-cascade and its representative will not be scheduled.

We can bound the probability of (the undesirable event of) not having 3 subclique
Y -cascades by:

M ,
(5 )0PPa = 2 = Y = Y < R

Once there are 3 subclique Y-cascades, the entire council chooses Y. Thus, the ex-
pected fraction of Y is at least:

K(1— M2(1—p*)M2) /(K + M),
which tends to1as K — co. O

0% Strategic Performance. We characterize behavior of the council graph with
strategic agents and prove that certain choices of p and 7 give 0% performance. This,
together with the results from above, gives a tight bound on the extent to which myopic
performance can be greater than strategic performance.

THEOREM 5.2. For some p < .5, 2 < 7 < 3, any schedule on a council graph with
strategic agents has 0% performance.

The following lemma is used in the proof below.

LEMMA 5.3. For some p < .5, 2 < 7 < 3, a clique of k > 5 undecided nodes and one
node guaranteed to choose Y will result in k N-decisions and 1 Y-decision.

We prove this lemma in Appendix [B|by direct comparison of expected utilities.

PROOF OF THEOREM 5.2 The council graph was chosen to facilitate analysis by
simplification to more easily understood cliques. As such, we invoke Lemma 5.3} which
proves the existence of cliques and settings of p and © which strongly favor N, in the
sense that even if a common neighbor of the clique is guaranteed to choose Y, the bias
towards N-preference results in a predetermined N-cascade.

Thus, even if a clever scheduler convinces the whole council to choose Y, we see by
Lemma [5.3| that, for some p and =, the subclique chooses N.

The nodes in the council, being fully strategic, know any subclique neighbors they
have are guaranteed N-neighbors. By another application of Lemma we see that
all council nodes choose N and thus, for some p and 7, any schedule is doomed to 0%
performance. 0O

6. STRATEGIC OUTPERFORMS MYOPIC

By now it is natural to see how strategic agents’ expectations of future N-preference
lead to lower strategic performance than myopic performance. As seen in Section [4.2]
there are also games where strategic agents give higher performance than myopic
agents. In this section we show the second half of our core result, that this difference
can be as large as (100 — €)%.

We prove this bound constructively by analyzing a special graph we call a cloud
graph. We first show that for certain parameters on the cloud graph it is possible to
obtain strategic performance of 100%. Recall that no graph can achieve exactly 0% or
100% myopic performance, because the first myopic node always chooses its type. We
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do, however, show that for some settings on the cloud, myopic performance approaches
0% while strategic performance remains 100%, giving our desired bound.

A cloud graph (Figure [3) consists of two singular outer vertices of degree a and b
respectively, one singular inner vertex of degree a + b, and two clouds of vertices of
respective size a and b, with each vertex of degree two. Each of the outer vertices is
connected to every vertex in a distinct cloud. The inner vertex is connected to every
vertex in both clouds. We call the cloud with a vertices A and the one with b vertices B.

THEOREM 6.1. Fix arbitrary ¢ > 0. Then there exist parameters a, b, p, and 7 such
that strategic performance on the cloud graph is 100% whilst the myopic performance
s at most e.

This follows from Lemma[6.2] and Lemma[6.6] proved in the remainder of this section.

100% Strategic Performance. We give sufficient conditions for obtaining 100%
performance with strategic agents in a cloud graph. We refer to the singular vertices,
from left to right, as 1,2, and 3, and assume that a < b.

An optimal schedule, S, is the following:

1 Schedule 1.
if 1 chooses Y then
Schedule 2 followed by 3.
else
Schedule 3 followed by 2.
2 Schedule all cloud vertices in any order.

An overview of the proof of optimality is as follows. Scheduling agent 2 before agent 3
guarantees that 2, and thus all nodes in A4, will match the choice of 1 (Lemma6.5). On
the other hand, scheduling agent 3 before agent 2 gives some positive probability that
the nodes in A choose their type (Lemma[6.4). This outcome results in lower utility for
1. Thus the adaptive schedule can be used to incentivize 1 to choose Y through threat
of punishment for choosing N. We are able to show that, for large enough cloud sizes,
threat of punishment to 1 for choosing N is enough to convince it to choose Y, giving
100% performance. This is given formally below.

LEMMA 6.2. If cloud sizes satisfy a(1 — p) + = < bp and ap? > 7, then, under the
schedule S,p, 1, and thus all agents, will always choose Y.

PROOF. We are able to punish 1 for choosing N because scheduling 3 first gives a
p? chance of the nodes in A choosing their type, while scheduling 2 first guarantees all
nodes in A choose c¢1, a more desirable outcome to 1. We use several lemmas outlining
the behavior of agents 2 and 3, proved below.
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Assume 1 is N-type. Being Y -type only increases 1’s payoff for choosing Y. We show
below that 1’s utility for choosing Y is higher than its utility for choosing N when
a(l —p) + 7 < bp and ap? > 7.

If 1 chooses N, then we schedule 3, followed by 2. In this case, Lemma shows
that co = ¢3 = t3. With probability 1 — p all nodes in A choose N, and with probability
p Ais split. 1’s expected utility is 7 + a(1 — p) + a(1 — p)p.

If 1 chooses Y, then we schedule 2, followed by 3. In this case, Lemma[6.5|shows that
co = 1. I’s expected utility is a.

Then 1 will choose Y as long as a > 7 + a(l — p)(1 + p). Or, equivalently, ap? > T,
which is true by assumption. Once 1 chooses Y, the schedule leads to all remaining
nodes choosing Y. O

We must pick appropriate cloud sizes (depending on 7 and p) and have = < 2 for
the theorem to be true. This is possible for any p by selecting large enough « and even
larger b. The following lemmas detail the behaviors of the clouds and agents 2 and 3
used in the proof of Lemma[6.2]

LEMMA 6.3. The behavior of an unscheduled cloud neighbored by two decided sin-
gular agents is completely determined by the singular agents’ choices. If their choices
are different, then every cloud agent will choose its type and an expected p fraction of
the cloud agents will choose Y. In this case we say that the cloud has been split. If they
make the same choice ¢, all cloud agents will choose c.

Knowing the cloud behavior, we can characterize the behavior of the case where
agent 3 is scheduled and then agent 2 is scheduled.

LEMMA 6.4. When o(1 — p) + 7 < bp, if agent 3 is scheduled to choose and 2 has not
been scheduled yet, c3 = t3. Then, when 2 is scheduled next, co = cs.

LEMMA 6.5. Ifagent 2 is scheduled to choose after 1 but before 3, it will choose c; if
bp > ap > m. When 3 is scheduled, it will match 2.

Here, the scheduler persuades cloud agents to adopt the minority preference through
the threat of unfavorable adaptive sequencing. All nonadaptive schedules have perfor-
mance bounded by p (Theorem [7.6), and thus the above result clearly requires adap-
tivity. In fact, the difference in performance for adaptive and nonadaptive scheduling
can be arbitrarily large for strategic agents (Corollary[7.10).

Near 0% Myopic Performance. By Lemma we can obtain 100% adoption with
strategic agents for any p if we pick cloud sizes a and b large enough. The proportion of
myopic adoption, however, is some polynomial of p, and thus can be made arbitrarily
small. The combination of these two results gives us a tight bound on the extent to
which strategic performance can be greater than myopic performance.

LEMMA 6.6. Fixing © < 2, the myopic performance is bounded by p(1 — p)3(1 —
ﬁ)Q +[1-(1-p)31- 1%?)2]. In the limit of p — 0, the proportion of myopic adoption
in the cloud graph also goes to 0.

PRrOOF. We bound the myopic performance by a polynomial in p for = < 2.

Denote the current difference between the number of agents in cloud A (B) who
have chosen Y and those who have chosen N by d4 (dg). With probability (1 — p)3,
all singular agents are type N. A singular N-type agent will choose Y only if d4 > 1
or dg > 1. A cloud agent will choose its type or N unless at least one of the singular
agents has already chosen Y.

We bound the probability of a singular agent choosing Y by noticing that the proba-
bility of a cloud ever achieving a Y majority by agents choosing their type is no greater
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than ﬁ, a result from the mathematics of biased random walks. Thus, the probability
that all cloud nodes choose their type (or N) is at least (1 — p)3(1 — l%p)Q. This proba-

bility, which we denote ¢, tends to 1 as p — 0. The expected proportion of Y-adoptions
is no greater than pg + (1 — ¢q), which goestoOasp — 0. O

7. MISCELLANEOUS RESULTS

Having analyzed behavior of cascades on specific classes of graphs, we aim to give
properties of cascade behavior for arbitrary games, regardless of G, p, or .

We first address the issue of the multiplicity of PBE. The existence or uniqueness of
PBE is not guaranteed for all classes of games. The possibility of zero or multiple PBE
would render some of our key concepts, such as the performance of a schedule, unclear.
Fortunately, as we show below, our assumption that agents consistently choose their
type when indifferent between options always results in the selection of a unique PBE.
This follows from a simple backward induction argument. We also give a technique for
relaxing this behavioral assumption but keeping the unique PBE property:

THEOREM 7.1. If agents are never indifferent between choices, or always resolve
any indifference in a consistent way—by choosing the same option whenever they are in
the same situation—then their PBE behavior is uniquely defined.

The following theorem shows that our assumption of indifference can be avoided,
while keeping the same cascade outcome, by slightly adjusting .

THEOREM 7.2. Given a game Q = (G,p, ), let P be the performance under an
adaptive schedule S with the assumption that a node always chooses its type if it is
indifferent between Y and N. Then there exists an € such that Q' = (G, p,n’ = m+¢) also
achieves performance P under S, and under S no node is indifferent between choices.

The proof, in Appendix|C| simply chooses ¢ less than the smallest utility difference.

We also prove that increasing p alone can never decrease the performance of the op-
timal schedule. The main ingredient in the proof is a coupling argument. This mono-
tonicity is not observed for 7 or n

THEOREM 7.3. For any two games, Q = (G,p,m) and Q' = (G,p',«), with
0 < p < p' < .5, the performance of any nonadaptive schedule S for Q) is weakly worse
than the performance of S for Q'.

Star Graph. It seems that behavior on every graph we study varies unpredictably
as game parameters change. Even a graph as simple as a clique can exhibit drastically
different cascade outcomes from small changes in p or 7. However, this is not always
the case. Games on the star graph—a graph with one interior agent (of degree n — 1)
connected to n — 1 exterior agents (of degree 1)—have notably regular behavior.

THEOREM 7.4. For any parameters on any star graph, the optimal performance in
the myopic setting is at least the optimal performance in the strategic setting for both
adaptive and nonadaptive schedules.

The proof, in Appendix [D] establishes the optimality of threshold strategies for nodes
and then shows that the myopic thresholds always beat the strategic thresholds.

Knowing that myopic performance exceeds strategic on the star, we next explore the
degree of this advantage. We find that, for adaptive schedules, myopic performance can
be arbitrarily close to an additive factor of 50% greater than strategic performance.

2An example of non-monotonicity can be found in Figure|1(b)
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Fig. 4. Strategic-to-myopic performance ratio on star, n = 41.

In the limit of large star graphs, adaptive myopic performance is ﬁ for any 7 < 1.

Thus, for p arbitrarily close to .5, myopic performance approaches 100%. This result
does not hold for strategic agents: a backward induction argument shows that for small
enough 7, strategic performance is bounded by p.

THEOREM 7.5. For any star graph with = < 1—p and any adaptive schedule, strate-
gic Y-type nodes choose N when a majority of nodes have chosen N, upper bounding
strategic performance by p.

PROOF. We characterize behavior on the star with strategic agents when r <1 —p
by backward induction. Let d be the difference between the number of exterior nodes
who have chosen Y and the number who have chosen N: d = my — my. We show that
any node chooses N when d < 0.

Consider the behavior of the last node, i. Assume the best case for a Y choice, that
t; = Y. If d = —1, i receives p + 7 utility for ¢, = Y and 1 utility for ¢, = N. By
assumption, ; prefers N. Any d < —1 gives i 7 utility for ¢; = Y and 1 utility for ¢; = N.
This completes the base case.

Next we prove the inductive step. Assuming the theorem holds when k£ — 1 agents
remain, we show the theorem holds when & agents remain. Denote the agent choosing
with k agents remaining by j. Assume the best case for a Y choice, that ¢; = Y. Using
the inductive hypothesis, we find that utilities for j are exactly as above for i. O

We proved that optimal strategic performance is never greater than optimal myopic
performance for a star graph. We also present computational verification. For details
of the algorithm used for computing solutions, see Section [9}

Figure [4] displays results of a computational solution of the optimal schedule for a
star of 41 agents. We calculate the strategic-to-myopic performance ratio for a variety
of p and 7 combinations.

Nonadaptive Schedules. Lastly, we prove that no nonadaptive schedule for strate-
gic or myopic agents can achieve more than a p fraction performance, on any graph. A
similar bound of p was proved independently by Hajiaghayi et al.[[2013, Theorem 1],
using different techniques, restricted to myopic agents on the clique graph. Their the-
orem generalizes to the setting where agents can have heterogeneous 7 thresholds.

12



Whereas we do not explicitly address heterogeneity in 7= here, we note that the proof
of Theorem immediately extends to this more general model.

Both results improve on the 50% bound of [Chierichetti et al.| [2012], which covers
myopic agents on arbitrary graphs.

Bounding nonadaptive schedule performance for strategic agents entails that the
very high performance of Section [6]is not possible when the scheduler cannot react
to decisions made by nodes (Corollary [7.10). Moreover, it rules out the possibility of
predetermined Y-cascades with nonadaptive schedules. Our proof combines a care-
ful inductive argument with the repeated application of a result from the analysis of
Boolean functions.

THEOREM 7.6. No nonadaptive schedule can achieve more than p fraction perfor-
mance for any p < .5, 7 > 0, in the myopic or strategic setting.

To prove Theorem [7.6|we use a lemma from Mossel et al.|[2012], Lemma 5.1]:

LEMMA 7.7. Let f : {Y,N}" — {Y,N} be a monotone function (so that flipping
input bits from N to Y cannot change the output from Y to N and vice versa) with
Piyo(f=Y)=1/2. Then P,(f =Y) <pforall 0 <p<1/2.

PROOF OF THEOREM[7.6l We first prove the theorem for the myopic setting. We
apply Lemma separately to each node, in combination with Lemma to show
that each agent chooses Y with probability at most p. From linearity of expectations,
we know the myopic performance is at most a p fraction of the nodes.

Fix a game and schedule, and adopt the following notation.

Let ¢c; : {Y,N}* — {Y, N} be the function which takes as input the types of the first i
agents and outputs the selection of agent .

Let ¢; : {Y, N} — {Y, N}’ be the function which takes as input the types of the first
i agents and outputs the selection of the first i agents.

Let ¢; : {Y,N}'=! x {Y, N} — {Y, N} be the function which takes as input the selec-
tions of the first i — 1 agents and the type of the ith agent and outputs the selection of
the /th agent.

We denote the types of the first i agents as t() = t;,...,t; € {Y, N}’ and denote by
—w € {Y, N}' the string with each coordinate the opposite as in w € {Y, N}.

Lemmal|7.8|shows that ¢;(—t()) = —¢;(t(*)), from which we see that P, /»(c; = Y) = 1/2
because for each string, exactly one of w and —w evaluates to Y. Thus we can employ
Lemma to see that P,(¢; =Y) < p, which proves the theorem in the myopic case.

LEMMA 7.8. c¢;(=t®) = —¢;(t).

PROOF OF LEMMA[7.8l We can do this by induction on ¢ to show that both ¢; and
¢; have this property. Note that because Y and N are treated symmetrically in the
myopic setting, we know that é;(—w) = —¢;(w) for all i.

The base case follows because c;(t1) = ¢1(t1) = ¢1(t1), and we know that ¢; has the
property.

Assume that the statement is true for all j < i. Note that

ci(—t") = 1(=t07Y)

61(&1'7 , Tt
éi(=é_ (107D, =t
—¢; (¢ i)

(i (2670)

i)
i)

= —\Ci(t(i)).
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The first line follows from the definition of ¢; and ¢é; and second line follows from
induction. Similarly, for ¢;:

& (D) = &y (t07D) 0 &(éi—y (—t07V), —t;)
= 61 (t07D) 0 &= (107Y), o)
= ¢ (t7) 0 =i (E (), 1) = ~a(tY). O

We next prove the strategic case of Theorem The intuition is straightforward. If
a node imagines that all future nodes are equally likely to prefer Y and N, then again
Y and N are treated symmetrically, as in the myopic setting, and Lemma [7.7] applies.
So given that this node’s type and the types of agents that have already chosen are Y
independently with probability p, the probability that each node chooses Y is at most
p. This probability only decreases when this node expects future nodes to be Y-type
less often.

We define ¢! : {Y, N} = {Y,N}, & : {V,N} = {YV,N},and ¢ : {Y, N} "' x{Y,N} —
{Y,N} analogously to above, except here we assume that all agents play strategically
according to the case where each node is Y-type with probability p.

The outline of the proof of Lemma given in full in Appendix [C] is as follows.

We again see that P;/s(c; ct/ 2( t()) = Y) = 1/2 by the same reasoning, and applying

Lemmawe see that P,(c;/*(t®) = Y) < p. We would like to show that P,(c?(t®) =
Y) < p. To complete the lemma it is enough to show that ¢! is monotone in p. That is,
increasing p only makes a Y outcome more likely.

By induction we will show that ¢! is also monotone with respect to p. This completes

the proof of the theorem because then P,(c?(t()) = V) < P,(c//?(t®) = Y) < p.
LEMMA 7.9. ¢ and ¢ are also monotone in their inputs and in p.
This completes the proof of Theorem[7.6] O

Theorems [7.6| and [6.1] imply that adaptive schedules can be arbitrarily more power-
ful than nonadaptive ones in the strategic setting.

COROLLARY 7.10. For any € > 0, there exists a game () with strategic agents for
which an adaptive scheduler can achieve 100% adoption and a nonadaptive scheduler
achieves < ¢%.

Similarly we see that adaptive schedules can be arbitrarily more powerful than non-
adaptive ones in the myopic setting by combining Theorem and a lemma from
Chierichetti et al.|[2012, Lemma 3.1], which gives a graph with adaptive performance
of (100 — O(pin))%.

COROLLARY 7.11. Forany ¢ > 0, there exists a game Q with myopic agents for which
an adaptive scheduler can achieve > (100 — €)% adoption and a nonadaptive scheduler
achieves < e%.

8. SCHEDULER COMMITMENT POWER

Our model dictates that the scheduler chooses and publishes its (possibly adaptive)
schedule in advance. This publication is a commitment to follow the schedule even
in situations where, once reached, it is suboptimal. We refer to a scheduler who can
commit in advance as Stackelberg, after the classic economic model of imperfect com-
petition in which a first-moving player is notably advantaged by an ability to make
non-credible threats [Von Stackelberg/2011]]. Such ability contrasts with a scheduler
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Fig. 5. A graph in which a Stackelberg scheduler achieves greater performance.

who is restricted to schedules that make the performance-maximizing decision in ev-
ery subgame.

Whereas the power to make non-credible threats allows players to obtain strictly
greater utility in some games, there are many natural games for which this power
yields no advantage. Our question is whether in this context Stackelberg scheduling
ability is strictly more powerful than the ability to only make credible threats. A priori,
it is unclear how non-credible threats could aid the scheduler. It seems that the only
way to convince a node not to choose N is to threaten to surround it with an abun-
dance of Y's in the case where it does choose N. Maximizing Y's, however, aligns with
the scheduler’s goal, and can only be non-credible if somehow concentrating these Y's
lowers overall expected performance.

We have, however, found a game instance, illustrated in Figure |5, for which com-
mitment power provides an advantage. For this graph, with parameters p = 0.18 and
m = 1.85, a Stackelberg scheduler can achieve performance of 0.573 whereas the best
subgame-optimal schedule yields 0.371.

Our five node graph has three types of nodes which are in indistinguishable po-
sitions. We call the groups A, B, and C and don’t distinguish between nodes within
each group. We give the Stackelberg schedule in Figure [6(a) and the subgame-optimal
schedule, which corresponds to a Perfect Bayesian Equilibrium (PBE), in Figure [6(b)}

To see how the Stackelberg scheduler outperforms the PBE scheduler, note that the
Stackelberg scheduler schedules A first and it chooses its type, whereas if the PBE
scheduler scheduled A first it would choose N. Both schedulers agree on what to do if
A chooses N. If A chooses Y, the Stackelberg scheduler schedules A next even though
scheduling B next would yield higher expected performance. The PBE scheduler must
pick B next in this case. The higher performance of picking B next comes at the cost
of giving fewer expected Y-matches to A, and thus makes A, if scheduled first, less
inclined to play Y. In this instance, the result is that a first-moving A would play N if
faced with a PBE schedule, and its type if faced with the optimal Stackelberg schedule.

Since it cannot threaten A, the PBE scheduler does not schedule A first, and in-
stead starts with C, which gives fairly similar cascade behavior but results in fewer
nodes choosing Y, in expectation. This completes our example of a graph with higher
Stackelberg than PBE performance.

Assuming commitment power in the foregoing analysis simplifies our arguments by
avoiding the necessity of verifying optimal scheduling in all subgames. Results for my-
opic outperforming strategic hold a fortiori if we relax the assumption of commitment
power, as the ability to make threats is useful only for strategic agents. Our deriva-
tion (Section [6) of the bound for strategic outperforming myopic exploits commitment
power, however, we have verified that a more complicated demonstration can be con-
structed supporting the same bound under the weaker assumption of subgame-optimal
PBE schedules.
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Schedule A: Schedule C:

if A chooses Y then if C chooses Y then
Schedule A: Schedule B:
if A chooses Y then if B chooses Y then
Schedule B: Schedule A. All remaining
if B chooses Y then nodes choose Y
Schedule B, then C else
else Schedule C, then B Schedule A, then A, then B
else else
Schedule B: Schedule remaining nodes in any
if B chooses Y then order. All choose N
Schedule C, then B (b) PBE schedule
else Schedule B, then C
else
Schedule C:

if C chooses Y then
Schedule A, then B, then B
else
Schedule B:
if B chooses Y then
Schedule B, then A
else Schedule A, then B

(a) Stackelberg schedule

Fig. 6. Schedules demonstrating the increased power of non-credible threats by the scheduler.

9. COMPUTATIONAL SOLUTIONS TO STRATEGIC CASCADES

It is straightforward to write a program which computes, by brute force, the optima]ﬂ
schedule for an arbitrary graph. Node behavior can be solved by backward induction.
Logically, the exponential number of possible schedules and agent type configurations
makes this approach infeasible. In this section we describe an approach to efficiently
find solutions for strategic cascade problems on a subclass of highly symmetric graphs.

Our codeﬂ finds the optimal schedule for arbitrary blockmodel’|graphs with strategic
or myopic agents. Blockmodels have been studied extensively in the past [Snijders
and Nowicki||1997; [Wang and Wong|1987|] as a natural framing of networks in which
nodes can be divided into classes or types with shared characteristics. For example,
a blockmodel describing a social network at a high school could have a type for each
grade. Students would be more likely to have edges to students of their same grade,
and less likely to have edges to students of other grades. More abstractly, the star
graph is easily described as a blockmodel in which the two classes are “interior agent”
and “exterior agent”.

30ur algorithm calculates the optimal schedule under the assumption that the scheduler is acting according
to a PBE and cannot make empty threats. The main theoretical analyses of the paper assume the scheduler
can make empty threats and is acting according to a Stackelberg equilibrium. On the star and clique these
two equilibrium concepts give identical optimal schedules. See Sectionfor in-depth discussion.

4 The work in this section was performed in collaboration with Erik Brinkman. Code can be found at
https://github.com/tbmbob/block-scheduling. block_dp.py is the file containing the solver. Code has not been
prepared for public release. Please contact travisbm@umich.edu with any questions.

5Any graph can be expressed as a blockmodel graph with n blocks. Our algorithm works efficiently only for
graphs with a small number of blocks.
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Our code finds optimal schedules efficiently for graphs with a small (constant) num-
ber of types. The star, clique, and cloud graphs all fit this requirement. Running time
is polynomial in the number of agents and exponential in the number of blocks. The
code solves for the optimal performance through a combination of dynamic program-
ming and backward induction. It first solves all possible scenarios with one node left
to choose and stores the results. Then, by using these results, the program solves opti-
mal behavior when there are two nodes left to choose. It continues this process until it
solves for the optimal behavior with all nodes left to choose. It avoids the exponential
running time of a naive backward induction by treating all agents within a block the
same. It is then able to consider only which block to schedule next, not which node
to schedule next. By reasoning over blocks instead of node types, the scheduler needs
only to compare between O(b) choices at each step, where b is the number of blocks,
instead of O(n) choices.

Examples of data gathered from our code can be viewed in Figures [1| and |4} This
computational method is far from a panacea. Very few real-world graphs follow strict
block models, and even idealized graphs often have too many types to permit efficient
simulation. However, this code has been useful in verifying results for simple star,
clique, and cloud graphs and in suggesting further results. For example, simulation
on the clique suggested the possibility of certain parameter spaces resulting in higher
strategic performance than myopic performance.

10. CONCLUSION

We have demonstrated that the common assumption of myopic decision making by
agents participating in cascades can have significant consequences. For the specific
model of Chierichetti et al., we find that assuming strategic instead of myopic agent
decision making leads to markedly different cascade behavior. We show, by counterex-
ample, that their result of linear performance for any graph does not apply when
agents are strategic. We have identified graphs for which the performance difference
between myopic and strategic agents is (asymptotically) as large as possible, in either
direction. More broadly, we illustrate methods for reasoning about strategic cascade
behavior and characterize the contrasting behavior of strategic and myopic agents in
a range of qualitatively distinct settings. Lastly, we prove some results for strategic
agents on general graphs, and demonstrate the power of scheduler commitment.

Modeling cascades with perfectly strategic agents is not necessarily more realistic
than modeling agents with limited rationality. Thus, we do not argue for the strate-
gic behavior we characterize as a definitive predictive model. Rather, our point is
to demonstrate the potential impact of alternative assumptions about agent decision
making on networks. It is likely that typical network decision making lies somewhere
between myopic and strategic, and by characterizing the behavioral poles we hope to
provide guidance for understanding the range within. Of course, substantial work re-
mains to achieve a full understanding of behavior between these poles.

We consider cascades to be representative of a broader class of scenarios involving
dynamic decision on networks. For these too we should expect the spectrum of behav-
iors, myopic to strategic, to exhibit qualitative variety in generated outcomes.
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A. CLIQUE APPENDIX

PROOF OF THEOREM [4.1]l The proof of this theorem follows naturally from several
lemmas which we prove in the rest of this section. We outline the proof here.

There are two cases of behavior to consider: 7 < 1 and 7« > 1. In the first case a simple
backward induction argument shows that all cliques are in Cpyc (Lemma [A.T). The
second case is more involved. We first show that if K,, € (Cpyc U Crp¢) for some n,
p, and 7, then all larger cliques must also be in (Cpyc U Cr¢) for the same p and
7 (Lemmas [A.2] and [A.3). Finally, we show that any p and 7 combination eventually
gives a K,, € (Cpnc U Crp¢) for some large enough n (Lemma . The intuition for
this final lemma is that, for very large cliques, the cost of ending up on the wrong side
of a cascade is very large. Thus, agents always prefer to join a guaranteed cascade over
choosing their type if choosing their type has some probability of being on the wrong
side of the cascade.

Let d = my — my denote the difference between the current number of Y decisions
and the current number of N decisions. We begin by addressing clique behavior in the
first case, 7 < 1.

LEMMA A.1. If 7 < 1then every clique is in Crg¢.

PROOF. Consider the behavior of the last scheduled node. It chooses its type only
if d = 0. If d # 0, then it receives at least 1 more utility for choosing the majority,
but only 7 < 1 more utility for choosing its own type. Now by induction, assume that
agents after time 7 > 1 choose their type if d = 0 and otherwise choose the current
majority. We must show that the node a at time 7 will do the same.

If d > 2 then no matter what « chooses, by the inductive hypothesis, the rest of the
nodes will be in a Y-cascade. Thus « will receive at least 2 more utility for choosing
the majority (Y), but only = more utility for choosing its type, so it will always choose
Y.

If d = 1, then if o chooses Y, it will cause a Y-cascade and receive = — 1 utility for
agreement with currently undecided nodes and receive 1 more utility for its agreement
with currently decided nodes. If « chooses IV, then with probability 1 — p the next node
will cause an N-cascade, but with probability p the next node will cause a Y-cascade.
In the former case « receives 7 — 1 utility for its agreement with currently undecided
nodes. In the latter case, a receives 0 utility for its agreement with currently undecided
nodes. o’s expected payoff from agreement with currently undecided nodes for choosing
N is (1 — p)(7 — 1). Without considering payoff from choosing its type, c, = Y yields
1+ p(7 — 1) more utility than ¢, = N. So, no matter the value of ¢,, ¢, =Y.

If d = 0, the inductive hypothesis gives that c, starts a cascade of o’s choice. Thus
by playing ¢, = t,, it gets © additional utility. The analysis for d = —1 and d < —2 are
analogous to the cases already covered. O

For the remainder of the section we assume 7 > 1. Additionally, we refer to agents
on the clique according to when they are scheduled. On K,,, we call the first scheduled
node n and the last scheduled node 1. We begin by showing that, as n increases, cliques
that enter into (Cpyc U Cr¢) stay that way.

LEMMA A.2. For large enough cliques such that (n + 1)(1 —p)? > w, if K,_1 €
(Cpnc UCr¢) and K, € Cpyc (a predetermined N-cascade), then K, 1 € (Cpyc U
Crc).

PROOF. We prove this by cases, depending on how n behaves if d = 1. A diagram of
behavior we know by assumption or can readily infer is shown in Figure
We characterize ¢, if it is ¢,,, 1, conditional on ¢,, when d = 1.
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d: -1 0 1 d: -1 0 1
n N N 7 n N N ?
n+1 | N N N n+1 | N 7 ?
(a) N-type decision (b) Y-type decision

Fig. 7. Cppnc behavior

d: -1 0 1 d: -1 0 1
n—1| N N Y n—1| N ?2 Y

n N N ? n ? Y Y
n+1 | N N ? n+1|?2 2?2 2

(a) N-type decision (b) Y-type decision

Fig. 8. Cp¢ behavior

d: -1 0 1 d: -1 0 1
n—1| N N Y n—1| N Y Y

n N N N n Y Y Y
n+1 | N N ? n+1|?2 2?2 ?

(a) N-type decision (b) Y-type decision

Fig. 9. Cp¢, case 2 behavior

Case 1: ¢,, =Y if d = 1 and ¢,, = N. Then it must be the case that K,,_; € Cr¢, so
this results in a Y-cascade. Thus ¢, 11 = t,+1 and K,,41 € Crc.

Case 2:c,, = N if d =1 and t,, = N. This corresponds to Cpyc. Consider the possible
payoffs. ¢, 1 = Y gives a (1—p)? probability of ¢, _; = ¢, = N. This causes a N-cascade,
by the assumption that K,,_; € (Cpyc U Cr¢), and results in only 7 payoff:

Payoff for N =n+1

Payofffor Y < (1 - (1—-p))n+14+7m)+(1—-p)Pr=n+1+7—(1-p)*(n+1)
Soin case 2, ¢, 11 = N, regardless of type, if (n+1)(1—p)? > 7. Thus K,,.1 € Cpyc. O

LEMMA A.3. For large enough cliques such that (n + 1)(1 —p)? > m, if K,_1 €
(Cpne UCT¢) and K,, € Crc (the first agent, n, chooses t,, and starts a t,-cascade),
then K, € (CPNC U CT(;).

PROOF. We prove this by cases, conditional on ¢, and d. A diagram of behavior we
know by assumption or can readily infer is shown in Figure

We characterize ¢, 1 if t,.1 = Y, conditional on ¢, and d.

Case 1: ¢,, =Y if d = 1 and ¢,, = N. Then it must be the case that K,,_; € Cr¢, so
this results in a Y-cascade. Thus ¢, 11 = t,4+1 and K,,41 € Crc.

Case 2: ¢, = Nifd =1andt, = N,and ¢, = Y ifd = -1 and ¢, = Y. Then
it must be the case that K,,_; € Cr¢. The known behavior for this case is shown in
Figure[9] Since ¢, =Y ifd=—1andt, =Y, c,y1 =Y whend =0 and ¢, =Y. Thus
K,11€Crc

Case3:c¢, = Nifd=1andt¢, = N,and ¢, = Nifd = -1 and ¢, = Y. Then it must be
the case that K,,_; € Cr¢. The known behavior for this case can be seen in Figure
By the same math as in case 2 of the proof of Lemma|[A.2] we get ¢,; = N, regardless
of type, if (n + 1)(1 — p)? > 7. Thus K,,11 € Cpyc. O

Next, we show that a clique eventually falls into Cpy¢c or Cre.
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d: -1 0 1 d: -1 0 1
n—1|N N Y n—1|N Y Y

n N N N n N Y Y
n+l | N N ? n+1? 2?2 7?7

(a) N-type decision (b) Y-type decision

Fig. 10. Cr¢, case 3 behavior

LEMMA A.4. Forany p and w, there exists some large enough n such that K,,, K, 11 €
(Cpnc UCT0).

PROOF. Fix p and #. By backward induction one can see that there is always an N-
cascade when d = |—m|. Call this threshold d. Additionally, note that an N-type node
always chooses N when d < 0. This can be seen by application of Theorem and
Lemmal[A 5]

So, for large enough n, there must be an N-cascade when d = d + 1. This can be seen
by application of LemmalA.6|and the observations that d = d gives a certain N-cascade
but d = d + 2 does not give a certain Y-cascade.

This argument can be repeated to show that there must be an N-cascade when d =
d + 2. This reasoning can be iterated until it breaks down at d = 0. But the node
choosing at d = 0 always has the option of a certain N-cascade (for large enough n). So
it will choose Y only if it also is faced with the option of a certain Y-cascade. In this
case, a node chooses its type t and starts a cascade of that type. By the same reasoning
the next node n + 1 also either chooses N or its type and starts a cascade. O

LEMMA A.5. Decisions are monotonic in d. If ¢,, = Y for some difference d and type
t, then ¢, = Y for difference d + 1 and the same type. Similarly, if ¢, = N for some
difference d and type t, then c, = N for difference d — 1 and the same type.

PROOF. Assume, without loss of generality, that agent n is scheduled to make a
decision and d > 0, t,, = N. Let gy = 1 be the probability of a Y-cascade if ¢, = Y and
gn < 1 be the probability of an N-cascade if ¢,, = N. Also assume that, if an N-cascade
does not occur, then a Y-cascade occurs and n gets only some constant payoff D. Then
consider n’s payoffs:

Payoff for N = gvn+ (1 —gn)D + =

PayoffforY =n
For large enough n, the payoff for Y will always surpass the payoff for N. O

LEMMA A.6. On a large enough clique K, a node always prefers a certain (proba-
bility 1) cascade over an uncertain (probability less than 1) cascade, no matter d, p, or
.

These two lemmas, combined with Theorem are used to show that the range of
differences for which nodes consider choosing their type shrinks as n grows larger.
Eventually the range shrinks enough that nodes have the option of a guaranteed cas-
cade, completing the proof of Theorem O

PROOF OF THEOREM [4.2l We consider strategic users on a clique of size > 1 with
1 < 7 < 14 p. We show, using backward induction, that the first agent to choose always
selects its type and that all following agents select the same choice. A demonstration
of the backward induction can be found in Figure

Figure (11| displays the choice a node would make if there were k& undecided agents
and the difference between choices already made, d = my —my, is given in the top row.
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Lk ] d]—2]-1] 0 [ 1 | 2 |

0 Choice: | N | S S S Y
Choice: | N | N S Y Y

1 | E[N matches]: | 3 2 |1—-p|1=p|1-p
E[Y matches]: | p P P 2 3
Choice: | N | N S Y Y
2 || E[N matches]: | 4 3 2 1—p 0
E[Y matches]: | 0 P 2 3 4

Fig. 11. The choice of a node on the clique for varying d, k, and ¢

Table |. Utilities for node decisions on a clique with one external neighbor choosing Y.

Lkl d] 3 [ =2 [ -1 [ 0 [ T ] 2 [ 3 ]
0 Choice S S S S S Y Y
Choice N S S S S Y Y
1 E[N matches] 4 3—p 2—p 1—p 1—p 1—p
E[Y matches] | 1+p 1+p 1+p 1+p 3 4 5
Choice N S Y
2 || E[N matches] 4 2—2p 1-p)(2-p)
E[Y matches] 1+2p 5
Choice N S ..
3 E[N matches] o o 4 .. 3—0(p)
E[Y matches] ... ... 14+ O(p) ... 5
Choice N
4 E[N matches] o . o 4
E[Y matches] ... ... ... 14+ O(p)

N (resp. Y) means that both agents choose N (resp. Y) no matter their type. S means
that the choices are Split: agents choose their type. The rows below “Choice” display
the expected number of matches from other agents if an agent chooses N or Y.

To obtain the behavior observed for k = 1, weneed (1 —p) + 7 < 2and p+ 7 < 2, or,
rearranging: 7 < 1 + pand 7 < 14 (1 — p). Since p < (1 — p), this is satisfied with any
T<1l4p.

The behavior for £ = 2 follows directly from the behavior observed for £ = 1, as all
inequalities are only made looser. The behavior for & > 2 follows inductively from the
behavior for k < 2. Assuming an agent with & — 1 remaining undecided agents chooses
its type only when d = 0, an agent with k¥ remaining undecided agents will behave
similarly. The inequalities for this decision are identical to the inequalities for £ = 2
with a multiplier of k£ on each side. Our table shows that, once the balance of choices
shifts in one direction, it is in a node’s best interest to choose the same way. Thus the
first node to choose starts a cascade of the type that it selects. O

Theorem [4.2| has the following immediate corollary:

COROLLARY A.7. For any clique graph with any 1 < m < 1+ p, in the limit of
n, the optimal strategic performance is 1 + %(1 — p)(1 — 2p) times the optimal myopic
performance.

PRrROOF. This follows from the fact that two Y decisions are required to start a my-
opic Y-cascade and only one is required to start a strategic Y-cascade. Thus in the limit
of n, the probability of a Y-cascade is MW ~ p? for myopic agents, a well-known

bound from the “gamblers ruin” problem, but is p for strategic agents. The result im-
mediately follows. O

23



B. COUNCIL AND CLOUD APPENDIX

PROOF OF LEMMA [5.3] We prove this lemma by directly comparing expected utili-
ties from Table |l We explicitly list utilities for direct comparison, when relevant and
non-obvious. All utilities assume there is an external neighbor choosing Y with proba-
bility 1. Here d = my — my and k is the number of currently undecided agents in the
clique.

We can see from Table |I| that, for small enough p, and the appropriate 2 < 7 < 3,
the first scheduled node in the clique will choose N. We can also see that the table
continues for cliques larger than size 6, as payoffs are shifting in favor of N as the
clique grows. 0O

PROOF OF LEMMA[6.4] If a(1 — p) + © < bp, then agent 2 will always match the
choice of 3. The case in which 2’s payoff is greatest for not matching 3 (and thus the
lemma is hardest to satisfy) is toc = N, ¢; = N, and ¢t3 = Y. In this case 2 will obtain
payoff a + = + b(1 — p) for choosing N, or payoff ap + b for choosing Y. A comparison
of these payoffs shows that 2 will choose Y when a(1 — p) + 7 < bp, which is true by
assumption. So 2 will choose Y, matching with 3. All other combinations of types result
only in a higher payoff to 2 for matching with 3. O

PrOOF OF LEMMA[6.5] Note that 3 will always match 2 because b > b(1 — p) + 7 >
bp + m, by assumption (these inequalities simplify to bp > 7). In the worst case, 1 has
chosen Y and ¢t = N. In this case, 2 will obtain utility of a + b for choosing Y and utility
of a(1 — p) + @ + b for choosing N. Thus 2 will choose Y if ap > 7, which we assume to
be true. O

C. OMITTED MISCELLANEOUS RESULTS

PROOF OF THEOREM[7.1]. This theorem follows from the fact that the cascade
scheduling problem can be expressed as a finite extensive form game with perfect in-
formation. When nodes are never indifferent between choices, the unique PBE can be
constructed using backward induction, following Mas-Colell et al.|[[1995, Prop. 9.B.2].
When nodes resolve their indifference in a consistent way, such as choosing their type,
the same backward induction still selects a unique PBE. O

PROOF OF THEOREM[7.2] Let I be the set containing all agent-situation pairs (i, R)
where an agent is indifferent between its two choices. (i, R) means that the situation
is R and the next agent to choose is i. Let I be the set of agent-situation pairs where
agents are not indifferent.  is finite, so there must be some pair (i*, R*) € I where ¢*
has minimal difference between utility for Y and N. Denote this difference ¢, and let
€= |%|. Then no other agent-situation pair in I results in a different decision in Q’,
assuming behavior of i for all (i, R) € I remains the same. Under @, all agents in all
situations in I have equal utility for both choices but choose their type, by assumption.
Under (', all agents in all situations in I have ¢ greater utility for their type, thus
make the same decision asin Q. O

The following Lemma shows that a Y-type node will always choose Y if an N-type
node would have chosen Y in a similar situation and will be used in the proof of Theo-

rem [7.3]

LEMMA C.1. Let iy be an agent in situation Ry and iy be an agent in situation
Ry, with t;, =Y and t;, = N. If Ry and Ry are identical except for some N decisions
in Ry may be Y decisions in Ry, and the nonadaptive schedule S is the same for both
nodes, then it is never the case that c;,, =Y but ¢;,, = N.
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PROOF OF LEMMA|[C.1I]. Let us compare the utilities from choosing Y for iy and iy,
and assume for the sake of contradiction that iy prefers Y but iy does not. Then iy’s
utility must be greater for choosing N, and ix’s utility must be greater for choosing Y.
Below we let #Y (U), #N(U) be the expected number of Y, N decisions, respectively,
in the set of agents U C V at the end of the game. The expected value FE is over the
randomness of agent types.

Utility comparison for iy :

7+ E(#Y (nb(iy)) | ¢iy =Y) < E(#N(nb(iy)) | ¢iy, = N).
Utility comparison for i:
E(#Y (nb(in)) | ciy =Y) > 7+ E(#N(nb(in)) | ciy = N).

Between these two inequalities only 7 has moved, and the conditions of Ry favor the
left side of the first inequality. Facing the same schedule, both inequalities cannot be
true, thus we have reached a contradiction. O

PROOF OF THEOREM[7.3l Generate the type distribution for @’ in the following
way. Independently draw n = |V| types from {Y, N}, selecting Y with probability p
and N with probability 1 — p. This gives us a vector of Q)'s base types, t = (t1,...,tn).
Next generate a vector of Q's true types, t' = (t},...,t,), by switching N-types to Y-
types with probability (p’ — p)/(1 — p).

Y : ti =Y
t; = ¢ Y, with probability E=Lt;=N
N : otherwise

This results in each agent in Q’ being Y -type with independent probability p’, as de-
sired. However, now each random draw of base types for @', t, can be coupled with
a corresponding draw of types for @, s. The true types of Q’, t’, have Y's in the same
places as s but with some additional Ns turned to Y¥'s. By Lemma one can see that
t’ results in at least as many Y choices. O

PROOF OF LEMMA[7.9] First, we note that ¢ is monotone in its inputs and in p by
Lemma

In the base case, we have that ¢/(t1) = ¢(t1) = & (t1) which is monotone in the
inputs and in p because & is.

Assume that the statement is true for all j < i. Note that ¢/ (t")) = é2(¢_, (t(—V),¢,).
Thus ¢ is monotone in inputs and p because we know ¢ is and ¢/ ; is by induction.
Also & (tW) = ¢ (t0=D)o P (é?  (t0~1),1;). So ¢ is monotone in inputs and p because
we know ¢ is and ¢7_, is by induction. O

LEMMA C.2. Let Rq be a situation in game Q = (G, p,7) and R¢ be a situation in
game Q' = (G,p',m) with 0 < p < p’ < .5. Let Rg and Rg' have the same nonadaptive
schedule and let Rg and R¢ be identical except for some N decisions in Rg may be Y
decisions in Rq. If the next scheduled agents in both games are the same type, and if
the agent chooses Y in game Q, then the agent in game Q' also chooses Y.

PRrROOF OF LEMMA[C.2] The proof of this lemma proceeds by a coupling of the un-
scheduled agents of Q and ’. First, each individual agent in Q' is at least as likely
to be Y-type as a corresponding agent in ). By Lemma each individual agent is
more likely to choose Y in @’ as in @, and thus the current agent will only choose Y in
Q' ifit would in Q. O
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D. OMITTED STAR RESULTS

Section [D]is devoted to proving Theorem which states that performance is always
greater with myopic agents than strategic agents on the star, no matter the situation.
A sketch is as follows.

We break the proof into two cases depending on the value of 7. We first handle the
case where 7 > 1 in Theorem We next consider the case where 7 < 1 and the
scheduler is limited to nonadaptive schedules in Theorem The final case, where
m < 1 with an adaptive schedule, is more involved. We first give a schedule, S,,;, and
show that it is weakly optimal in both the strategic and myopic settings in Lemma[D.5]
We prove optimality by showing that scheduling the interior node before a Y majority
has been reached is never a better option. Lastly, we show higher myopic performance
under this optimal adaptive schedule by detailing the behavior of agents under this
schedule.

We begin by analyzing the case = > 1.

THEOREM D.1. For any star graph with © > 1, for any schedule, the myopic perfor-
mance is greater than the strategic performance.

PROOF. Game behavior is simple when = > 1: every exterior agent, strategic or
myopic, chooses its type. It is only the interior agent’s behavior that might differ.

For any fixed draw of agent types t = (¢1,...,t,) with schedule S, myopic and strate-
gic agents behave identically except for the interior agent i. Thus, for any fixed t, the
situations in which S selects i to decide next for myopic agents are the same as for
strategic agents. A strategic ¢ reasons that each of its undecided exterior neighbors
will choose Y with probability p < .5, and therefore expects more of its undecided
neighbors to choose N than Y. A myopic interior agent ignores this fact and chooses as
if equal numbers of undecided neighbors will choose N and Y. Thus a strategic interior
agent is less likely to choose Y because it shifts its expected payoff in favor of N. O

Next, we consider the case 7 < 1. We first give a cursory examination of agent behav-
ior. A myopic exterior agent chooses its type if the interior agent has not yet chosen.
If the interior agent has chosen ¢ and an exterior agent (strategic or myopic) is sched-
uled to decide, it will also choose ¢ because 7 < 1 guarantees that an agent prefers a
matching choice over choosing its type. Knowing this, a strategic interior agent always
chooses the majority choice of the already decided agents and breaks ties with its type.
A myopic interior agent behaves the same way.

We summarize the behavior of myopic exterior agents in a formal theorem, for ref-
erence below.

THEOREM D.2. For any star graph with © < 1, myopic exterior agents choose their
type if scheduled before the interior node and match the choice of the interior node if
scheduled after it.

Strategic and myopic agents differ only in the behavior of exterior agents scheduled
before the interior agent has decided. Myopic agents choose their type, as noted above,
but strategic agents choose based on what they expect the interior agent to choose. A
strategic Y-type exterior agent might choose N if it sees that many exterior agents
have already chosen N, and thus that the interior agent is likely to choose N. This
assessment, however, depends on the schedule.

We first address the case where the scheduler is limited to nonadaptive schedules.

THEOREM D.3. For any star graph with = < 1, an optimal nonadaptive schedule
selects the interior agent first for both strategic and myopic agents.
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PROOF. Ifthe interior agent is scheduled first, it will choose its type and the exterior
agents will follow. This happens for both myopic and strategic agents, and guarantees
a performance of p. By Theorem this is the best possible performance for a non-
adaptive schedule. Thus choosing the interior agent first is an optimal nonadaptive
schedule and, in this case, the strategic and myopic performance is identical. O

We next define the adaptive schedule S,,; and prove its optimality for both strategic
and myopic agents.

Definition D.4. Schedule S,,: is the following:

(1) Schedule exterior agents until a majority decide Y or all have decided, whichever
comes first.

(2) Schedule the interior agent.

(3) Schedule all remaining exterior agents.

The optimality of S,,; is summarized in the lemma below.

LEMMA D.5. For any star graph with © < 1, S, is @ weakly optimal adaptive
schedule for both strategic and myopic agents.

PROOF. The combination of Theorems [D.6 and Q‘shows that S,,: is weakly op-
timal for myopic and strategic agents (establishing Lemma [D.5). It is only weakly
optimal: for some parameter settings other schedules give equal performance. For ex-
ample, when 7 is sufficiently small, a strategic exterior Y-type node will choose N
when d = —1, and thus scheduling the interior node first yields equal performance. O

THEOREM D.6. For both strategic and myopic agents on the star graph, S,p: gives
no worse performance than scheduling the interior agent first.

PRrROOF. For both strategic and myopic agents, scheduling the interior agent first
guarantees all exterior agents will match its decision. So all agents choose Y with
probability p and N with probability 1 — p. This gives pn performance.

Sopt calls for scheduling an exterior agent, e, first. With probability p, t. = Y. If
te =Y and c. =Y, then S,,; schedules the interior agent next and all agents choose Y.
This gives e utility 7 + 1, its maximum possible utility. So strategic e always chooses Y’
if t. = Y. And myopic e will choose its type, so will also choose Y if ¢, = Y. This alone
gives pn performance, without considering outcomes for t, = N. O

THEOREM D.7. For any star graph, while exterior Y -decisions are not in the major-
ity, scheduling an exterior agent results in performance at least as high as scheduling
the interior agent.

PROOF. Let d = my — my denote the difference between the current number of
Y decisions and the current number of N decisions. First consider the case d < 0. If
scheduled, the interior node will choose N and all remaining exterior nodes will choose
N. This results in zero additional Y-adoptions, so scheduling an exterior node instead,
as S, does, must be at least as good.

The other possibility is d = 0, which reduces to the situation covered in the proof of

Theorem O

Now that we’ve shown S,,; is an optimal adaptive schedule for strategic agents,
we give a detailed characterization of agent behavior under S,,; and show that this
behavior cannot lead to higher strategic performance than myopic performance.

The probability of ever getting a majority of exterior Y-adoptions, in the limit of
large n, is ﬁ, a well known result in the mathematics of biased random walks.
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Fig. 12. Threshold behavior for exterior nodes, by type.

We seek to show that strategic agents choose N in any situation where myopic
agents would choose N, and thus that strategic performance is lower than myopic
performance. By Theorem and Lemma|D.5] it is sufficient to show that, under S,
N-type exterior nodes that are scheduled before the interior node always choose N. To
prove this we start by characterizing these agents’ strategies.

For the remainder of the section, we omit the word “exterior” when it is clear from
context and refer to the interior node as i. For a given situation, let d be the difference
between the number of exterior nodes who have chosen Y and the number who have
chosen N: d = my — my. A low d value indicates that more nodes have chosen N and
indicates a higher likelihood of ¢; = N. Thus nodes are more inclined to choose N for
low values of d and more inclined to choose Y for high values of d.

Let i(d, k) denote the probability that node i will choose Y, as assessed from the per-
spective of an exterior node in a situation with difference d and k& unscheduled exterior
nodes. Let u(t, ¢, d, k) denote the expected utility of a type ¢ node, making choice ¢, with
a difference of d when there are k£ unscheduled exterior nodes. We begin counting at 1,
so k = 1 refers to the choice of the final unscheduled exterior node.

We say that exterior nodes execute a threshold strategy if there exists thresholds
Y*(k) and N*(k) such that:

—d < Y*(k): all agents choose N when k nodes remain to choose.
—Y™*(k) < d < N*(k): agents choose their type when & nodes remain to choose.
— N*(k) < d: all agents choose ¥ when & nodes remain to choose.

An illustration of these thresholds can be seen in Figure

We start out with the following theorem, which shows that the interior agent is al-
ways more likely to choose Y if scheduled immediately instead of after one additional
exterior node. This theorem serves as the base case for inductive arguments in Theo-

rem and Lemma [D.10] defined below.

THEOREM D.8. i(d,1) > i(d,0) for all d, and both are monotone increasing in d.
Moreover, the final exterior agent and the interior agent (if scheduled last) play thresh-
old strategies where N*(1) = N*(0) = 1.

PROOF. Behavior of exterior agents, and thus the value of i(d, k), falls into two
classes: 7+ p < 1 and 7 4+ p > 1. Our proof proceeds by finding i(d,0) (the probability
that the interior node chooses Y when scheduled immediately) in both cases, and then
examining i(d, 1) (the probability that the interior node chooses Y when scheduled af-
ter one additional exterior node) for each case individually.

In either case, the interior node chooses its type when it is scheduled only if d = 0. It
will choose Y if d > 0 and N if d < 0. Thus:

In the case that 7 + p < 1, i(d,1) = i(d,0). We analyze i(d,1) by considering the
behavior of the exterior node scheduled immediately before the interior node. We call
this final exterior node e. If d = 0 and k£ = 1, the interior node will match c.. Knowing
this, e should choose its type if d = 0 and k& = 1.
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If d = —1 then e should always choose N. If ¢, = N this will guarantee a payoff of
1+ 7, the maximum possible. If ¢, = Y, then selecting N yields payoff 1. Selecting YV’
yields 1 + 7 if the interior node is Y-type, but only = if the interior node is N-type. This
gives expected payoff of p + 7 < 1.

In the case that = + p > 1, similar analysis shows that:

0 d< -2
. 2d=-1
i(d, 1) = I;szo

1 d>1

The theorem follows. O

We use the below theorem to show that nodes always behave according to a threshold
strategy.

THEOREM D.9. For any star graph with m < 1, under schedule S,:, exterior nodes
scheduled before the interior agent execute a threshold strategy.

PROOF. The proof proceeds by induction. At £ = 0, by Theorem the interior
agent plays a threshold strategy. Assuming that after some node ¢ all agents play a
threshold strategy, we show that e does also.

Assume without loss of generality that ¢, = Y. Assume, for the sake of contradiction,
that e plays a non-threshold strategy. This necessitates ¢, = Y for some d but ¢, = N
for some d + 1. In this case, e changes its choice to N if an additional node has chosen
Y. However, because all later scheduled nodes play according to threshold strategies,
an additional node choosing Y only increases the chance that the interior node chooses
Y, so ¢’s strategy is not rational. This gives a contradiction, as desired. O

Knowing that nodes behave according to a threshold strategy, we can prove the fol-
lowing lemma, which is enough to complete the proof of Theorem as discussed
above.

LEMMA D.10. For any star graph with m < 1, under schedule S,y, exterior nodes
scheduled before the interior always choose N if they are N-type.

PROOF. Lemma The proof of this lemma proceeds by induction on a slightly
stronger statement. By induction on k& we show that N*(k) = 0 (which implies the
lemma), and that Y*(k) is monotone decreasing in k. The base case is covered by The-
orem

We now prove the inductive step. Let k£ denote the the number of unscheduled exte-
rior nodes, and assume that for all k£ < ¢, N*(k) = 0 and Y*(k) is monotone decreasing
in k. We now prove the statement for & = .

Note that u(Y, N, Y*({ —1),0) =1 = u(Y,N,Y*(¢ — 1),¢ — 1). By induction, we know
that Y*(k) is monotone decreasing for & < ¢, so for any d < Y*({ — 1) we are in an
N-cascade situation. In this case agent ¢ receives a payoff of 1 for choosing N because
it will guarantee a match with the interior agent, but does not pick its own type.

Also note that u(Y,Y,Y*(¢ — 1),4) > u(Y,Y,Y*(¢ — 1), — 1). This follows from a
coupling argument between two situations which we define. In situation 1, d = Y*(¢ —
1) + 1 and there are ¢ — 1 unscheduled exterior nodes. In situation 2, we have that
d=Y*( —1)+1 and there are ¢/ — 2 unscheduled exterior nodes.

Couple the randomness so that the type of the agent scheduled with £ unscheduled
exterior agents in situation 1 is the same as the type of the agent scheduled with & — 1
unscheduled exterior agents in situation 2. Note that the randomness of the final un-
scheduled exterior agent has not yet been fixed in schedule 1. Then by monotonicity of
Y* (k) established by induction, whenever d decreases in situation 1, it also decreases
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in situation 2 (though the converse is not necessarily true). The Y surplus d of situa-
tion 1 with 1 unscheduled exterior node (k = 1), is at least the Y surplus d of situation 1
with 0 unscheduled exterior nodes (k = 0). By Theorem [D.8| we have that the probabil-
ity that the interior agent chooses Y in situation 1 is at least the probability that the
interior agent chooses Y in situation 2.

Finally, note that «(Y,Y,Y*(¢{ — 1),£ — 1) > u(Y,N,Y*(¢ — 1), — 1) because, by the
definition of Y*(¢ — 1) in this situation, Y-type agents choose Y.

Putting this together we get that w(Y,Y,Y*(¢{ — 1),¢) > w(Y Y, Y*({ - 1), — 1) >
w(V;N, Y*(l — 1), —1) =1 = w(Y,N,Y*(£{ — 1),£ — 1). This shows that at Y*(¢/ — 1)
with k£ nodes left unscheduled, a Y-type node chooses Y. Thus we have that Y*(k) is
monotonically decreasing.

Lastly, we show that N*(¢) = 0. This is equivalent to proving that a rational N-type
agent would choose N over Y, or that u(N,N,0,¢) > u(N,Y,0,¢), which can also be
written (1 — i(—1,£ — 1)) + # > 1. Note that by the definition of Y*(¢) we have that
i(Y*(¢) + 1,4 — 1) + = > 1. But by the Lemma [D.11] we see that i(Y*(¢) + 1,/ — 1) <
(1-4(-1,—1)),andso (1 —i(—1,£—1))+7m >1, as desired. O

This lemma relies on the following theorem, which allows us to compare the prob-
abilities of two random walks trying to reach opposite endpoints, or thresholds, by
traveling similar distances. Thus, whatever the thresholds Y*(k) and N*(k) end up be-
ing, the N-type node at N*(k) has a higher chance of ending up in an N-cascade than
the Y-type node at Y*(k). By applying the following theorem, Lemma [D.10]shows that
N*(k) = 01is always a valid threshold.

THEOREM D.11. i(Y*(¢{)+1,0—1) <1—4i(—1,/—1).

PROOF. The proof follows from a coupling argument and some case analysis. Con-
sider two situations on the star with ¢ — 1 undecided nodes: situation 1 with d; =
Y*(¢) + 1 and, situation 2 with dy = —1. Couple the randomness so that whenever a
node scheduled in situation 1 is Y-type the corresponding node in situation 2 is N-
type. It follows that at any later step either a) situation 1 has reached a Y -cascade, or
b) dy < Y*(¢) — di. We show if a) is not satisfied then b) is. When a) is not satisfied,
situation 1 is not in a Y-cascade and agents choose their type. In this case, d; can in-
crease only if the currently choosing agent in situation 1 is Y-type. However, whenever
this happens the agent in situation 2 is N-type and so d» decreases. This preserves the
truth of b).

The interior node in situation 1 chooses Y only if 1) a Y-cascade is reached, or d; =0
when there are no remaining exterior nodes (k = 0) and ¢; = Y. If situation 1 enters
a Y-cascade, then situation 2 enters an N-cascade because the former happens only if
dy ever reaches 1, but then d> < Y*(¢) + 1 so that situation 2 is an N-cascade.

If d; = 0 when there are no unscheduled exterior nodes remaining and ¢; = Y in
situation 1, then in situation 2, we have that d; < 0 and, by coupling, that t; = N, so
that the interior node always chooses V.

We have shown than whenever the interior node chooses Y in situation 1, the inte-
rior node chooses N in situation 2. O

Computational star performance. Figure graphs values of the strategic-to-
myopic performance ratio for a star of 21 agents to show asymptotic behavior, and
shows that the ratio approaches 1 but never exceeds it, as per Theorem
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Fig. 13. Strategic-to-myopic performance ratio on star, n = 21.
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