
ar
X

iv
:1

40
5.

49
25

v1
  [

cs
.S

C
]  

20
 M

ay
 2

01
4

CYLINDRICAL ALGEBRAIC DECOMPOSITION USING LOCAL
PROJECTIONS

ADAM STRZEBOŃSKI

ABSTRACT. We present an algorithm which computes a cylindrical algebraic decompo-
sition of a semialgebraic set using projection sets computed for each cell separately. Such
local projection sets can be significantly smaller than the global projection set used by
the Cylindrical Algebraic Decomposition (CAD) algorithm.This leads to reduction in the
number of cells the algorithm needs to construct. We give an empirical comparison of our
algorithm and the classical CAD algorithm.

1. INTRODUCTION

A semialgebraic set is a subset ofRn which is a solution set of a system of polynomial
equations and inequalities. Computation with semialgebraic sets is one of the core subjects
in computer algebra and real algebraic geometry. A variety of algorithms have been devel-
oped for real system solving, satisfiability checking, quantifier elimination, optimization
and other basic problems concerning semialgebraic sets [7,1, 5, 6, 9, 10, 12, 15, 18, 24, 25].
Every semialgebraic set can be represented as a finite union of disjoint cells bounded by
graphs of algebraic functions. The Cylindrical Algebraic Decomposition (CAD) algorithm
[7, 5, 21] can be used to compute a cell decomposition of any semialgebraic set presented
by a quantified system of polynomial equations and inequalities. An alternative method of
computing cell decompositions is given in [6]. Cell decompositions computed by the CAD
algorithm can be represented directly [21, 22, 3] as cylindrical algebraic formulas (CAF;
see the next section for a precise definition). A CAF representation of a semialgebraic
setA can be used to decide whetherA is nonempty, to find the minimal and maximal val-
ues of the first coordinate of elements ofA, to generate an arbitrary element ofA, to find a
graphical representation ofA, to compute the volume ofA, or to compute multidimensional
integrals overA (see [20]).

The CAD algorithm takes a system of polynomial equations andinequalities and con-
structs a cell decomposition of its solution set. The algorithm consists of two phases. The
projection phase finds a set of polynomials whose roots are sufficient to describe the cell
boundaries. The lifting phase constructs a cell decomposition, one dimension at a time,
subdividing cells at all roots of the projection polynomials. However, some of these sub-
divisions may be unnecessary, either because of the geometry of the roots or because of
the Boolean structure of the input system. In this paper we propose an algorithm which
combines the two phases. It starts with a sample point and constructs a cell containing the
point on which the input system has a constant truth value. Projection polynomials used
to construct the cell are selected based on the structure of the system at the sample point.
Such a local projection set can often be much smaller than theglobal projection set used
by the CAD algorithm. The idea to use such locally valid projections was first introduced
in [13], in an algorithm to decide the satisfiability of systems of real polynomial equations
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and inequalities. It was also used in [4], in an algorithm to construct a single open cell
from a cylindrical algebraic decomposition.

Example 1. Find a cylindrical algebraic decomposition of the solutionset of S= f1 <
0∨ ( f2 ≤ 0∧ f3 ≤ 0), where f1 = 4x2+ y2−4, f2 = x2+ y2−1, and f3 = 16x6−24x4+
9x2+4y4−4y2.

The solution set of S is equal to the union of the open ellipse f1 < 0 and the intersection
of the closed disk f2 ≤ 0 and the set f3 ≤ 0 bounded by a Lissajous curve. As can be seen in
the picture, the set is equal to the open ellipse f1 < 0. The CAD algorithm uses a projection
set consisting of the discriminants and the pairwise resultants of f1, f2, and f3. It computes
a cell decomposition of the solution set of S by constructing357cells such that all f1, f2,
and f3 have a constant sign on each cell. Note however, that a cell decomposition of the
solution set of S can be obtained by considering the following 13 cells. On each cell only
some of f1, f2, and f3 have a constant sign, but those signs are sufficient to determine the
truth value of S.

(1) S is true on−1< x< 1∧−2
√

1− x2 < y< 2
√

1− x2 because f1 < 0.
(2) S is f alse on−1 < x < 1∧ y < −2

√
1− x2 and on−1 < x < 1∧ y > 2

√
1− x2

because f1 > 0∧ f2 > 0.
(3) S is f alse on−1 < x < 1∧ y = −2

√
1− x2 and on−1 < x < 1∧ y = 2

√
1− x2

because f1 = 0∧ f2 > 0.
(4) S is f alse on x<−1 and on x> 1 because f1 > 0∧ f2 > 0.
(5) S is f alse on x=−1∧y< 0 and on x=−1∧y> 0 because f1 > 0∧ f2 > 0.
(6) S is f alse on x=−1∧y= 0 because f1 = 0∧ f3 > 0.
(7) S is f alse on x= 1∧y< 0 and on x= 1∧y> 0 because f1 > 0∧ f2 > 0.
(8) S is f alse on x= 1∧y= 0 because f1 = 0∧ f3 > 0.
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Determining the cell bounds for the cell stack(1)-(3) requires computation of roots of
discry f1, discry f2, and resy( f1, f2) in x and roots of f1(0,y) and f2(0,y) in y. Determining
the cell bounds for the cells(4) requires computation of roots of discry f1 and discry f2 in x
and roots of f1(−2,y), f2(−2,y), f1(2,y) and f2(2,y) in y. Determining the cell bounds for
the cell stacks(5)-(6) and (7)-(8) requires computation of roots of f1(−1,y), f2(−1,y),
f3(−1,y), f1(1,y), f2(1,y) and f3(1,y) in y. Polynomial f3 is not used to compute any of
the projections and its roots in y are computed only for two values of x. The algorithm we
propose in this paper computes a cell decomposition of the solution set of S by constructing
the 13 cells given in(1)-(8). Details of the computation for this example are given in
Section 3.5.

Example 2. Find a cylindrical algebraic decomposition of the solutionset of S= ax4+
bx3+ cx2+dx+e≥ 0 in the variable order(a,b,c,d,e,x).

In this example the system is not well-oriented, hence the CAD algorithm needs to
use Hong’s projection operator for the first three projections. However, the additional
projection polynomials are necessary only for the cells on which a McCallum’s projection
polynomial vanishes identically. For most cells local projection can be computed using
McCallum’s projection operator, and for the few cells on which a McCallum’s projection
polynomial vanishes identically local projection needs touse some, but usually not all,
polynomials from Hong’s projection operator. The algorithm LPCAD we propose in this
paper computes a cell decomposition of the solution set of S by constructing523cells in
0.95seconds of CPU time. The CAD algorithm did not finish the computation in72hours.
A version of LPCAD using only local projections based on Hong’s projection operator
constructs1375cells and takes2.72seconds of CPU time.

2. PRELIMINARIES

A system of polynomial equations and inequalitiesin variablesx1, . . . ,xn is a formula

S(x1, . . . ,xn) =
∨

1≤i≤l

∧

1≤ j≤m

fi, j(x1, . . . ,xn)ρi, j0

where fi, j ∈ R[x1, . . . ,xn], and eachρi, j is one of<,≤,≥,>,=, or 6=.
A subset ofRn is semialgebraicif it is a solution set of a system of polynomial equations

and inequalities.
A quantified system of real polynomial equations and inequalities in free variables

x1, . . . ,xn and quantified variablest1, . . . , tm is a formula

Q1t1 . . .QmtmS(t1, . . . , tm;x1, . . . ,xn)

WhereQi is ∃ or ∀, andS is a system of real polynomial equations and inequalities in
t1, . . . , tm,x1, . . . ,xn.

By Tarski’s theorem (see [24]), solution sets of quantified systems of real polynomial
equations and inequalities are semialgebraic.

Notation 3. For k≥ 1, let a denote a k-tuple(a1, . . . ,ak) of real numbers and letx denote
a k-tuple(x1, . . . ,xk) of variables.

Every semialgebraic set can be represented as a finite union of disjoint cells(see [14]),
defined recursively as follows.

(1) A cell in R is a point or an open interval.



4 ADAM STRZEBOŃSKI

(2) A cell in Rk+1 has one of the two forms

{(a,ak+1) : a∈Ck∧ak+1 = r(a)}
{(a,ak+1) : a∈Ck∧ r1(a)< ak+1 < r2(a)}

whereCk is a cell inRk, r is a continuous algebraic function, andr1 and r2 are
continuous algebraic functions,−∞, or ∞, andr1 < r2 onCk.

A finite collectionD of cells inRn is cylindrically arrangedif for anyC1,C2 ∈ D andk≤ n
the projections ofC1 andC2 onRk are either disjoint or identical.

Given a semialgebraic set presented by a quantified system ofpolynomial equations
and inequalities, the CAD algorithm can be used to decomposethe set into a cylindrically
arranged finite collection of cells. The collection of cellsis represented by a cylindrical
algebraic formula (CAF). A CAF describes each cell by givingexplicit algebraic function
bounds and the Boolean structure of a CAF reflects the cylindrical arrangement of cells.
Before we give a formal definition of a CAF, let us first introduce some terminology.

Let k≥ 1 and letf = cdyd+ . . .+c0, wherec0, . . . ,cd ∈ Z[x]. A real algebraic function
given by thedefining polynomial fand aroot number p∈N+ is the function

(2.1) Rooty,p f : Rk ∋ a−→ Rooty,p f (a) ∈ R

whereRooty,p f (a) is thep-th real root off (a,y) ∈ R[y]. The function is defined for those
values ofa for which f (a,y) has at leastp real roots. The real roots are ordered by the
increasing value and counted with multiplicities. A real algebraic numberRooty,p f ∈ R

given by adefining polynomial f∈ Z[y] and aroot number pis thep-th real root off . See
[19, 20] for more details on how algebraic numbers and functions can be implemented in
a computer algebra system.

Let C be a connected subset ofRk. Rooty,p f is regular on C if it is continuous onC,
cd(a) 6= 0 for all a∈ C, and there existm∈ N+ such that for anya ∈ C Rooty,p f (a) is a
root of f (a,y) of multiplicity m.

f is degree-invarianton C if there existe∈ N such that ifcd(a) = . . . = ce+1(a) =
0∧ce(a) 6= 0 for all a∈C.

A set W = { f1, . . . , fm} of polynomials isdelineableon C if all elements ofW are
degree-invariant onC and for 1≤ i ≤ m

f−1
i (0)∩ (C×R) = {r i,1, . . . , r i,l i}

wherer i,1, . . . , r i,l i are disjoint regular real algebraic functions and fori1 6= i2 r i1, j1 andr i2, j2
are either disjoint or equal. Functionsr i, j areroot functions of fi over C.

A setW = { f1, . . . , fm} of polynomials isanalytic delineableon a connected analytic
submanifoldC of Rk if W is delineable onC and the root functions of elements ofW over
C are analytic.

Let W be delineable onC, let r1 < .. . < r l be all root functions of elements ofW over
C, and letr0 =−∞ andr l+1 = ∞. For 1≤ i ≤ l , thei-th W-section over Cis the set

{(a,ak+1) : a∈C∧ak+1 = r i(a)}
For 1≤ i ≤ l +1, thei-th W-sector over Cis the set

{(a,ak+1) : a∈C∧ r i−1(a)< ak+1 < r i(a)}
A formulaF is analgebraic constraintwith bounds BDS(F) if it is a level-k equational

or inequality constraint with 1≤ k≤ n defined as follows.

(1) A level-1 equational constrainthas the formx1 = r, wherer is a real algebraic
number, andBDS(F) = {r}.
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(2) A level-1 inequality constrainthas the formr1 < x1 < r2, wherer1 andr2 are real
algebraic numbers,−∞, or ∞, andBDS(F) = {r1, r2} \ {−∞,∞}.

(3) A level-k+ 1 equational constrainthas the formxk+1 = r(x), wherer is a real
algebraic function, andBDS(F) = {r}.

(4) A level-k+1 inequality constrainthas the formr1(x)< xk+1 < r2(x), wherer1 and
r2 are real algebraic functions,−∞, or ∞, andBDS(F) = {r1, r2} \ {−∞,∞}.

A level-k+1 algebraic constraintF is regularon a connected setC⊆Rk if all elements of
BDS(F) are regular onC and, ifF is an inequality constraint,r1 < r2 onC.

Definition 4. Anatomic cylindrical algebraic formula (CAF)F in (x1, . . . ,xn) has the form
F1∧ . . .∧Fn, where Fk is a level-k algebraic constraint for1≤ k ≤ n and Fk+1 is regular
on the solution set of F1∧ . . .∧Fk for 1≤ k< n.

Level-k cylindrical subformulasare defined recursively as follows

(1) A level-n cylindrical subformula is a disjunction of level-n algebraic constraints.
(2) A level-k cylindrical subformula, with1≤ k< n, has the form

(F1∧G1)∨ . . .∨ (Fm∧Gm)

where Fi are level-k algebraic constraints and Gi are level-k+1 cylindrical sub-
formulas.

A cylindrical algebraic formula (CAF)is a level-1 cylindrical subformula F such that dis-
tributing conjunction over disjunction in F gives

DNF(F) = F1∨ . . .∨Fl

where each Fi is an atomic CAF.

Given a quantified system of real polynomial equations and inequalities the CAD algo-
rithm [21] returns a CAF representation of its solution set.

Example 5. The following formula F(x,y,z) is a CAF representation of the closed unit
ball.

F(x,y,z) := x=−1∧y= 0∧z= 0∨
−1< x< 1∧b2(x,y,z)∨
x= 1∧y= 0∧z= 0

b2(x,y,z) := y= R1(x)∧z= 0∨
R1(x)< y< R2(x)∧b2,2(x,y,z)∨
y= R2(x)∧z= 0

b2,2(x,y,z) := z= R3(x,y)∨
R3(x,y)< z< R4(x,y)∨
z= R4(x,y)

where

R1(x) = Rooty,1(x
2+ y2) =−

√

1− x2

R2(x) = Rooty,2(x
2+ y2) =

√

1− x2

R3(x,y) = Rootz,1(x
2+ y2+ z2) =−

√

1− x2− y2

R4(x,y) = Rootz,2(x
2+ y2+ z2) =

√

1− x2− y2



6 ADAM STRZEBOŃSKI

3. CAD CONSTRUCTION USING LOCAL PROJECTIONS

In this section we describe an algorithm for computing a CAF representation of the
solution set of a system of polynomial equations and inequalities. The algorithm uses local
projections computed separately for each cell. For simplicity we assume that the system
is not quantified. The algorithm can be extended to quantifiedsystems following the ideas
of [8]. The algorithm in its version given here does not take advantage of equational
constraints. The use of equational constraints will be described in the full version of the
paper.

The main, recursive, algorithm used for CAD construction isAlgorithm 13. Let us
sketch the algorithm here, a detailed description is given later in this section. The input is a
systemS(x1, . . . ,xn) of polynomial equations and inequalities and a pointa=(a1, . . . ,ak)∈
Rk with 0 ≤ k < n. The algorithm finds a level-k+1 cylindrical subformulaF and a set
of polynomialsV ⊆ R[x1, . . . ,xk] such that for any cellC ⊆ Rk containinga on which all
elements ofV have constant signs

(x1, . . . ,xk) ∈C⇒ (F(x1, . . . ,xn)⇐⇒ S(x1, . . . ,xn))

The formulaF can be interpreted as a description of the solution set ofSas a finite collec-
tion of cylindrically arranged cells inRn−k, parametrized by the values of(x1, . . . ,xk). The
description is valid locally toa, where the meaning of “locally” is determined byV. The
approach is to find algebraic constraints

G1(x,xk+1), . . . ,Gm(x,xk+1)

and cylindrical subformulasH1, . . . ,Hm such that the solution sets of

G1(a,xk+1), . . . ,Gm(a,xk+1)

form a decomposition ofR andHi describes the solution set ofS locally to {a}×{xk+1 :
Gi(a,xk+1)}. To findG’s, H ’s, andV we start with a stack containing the interval(−∞,∞)
and until the stack is emptied execute the following steps. We take an intervalI off stack
and pickak+1 ∈ I . If evaluating thek+1-variate polynomials inSat (a,ak+1) suffices to
establish the truth value ofS, let P be a set ofk+ 1-variate polynomials inS sufficient
to establish the truth value ofS and letH be the truth value. Otherwise, letH and P
be, respectively, the formula and the set of polynomials returned by Algorithm 13 applied
to S and(a,ak+1). We use projection to compute a setW ⊆ R[x1, . . . ,xk] such thatP is
delineable on any cell containinga on which all elements ofW have constant signs and
we add the elements ofW to V. Let J be the interval containingak+1 bounded by the
nearest roots of elements ofP and letG be the constraint onxk+1 whose bounds are the
corresponding algebraic functions. Note that ifP is delineable on a cellC containinga then
the elements ofP have constant signs onD = {(x,xk+1) : x∈C∧G(x,xk+1)} and henceH
is equivalent toSonD. We addG andH to the list ofG’s, H ’s, and, ifI \J is nonempty, we
add the components ofI \J to stack. When the stack is empty we use projection to compute
a setW ⊆ R[x1, . . . ,xk] such the set of polynomials whose roots appear as bounds inG’s
are delineable on any cell containinga on which all elements ofW have constant signs and
we add the elements ofW to V. As required, the formulaF = (G1∧H1)∨ . . .∨ (Gm∧Hm)
is equivalent toSon any cell containinga on which all elements ofV have constant signs.

To compute a CAF representation of the solution set ofS we call Algorithm 13 with
k= 0.

Notation 6. We will use the following notations.
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(1) For a finite set of polynomials P, letP denote the set of irreducible factors of the
elements of P.

(2) Let IRRk denote the irreducible elements ofR[x1, . . . ,xk]\R[x1, . . . ,xk−1].
(3) For a set A⊆ Rn and k≤ n let Πk(A) denote the projection of A onRk.

In this section we assume that all polynomials have coefficients in a fixed computable
subfieldK ⊆ R, irreducibility is understood to be in the ring of polynomials with coeffi-
cients inK, irreducible factors are always content-free and chosen ina canonical way, and
finite sets of polynomials are always ordered according to a fixed linear ordering in the set
of all polynomials with coefficients inK. In our implementationK =Q.

Whenever we writea= (a1, . . . ,ak)∈Rk with k≥ 0 we include the possibility ofa= (),
the only element ofR0.

3.1. Local projection.

Definition 7. Let P⊆R[x1, . . . ,xn] be a finite set of polynomials and let a=(a1, . . . ,an−1)∈
Rn−1, where n≥ 1. Let W= (W1, . . . ,Wn) be such that Wk is a finite subset of IRRk and
P∩ IRRk ⊆ Wk for 1 ≤ k ≤ n. W is alocal projection sequencefor P at a iff, for any
1 ≤ k < n and any cell C⊆ Rk, if (a1, . . . ,ak) ∈ C and all elements of Wj for 1 ≤ j ≤ k
have constant signs onΠ j(C) then the set of elements of Wk+1 that are not identically zero
on C×R is delineable over C.

To compute local projections we use the following two projection procedures, derived,
respectively, from McCallum’s projection operator [16, 17, 2] and Hong’s projection oper-
ator [11].

Algorithm 8. (LProjMC)
Input: P= {p1, . . . , pm} ⊆ IRRk+1 anda= (a1, . . . ,ak) ∈Rk, wherek≥ 1.
Output:A finite setQ⊆ R[x1, . . . ,xk].

(1) Put Q= /0 and compute R= {p∈ P : ∃b∈ R p(a,b) = 0}.
(2) For 1≤ i ≤ m do

(a) Let pi = qdxd
k+1+ . . .+q0. Put Q= Q∪{qd}.

(b) If k > 1 and qd(a) = . . .= q0(a) = 0 put

Q= Q∪{qd−1, . . . ,q0}
and continue the loop.

(c) If k > 1, qd(a) = 0, and none of qd−1, . . . ,q0 is a nonzero constant, put Q=
Q∪{ql}, where l is maximal such that ql (a) 6= 0.

(d) Put Q= Q∪{discxk+1 pi}.
(e) If pi ∈ R then put

Q= Q∪{resxk+1(pi , p j) : i < j ≤ m∧ p j ∈ R}
(3) Return Q.

In the next algorithm we use the following notation.

Notation 9. Let f,g∈ R[x][xk+1], a∈ Rk, and

d = min(deg( f ),deg(g))

If for some0 ≤ l < d, psc0( f ,g)(a) = . . . = pscl−1( f ,g)(a) = 0 and pscl ( f ,g)(a) 6= 0,
then PSC( f ,g,a) := {psc0( f ,g), . . . , pscl ( f ,g)}. Otherwise

PSC( f ,g,a) := {psc0( f ,g), . . . , pscd−1( f ,g)}
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Algorithm 10. (LProjH)
Input: P= {p1, . . . , pm} ⊆ IRRk+1 anda= (a1, . . . ,ak) ∈Rk, wherek≥ 1.
Output:A finite setQ⊆ R[x1, . . . ,xk].

(1) Put Q= /0 and compute R= {p∈ P : ∃b∈ R p(a,b) = 0}.
(2) For 1≤ i ≤ m do

(a) Let pi = qdxd
k+1+ . . .+q0. Put Q= Q∪{qd} and ri = pi .

(b) If qd(a) = . . .= q0(a) = 0 put Q= Q∪{qd−1, . . . ,q0} and continue the loop.
(c) If qd(a) = 0, put Q= Q∪{qd−1, . . . ,ql} and ri = ql xl

x+1+ . . .+q0, where l is
maximal such that ql (a) 6= 0.

(d) Put Q= Q∪PSC(r i,
∂ r i

∂xk+1
,a).

(e) If pi ∈ R then for i< j ≤ m if pj ∈ R put Q= Q∪PSC(r i, p j ,a).
(3) Return Q.

The following algorithm computes a local projection for givenP anda.

Algorithm 11. (LocalProjection)
Input: A finite setP⊆ R[x1, . . . ,xn] anda= (a1, . . . ,an−1) ∈Rn−1, wheren≥ 1.
Output:A local projection sequenceW = (W1, . . . ,Wn) for P at a.

(1) Set wo= true, Q= P, k= n−1.
(2) While k≥ 1 do

(a) Let a= (a1, . . . ,ak) and compute Wk+1 = Q∩ IRRk+1, Q= Q\Wk+1.
(b) If wo= true,1< k < n−1, and an element of Wk+1 is identically zero ata,

then set wo= f alse, Q= P, k= n−1 and continue the loop.
(c) If wo = true or k≤ 2 set Q= Q∪ LPro jMC(Wk+1,a) else set Q= Q∪

LPro jH(Wk+1,a).
(d) Set k= k−1.

(3) Set W1 = Q∩ IRR1.
(4) Return W= (W1, . . . ,Wn).

3.2. The CAD construction algorithm. Let us first introduce an algorithm for evaluation
of polynomial systems at “partial” sample points.

Algorithm 12. (PEval)
Input: A systemS(x1, . . . ,xn) of polynomial equations and inequalities anda=(a1, . . . ,ak)∈
Rk with 0≤ k≤ n.
Output: undecidedor a pair(v,P), wherev∈{true, f alse}, P= {p1, . . . , pm}⊆R[x1, . . . ,xk],
and for anyb= (b1, . . . ,bn) ∈ Rn if

sign(pi(a1, . . . ,ak)) = sign(pi(b1, . . . ,bk))

for all 1≤ i ≤ m then the value ofS(b) is v.

(1) If S= f alse or S= true then return(S, /0).
(2) If S= ( f ρ0), whereρ is one of<,≤,≥,>,=, or 6=.

(a) If there exists a factor g of f such that g∈ R[x1, . . . ,xk] and g(a) = 0 then
return (0ρ0,{g}).

(b) If f ∈ R[x1, . . . ,xk] return ( f (a)ρ0,{ f}).
(c) Return undecided.

(3) If S= T1∧ . . .∧Tl

(a) For 1≤ i ≤ l compute ei = PEval(Ti ,a).
(b) If for some i ei = ( f alse,Pi) then return( f alse,Pi).
(c) If for all i e i = (true,Pi) then return(true,P1∪ . . .∪Pl ).
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(d) Return undecided.
(4) If S= T1∨ . . .∨Tl

(a) For 1≤ i ≤ l compute ei = PEval(Ti ,a).
(b) If for some i ei = (true,Pi) then return(true,Pi).
(c) If for all i e i = ( f alse,Pi) then return( f alse,P1∪ . . .∪Pl).
(d) Return undecided.

We can now present a recursive algorithm computing cylindrical algebraic decomposi-
tion using local projections.

Algorithm 13. (LPCAD)
Input: A systemS(x1, . . . ,xn) of polynomial equations and inequalities anda=(a1, . . . ,ak)∈
Rk with 0≤ k< n.
Output: A pair (F,V), whereF is a level-k+1 cylindrical subformula,V = (V1, . . . ,Vk),
Vj ⊆ R[x1, . . . ,x j ] for 1 ≤ j ≤ k, and for any cellC ⊆ Rk if a ∈ C and for 1≤ j ≤ k all
elements ofVj have constant signs onΠ j(C) then

(x1, . . . ,xk) ∈C⇒ (F(x1, . . . ,xn)⇐⇒ S(x1, . . . ,xn))

(1) Compute a disjunctive normal form SDNF and a conjunctive normal form SCNF of
S.

(2) Set stack= {(−∞,−∞,<,∞,∞,<)} and A= Q=V1 = . . .=Vk = /0.
(3) While stack6= /0 do

(a) Remove a tuple(u1, r1,ρ1,u2, r2,ρ2) from stack. r1, r2 are algebraic functions
of x1, . . .xk, −∞, or ∞, u1 = r1(a), u2 = r2(a), ρ1,ρ2 ∈ {<,≤}, and the tuple
represents the interval u1ρ1xk+1ρ2u2,

(b) If u1 = u2 set ak+1 = u1 and set R= { f}, where r1 = Rootxk+1,p f , else pick a

rational number u1 < ak+1 < u2 and set R= /0. Setb= (a,ak+1).
(c) Compute eCNF = PEval(SCNF,b). If eCNF = ( f alse,P) then set H= f alse

and W= LocalPro jection(P∪R,a), and go to( f ).
(d) Compute eDNF = PEval(SDNF,b). If eDNF = (true,P) then set H= true and

W = LocalPro jection(P∪R,a), and go to( f ).
(e) Compute(H,U) = LPCAD(S,b). For 1≤ j ≤ k set Vj = Vj ∪U j . Compute

W = LocalPro jection(Uk+1∪R,a).
(f) For 1≤ j ≤ k set Vj =Vj ∪Wj .
(g) If u1 = u2 then set G= (xk+1 = r1) and go to(n).
(h) Find s1and s2 such that

(i) s1 = Rootxk+1,p1 f1 and f1 ∈Wk+1 or s1 = f1 ≡−∞,
(ii) s2 = Rootxk+1,p2 f2 and f2 ∈Wk+1 or s2 = f2 ≡ ∞,
(iii) v1 = s1(a) and v2 = s2(a),
(iv) either v1 = v2 = ak+1 or v1 < ak+1 < v2 and there are no roots of ele-

ments of Wk+1 in (v1,v2).
(i) Set Q= Q∪ ({ f1, f2} \ {−∞,∞}).
(j) If v1 = v2 then set G= (xk+1 = s1), add

(v1,s1,<,u2, r2,ρ2)

and

(u1, r1,ρ1,v1,s1,<)

to stack, and go to(n).
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(k) If u2 < v2 then set t2 = r2 andσ2 = ρ2. Else set t2 = s2 andσ2 =<, and if
u2 > v2 or ρ2 =≤ add

(v2,s2,≤,u2, r2,ρ2)

to stack.
(l) If v1 < u1 then set t1 = r1 andσ1 = ρ1. Else set t1 = s1 andσ1 =<, and if

v1 > u1 or ρ1 =≤ add

(u1, r1,ρ1,v1,s1,≤)

to stack.
(m) Set G= (t1σ1xk+1σ2t2).
(n) Set A= A∪{(ak+1,G∧H)}

(4) Sort A by increasing values of the first element, obtaining{(c1,H1), . . . ,(cm,Hm)}.
Set F= H1∨ . . .∨Hm.

(5) Compute W= LocalPro jection(Q,a).
(6) For 1≤ j ≤ k set Vj =Vj ∪Wj .
(7) Return(F,V).

Corollary 14. LPCAD(S(x1, . . . ,xn),()) returns

(F(x1, . . . ,xn),())

where F(x1, . . . ,xn) is a cylindrical algebraic formula equivalent to S(x1, . . . ,xn).

The formula returned by Algorithm 13 may involve weak inequalities, but it can be
easily converted to the CAF format by replacing weak inequalities with disjunctions of
equations and strict inequalities.

3.3. Proofs. To prove correctness of Algorithm 11 we use the following lemmata.

Lemma 15. Let k≥ 1, P⊆ IRRk+1, a = (a1, . . . ,ak) ∈ Rk, and Q= LPro jMC(P,a). If
D is a connected analytic submanifold ofRk such thata ∈ D and all elements of Q are
order-invariant in D then the set P∗ of all elements of P that are not identically zero on
D×R is analytic delineable over D and the elements of P∗ are order-invariant in each
P∗-section over D.

Proof. Suppose thatf ∈P∗. Step(2a) of Algorithm 8 guarantees thatf has a sign-invariant
leading coefficient inD. f does not vanish identically at any point inD (for k > 1 it is
ensured by step(2c); for k= 1 it follows from irreducibility of f ). By Theorem 3.1 of [2],
f is degree-invariant onD. Sincediscxk+1( f ) ∈ Q, by Theorem 2 of [17],{ f} is analytic
delineable overD and is order-invariant in each{ f}-section overD. Suppose thatg∈ P∗

andg 6= f . If either f (ā,xk+1) or g(ā,xk+1) has no real roots then{ f ,g} is delineable
on D. Otherwiseresxk+1( f ,g) ∈ Q and hence, by Theorem 2 of [17],{ f ,g} is analytic
delineable overD. Therefore,P∗ is analytic delineable overD and the elements ofP∗ are
order-invariant in eachP∗-section overD. �

Lemma 16. Let k≥ 1, P⊆ IRRk+1, a = (a1, . . . ,ak) ∈ Rk, and Q= LPro jH(P,a). If D
is a connected subset ofRk such thata∈ D and all elements of Q are sign-invariant in D
then the set P∗ of all elements of P that are not identically zero on D×R is delineable over
D.

Proof. Suppose thatf = qdxd
k+1+ . . .+q0 ∈ P∗. Let l be maximal such thatql (a) 6= 0, and

let fred = qlxl
k+1+ . . .+q0. Steps(2a) and(2c) of Algorithm 10 guarantee thatf = fred

in D×R. By step(2d) and Theorems 1-3 of [7],{ fred} is delineable overD, and hence
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{ f} is delineable overD. Suppose thatg∈ P∗ andg 6= f . If either f (ā,xk+1) or g(ā,xk+1)
has no real roots then{ f ,g} is delineable onD. Otherwise without loss of generality we
may assume that due to step(2e) Q contains all factors ofPSC( fred,g,a). By Lemma 1 of
[11] and Theorem 2 of [7], the degree of gcd( f (b̄,xk+1),g(b̄,xk+1)) is constant for̄b∈ D.
Since f andg are degree-invariant inD, by Lemma 12 of [23],{ f ,g} is delineable overD.
ThereforeP∗ is delineable overD. �

Proposition 17. Algorithm 11 terminates and returns a local projection sequence for P at
a.

Proof. To show that the algorithm terminates note that the body of the loop in step(2) is
executed at most 2n−2 times.

Let W = (W1, . . . ,Wn) be the returned sequence. Steps(2a) and(3) ensure thatWk is a
finite subset ofIRRk andP∩ IRRk ⊆Wk for 1≤ k≤ n. We will recursively construct a cell
D ⊆ Rn−1 such thatDk = Πk(D) is the maximal connected set containingΠk(a) such that
all elements ofWj for 1≤ j ≤ k have constant signs onΠ j(Dk). Moreover, for 1≤ k< n,
the setW∗

k+1 of elements ofWk+1 that are not identically zero onDk×R is delineable over
Dk. This is sufficient to prove thatW is a local projection sequence forP at a, because for
any cellC⊆Rk if (a1, . . . ,ak) ∈C and all elements ofWj for 1≤ j ≤ k have constant signs
onΠ j(C) thenC⊆ Dk, by maximality ofDk.

We will consider two cases depending on the value ofwo when the algorithm termi-
nated. Suppose first that when the algorithm terminatedwo wastrue. In this case we will
additionally prove that for 1≤ k < n Dk is an analytic submanifold ofRk, all elements of
Wk are order-invariant inDk, and if k < n−1 then none of the elements ofWk+1 vanishes
identically at any point inDk, Wk+1 is analytic delineable onDk, and the elements ofWk+1
are order-invariant in eachWk+1-section overDk. If a1 is a root of an element ofW1 let
D1 = {a1} else letD1 = (r1,s1), wherer1 ands1 are roots of elements ofW1, −∞, or ∞,
r1 < a1 < s1, and there are no roots ofW1 in (r1,s1). D1 is a connected analytic submani-
fold of R1 and all elements ofW1 are order-invariant inD1. Since the elements ofW2 are
irreducible, none of the elements ofW2 vanishes identically at any point inD1. Since all
irreducible factors of elements ofLPro jMC(W2,Π1(a)) belong toW1, by Lemma 15,W2 is
analytic delineable overD1 and the elements ofW2 are order-invariant in eachW2-section
overD1. Suppose that, for some 1< k < n−1, we have constructedDk−1 satisfying the
required conditions. The conditions imply thatWk is analytic delineable onDk−1. Let Dk

be theWk-section orWk-sector overDk−1 which containsΠk(a). Dk is an analytic subman-
ifold of Rk. The elements ofWk are order-invariant inDk, because they are order-invariant
in eachWk-section overDk−1 and nonzero in eachWk-sector overDk−1. Since all irre-
ducible factors of elements ofLPro jMC(Wk+1,Πk(a)) belong toW1∪ . . .∪Wk , by Lemma
15, W∗

k+1 is analytic delineable overDk and the elements ofW∗
k+1 are order-invariant in

eachW∗
k+1-section overDk. Step(2b) guarantees that ifk< n−1 thenW∗

k+1 =Wk+1.
Suppose now that when the algorithm terminatedwowas f alse. LetD1 be as in the first

part of the proof. As before,W2 is analytic delineable overD1 and the elements ofW2 are
order-invariant in eachW2-section overD1. Let D2 be theW2-section orW2-sector overD1

which contains(a1,a2). D2 is an analytic submanifold ofR2. The elements ofW2 are order-
invariant inD2, because they are order-invariant in eachW2-section overD1 and nonzero in
eachW2-sector overD1. Since all irreducible factors of elements ofLPro jMC(W3,Π2(a))
belong toW1 ∪W2, by Lemma 15,W∗

3 is analytic delineable overD2. Suppose that, for
some 2< k < n− 1, we have constructedDk−1 satisfying the required conditions. The
conditions onDk−1 imply thatW∗

k is delineable onDk−1. Let Dk be theW∗
k -section or
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W∗
k -sector overDk−1 which containsΠk(a). All elements ofWk are sign-invariant inDk.

Since all irreducible factors of elements ofLPro jH(Wk+1,Πk(a)) belong toW1∪ . . .∪Wk ,
by Lemma 16,W∗

k+1 is delineable overDk.
Since for 1≤ k< n, Dk is theW∗

k -section orW∗
k -sector overDk−1 which containsΠk(a),

Dk is the maximal connected set containingΠk(a) such that all elements ofWj for 1≤ j ≤ k
have constant signs onD j . �

Correctness and termination of Algorithm 12 is obvious.

Proposition 18. Algorithm 13 terminates and the returned pair(F,V) satisfies the required
conditions.

Proof. Let PS be the set of all polynomials that appear inSand letWH = (WH,1, . . . ,WH,n)
be the Hong’s projection sequence [11] forPS (the variant of given in Proposition 7 of [23]).
Suppose thatP ⊆ WH,1 ∪ . . .∪WH,k+1 anda ∈ Rk, wherek < n. Let (W1, . . . ,Wk+1) =
LocalPro jection(P,a). Since we assume that finite sets of polynomials are consistently
ordered according to a fixed linear order in the set of all polynomials,Wi ⊆ WH,i for 1≤
i ≤ k+1. Hence all polynomials that appear during execution ofLPCADare elements of
WH,1 ∪ . . .∪WH,n. In particular,r1 andr2 that appear in the elements ofstackare roots
of elements ofWH,k+1, −∞, or ∞. Therefore, the number of possible elements ofstackis
finite, and hence the loop in step(3) terminates. Recursive calls toTDCAD incrementk.
Whenk = n−1 then either step(3c) yieldsH = f alseor step(3d) yieldsH = true, and
hence step(3e) containing the recursive call toLPCAD is never executed. Therefore the
value ofk is bounded byn−1, and hence the recursion terminates.

Let (F,V) be the pair returned byLPCADand suppose thatC ⊆ Rk is a cell such that
a∈C and for 1≤ j ≤ k all elements ofVj have constant signs onΠ j(C). We need to show
that

(x1, . . . ,xk) ∈C⇒ (F(x1, . . . ,xn)⇐⇒ S(x1, . . . ,xn))

Let c= (c1, . . . ,cn) ∈ Rn andc̄= (c1, . . . ,ck) ∈C. We need to show thatF(c) = S(c). Let
W = LocalPro jection(Q,a), as computed in step(5). All elements ofWj have constant
signs on onΠ j(C), for 1≤ j ≤ k. Since none of the elements ofQ vanishes identically at
a, Q is delineable overC. Hence theQ-sections and theQ-sectors overC form a partition
of C×R.

For a tupleθ = (u1, r1,ρ1,u2, r2,ρ2) that appears onstackin any iteration of the loop in
step(3) put

Z1(θ ) = {(x̄,xk+1) ∈ Rk+1 : x̄∈C∧ r1ρ1xk+1ρ2r2}
For eachα = (ak+1,G∧H) ∈ A put

Z2(α) = {(x̄,xk+1) ∈ Rk+1 : x̄∈C∧G(x̄,xk+1)}
Note that eachZ1(θ ) andZ2(α) is a union ofQ-sections andQ-sectors overC. PutΩ1 =
{Z1(θ ) : θ ∈ stack} andΩ2 = {Z2(α) : α ∈ A}. We will show that in each instance of
the loop in step(3) Ω1 ∪Ω2 is a partition ofC×R. In the first instance of the loop in
step(3) Ω1 = {C×R} andΩ2 = /0, and henceΩ1∪Ω2 is a partition ofC×R. We will
show that this property is preserved in each instance of the loop. In each instance a tuple
θ = (u1, r1,ρ1,u2, r2,ρ2) is removed fromstackandα = (ak+1,G∧H) is added toA. If
u1 = u2 in step(3g) thenZ2(α) = Z1(θ ) and the property is preserved. Ifv1 = v2 in step
(3 j) thenG=(xk+1 = s1) and tuplesθ2 = (v1,s1,<,u2, r2,ρ2) andθ1 = (u1, r1,ρ1,v1,s1,<
) are added tostack. Since{Z1(θ1),Z2(α),Z1(θ2)} is a partition ofZ1(θ ), the property
is preserved. Otherwise steps(3k)-(3m) are executed. If in step(3k) u2 > v2 or u2 = v2

and ρ2 =≤ then putZ1,2 = Z1(θ2), whereθ2 = (v2,s2,≤,u2, r2,ρ2) is the tuple added
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to stack, else putZ1,2 = /0. If in step(3l) v1 > u1 or v1 = u1 andρ1 =≤ then putZ1,1 =
Z1(θ1), whereθ1 = (u1, r1,ρ1,v1,s1,≤) is the tuple added tostack, else putZ1,1 = /0. Since
{Z1,1,Z2(α),Z1,2} is a partition ofZ1(θ ), the property is preserved.

After the loop in step(3) is finishedstackis empty,Ω1 = /0, and henceΩ2 is a partition
of C×R. Let α = (ak+1,G∧H) ∈ A be such that(c̄,ck+1) ∈ Z2(α). Let us analyze the
instance of the loop in step(3) which resulted in addingα to A. Let D = Z2(α).

Suppose first thatH = f alse or H = true was found in step(3c) or (3d). Let W =
LocalPro jection(P∪R,a), as computed in step(3c) or (3d). For 1≤ j ≤ k, Wj ⊆ Vj ,
and hence all elements ofWj have constant signs on onΠ j(D). Therefore the setW∗

k+1 of
elements ofWk+1 that are not identically zero onC×R is delineable overC. By definition
of G, D is a W∗

k+1-section or aW∗
k+1-sector overC. Hence all elements ofWk+1 have

constant signs onD. In particular, all elements ofP have constant signs onD, and so
S(c) = H = F(c).

Now suppose that(H,U) = LPCAD(S,b) was computed in step(3e). Let

W = LocalPro jection(Uk+1∪R,a)

For 1≤ j ≤ k, Wj ⊆ Vj , and hence all elements ofWj have constant signs on onΠ j(D).
As before,W∗

k+1 is delineable overC, D is aW∗
k+1-section or aW∗

k+1-sector overC, and
all elements ofWk+1 have constant signs onD. In particular, all elements ofUk+1 have
constant signs onD. Since for 1≤ j ≤ k Uj ⊆ Vj , all elements ofU j have constant signs
on onΠ j(D). Hence

(x1, . . . ,xk,xk+1) ∈ D ⇒ (H(x1, . . . ,xn)⇐⇒ S(x1, . . . ,xn))

and soF(c) = H(c) = S(c). �

3.4. Implementation remarks.

Remark 19. The following somewhat technical improvements have been observed to im-
prove practical performance of Algorithm 13.

(1) In step(2c) of Algorithm 8 in ql may be chosen arbitrarily as long as ql (a) 6= 0,
hence an implementation may choose the simplest ql .

(2) If in a recursive call to LPCAD(S,(a1, . . . ,ak)) the initial coordinates(a1, . . . ,am)
correspond to single-point intervals, that is u1 = u2 in step(3b) of the currently
evaluated iteration of loop(3) in all parent computations of

LPCAD(S,(a1, . . . ,a j))

for 1≤ j ≤ m, then LocalPro jection(P,(a1, . . . ,ak)) does not need to compute the
last m levels of projection. Instead it can return W= (W1, . . . ,Wn) with W1 = . . .=
Wm = /0.

(3) Computations involved in finding projections are repeated multiple times. A prac-
tical implementation needs to make extensive use of caching.

3.5. Example. In this section we applyLPCADto solve the problem stated in Example 1.
In step(1) of LPCAD(S,()) we computeSCNF = ( f1 < 0∨ f2 ≤ 0)∧ ( f1 < 0∨ f3 ≤ 0)

andSDNF = f1 < 0∨ ( f2 ≤ 0∧ f3 ≤ 0). In the first iteration of loop(3) we remove a tuple
representing−∞ < x< ∞ from stackand picka1 = 0. The calls toPEval in steps(3c) and
(3d) yield undecided. Step(3e) makes a recursive call toLPCAD(S,(0)).

In the first iteration of loop(3) in LPCAD(S,(0)) we remove a tuple representing−∞ <
y<∞ fromstackand picka2= 0. PEval(SCNF,(0,0)) in step(3c) yields(true,{ f1, f2, f3}).
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We continue on to step(3d) wherePEval(SDNF,(0,0)) yields (true,{ f1}). We setH =
trueand compute

W = LocalPro jection({ f1},(0)) = (W1,{ f1})
whereW1 = {x−1,x+1} is the set of factors ofdiscry f1 = 16(x2−1). We go to step(3 f )
and setV1 = V1∪W1 = {x−1,x+1}. In step(3h) we finds1 = Rooty,1 f1 = −2

√
1− x2,

s2 = Rooty,2 f1 = 2
√

1− x2, v1 =−2, andv2 = 2. In step(3i) we setQ= Q∪{ f1}= { f1}.
In steps(3k) and(3l) we add tuples representing 2≤ y< ∞ and−∞ < y≤−2 tostack. In
step(3n) we obtainA= {(0,−2

√
1− x2 < y< 2

√
1− x2)}.

In the second iteration of loop(3) in LPCAD(S,(0)) we remove a tuple representing
−∞ < y ≤ −2 from stackand picka2 = −4. PEval(SCNF,(0,−4)) in step(3c) yields
( f alse,{ f1, f2}). We setH = f alseand compute

W = LocalPro jection({ f1, f2},(0)) = (W1,{ f1, f2})
whereW1 = {x−1,x+1} is the set of factors ofdiscry f1 =16(x2−1), discry f2 = 4(x2−1),
andresy( f1, f2) = 9(x2−1)2. We go to step(3 f ) and setV1 =V1∪W1 = {x−1,x+1}. In
step(3h) we finds1 = v1 = −∞, s2 = Rooty,1 f1 = −2

√
1− x2, andv2 = −2. In step(3i)

we setQ= Q∪{ f1}= { f1}. In step(3k) we add a tuple representingy=−2 to stack. In
step(3n) we obtainA= {(0,−2

√
1− x2 < y< 2

√
1− x2),(−4, f alse)}.

In the third iteration of loop(3) in LPCAD(S,(0)) we remove a tuple representingy=
−2 fromstackand seta2 =−2. PEval(SCNF,(0,−2)) in step(3c) yields

( f alse,{ f1, f2})
We setH = f alseand compute

W = LocalPro jection({ f1, f2},(0)) = (W1,{ f1, f2})
whereW1 = {x−1,x+1}. We go to step(3 f ) and setV1 = V1∪W1 = {x−1,x+1}. In
step(3g) we setG= (y=−2

√
1− x2). In step(3n) we obtainA= {(0,−2

√
1− x2 < y<

2
√

1− x2),(−4, f alse),(−2, f alse)}.
The remaining two iterations of loop(3) look very similar to the last two. In step(4)

we obtainF =−2
√

1− x2 < y< 2
√

1− x2. In step(5) we compute

W = LocalPro jection({ f1},(0)) = ({x−1,x+1},{ f1})
and in step(6) we setV1 =V1∪W1 = {x−1,x+1}. The returned value is(−2

√
1− x2 <

y< 2
√

1− x2,({x−1,x+1})).
In step (3e) of LPCAD(S,()) we obtainH = −2

√
1− x2 < y < 2

√
1− x2 andU =

({x−1,x+1}).
LocalPro jection({x−1,x+1},())

yields({x−1,x+1}). In step(3h) we finds1 =Rootx,1(x+1)=−1,s2 =Rootx,1(x−1)=
1, v1 = −1, andv2 = 1. In steps(3k) and(3l) we add tuples representing 1≤ x< ∞ and
−∞ < x ≤ −1 to stack. In step(3n) we obtainA= {(0,−1< x< 1∧−2

√
1− x2 < y <

2
√

1− x2)}.
In the second iteration of loop(3) in LPCAD(S,()) we remove a tuple representing

−∞ < x ≤ −1 from stackand picka1 = −2. The calls toPEval in steps(3c) and(3d)
yield undecided. Step(3e) makes a recursive call toLPCAD(S,(−2)).

In the first iteration of loop(3) in LPCAD(S,(−2)) we remove a tuple representing
−∞ < y< ∞ from stackand picka2 = 0. PEval(SCNF,(−2,0)) in step(3c) yields

( f alse,{ f1, f2})
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We setH = f alseand compute

W = LocalPro jection({ f1, f2},(−2)) = (W1,{ f1, f2})

whereW1 = {x−1,x+1} is the set of factors ofdiscry f1 anddiscry f2 (resy( f1, f2) is not
a part of the projection becausef1(−2,y) and f2(−2,y) have no real roots). We go to
step(3 f ) and setV1 = V1∪W1 = {x−1,x+1}. In step(3h) we finds1 = v1 = −∞ and
s2 = v2 = ∞. In step(3i) Q remains empty. In step(3n) we obtainA= {(0, f alse)}. The
loop ends after one iteration and the returned value is( f alse,({x−1,x+1})).

In step(3e) of LPCAD(S,()) we obtainH = f alseandU = ({x−1,x+1}).

LocalPro jection({x−1,x+1},())

yields({x−1,x+1}). In step(3h) we finds1 = v1 = −∞, s2 = Rootx,1(x+1) = −1, and
v2 =−1. In step(3k) we add a tuple representingx= −1 to stack. In step(3n) we obtain
A= {(0,−1< x< 1∧−2

√
1− x2 < y< 2

√
1− x2),(−2, f alse)}.

In the third iteration of loop(3) in LPCAD(S,()) we remove a tuple representingx=−1
from stackand picka1 = −2. The calls toPEval in steps(3c) and(3d) yield undecided.
Step(3e) makes a recursive call toLPCAD(S,(−1)).

In the first iteration of loop(3) in LPCAD(S,(−1)) we remove a tuple representing
−∞ < y< ∞ from stackand picka2 = 0. PEval(SCNF,(−1,0)) in step(3c) yields

( f alse,{ f1, f3})

We setH = f alseand compute

W = LocalPro jection({ f1, f3},(−1)) = (W1,{ f1, f2})

where, by Remark 19, we can takeW1 = /0. We go to step(3 f ) and the setV1 remains
empty. In step(3h) we find s1 = s2 = Rooty,1 f1 andv1 = v2 = 0. In step(3i) we set
Q= Q∪{ f1}= { f1}. In step(3 j) we add tuples representing 0< x< ∞ and−∞ < x< 0
to stack. In step(3n) we obtainA= {(0, f alse)}.

In the second iteration of loop(3) in LPCAD(S,(−1)) we remove a tuple representing
−∞ < y < 0 from stackand picka2 = −1. PEval(SCNF,(−1,−1)) in step(3c) yields
( f alse,{ f1, f2}). We setH = f alseand computeW = LocalPro jection({ f1, f2},(−1)) =
(W1,{ f1, f2}), where, by Remark 19, we can takeW1 = /0. We go to step(3 f ) and the set
V1 remains empty. In step(3h) we finds1 = v1 = −∞, s2 = Rooty,1 f1 andv2 = 0. In step
(3i) we setQ= Q∪{ f1}= { f1}. In step(3n) we obtainA= {(0, f alse),(−1, f alse)}.

The remaining iteration of loop(3) look very similar to the last one. In step(4) we
obtainF = f alse. In step(5) we compute

W = LocalPro jection({ f1},(−1)) = ( /0,{ f1})

by Remark 19. The returned value is( f alse,( /0)).
In step(3e) of LPCAD(S,()) we obtainH = f alseandU = ( /0). LocalPro jection( /0,())

yields( /0). In step(3g) we setG= (x= −1). In step(3n) we obtainA= {(0,−1< x<
1∧−2

√
1− x2 < y< 2

√
1− x2),(−2, f alse),(−1, f alse)}.

The remaining two iterations of loop(3) look very similar to the last two. In step
(4) we obtainF = −1 < x < 1∧−2

√
1− x2 < y < 2

√
1− x2 and the returned value is

(−1< x< 1∧−2
√

1− x2 < y< 2
√

1− x2,()).
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4. EMPIRICAL RESULTS

Algorithm 13 (LPCAD) and the cylindrical algebraic decomposition (CAD) algorithm
have been implemented in C, as a part of the kernel ofMathematica. The experiments have
been conducted on a Linux server with a 32-core 2.4 GHz Intel Xeon processor and 378
GB of RAM available for all processes. The reported CPU time is a total from all cores
used. Since we do not describe the use of equational constraints in the current paper, we
have selected examples that do not involve equations.

4.1. Benchmark examples.We compare the performance ofLPCAD andCAD for the
following three problems and for the 7 examples from Wilson’s benchmark set [26] (ver-
sion 4) that do not contain equations.

Example 20. (Two quadratics) Find a cylindrical algebraic decomposition of the solution
set of ax2+bx+ c≥ 0∧dx2+ex+ f ≥ 0 with the variables ordered(a,b,c,d,e, f ,x).

Example 21. (Ellipse in a square) Find conditions for ellipse(x−c)2

a + (y−d)2

b < 1 to be
contained in the square−1 < x < 1∧−1 < y < 1. We compute a cylindrical algebraic
decomposition of the solution set of

∀x,y∈ R a> 0∧b> 0∧b(x− c)2+a(y−d)2 < ab⇒
−1< x< 1∧−1< y< 1

with the free variables ordered(a,b,c,d).

Example 22. (Distance to three squares) Find the distance of a point on the parabola
shown in the picture to the union of three squares.

We compute a cylindrical algebraic decomposition of the solution set of

∃x,y∈ R (x−a)2+(y−a2+2)2 ≤ d∧
(0≤ x≤ 1∧0≤ y≤ 1∨

3
2 ≤ x≤ 2∧− 3

2 ≤ y≤−1∨
5
2 ≤ x≤ 4∧ 1

2 ≤ y≤ 2)

with the free variables ordered(a,d).
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TABLE 1. Benchmark examples

Example Time Cells WO
CAD LPCAD CAD LPCAD

20 97.7 2.61 324137 3971 N
21 > 100000 38.1 ? 67535 N
22 2402 44.9 13105366 71411 Y

W 2.3 0.063 0.088 91 84 Y
W 2.8 0.015 0.015 15 15 Y
W 2.9 0.047 0.011 59 19 Y
W 2.10 0.135 0.197 779 647 Y
W 2.11 0.045 0.007 463 31 N
W 2.16 0.076 0.025 644 4 Y
W 6.5 2.10 1.58 11279 2536 Y

TABLE 2. Randomly generated examples

Var Time Cells TO WO
No. CAD/LPCAD CAD/LPCAD

Mean Min Max Mean Min Max
5 1.64 0.50 11.1 2.55 0.75 17.3 8 4
6 3.82 0.80 55.7 6.14 1 98.4 1 10
7 26.9 5.10 257 43.2 6.74 408 3 0

Results of experiments are given in Table 1. Examples from [26] are marked with W
and the original number. The columns marked Time give the CPUtime, in seconds, used
by each algorithm. The columns marked Cells give the number of cells constructed by
each algorithm. The column marked WO tells whether the system is well-oriented.

4.2. Randomly generated examples.For this experiment we used randomly generated
systems with 5, 6, and 7 variables, 25 systems with each number of variables. The systems
had the formf < 0 or f ≤ 0, with a quadratic polynomialf with 6 to 15 terms and 10-bit
integer coefficients. We selected systems for which at leastone of the algorithms finished
in 1000 seconds. Results of experiments are given in Table 2.The columns marked Time
give the ratio ofCAD timing divided byLPCAD timing. The columns marked Cells give
the ratio of the numbers of cells constructed byCAD and byLPCAD. The ratios are com-
puted for the examples for which both algorithms finished in 1000 seconds. The columns
marked Mean give geometric means. The column marked TO givesthe number of exam-
ples for whichCADdid not finish in 1000 seconds.LPCADfinished in 1000 seconds for all
examples. The column marked WO gives the number of systems that were well-oriented.

4.3. Conclusions. Experiments suggest that for systems that are not well-oriented LP-
CAD performs better than CAD. For well oriented-systems LPCAD usually construct less
cells than CAD, but this does not necessarily translate to a faster timing, due to overhead
from re-constructing projection for every cell. However, for some of the well-oriented sys-
tems, for instance Example 22, LPCAD is significantly fasterthan CAD, due to its ability
to exploit the Boolean structure of the problem. Unfortunately we do not have a precise
characterisation of such problems. Nevertheless LPCAD maybe useful for well-oriented
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problems that prove hard for the CAD algorithm or may be triedin parallel with the CAD
algorithm.
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[23] A. Strzebónski. Solving polynomial systems over semialgebraic sets represented by cylindrical algebraic
formulas. InProceedings of the International Symposium on Symbolic andAlgebraic Computation, ISSAC
2012, pages 335–342. ACM, 2012.

[24] A. Tarski.A decision method for elementary algebra and geometry. University of California Press, 1951.
[25] V. Weispfenning. Quantifier elimination for real algebra - the quadratic case and beyond.AAECC, 8:85–101,

1993.
[26] D. Wilson. Real geometry and connectedness via triangular description: Cad example bank, 2012.

http://opus.bath.ac.uk/29503/.

http://opus.bath.ac.uk/29503/


CYLINDRICAL ALGEBRAIC DECOMPOSITION USING LOCAL PROJECTIONS 19

WOLFRAM RESEARCHINC., 100 TRADE CENTRE DRIVE, CHAMPAIGN , IL 61820, U.S.A.
E-mail address: adams@wolfram.com


	1. Introduction
	2. Preliminaries
	3. CAD construction using local projections
	3.1. Local projection
	3.2. The CAD construction algorithm
	3.3. Proofs
	3.4. Implementation remarks
	3.5. Example

	4. Empirical Results
	4.1. Benchmark examples
	4.2. Randomly generated examples
	4.3. Conclusions

	References

