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CYLINDRICAL ALGEBRAIC DECOMPOSITION USING LOCAL
PROJECTIONS

ADAM STRZEBONSKI

ABSTRACT. We present an algorithm which computes a cylindrical algiebdecompo-
sition of a semialgebraic set using projection sets contpftteeach cell separately. Such
local projection sets can be significantly smaller than tluba projection set used by
the Cylindrical Algebraic Decomposition (CAD) algorithmhis leads to reduction in the
number of cells the algorithm needs to construct. We givenapirical comparison of our
algorithm and the classical CAD algorithm.

1. INTRODUCTION

A semialgebraic set is a subset®t which is a solution set of a system of polynomial
equations and inequalities. Computation with semialgelsigts is one of the core subjects
in computer algebra and real algebraic geometry. A varieygorithms have been devel-
oped for real system solving, satisfiability checking, difaen elimination, optimization
and other basic problems concerning semialgebraic Séts%76/ 9. 10, 12, 15, 18, 24, 25].
Every semialgebraic set can be represented as a finite uhigjoint cells bounded by
graphs of algebraic functions. The Cylindrical Algebraieddmposition (CAD) algorithm
[[7,5,[21] can be used to compute a cell decomposition of amyadgebraic set presented
by a quantified system of polynomial equations and ineqaaliAn alternative method of
computing cell decompositions is giveniin [6]. Cell decomsiions computed by the CAD
algorithm can be represented directlyl[21] [22, 3] as cyigadalgebraic formulas (CAF;
see the next section for a precise definition). A CAF repriedgiem of a semialgebraic
setA can be used to decide whethfeis nonempty, to find the minimal and maximal val-
ues of the first coordinate of elementsifto generate an arbitrary element4fto find a
graphical representation &f to compute the volume &, or to compute multidimensional
integrals oveA (see[20]).

The CAD algorithm takes a system of polynomial equationsiaadualities and con-
structs a cell decomposition of its solution set. The athamiconsists of two phases. The
projection phase finds a set of polynomials whose roots dfieisat to describe the cell
boundaries. The lifting phase constructs a cell decomipasione dimension at a time,
subdividing cells at all roots of the projection polynonsiaHowever, some of these sub-
divisions may be unnecessary, either because of the gepofetre roots or because of
the Boolean structure of the input system. In this paper wpgse an algorithm which
combines the two phases. It starts with a sample point ansticans a cell containing the
point on which the input system has a constant truth valuejeBtion polynomials used
to construct the cell are selected based on the structuredyistem at the sample point.
Such a local projection set can often be much smaller thaglti®l projection set used
by the CAD algorithm. The idea to use such locally valid petigns was first introduced
in [13], in an algorithm to decide the satisfiability of syst®of real polynomial equations
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and inequalities. It was also used in [4], in an algorithm @oastruct a single open cell
from a cylindrical algebraic decomposition.

Example 1. Find a cylindrical algebraic decomposition of the solutiset of S= f; <
OV (f <OAf3<0), where §f =42 +y?—4, f =x2+y>— 1, and § = 16x° — 24x* +
OX? + 4yt — 4y

The solution set of S is equal to the union of the open ellipse(fand the intersection
of the closed disk,f< 0 and the set4 < 0 bounded by a Lissajous curve. As can be seenin
the picture, the set is equal to the open ellipgse: 0. The CAD algorithm uses a projection
set consisting of the discriminants and the pairwise resu#t of {, f,, and &. It computes
a cell decomposition of the solution set of S by constru@igcells such that all 4, f,,
and § have a constant sign on each cell. Note however, that a cetirdposition of the
solution set of S can be obtained by considering the follgd®cells. On each cell only
some of {, f,, and § have a constant sign, but those signs are sufficient to deterthe
truth value of S.

(1) Sistrueon-1<x< 1A —-2vV1—-x2 <y < 2v/1—x2 because {f< 0.

(2 Sis false on-1 <x < 1Ay < —2vV1—-x2and on—1< x< 1Ay > 2V/1—x2
becausef>0A fo > 0.

(3) Sis falseon-1<x < 1Ay=-2V1-x2andon-1<x<1Ay=2V1—x?
becausef=0A f, > 0.

(4) Sis false onx —1and on x> 1 because > 0A f, > 0.

(5) Sis falseonx —1Ay<0andonx=—1Ay> 0becausesf>0A f; > 0.

(6) Sis false onx —1Ay=0becausef=0A f3 > 0.

(7) Sis falseonx1Ay<0andonx=1Ay> 0becausesf>0A fy; > 0.

(8) Sis false onx1Ay=0becausef=0A f3 > 0.
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Determining the cell bounds for the cell stagk)-(3) requires computation of roots of
discr, f1, disck f2, and reg(f1, f2) in x and roots of {(0,y) and %(0,y) in y. Determining
the cell bounds for the cellg}) requires computation of roots of digdt and discy f, in x
androots of f(—2,y), f2(—2,y), f1(2,y) and £(2,y) iny. Determining the cell bounds for
the cell stackg5)-(6) and (7)-(8) requires computation of roots of (-1,y), fo(—1,y),
f3(—1,y), f1(L,y), f2(1,y) and &(1,y) in y. Polynomial £ is not used to compute any of
the projections and its roots in y are computed only for twiuga of x. The algorithm we
propose in this paper computes a cell decomposition of thetisn set of S by constructing
the 13 cells given in(1)-(8). Details of the computation for this example are given in

Section 3.5.

Example 2. Find a cylindrical algebraic decomposition of the solutiset of S= ax* +
b3 4 cx° + dx+ e > 0in the variable order(a,b,c,d, e x).

In this example the system is not well-oriented, hence thB &l§orithm needs to
use Hong's projection operator for the first three projectio However, the additional
projection polynomials are necessary only for the cells dictva McCallum’s projection
polynomial vanishes identically. For most cells local gojon can be computed using
McCallum’s projection operator, and for the few cells on etha McCallum’s projection
polynomial vanishes identically local projection needsuse some, but usually not all,
polynomials from Hong’s projection operator. The algonthPCAD we propose in this
paper computes a cell decomposition of the solution set of @bstructings23 cells in
0.95seconds of CPU time. The CAD algorithm did not finish the cdatjmun in 72 hours.
A version of LPCAD using only local projections based on Hemgojection operator
constructsl375cells and take2.72 seconds of CPU time.

2. PRELIMINARIES

A system of polynomial equations and inequalitiregariablesxs, . .., X, is a formula

S(Xla"'axn): \/ /\ fi,j(xla"'axn)pi,jo

1<i<l1<j<m

wheref; j € R[Xy,...,X], and eaclp; j is one of<, <, >, >, =, or #.

A subset ofR" is semialgebraidf it is a solution set of a system of polynomial equations
and inequalities.

A quantified system of real polynomial equations and inedjealin free variables
X1,...,%n and quantified variablds, . ..ty is a formula

Qut1... QmtmS(ta, ..., tm X1, ..., Xn)

WhereQ; is 3 or V, andSis a system of real polynomial equations and inequalities in
t1,. .. tm, X1, .., Xn-

By Tarski's theorem (seé [24]), solution sets of quantifigsteams of real polynomial
equations and inequalities are semialgebraic.

Notation 3. For k > 1, leta denote a k-tupléay, . . .,ax) of real numbers and let denote
a k-tuple(xy, ..., xy) of variables.

Every semialgebraic set can be represented as a finite uhdisjoint cells (see [14]),
defined recursively as follows.

(1) AcellinR is a point or an open interval.
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(2) A cellin R¥1 has one of the two forms

{@a1) aeCna=r(@)}
{@ 1) A€ CAT() < a1 < 12(3)}

whereCy is a cell inRX, r is a continuous algebraic function, andandr, are
continuous algebraic functionso, or e, andry < r, onCy.

A finite collectionD of cells inR" is cylindrically arrangedif for any C;,C; € D andk < n
the projections o€; andC, onRX are either disjoint or identical.

Given a semialgebraic set presented by a quantified systgmlpfiomial equations
and inequalities, the CAD algorithm can be used to decomitesset into a cylindrically
arranged finite collection of cells. The collection of caisepresented by a cylindrical
algebraic formula (CAF). A CAF describes each cell by givixglicit algebraic function
bounds and the Boolean structure of a CAF reflects the cytiadarrangement of cells.
Before we give a formal definition of a CAF, let us first intragusome terminology.

Letk > 1 and letf = cqy® + ...+ co, Wherecy, ..., cq € Z[X]. A real algebraic function
given by thedefining polynomial fand aroot number pe N, is the function

(2.1) Rooy,pf : RX>a— Rooypf(a) € R

whereRoo{,  f (3) is the p-th real root off (a,y) € R[y]. The function is defined for those
values ofa for which f(a,y) has at leasp real roots. The real roots are ordered by the
increasing value and counted with multiplicities. A reajeraic numbeRoof,pf € R
given by adefining polynomial £ Z[y] and aroot number gs thep-th real root off. See
[19,[20] for more details on how algebraic numbers and faomstican be implemented in
a computer algebra system.

Let C be a connected subset BF. Root,f is regular on C if it is continuous onC,
c4(a) # 0 for alla e C, and there exisin € N such that for an € C Rooj,pf(a) is a
root of f(a,y) of multiplicity m.

f is degree-invarianion C if there existe € N such that ifcq(a) = ... = Ce11(a) =
OAce(a) #0forallacC.

A setW = {fy,..., fm} of polynomials isdelineableon C if all elements ofW are
degree-invarianto@ and for 1<i<m

f10)N(CxR) = {rig,...,ry}
wherer; 1,...,r; ), are disjoint regular real algebraic functions andi{ct i» ri, j, andri, j,
are either disjoint or equal. Functiong areroot functions of fover C
A setW = {fy,..., fm} of polynomials isanalytic delineableon a connected analytic
submanifoldC of R¥ if W is delineable oi€ and the root functions of elements\&fover
C are analytic.

LetW be delineable of, letr; < ... < r; be all root functions of elements W over
C, and letro = —o0 andr ; = . For 1< i <|, thei-thW-section over Gs the set

{@ 1) aeChra 1 =ri(a)}
For 1<i <1 +1, thei-thW-sector over Gs the set

{(@ak1) ;A€ CAT_1(a) < a1 <ri(A)}
A formulaF is analgebraic constraintvith bounds BD&) if it is a levelk equational
or inequality constraint with ¥ k < n defined as follows.

(1) A levell equational constrainhas the formx; = r, wherer is a real algebraic
number, anDSF) = {r}.
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(2) Alevellinequality constrainhas the fornr; < x3 < rp, wherer; andr; are real
algebraic numbers; o, or o, andBDSF) = {rq,rz} \ {—00,}.

(3) A levelk+ 1 equational constrainhas the formx,., = r(X), wherer is a real
algebraic function, anBDSF) = {r}.

(4) Alevetk+ 1inequality constrainhas the fornr1(X) < xx1 < r2(X), wherer; and
rp are real algebraic functions,eo, or o, andBDS(F) = {ry,r} \ {—00,0}.

A level-k+ 1 algebraic constrairf is regularon a connected s€ C R if all elements of
BDSF) are regular o€ and, ifF is an inequality constraint; < r, onC.

Definition 4. Anatomic cylindrical algebraic formula (CAF) in (xg,...,%n) has the form
Fi1 A ... ARy, where k is a level-k algebraic constraint fat < k < n and k1 is regular
on the solution set ofifA ... AR for 1<k < n.

Levelk cylindrical subformulasre defined recursively as follows

(1) Alevel-n cylindrical subformula is a disjunction of levehklgebraic constraints.
(2) Alevel-k cylindrical subformula, witth < k < n, has the form
where F are level-k algebraic constraints and @re level-k+ 1 cylindrical sub-
formulas.
A cylindrical algebraic formula (CAF} a leveld cylindrical subformula F such that dis-
tributing conjunction over disjunction in F gives
DNF(F)=FVv...VFR
where each Fs an atomic CAF.

Given a quantified system of real polynomial equations ardunlities the CAD algo-
rithm [21] returns a CAF representation of its solution set.

Example 5. The following formula Ex,y,z) is a CAF representation of the closed unit
ball.
F(x,y,2) = x=-1Ay=0Az=0V
—1<x<1Aby(xYy,2)V
Xx=1Ay=0Az=0

bo(x,y,2) = y=Ri(X)Az=0V
Ri(X) <y < Ra(X) Ab2(X,y,2) v
y=Re(X)Az=0
bo2(x,y,2) = z=Rs(xy)V
Ra(X,y) <Z<Ra(Xy)V
z=Ru(xy)
where
Ri(x) = Rooyi(+y?) =—v1-x
Re(x) = Rooy2(¢+y’) = V1-2®
Ra(x,y) = Ro0L1(C+Y2+7)=—\/1-x2—y2
Ra(x,y) = ROOL2(E+y?+7)=+/1-x2—y2
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3. CAD CONSTRUCTION USING LOCAL PROJECTIONS

In this section we describe an algorithm for computing a CApresentation of the
solution set of a system of polynomial equations and ingtigsil The algorithm uses local
projections computed separately for each cell. For sintplige assume that the system
is not quantified. The algorithm can be extended to quantfystems following the ideas
of [8]. The algorithm in its version given here does not taklwamtage of equational
constraints. The use of equational constraints will be rilead in the full version of the
paper.

The main, recursive, algorithm used for CAD constructioigorithm [13. Let us
sketch the algorithm here, a detailed description is gigéerlin this section. The inputis a
systemS(xy, .. ., Xn) of polynomial equations and inequalities and a paiat(a, . ..,ax) €
R with 0 < k < n. The algorithm finds a levek-+ 1 cylindrical subformul& and a set
of polynomialsV C R[xg,..., %] such that for any celC C R¥ containinga on which all
elements oV have constant signs

(X1, %) €EC = (F(X1,..., %) <= S(X1,..., %))

The formulaF can be interpreted as a description of the solution s8tasfa finite collec-
tion of cylindrically arranged cells iRR" ¥, parametrized by the values ofi, ..., x). The
description is valid locally t@, where the meaning of “locally” is determined Wy The
approachis to find algebraic constraints

Gl(>_(a Xk+l)a X aGm()_(a Xk+1)

and cylindrical subformulaldy, . .., Hm such that the solution sets of

Gl(aa Xk+1)7 s aGm(aa Xk+1)

form a decomposition dR andH; describes the solution set Sflocally to {a} x {1 :
Gi(a,x«+1)}- TofindG’s, H’s, andV we start with a stack containing the interyalco, «)
and until the stack is emptied execute the following steps.t&e an interval off stack
and pickay, 1 € I. If evaluating thek + 1-variate polynomials ifs at (@, ax. 1) suffices to
establish the truth value &, let P be a set ok + 1-variate polynomials ir§ sufficient
to establish the truth value & and letH be the truth value. Otherwise, let and P
be, respectively, the formula and the set of polynomialsrretd by Algorithmi 1B applied
to Sand(a,ax;1). We use projection to compute a $tC R[Xy,...,x] such thatP is
delineable on any cell containirggon which all elements oV have constant signs and
we add the elements & to V. LetJ be the interval containingy,1 bounded by the
nearest roots of elements Bfand letG be the constraint ory; whose bounds are the
corresponding algebraic functions. Note th& i§ delineable on a celt containingathen
the elements dP have constant signs @= {(X,Xx.1) : X€ CAG(X,%x.1)} and hencéd
is equivalentt&SonD. We addG andH to the list ofG’s, H's, and, ifl \ J is nonempty, we
add the components bf J to stack. When the stack is empty we use projection to compute
a setW C R[xy,...,X] such the set of polynomials whose roots appear as bour@sin
are delineable on any cell containiagn which all elements d have constant signs and
we add the elements @ to V. As required, the formul = (G1 AH1) V...V (GmAHm)
is equivalent td&Son any cell containing on which all elements df have constant signs.
To compute a CAF representation of the solution seb afe call Algorithm[I3 with
k=0.

Notation 6. We will use the following notations.
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(1) For a finite set of polynomials P, I€& denote the set of irreducible factors of the
elements of P.

(2) Let IRR denote the irreducible elements®fxy, . .., ] \ R[Xq, ..., Xk_1]-

(3) For a set AC R"and k< n letMy(A) denote the projection of A dR¥.

In this section we assume that all polynomials have coeffisien a fixed computable
subfieldK C R, irreducibility is understood to be in the ring of polynonsiavith coeffi-
cients inK, irreducible factors are always content-free and chosarciemonical way, and
finite sets of polynomials are always ordered according twealfiinear ordering in the set
of all polynomials with coefficients ii. In our implementatioik = Q.

Whenever we writa = (ay, . .., a) € RXwith k > 0 we include the possibility ai= (),
the only element oR°.

3.1. Local projection.

Definition 7. LetPC R[xy, ..., Xn) be afinite set of polynomials and leta(ay, ... ,an-1) €
R"1, where n> 1. Let W= (W,...,W,) be such that Wis a finite subset of IRRand
PNIRR C W for 1 < k < n. W is alocal projection sequender P at a iff, for any
1<k<nandany cell GC RX, if (a1,...,8) € C and all elements of Wor 1 < j <k
have constant signs dn; (C) then the set of elements of W that are not identically zero
on Cx R is delineable over C.

To compute local projections we use the following two praetprocedures, derived,
respectively, from McCallum’s projection operator [16] [2Yand Hong's projection oper-
ator [11].

Algorithm 8. (LProjMC)
Input: P={py,..., pm} C IRR1 anda= (ay,...,ax) € R, wherek > 1.
Output: A finite setQ C R[xq,. .., X].
(1) PutQ=0and compute R={pe P : 3be R p(a,b) = 0}.
(2) For1<i<mdo
() Let p =0ggxd, | +...+0o. Put Q= Qu{qq}.
(b) fk>1land (@) =...=qo(a) =0 put
Q=QuU{dg-1,---,0o}
and continue the loop.
(c) Ifk>1,qq(a) =0, and none of g 1,...,qo is @ nonzero constant, put Q
Qu{q}, where | is maximal such that @) + 0.
(d) Put Q= Qu {disg,, pi}-
(e) If pi € R then put
Q=Qu{resy,,(pi,pj) 1 i <j<mAp; €R}
(3) Return Q.
In the next algorithm we use the following notation.

Notation 9. Let f,g € R[X|[x1], @€ R¥, and
d = min(deq f),degg))

If for some0 <1 < d, pse(f,g)(@) =... = psg_1(f,g)(@) = 0 and ps¢(f,g)(a) # 0,
then PSCf,q,3) := {psa(f,q),...,psq(f,g)}. Otherwise

Psqfvgaa) = {pSQ)(f,g),...,psca,l(f,g)}
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Algorithm 10. (LProjH)
Input: P={p1,...,pm} € IRR1 anda= (ay,...,a) € R, wherek > 1.
Output: A finite setQ C R[xq,. .., X].
(1) PutQ=0and compute R {pe P : db e R p(ab) =0}.
(2) For1<i<mdo
(@) Let p =quxd, ; +...+0o. Put Q= Qu{qq¢} and = p;.
(b) Ifgq(a) =...=0qo(@) =0put Q=QU{0qq_1,...,0q0} and continue the loop.
(c) If qa(a) =0, put Q= QU{dg_1,...,G } and f =X, ; +...+do, where | is
maximal such that,@a) # 0.

(d) PutQ=QUPSQri, 72— a).
(e) If pi € Rthenfori< j <mif pj € R put Q= QUPSQr;, p;,a).

(3) Return Q.
The following algorithm computes a local projection forgiP anda.

Algorithm 11. (LocalProjection)
Input: A finite setP C R[xy, ..., %] anda= (ay,...,a,_1) € R"%, wheren > 1.
Output: A local projection sequend®’ = (W, ..., W) for P ata.
(1) Setwo=true, Q=P,k=n—-1.
(2) While k>1do
(a) Leta=(ay,...,a) and compute W1 = QNIRR 1, Q= Q\ W 1.
(b) If wo=true,1 < k< n—1, and an element of ¥ is identically zero a#g,
then set we= false, Q= P, k=n— 1and continue the loop.
(c) If wo =true or k< 2 set Q= QU LProjMC(W1,3a) else set Q= QU
LProjH (W 1,a).
(d) Setk=k—1.
(3) SetW = QNIRR.
(4) Return W= (W4, ..., Wh).

3.2. The CAD construction algorithm. Let us first introduce an algorithm for evaluation
of polynomial systems at “partial” sample points.

Algorithm 12. (PEval)

Input: A systemS(xy, ..., Xn) of polynomial equations and inequalities & (ay, . ..,ax) €
RKwith0 <k <n.

Output: undecidedr a pair(v, P), wherev € {true, false}, P={p1,..., pm} CR[X1,..., X,
and for anyb = (by,...,b,) € R"if

sign(pi(ay, .-, a)) = sign(pi(by, ..., b))
for all 1 <i < mthen the value 0§(b) is v.

(1) If S= false or S=true then returnS 0).
(2) If S= (fp0), wherep is one of<, <, >, >, =, or #.
(a) If there exists a factor g of f such thatgR[xs,...,x] and ga) = 0 then
return (0p0, {g}).
(b) If f e R[xq,...,x] return(f(a)p0,{f}).
(c) Return undecided.
(B) FS=TiA...AT,
(a) For 1<i < compute e= PEval(T;,a).
(b) If for some i = (falseR) then return(falseR).
(c) Iffor allie; = (true,R) then return(true,PLU...UR).
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(d) Return undecided.
4) fS=TyV...VT
(a) For 1 <i < | compute e= PEval(T;,a).
(b) If for some i e= (true,R) then return(true,R).
(c) Ifforallie; = (falseR) thenreturn(falsePLU...UR).
(d) Return undecided.

We can now present a recursive algorithm computing cyloadialgebraic decomposi-
tion using local projections.

Algorithm 13. (LPCAD)

Input: A systemS(x, ..., Xn) of polynomial equations and inequalities amné (a, ..., a) €
RXwith0 <k < n.

Output: A pair (F,V), whereF is a levelk+ 1 cylindrical subformulay = (V1,...,V),
Vj CR[Xyq,...,Xj] for 1 < j <k, and for any cellC C RKif ae Cand for 1< j <k all
elements o¥; have constant signs dm; (C) then

(X1,.-,%) €EC= (F(X1,..., %) <= S(X1,..., %))

(1) Compute a disjunctive normal fornp$ and a conjunctive normal forncRe of
S.
(2) Setstack= {(—00,—00, < 0,00 <)} andA=Q=V;=...=V=0.
(3) While stack# 0 do
(a) Remove atupléuy,ri, p1,Uz,r2,p2) from stack. §,r» are algebraic functions
of Xq,... X, —%, Or oo, Uy = r1(a), U = r2(a), p1,P02 € {<, <}, and the tuple
represents the intervahp;x, 102Uz,
(b) Ifu; =uy seta,1 =u; and set R={f}, where g = Root(m?pf, else pick a
rational number 4 < ax, 1 < Uy and set R= 0. Setb = (a,ax, 1).
(c) Compute enr = PEval(Snr, b). If ecne = (falseP) then set H= false
and W= LocalPro jectiofPUR,a), and go to( f).
(d) Compute gnr = PEval(Sonr, b). If epne = (true, P) then set H= true and
W = LocalProjectioffPUR,a), and go to(f).
(e) Compute(H,U) = LPCAD(S,b). For 1 < j <k set\{ = V;UUj. Compute
W = LocalProjectior{Uyx, 1 UR,3).
(f) For1<j <kset\{=Vjuw,.
(9) If uy = uy then set G= (X1 =r1) and go to(n).
(h) Find s;and $ such that
() s1 =Roo, ,p frand f € W, g 0rs = f1 = —oo,
(i) s2=Rook.,,p,f2and b €Wk 1 0rs = fo = o,
(ii)) v =s1(a) and v = 5,(a),
(iv) eitherv = v, = a1 Or vi < a1 < v and there are no roots of ele-
ments of W, 1 in (vi,V2).
(i) Set Q= QU ({f1, f2}\ {—c0,00}).
() Ifvy=wvythenset G= (x,1=151), add

(V1,81, <, U, 2, P2)
and

(Ug,r1,01,V1,81, <)
to stack, and go tdn).
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(k) If up < vy then seti=r, and o, = p,. Else set4 =<5, and o, =<, and if
up >V, or pp =< add

(V27827 Sa uz, r21p2)

to stack.
() If vi <up then set{ =r; andoy = p;. Else sett=s; ando; =<, and if
Vi > Uy or pp =< add

(Ug,r1,P1,V1,81, <)

to stack.
(m) Set G= (t101%102t2).
(n) Set A=AU{(ax;+1,GAH)}
(4) Sort A by increasing values of the first element, obtaiRifg, H1), ..., (Cm,Hm)}.
SetF=H;iV...VHn.
(5) Compute W= LocalProjectior{Q,a).
(6) For1<j <ksety =VjUW,.
(7) Return(F,V).

Corollary 14. LPCAD(S(x1,...,Xn),()) returns
(F(X1,---,%n),0))

where Fx1,...,Xy) is a cylindrical algebraic formula equivalent ta(g, . .. , Xn).

The formula returned by Algorithin 13 may involve weak in€elitiess, but it can be
easily converted to the CAF format by replacing weak ineitjealwith disjunctions of
equations and strict inequalities.

3.3. Proofs. To prove correctness of Algorithm1L1 we use the following heata.

Lemma 15. Let k> 1, PC IRR 1, a= (ay,...,a) € R, and Q= LProjMC(P,a). If

D is a connected analytic submanifold Bf such thata € D and all elements of Q are
order-invariant in D then the set'Pof all elements of P that are not identically zero on
D x R is analytic delineable over D and the elements dfdfe order-invariant in each
P*-section over D.

Proof. Suppose that € P*. Step(2a) of Algorithm[8 guarantees théthas a sign-invariant
leading coefficient irD. f does not vanish identically at any pointih(for k > 1 it is
ensured by stefPc); for k= 1 it follows from irreducibility of f). By Theorem 3.1 of [2],
f is degree-invariant oD. Sincedisg,(f) € Q, by Theorem 2 of [177]{ f} is analytic
delineable oveb and is order-invariant in eachf }-section oveD. Suppose thag € P*
andg # f. If either f(&,x, 1) or g(a,%1) has no real roots thefif,g} is delineable
onD. Otherwiseres,,(f,g) € Q and hence, by Theorem 2 of [17f,g} is analytic
delineable oveb. ThereforeP* is analytic delineable ovdd and the elements & are
order-invariant in eacR*-section oveD. O

Lemma 16. Letk> 1, PC IRR 1, a= (ay,...,a) € R, and Q= LProjH(Pa). If D

is a connected subset Bf such thata € D and all elements of Q are sign-invariant in D
then the set Pof all elements of P that are not identically zero orx[R is delineable over
D.

Proof. Suppose that = quﬂH—l— ...+ 0qo € P*. Letl be maximal such tha (a) # 0, and
let freqg = Qi XLH +...+qo. Steps(2a) and(2c) of Algorithm[IQ guarantee theft = freq
in D x R. By step(2d) and Theorems 1-3 of [7}; feq} is delineable oveb, and hence
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{f} is delineable oveb. Suppose thag € P* andg # f. If either f (a,xc.1) or g(a, % 1)
has no real roots thefif, g} is delineable oD. Otherwise without loss of generality we
may assume that due to st€}e) Q contains all factors dPSQ freq,9,3d). By Lemma 1 of
[11] and Theorem 2 of [7], the degree of gddb,x«1),9(b,X+1)) is constant fob € D.
Sincef andg are degree-invariantib, by Lemma 12 of[2B]{ f,g} is delineable oveb.
ThereforeP* is delineable oveb. O

Proposition 17. Algorithm[11 terminates and returns a local projection seaqce for P at
a.

Proof. To show that the algorithm terminates note that the bodyefdbp in step2) is
executed at mostr2- 2 times.

LetW = (W4, ...,W,) be the returned sequence. St¢ps) and(3) ensure that\k is a
finite subset ofRR; andPNIRR, C W for 1 < k < n. We will recursively construct a cell
D € R™ 1 such thaDy = My(D) is the maximal connected set containifig(a) such that
all elements otV for 1 < j < k have constant signs dm; (Dy). Moreover, for 1< k < n,
the seW\, ; of elements o\, ; that are not identically zero dbg x R is delineable over
Dy. This is sufficient to prove thaV is a local projection sequence fBrat a, because for
any cellC C RKif (ay,...,ay) € Cand all elements alv; for 1 < j < k have constant signs
on[1j(C) thenC C Dy, by maximality ofDy.

We will consider two cases depending on the valuavofwhen the algorithm termi-
nated. Suppose first that when the algorithm terminatedastrue. In this case we will
additionally prove that for K k < n Dy is an analytic submanifold d&¥, all elements of
W are order-invariant iDy, and ifk < n— 1 then none of the elements\df  ; vanishes
identically at any point iDy, W ; is analytic delineable oBy, and the elements &%, ;
are order-invariant in eadh, 1-section oveDy. If a; is a root of an element ol let
D; = {a;} else letD; = (r1,%1), wherer; ands; are roots of elements &, —co, or oo,
ri < ai < s, and there are no roots W, in (r1,s1). D1 is a connected analytic submani-
fold of R! and all elements df\; are order-invariant ifD1. Since the elements &f, are
irreducible, none of the elements\f vanishes identically at any point B;. Since all
irreducible factors of elements bProjMC(Ws, M1(a)) belong tows, by LemmaTbW, is
analytic delineable ovedd; and the elements & are order-invariant in eadh,-section
overD;. Suppose that, for some<d k < n— 1, we have constructddy_; satisfying the
required conditions. The conditions imply thé& is analytic delineable oBy_;. Let Dy
be thewk-section oM\-sector oveDy_; which containgly(a). Dg is an analytic subman-
ifold of RK. The elements di\ are order-invariant ildy, because they are order-invariant
in eachW-section oveD,_; and nonzero in eact\-sector oveDy_;1. Since all irre-
ducible factors of elements &Pro jMC(Wk. 1,Mk(a)) belong toM U... UWk , by Lemma
15, W, ; is analytic delineable oveDy and the elements ok, , are order-invariant in
eachW, ;-section oveDy. Step(2b) guarantees that K < n— 1 thenW, ; =Wk1.

Suppose now that when the algorithm terminatedvas false LetD; be as in the first
part of the proof. As befor&), is analytic delineable ovedd; and the elements &, are
order-invariant in eact,-section oveD;. Let D, be theW,-section oMb-sector oveDq
which containgay, ay). D2 is an analytic submanifold @2. The elements ai, are order-
invariantinD,, because they are order-invariantin ed#éhsection oveD; and nonzero in
eachwW,-sector oveD;. Since all irreducible factors of elementsld?ro J]MC(Ws, M2 (a))
belong towy, UWs, by Lemmé& IbW; is analytic delineable oveD,. Suppose that, for
some 2< k < n—1, we have constructed,_; satisfying the required conditions. The
conditions onDy_; imply thatW" is delineable orDy_1. Let Dy be theW-section or
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W -sector oveDy_1 which containdly(a). All elements ol are sign-invariant irDy.
Since all irreducible factors of elementsld®ro jH (Wk. 1,Mk(a)) belong towj U ... UW ,
by Lemm&IBW;, , is delineable oveDy.

Since for 1< k < n, Dy is theW; -section ot -sector oveD._; which containgly(a),
Dy is the maximal connected set containifig(a) such that all elements & for 1 < j <k
have constant signs dp;. O

Correctness and termination of Algorittiml 12 is obvious.

Proposition 18. Algorithm[13 terminates and the returned péi; V) satisfies the required
conditions.

Proof. Let Ps be the set of all polynomials that appeaSand letWy = (W 1,..., W n)
be the Hong’s projection sequencel[11] Rer(the variant of given in Proposition 7 of [23]).
Suppose thaP C Wy 1 U... UWy ;1 anda e RK, wherek < n. Let (WA,... ,\Wky1) =
LocalProjectiorfP,a). Since we assume that finite sets of polynomials are consligte
ordered according to a fixed linear order in the set of all potyials, W C Wy ; for 1 <

i <k+ 1. Hence all polynomials that appear during executiobhREAD are elements of
Wh1U...UWh n. In particular,r; andrz that appear in the elements stfackare roots
of elements ofMy k41, —o, or co. Therefore, the number of possible elementstefckis
finite, and hence the loop in st¢B) terminates. Recursive calls T@DCAD incrementk.
Whenk = n— 1 then either stef3c) yieldsH = falseor step(3d) yieldsH = true, and
hence stefg3e) containing the recursive call to0PCAD s never executed. Therefore the
value ofk is bounded by — 1, and hence the recursion terminates.

Let (F,V) be the pair returned byPCAD and suppose th& C R is a cell such that
ac Cand for 1< j < kall elements oV; have constant signs dm;(C). We need to show
that

(X1,...,%) €EC= (F(X,...,%Xn) < S(X1,...,%Xn))
Letc=(cy,...,cn) € R"andc= (cy,...,c) € C. We need to show th&t(c) = S(c). Let
W = LocalProjectior{Q,a), as computed in stef5). All elements ofW, have constant
signs on orf1(C), for 1 < j < k. Since none of the elements Qfvanishes identically at
3, Qs delineable ove€. Hence th&Q-sections and th&®-sectors ove€ form a partition
of Cx R.

For a tupled = (ug,r1,p1, Uz, r2, p2) that appears ostackin any iteration of the loop in
step(3) put

Z1(0) = {(XXs1) € R 0 Xe CATIp1XG 1022}
For eacho = (ax;1,GAH) € Aput

Zo(a) = {(XX1) € R 1 K€ CAG(XXcr1)}

Note that eacfz;(6) andZ,(a) is a union ofQ-sections an®@-sectors ove€. PutQ; =
{Z1(0) : B € stack andQ, = {Zy(a) : o € A}. We will show that in each instance of
the loop in step3) Q; U Q5 is a partition ofC x R. In the first instance of the loop in
step(3) Q1 = {C xR} andQ, = 0, and henc&, U Q; is a partition ofC x R. We will
show that this property is preserved in each instance ofaihye. | In each instance a tuple
6 = (u1,r1,P1,Up,r2,02) is removed fronstackanda = (ax;1,GAH) is added toA. If
U1 = Uy in step(3g) thenZy(a) = Z;(6) and the property is preserved.vif = v» in step
(3)) thenG = (X1 =s1) and tuple, = (v1,51, <,Up, 2, p2) and6y = (u1,r1, P1,V1,S1, <

) are added tstack Since{Z;(61),Z»(a),Z1(6,)} is a partition ofZ;(8), the property
is preserved. Otherwise steffk)-(3m) are executed. If in stef8k) up > vo Or up = Vp
and p; =< then putZ; ; = Z1(62), where 6, = (v2,%, <,uUp,r2,02) is the tuple added
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to stack else putZ; , = 0. If in step(3l) v1 > uy or vy = up andp; =< then putZ; 1 =
Z1(61), wheref; = (uy,r1,p1,V1,51, <) is the tuple added tstack else puZ; 1 = 0. Since
{Z11,2>(a),Z1 2} is a partition 0fZy(0), the property is preserved.

After the loop in stefd3) is finishedstackis empty,Q1 = 0, and henc€; is a partition
of CxR. Leta = (ak+1,GAH) € Abe such thatc,cc1) € Zz(a). Let us analyze the
instance of the loop in ste®) which resulted in adding to A. LetD = Z(a).

Suppose first thatl = falseor H = true was found in steg3c) or (3d). LetW =
LocalProjectiofPUR,a), as computed in stef8c) or (3d). For 1< j <k, W; CV;,
and hence all elements @f; have constant signs on oh (D). Therefore the sad{’, , of
elements of\ 1 that are not identically zero dd x R is delineable ove€. By definition
of G, D is aW, ;-section or &\, ,-sector ovelC. Hence all elements oM, ; have
constant signs ob®. In particular, all elements dP have constant signs dp, and so
S(c) =H =F(c).

Now suppose thaH,U) = LPCAD(S b) was computed in stefBe). Let

W = LocalProjectionfUx;1 UR a)

For 1< j <k, W; CVj, and hence all elements @f; have constant signs on ém;(D).
As before W, , is delineable ove€, D is aW ;-section or a\(, ,-sector ovelC, and
all elements of\, 1 have constant signs dp. In particular, all elements df, 1 have
constant signs oB. Since for 1< j < k Uj CV;j, all elements otJ; have constant signs
ononfl;(D). Hence

X1y X Xukt1) € D= (H(Xq, ..., Xn) <= S(X1,...,%))

and soF (c) = H(c) = §(c). O
3.4. Implementation remarks.

Remark 19. The following somewhat technical improvements have besereéd to im-
prove practical performance of Algorithm]13.

(1) In step(2c) of Algorithm[8 in ¢ may be chosen arbitrarily as long as(g) # 0,
hence an implementation may choose the simplest g

(2) Ifin arecursive call to LPCADS, (ay, ..., a)) the initial coordinategay, ..., am)
correspond to single-point intervals, that is & u, in step(3b) of the currently
evaluated iteration of loog3) in all parent computations of

LPCAD(S, (ay,...,a;))

for 1 < j <m, then LocalProjectiofP, (as,...,ax)) does not need to compute the
last m levels of projection. Instead it can return3W, ... ,\Wy) withW = ... =
Wi = 0.

(3) Computations involved in finding projections are repeatedtipie times. A prac-
tical implementation needs to make extensive use of caching

3.5. Example. In this section we applifPCADto solve the problem stated in Examiple 1.
In step(1) of LPCAD(S, ()) we computeseneg = (f1 <0V f <0)A(fp <0V f3 <0)
andSone = f1 <0V (fa < 0A f3 <0). In the first iteration of loog3) we remove a tuple
representing-o < x < o from stackand picka; = 0. The calls td?Evalin steps(3c) and
(3d) yield undecided Step(3e) makes a recursive call IlPCAD(S, (0)).
In the first iteration of loog3) in LPCAD(S, (0)) we remove a tuple representinge <
y < o from stackand pickay = 0. PEval(Sr, (0,0)) in step(3c) yields(true, { f1, f2, f3}).
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We continue on to stef8d) wherePEval(Spne, (0,0)) yields (true, {f1}). We setH =
true and compute

W = LocalProjectior{{ f;},(0)) = (Wq,{f1})

whereW; = {x—1,x+1} is the set of factors afiscr, f; = 16(x?>— 1). We go to steg3f)
and sel; = Vi UW;, = {x—1,x+ 1}. In step(3h) we finds; = Rooy,1 f; = —2v1—x?,
s = Roof > f; =2v1—x?, vi = —2, andv, = 2. In step(3i) we setQ = QU {1} = {f1}.
In steps(3k) and(3l) we add tuples representingy < o and—oo < y < —2 tostack In
step(3n) we obtainA = {(0, —2v1—-x2 <y < 2/1—x2)}.

In the second iteration of loof8) in LPCAD(S, (0)) we remove a tuple representing
—oo < y < —2 from stackand picka; = —4. PEval(&ng, (0,—4)) in step(3c) yields
(false{f1, f2}). We setH = falseand compute

W = LocalProjectior{{ f1, f2},(0)) = (Wh, {f1, f2})
whereW; = {x—1,x+ 1} is the set of factors afiscr, f; = 16(x2 — 1), discr, f, = 4(x% — 1),
andresy(f1, f2) = 9(x* — 1)2. We go to stegg3f) and se¥; =V, UW; = {x—1,x+1}. In
step(3h) we finds; = v; = —0, 5, = Root 1 f1 = —2v1—x?, andv, = —2. In step(3i)
we setQ=QuU{f1} = {f1}. In step(3k) we add a tuple representigg= —2 to stack In
step(3n) we obtainA = {(0,—2vV1—x? <y < 2v/1—x?),(—4, false)}.

In the third iteration of lood3) in LPCAD(S, (0)) we remove a tuple representisig=
—2 fromstackand sef; = —2. PEval(Snr, (0, —2)) in step(3c) yields

(false {f1, f2})
We setH = falseand compute

W = LocalProjectiorf{ f1, f2},(0)) = (W4, { f1, f2})

whereW; = {x—1,x+1}. We go to stef3f) and setv; = V1 UW; = {x—1,x+1}. In
step(3g) we setG = (y= —2v/1—x?). In step(3n) we obtainA= {(0,—2v1-x2 <y <
2V1—x2),(—4, false), (-2, false}.

The remaining two iterations of loof8) look very similar to the last two. In stef#)
we obtainF = —2v/1—x2 <y < 2v/1—x2. In step(5) we compute

W = LocalProjectior{{ f1},(0)) = ({x—1,x+1},{f1})

and in step6) we setv; =V; UW; = {x— 1,x+ 1}. The returned value is-2v/1—x? <
y < 2V1—x2 ({x—1,x+1})).

In step(3e) of LPCAD(S,()) we obtainH = —2v/1—x2 <y < 2y/1—x% andU =

({x—1,x+1}).

LocalProjectiorf{x—1,x+1},())
yields({x—1,x+1}). In step(3h) we finds; = Roo} 1(x+1) = —1,5 = Rook 1 (x— 1) =
1,v1 = -1, andv, = 1. In stepg3k) and(3l) we add tuples representing<lx < « and
—oo < X < —1 tostack In step(3n) we obtainA= {(0,—1<x<1A-2V1-X<y<
2V1-x2)}.

In the second iteration of loof8) in LPCAD(S,()) we remove a tuple representing
—oo < x < —1 from stackand pickay = —2. The calls taPEval in steps(3c) and (3d)
yield undecided Step(3e) makes a recursive call tA°CAD(S, (—2)).

In the first iteration of loop(3) in LPCAD(S,(—2)) we remove a tuple representing
—oo < y < oo from stackand pickaz = 0. PEval(Scnr, (—2,0)) in step(3c) yields

(false{fy, f2})
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We setH = falseand compute
W = LocalProjectior{{f1, f2},(—2)) = (Wi, { f1, f2})

whereW; = {x—1,x+ 1} is the set of factors adiscr, f; anddiscr, fo (res,(fq, f2) is not
a part of the projection becaudg(—2,y) and f,(—2,y) have no real roots). We go to
step(3f) and set; = V3 UW; = {x—1,x+ 1}. In step(3h) we finds; = v; = — and
s, =V, = 0. In step(3i) Q remains empty. In ste(Bn) we obtainA = {(0, false)}. The
loop ends after one iteration and the returned valéasse ({x— 1,x+ 1})).

In step(3e) of LPCAD(S, ()) we obtainH = falseandU = ({x— 1,x+1}).

LocalProjectior{{x— 1,x+1},())

yields ({x—1,x+1}). In step(3h) we finds; = vi = —o, S, = Rook 1(x+1) = —1, and
v, = —1. In step(3k) we add a tuple representing= —1 to stack In step(3n) we obtain
A={(0,-1<x<1IA-2V1-X<y<2V1-x?), (-2 false}.

In the third iteration of loog3) in LPCAD(S, ()) we remove a tuple representing: —1
from stackand picka; = —2. The calls td°Evalin steps(3c) and(3d) yield undecided
Step(3e) makes a recursive call tPCAD(S, (—1)).

In the first iteration of loop(3) in LPCAD(S,(—1)) we remove a tuple representing
—o0 < y < oo from stackand pickaz = 0. PEval(Scnr, (—1,0)) in step(3c) yields

(false {f1, f3})
We setH = falseand compute
W = LocalProjectior{ f1, f3},(—1)) = (W, {f1, f2})

where, by Remark9, we can taWg = 0. We go to sted3f) and the seV; remains
empty. In step(3h) we finds; = s, = Root,1f1 andvy = v, = 0. In step(3i) we set
Q=0QuU{f1} ={f1}. In step(3j) we add tuples representing<0Ox < o and—c < x < 0
to stack In step(3n) we obtainA = {(0, false)}.

In the second iteration of loof8) in LPCAD(S,(—1)) we remove a tuple representing
—o < y < 0 from stackand picka; = —1. PEval(Snr,(—1,—1)) in step(3c) yields
(false{f1, f2}). We setH = falseand comput&V = LocalProjectior{{ f1, f2},(—1)) =
(Wi, {f1, f2}), where, by Remark39, we can také = 0. We go to steg3f) and the set
V1 remains empty. In ste@Bh) we finds; = v; = —o, S, = Roo},1 f1 andv, = 0. In step
(3i) we setQ = QU {f1} = {f1}. In step(3n) we obtainA = {(0, false), (-1, false}.

The remaining iteration of loof3) look very similar to the last one. In steg) we
obtainF = false In step(5) we compute

W = LocalProjectiorf{f1},(—1)) = (0,{f1})

by RemariIP. The returned value(ialse (0)).

In step(3e) of LPCAD(S, ()) we obtainH = falseandU = (0). LocalPro jectior{0, ())
yields (0). In step(3g) we setG = (x= —1). In step(3n) we obtainA = {(0,—-1 < x <
IN=2V1-X <y<2V1-x?),(-2,false), (-1, false)}.

The remaining two iterations of loof8) look very similar to the last two. In step
(4) we obtainF = —1 < x < 1A —-2V1—x%2 <y < 2/1—x? and the returned value is
(—1<Xx<1IA-2V1-X<y<2V1-X%2)()).
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4. EMPIRICAL RESULTS

Algorithm[I3 LPCAD) and the cylindrical algebraic decompositi€@AD) algorithm
have been implemented in C, as a part of the kernblathematica The experiments have
been conducted on a Linux server with a 32-coe @Hz Intel Xeon processor and 378
GB of RAM available for all processes. The reported CPU tima total from all cores
used. Since we do not describe the use of equational camtstiaithe current paper, we
have selected examples that do not involve equations.

4.1. Benchmark examples.We compare the performance bPCAD and CAD for the
following three problems and for the 7 examples from Wilsdmenchmark sef [26] (ver-
sion 4) that do not contain equations.

Example 20. (Two quadratics) Find a cylindrical algebraic decompagitiof the solution
set of a% + bx+c > 0AdxX2 + ex+ f > O with the variables ordere¢a, b, c,d, e, f,x).

Example 21. (Ellipse in a square) Find conditions for eIIipéé’aL>2 + Lﬁ < 1to be
contained in the squarel < x< 1A -1 <y < 1. We compute a cylindrical algebraic
decomposition of the solution set of

¥x,yc€Ra>0Ab>0Ab(Xx—c)?+aly—d)?><ab=
-l<x<1ln-1<y<1
with the free variables ordere@, b, c,d).

Example 22. (Distance to three squares) Find the distance of a point ahgarabola
shown in the picture to the union of three squares.

We compute a cylindrical algebraic decomposition of theioh set of
IKYER (x—a)2+ (y—a2+2)2<dA
(0<x<1AO0<y<1lv
3<x<2A-3<y<-1v
5<x<4ni<y<?)
with the free variables ordere@, d).
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TABLE 1. Benchmark examples

Example Time Cells WO
CAD LPCAD| CAD LPCAD
97.7 2.61 324137 | 3971 | N
21 > 100000/ 381 ? 67535 | N
2402 449 | 13105366/ 71411 | Y
W 2.3 0.063 0.088 91 84 Y
W 2.8 0.015 0.015 15 15 Y
W 2.9 0.047 0.011 59 19 Y
W 2.10 0.135 0.197 779 647 Y
wW2.11 0.045 0.007 463 31 N
W2.16 0.076 0.025 644 4 Y
W 6.5 2.10 1.58 11279 2536 | Y
TABLE 2. Randomly generated examples
Var Time Cells TO | WO

No. CAD/LPCAD CAD/LPCAD

Mean| Min | Max | Mean| Min | Max
5 | 164 |050| 111 | 255 | 0.75| 173 | 8 4
3.82 | 0.80| 55.7 | 6.14 1 [984 10
7 | 269 |510| 257 | 432 | 6.74| 408 | 3 0

(ep]
[N

Results of experiments are given in Table 1. Examples fiaBh §2e marked with W
and the original number. The columns marked Time give the @#/¥, in seconds, used
by each algorithm. The columns marked Cells give the numbeelds constructed by
each algorithm. The column marked WO tells whether the systevell-oriented.

4.2. Randomly generated examplesFor this experiment we used randomly generated
systems with 5, 6, and 7 variables, 25 systems with each nuwfibariables. The systems
had the formf < 0 or f <0, with a quadratic polynomial with 6 to 15 terms and 10-bit
integer coefficients. We selected systems for which at eetof the algorithms finished
in 1000 seconds. Results of experiments are given in Tabld&.columns marked Time
give the ratio ofCAD timing divided byLPCADtiming. The columns marked Cells give
the ratio of the numbers of cells constructed®¥D and byLPCAD. The ratios are com-
puted for the examples for which both algorithms finisheddf@ seconds. The columns
marked Mean give geometric means. The column marked TO gieasumber of exam-
ples for whichCAD did not finish in 1000 secondsPCADfinished in 1000 seconds for all
examples. The column marked WO gives the number of systeshsvtire well-oriented.

4.3. Conclusions. Experiments suggest that for systems that are not welhtaikLP-
CAD performs better than CAD. For well oriented-systems BPQisually construct less
cells than CAD, but this does not necessarily translate tstef timing, due to overhead
from re-constructing projection for every cell. Howeven, §ome of the well-oriented sys-
tems, for instance Examgdlel22, LPCAD is significantly fasiean CAD, due to its ability
to exploit the Boolean structure of the problem. Unfortehatve do not have a precise
characterisation of such problems. Nevertheless LPCAD heayseful for well-oriented
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problems that prove hard for the CAD algorithm or may be tiregarallel with the CAD
algorithm.
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