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ABSTRACT
SDN traffic engineering is used to assign bandwidth to flows.
Classic traffic engineering algorithms are well understood
however implementations of these algorithms typically take
seconds or even minutes to execute. These long execution
times force traffic engineering to be used as an off-line tool.
We demonstrate a traffic engineering algorithm equivalent to
these classic algorithms that executes in millisecond times,
allowing traffic engineering to be used as an on-line tool
– much as shortest path computations are used in today’s
routers.

Categories and Subject Descriptors
G.1.0 [Mathematics of Computing]: Numerical Analy-
sis—Parallel Algorithms

Keywords
Software defined networking; Traffic engineering

1. INTRODUCTION
Elastic flows - characteristic of TCP - will attempt to con-

sume all the bandwidth available in the network. When
conducting traffic engineering, two key concepts are the to-
tal network throughput, and providing fairness between the
flows on the network.

We balance network throughput and fairness using the
concept of α-fairness introduced by Mo and Walrand in [2]
where α is a parameter in the range [0,∞]. Small values of
α favour network throughput, and large values of α favour
fairness. As α → ∞, the flow assignment approaches the
well known max-min fairness.

2. ALGORITHM DESCRIPTION
In [4] the author develops a stability proof for a primal-

dual convex algorithm intended for congestion management
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of a future TCP implementation. Our work is developed
from [4] by centralizing this distributed algorithm.

Model the network as a set of J directed links, individ-
ually identified as j ∈ J . Each link has capacity Cj . The
term r is used to identify a specific path through the net-
work. An individual flow is identified by the term s. The
bandwidth assigned to a specific flow is identified by xs, and
the bandwidth from flow s assigned to path r is identified by
yr. We use the terminology r ∈ s to denote the paths that
are used by a specific flow and r ∈ j to denote the paths
that use link j. When we are referring to a specific path r,
we use the expression s(r) to denote the parent flow of the
path.

The optimization program we use for a weighted α fair
flow assignment is given by

maximize
∑
s∈S w

α
s
x1−αs
1−α

subject to
∑
r∈s yr = xs,∑
r∈j yr ≤ Cj

over x, y > 0

The term ws is a weight assigned to each flow, allowing the
user to request that some flows be assigned proportionally
more or less bandwidth than others.

Following [4], we develop the following set of update rules
for solving this optimization problem using Lagrange multi-
pliers µj for each capacity constraint:

yr =

((
ws(r)
xs(r)

)α
· 1∑

j∈r µj

) 1
1−q

xs(r) (1)

µj(t+ 1) = µj(t) +
1− q

2
µj(t)

[∑
r∈j yr(t)− Cj

Cj

]
(2)

xs(t+ 1) = xs(t) +
1− q

2(α+ q − 1)
xs(t) ·[∑

r∈s yr(t)
q − xs(t)q

xs(t)q

]
(3)

The term q is a number close to but less than one used to
ensure strict convexity in the problem.

Each of the update rules in equations (1), (2) and (3) can
be implemented in parallel. In other words, all of the yr
values in (1) can be computed in parallel, then all of the
µj values in (2) can be computed and so on. This prop-



Figure 1: Max-min fair execution time

Figure 2: Max-min fair RMS error

erty makes it straightforward to implement the algorithm
on massively parallel hardware.

3. PERFORMANCE RESULTS
We present performance results comparing the algorithm

to a reference implementations for max-min fairness. The
reference algorithm is Algorithm 8.3 from [3], implemented
using the GNU linearing programming kit [1]. We have used
BT’s 21CN network topology comprising 106 nodes and 234
links within the United Kingdom as a reference for these
simulations. Flows are generated using a pseudo-random
number generator so that the end points for each flow are
randomly selected. All flows are treated as elastic, so they
will consume all network bandwidth available to them.

3.1 Workstation Results
Our workstation results were obtained on a 2.4GHz Xeon

E5 processor. Our primal-dual algorithm is implemented in
Java 7. We choose q = 0.9 and α = 4 as an approximation
for max-min fairness.

The workstation based results are shown in Figures 1 and
2. As expected, the execution time of the reference algo-
rithm grows rapidly as larger problems require execution of
a growing number of linear programs. Our algorithm shows
a roughly linear increase in execution time with problem
size. Choice of q = 0.9 and α = 4.0 provides a good approx-
imation of max-min fair, holding the root mean square error
from the reference implementation at around 5%.

Figure 3: FPGA max-min fair execution time

3.2 FPGA Results
We have implemented our primal-dual algorithm in a Xil-

inx FPGA Virtex-7 XC7VX485T-3. The goal of the hard-
ware implementation is to take advantage of the parallelism
that can be found in the algorithm design to evaluate how we
can improve the convergence time by executing concurrently
as many operations as possible.

Our FPGA implementation consists of 32 parallel deep
pipelines, each consisting of 180 stages which can produce
one complete iteration of equations (1), (2) and (3) every
clock cycle. With a core clock running at 200MHz, the
FPGA produces 500G fixed point operations per second.

Performance results for our FPGA implementation are
shown in Figure 3. This figure shows flow computation re-
sults for flow assignment with q = 0.75 and α = 4.0 to
provide an approximation of max-min fair flow assignment.

4. DISCUSSION
When we began work on this project, it was clear that

solving flow assignment problems is a compute intensive
task. Modern GPUs and FPGAs have lots of processing
power, but it’s only available in a highly parallel form. By
exploiting the parallel structure of our algorithm, we have
a solution that can run in millisecond times, making it fast
enough to be part of the real time control loop in the network
instead of an off-line tool.

The algorithm has proven simple to implement. Instead
of the complex matrix factorization needed for interior point
methods, we use straightforward vector operations for the
update rules. The implementation team does not need to
be versed in rules for matrix computations and can focus on
identifying and eliminating performance bottlenecks.
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