
A

Terminating Evaluation of Logic Programs with Finite Three-Valued
Models

FABRIZIO RIGUZZI, University of Ferrara

TERRANCE SWIFT, CENTRIA – Universidade Nova de Lisboa

As evaluation methods for logic programs have become more sophisticated, the classes of programs for which
termination can be guaranteed have expanded. From the perspective of answer set programs that include
function symbols, recent work has identified classes for which grounding routines can terminate either on
the entire program [Calimeri et al. 2008] or on suitable queries [Baselice et al. 2009]. From the perspective
of tabling, it has long been known that a tabling technique called subgoal abstraction provides good termi-
nation properties for definite programs [Tamaki and Sato 1986], and this result was recently extended to
stratified programs via the class of bounded term-size programs [Riguzzi and Swift 2013]. However, rather
than asking what class of programs terminate for a given evaluation method, it is natural to start with a
class of programs that have finite models, and then determine whether given evaluation methods terminate
for that class. In this paper we define the class of strongly bounded term-size programs and show both that
this class is equivalent to programs with finite well-founded models, and that for normal programs it strictly
includes the finitely ground programs of [Calimeri et al. 2008]. We then show that tabling extended with
suitable forms of subgoal abstraction terminates on all queries to such programs with an asymptotic com-
plexity equal to the best known. Furthermore, tabling with subgoal abstraction produces a residual program
that can be sent to an answer set programming system. Finally, we describe the implementation of subgoal
abstraction within the SLG-WAM of XSB and provide performance results.

Categories and Subject Descriptors: D.1.6 [Programming Techniques]: Logic Programming

General Terms: Algorithms, Languages, Performance, Theory

Additional Key Words and Phrases: Tabled Logic Programming, Termination

1. INTRODUCTION

The study of termination has proven a fruitful topic in logic programming. The ma-
jority of work has focussed on analyzing termination of definite programs under SLD
resolution and its extensions, such as arithmetic (e.g., [Decorte et al. 1999; Voets and
De Schreye 2011]). Another recent branch of work has focused on defining classes of
disjunctive programs for which a model-preserving ground instantiation can be ob-
tained in finite time, along with algorithms to produce these instantiations [Baselice
et al. 2009; Calimeri et al. 2008]. A third branch of work has explored the termination
properties of query evaluation for definite or normal programs under tabling [Ver-
baeten et al. 2001; Riguzzi and Swift 2013]. The study of termination for tabling is of
particular importance as tabling has come to underly several research and commercial
knowledge representation systems [Alferes et al. 2013; Yang et al. 2012; Grosof et al.
2012].

Author’s addresses: F. Riguzzi, fabrizio.riguzzi@unife.it Dipartimento di Matematica e Informatica – Uni-
versity of Ferrara, Via Saragat 1, I-44122, Ferrara, Italy; T. Swift, tswift@cs.suysb.edu CENTRIA – Univer-
sidade Nova de Lisboa.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1529-3785/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 F. Riguzzi and T. Swift

Rather than starting with SLD resolution, with grounding techniques or with
tabling, once could ask what evaluation methods terminate for programs with models
that are finitely representable in some manner. Of course, a model (or interpretation)
can be represented using sets of different elements — from one perspective a program
itself is a set of rules representing its model — but for this paper we use the standard
approach of representing models as sets of ground atoms 1. The next question is what
portion of a model needs to be represented. Let P be a normal program with an infinite
Herbrand base. A two-valued interpretaation, IP , of P is arguably best represented by
its set of true atoms (true(IP)), as reasoning can still be done in a complete manner
on the false atoms (false(IP)) when the closed-world assumption is used. However,
both tabling systems and grounders work with programs whose well-founded model
may be three-valued, and if IP is three-valued, at least two of its three truth assign-
ments must be represented via finite sets. In this paper, we focus on programs that
have three-valued models where both true(IP) and atoms whose truth assignment is
undefined (undef(IP)) can be represented as finite sets of ground atoms. We term such
finite models canonical.

Example 1.1. Consider the normal program Pinf :

p(s(X)) ← p(X).
p(0).
q(0).

Pinf does not have a finite well-founded model (denoted WFMPinf) as both
true(WFMPinf) and false(WFMPinf) are infinite. However, the superficially similar pro-
gram, Pfin :

p(X) ← p(f(X)).
p(0).
q(0).

does have a (canonical) finite model, as true(WFMPinf) and undef (WFMPinf) are both
finite. Finally, the program Pinf undef :

p(X) ← p(f(X)).
p(0).
r(f(X)) ← not r(X), not r(f(X)).
q(0).

does not have a finite model, as undef (WFMPinf undef) is no longer finite.

This paper explores how programs that have canonical finite models relate to pre-
vious termination classes, and how such programs can be evaluated in a top-down
manner. Specifically, the results of this paper are as follows.

— We extend the fixed-point definition of bounded term-size programs [Riguzzi and
Swift 2013] to strongly bounded term-size programs, and show that this new notion
coincides with the class of programs that have a canonical finite well-founded model.
We then show that for programs that are both normal and safe, bounded term-size
programs strictly include finitely ground programs [Calimeri et al. 2008].

1More general definitions are possible, allowing also the use of non-ground universally quantified atoms, or
allowing non-ground atoms whose variables are subject to constraints over some domain.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Terminating Evaluation of Logic Programs with Finite Three-Valued Models A:3

— We show that tabled SLG resolution, extended with subgoal abstraction, [Tamaki
and Sato 1986; Riguzzi and Swift 2013] finitely terminates and correctly computes
queries to safe, strongly bounded term-size programs. In addition, when depth-based
abstraction functions are used, the abstract complexity of query evaluation equals
the best complexity that is known 2. As usual with SLG, the derived answers can be
seen as a partially transformed program that preserves the stable model semantics,
and so can be used by a grounder.

— We describe a publically available, engine-level implementation of subgoal abstrac-
tion that is sound and complete for safe, strongly bounded term-size programs, and
provide performance results concerning this engine.

2. BACKGROUND

We recall those concepts of logic programming used in this paper. For a general treat-
ment see [Lloyd 1987].

We assume a language L containing a finite set F of predicate and function symbols,
and a countable set of program variables from the set V. A term is either a variable
(e.g., X), a function symbol of arity 0 (e.g., c) or a function symbol of arity n applied
to a tuple of n terms (e.g., f(t1, . . . , tn)). Symbols within a term may be represented
through positions which are members of the set Π. A position in a term is either the
empty string Λ that reaches the root of the term, or the string π.i that reaches the ith
child of the term reached by π, where π is a position and i an integer. For a term t we
denote the symbol at position π in t by t|π. For example, p(a, f(X))|2.1 = X. We suppose

that L also contains a countable set of variables V̂ called position variables that are of
the form Xπ, where π is a position. A position variable is used in order to associate a
given variable with a position of interest in a term.

An atom A for a predicate symbol p of arity n is p applied to a tuple of n terms:
p(t1, . . . , tn); pred(A) indicates the predicate of the atom A. A literal is either an atom
A or the negation of an atom notA. A term, atom or literal is ground if it does not
contain variables. A substitution θ is a set of pairs V/s where V is a variable and s is
a term. A substitution applied to a term/atom/literal t, indicated with tθ, replace each
variable V in t that appears in a pair V/t in θ with t. An atom A subsumes an atom B
if there is a substitution θ such that Aθ = B.

We assume that a program P is defined over a language L. The set of ground terms
of a language L is called the Herbrand universe of L and is denoted by HL, or as HP

if L consists of the predicate and function symbols in P . The set of ground atoms of a
language L is called the Herbrand base and is denoted as BL or as BP . Two atoms are
considered equal if they are variants of each other.

Throughout this paper we restrict our attention to normal programs, and to queries
that are simply atoms. A normal program is a set of normal rules. We also assume a
fixed strategy for selecting literals in a clause: without loss of generality we assume
the selection strategy is left-to-right. In accordance with this strategy, a normal rule
has the form

r = H ← A1, . . . , Am, notAm+1, . . . , notAn (1)

where A1, . . . , An are atoms. We say that a predicate symbol p occurs positively (neg-
atively) in r if p is the predicate symbol of an atom that occurs positively (negatively)
in r. As notation, literals(r) denotes the set of literals in the body of r and head(r)
denotes the head H. A rule r is safe if each variable in r occurs in a positive literal

2The results of Section 4.6 are significantly more precise than previous complexity results for SLG, which
showed that an evaluation required a number of operations that was polynomial in the size of a ground
program.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 F. Riguzzi and T. Swift

in the body of r, and a program is safe if all its rules are safe. For example, the rule
p(X,Y, Z) ← q(Y), not r(Z). is not safe, because X does not appear in the body and Z
appears only in a negative literal.

Given a program P , Ground(P) denotes the grounding of P ; Facts(P) denotes the
set of rules with an empty body in P and Heads(P) is the set of atoms in the head of
some rule in P .

A two-valued interpretation IT is a subset of BP . IT is the set of true atoms. A three-
valued interpretation I is a pair 〈IT ; IF 〉 where IT and IF are subsets of BP and repre-
sent respectively the set of true and false atoms. Alternatively, a three-value interpre-
tation can be represented with a set of literals. The union of two three-valued interpre-
tations 〈IT , IF 〉 and 〈JT ,JF 〉 is defined as 〈IT , IF 〉 ∪ 〈JT ,JF 〉 = 〈IT ∪ JT , IF ∪ JF 〉. A
three-valued interpretation I is a subset of a three-valued interpretation J iff I ⊆ J
where I and J are represented as sets of literals.

To give a semantics to normal logic programs, we need to identify one or more inter-
pretations as the “intended models” of the program, i.e., as the interpretations giving
its meaning. Many semantics have been proposed for normal programs. Among these,
the well-founded semantics [van Gelder et al. 1991] and the stable model semantics
[Gelfond and Lifschitz 1988] are the most prominent.

2.1. Well-Founded Semantics

The well-founded semantics (WFS) assigns a three-valued model to a program, i.e., it
identifies a three-valued interpretation as the meaning of the program. The WFS was
given in [van Gelder et al. 1991] in terms of the least fixed point of an operator that is
composed by two sub-operators, one computing consequences and the other computing
unfounded sets. We give here the alternative definition of the WFS of [Przymusinski
1989] that is based on an iterated fixed point.

Definition 2.1. For a normal program P , sets Tr and Fa of ground atoms, and a
3-valued interpretation I we define

OpTruePI (Tr) =. {A|A is not true in I; and there is a clause B ← L1, ..., Ln in P , a
grounding substitution θ such that A = Bθ and for every 1 ≤ i ≤ n either Liθ is true
in I, or Liθ ∈ Tr};
OpFalsePI (Fa) =. {A|A is not false in I; and for every clause B ← L1, ..., Ln in P
and grounding substitution θ such that A = Bθ there is some i (1 ≤ i ≤ n) such that
Liθ is false in I or Liθ ∈ Fa}.

[Przymusinski 1989] shows that OpTruePI and OpFalsePI are both monotonic, and de-
fines T P

I as the least fixed point of OpTruePI (∅) and FP
I as the greatest fixed point

of OpFalsePI (BP)
3. In words, the operator TI extends the interpretation I to add the

new atomic facts that can be derived from P knowing I; while FI adds the new nega-
tions of atomic facts that can be shown false in P by knowing I (via the uncovering
of unfounded sets). An iterated fixed point operator builds up dynamic strata by con-
structing successive partial interpretations as follows.

Definition 2.2 (Iterated Fixed Point and Dynamic Strata). For a normal program P
let

WFM0 = 〈∅; ∅〉;
WFMα+1 = WFMα ∪ 〈TWFMα

;FWFMα
〉;

WFMα =
⋃

β<α WFMβ , for limit ordinal α.

3Below, we will sometimes omit the program P in these operators when the context is clear.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Terminating Evaluation of Logic Programs with Finite Three-Valued Models A:5

Let WFMP denote the fixed point interpretation WFMδ, where δ is the smallest
(countable) ordinal such that both sets TWFMδ

and FWFMδ
are empty. We refer to δ

as the depth of P . The stratum of atom A, is the least ordinal β such that A ∈ WFMβ

(where A may be either in the true or false component of WFMβ).

[Przymusinski 1989] shows that the iterated fixed point WFMP is in fact the well-
founded model, and that undefined atoms of the well-founded model do not belong to
any stratum – i.e. they are not added to WFMδ for any ordinal δ. He called a program
dynamically stratified if every atom belongs to a stratum. He also showed that a pro-
gram has a two-valued well-founded model iff it is dynamically stratified, so that it is
the weakest notion of stratification that is consistent with the well-founded semantics.

Example 2.3. Let us consider the program P1

a(1).
a(2) ← not p(1, 2).
t(f(X)) ← a(X), not q(X).
q(g(1)).
q(X) ← t(f(X)), p(Y,X), not a(3).
p(X,Y) ← q(g(X)), t(f(Y)), a(X).
p(2, 3) ← not p(2, 1).

inspired by Example 1 of [Calimeri et al. 2008]. Its iterated fix point is

WFM0 = 〈∅; ∅〉;
WFM1 = 〈{a(1), q(g(1))};BP1

\ {a(1), a(2), t(f(1)), t(f(2)), q(g(1)), p(1, 1), p(1, 2),
q(1), q(2)}〉;

WFM2 = 〈{a(1), q(g(1)), p(2, 3)};BP1
\ {a(1), a(2), t(f(1)), t(f(2)), q(g(1)), p(1, 1),

p(1, 2), q(1), q(2)}〉;
WFM3 = WFM2

Thus the depth of P1 is 3 and, for example, the stratum of p(2, 3) is 2. The well-founded
model of P1 is given by

true(WFMP1) = {a(1), q(g(1)), p(2, 3)}
undef (WFMP1) = {a(2), t(f(1)), t(f(2)), p(1, 1), p(1, 2), q(1), q(2)}

So WFMP1 is three-valued and P1 is not dynamically stratified.

Given a normal program P , the atom dependency graph of P is used to bound the
search space of a derivation of a query Q under the WFS.

Definition 2.4 (Atom Dependency Graph). Let P be a normal program. Then the
atom dependency graph of P is a graph (V,E) such that V = BP and an edge (v1, v2) ∈ E
iff there is a grounding r of a clause in P such that v1 = head(r) and v2 or ¬v2 ∈
literals(r)

2.2. Stable Model Semantics

The stable model semantics [Gelfond and Lifschitz 1988] is the main alternative to the
WFS. The stable models semantics associates zero, one or more two-valued models to
a normal program.

Definition 2.5 (Reduction). Given a normal program P and an interpretation I, the
reduction P

I of P relative to I is obtained from ground(P) by deleting

(1) each rule that has a negative literal notA such that A ∈ I

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 F. Riguzzi and T. Swift

(2) all negative literals in the body of the remaining rules.

Thus if I is a full two-valued interpretation, then P
I is a program without negation as

failure and has a unique least Herbrand model lhm(PI).

Definition 2.6 (Stable Model). A two-valued interpretation I is a stable model or an
answer set of a program P if I = lhm(PI).

The relationships between the WFS and the stable models semantics is given by the
following two theorems [van Gelder et al. 1991].

THEOREM 2.7. If P has a well-founded total model, then that model is the unique
stable model.

THEOREM 2.8. The well-founded partial model of P is a subset of every stable model
of P seen as a three-valued interpretation.

The problem of computing the answer sets of a program is called Answer Set Program-
ming (ASP).

2.3. Bounded term-size Programs

Given the definitions of dynamic stratification, we are now in a position to define
bounded term-size programs. Our definition extends that of [Riguzzi and Swift 2013]
to use arbitrary norms on terms.

Definition 2.9. A norm N(·) is a function from atoms to non-negative integers such
that

(1) N(t) = 0 iff t is a variable.
(2) t subsumes t′ implies N(t) ≤ N(t′)

A norm is finitary iff for a finite non-negative integer k, the cardinality of the set
{t|t ∈ HL ∧N(t) < k} is finite.

Definition 2.10 (Bounded Term-size Programs). Let P a normal program, norm(·)
a finitary norm, I a 3-valued interpretation and Tr ⊆ BP . Then an application of
OpTruePI (Tr) (Definition 2.1) has the bounded term-size property if there is a integer
N such that norm(A) (= norm(Bθ)) is less than N for all A in OpTruePI (Tr). P itself
has the bounded term-size property if there is some N for which every application of
OpTruePI used to construct WFM(P) has the bounded term-size property.

Note that Pinf from Example 1.1 does not have the bounded term-size property, but
Pfin and P1 from Example 2.3 do. While determining whether a program P is bounded
term-size is clearly undecidable in general, Tfin shows that ground(P) need not be
finite if P is bounded term-size.

2.3.1. Bounded Term-size Queries. Although bounded term-size programs have appeal-
ing properties, there are many interesting programs that are not bounded term-size.
For instance, a program containing the Prolog predicate member/2 would not be
bounded term-size, although as any Prolog programmer knows, a query to member/2
will terminate whenever the second argument of the query is ground. We capture this
intuition with bounded term-size queries.

Definition 2.11 (Bounded Term-size Queries). Let P be a normal program, and Q
an atomic query to P (not necessarily ground). Then the atomic search space of Q
consists of the union of all ground instantiations of Q in BP together with all atoms
reachable in the atom dependency graph of P from any ground instantiation of Q. Let
PQ = {r|r grounding of a clause of P and head(r) is in the atomic search space of Q}

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Terminating Evaluation of Logic Programs with Finite Three-Valued Models A:7

p q

a t

(a) Predicate depen-
dency graph of P1.

C{p,q}

−

−

C{a}

+

+
C{t}

+

(b) Component graph of P1.

Fig. 1. Graphs for P1.

The query Q is bounded term-size if PQ is a bounded term-size program.

In [Riguzzi and Swift 2013] it was shown that finitely recursive and bounded term-
size programs are incompatible, but finitely recursive programs are a proper subclass
of those programs for which all ground atomic queries are bounded term-size.

2.4. Finitely Ground Programs

Finitely ground programs were introduced in [Calimeri et al. 2008] as a class of logic
programs with function symbols for which the set of ground instances of the rules that
influence the computation of answer sets is finite.

The definition of finitely ground program relies on the notion of intelligent instanti-
ation, which is a method to obtain a ground program from a program with variables so
that no grounding of rules that matter for the computation of answer sets is excluded.

Intelligent instantiations and finitely ground programs were defined in [Calimeri
et al. 2008] with respect to disjunctive normal programs. We here restrict these defini-
tions to the case of non-disjunctive normal programs. Moreover, we do not distinguish
between extensional and intensional predicates.

We first restate definitions from [Calimeri et al. 2008] that define dependency graphs
for predicates and their components.

Definition 2.12. The predicate dependency graph G(P) of a program P is a directed
graph whose nodes are the predicates of P . There is an edge (p2,p1) in G(P) if a rule for
p1 contains a positive literal for p2 in its body 4.

Example 2.13. Program P1 of Example 2.3 has the predicate dependency graph
shown in Figure 1(a).

Definition 2.14. Given a program P and its predicate dependency graph G(P), the
component graph of P, GC(P), is a directed labeled graph having a node for each max-
imal strongly connected component (SCC) of G(P). GC(P) has an edge (C2, C1) iff
C1 6= C2 and there is a rule for some p1 ∈ C1 such that p2 occurs in its body. If p2
occurs positively, the edge is labeled “+” and if p2 occurs negatively, the edge is labeled
’-’ unless (C2, C1) can be labeled as +.

An ordering can be defined over the component graph.

Definition 2.15. A path in GC(P) is strong if all its edges are labeled +, and is weak
otherwise. A component ordering C = (C0, . . . , Cn) for P is a total ordering of the nodes
in GC(P) such that for any Cj , Ci with i < j then 1) there are no strong paths from Cj

to Ci and 2) if there is a weak path from Cj to Ci, then there is a weak path from Ci to
Cj .

4Note that this definition, unlike that of Definition 2.4 only creates edges for positive dependencies.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 F. Riguzzi and T. Swift

Example 2.16. Program P1 of Example 2.3 has three SCCs: C{a}, containing only
predicate a, C{t}, containing only predicate t, and C{p,q}, containing predicates p and
q.

The component graph for P1 is shown in Figure 1(b). There are strong paths between
C{a} and C{t}, C{a} and C{p,q}, C{t} and C{p,q} and weak paths between any couple of
components. Thus the only component ordering is C = {C{a}, C{t}, C{p,q}}, so C0 = C{a},
C1 = C{t}, C2 = C{p,q}.

Since each component corresponds to a set of predicates of P , the set of all compo-
nents can be seen as a partition on the predicates of P . Moreover, each component Ci

corresponds with a module P (Ci), a subprogram of P containing all the rules with a
predicate of Ci in the head.

We now turn to definitions regarding program and rule instantiations. Supposing T
is a set of atoms that are potentially true, we define a T -restricted instance of a rule
as one that is supported by T .

Definition 2.17. Let r be a rule and T a set of ground atoms. A T -restricted instance
r′ of r is a ground instance of r such that if an atom a occurs positively in the body of r
then a ∈ T . The set of all T -restricted instances of a program P is denoted as InstP (T).

Example 2.18. Given the program module P1(C{t}) of program P1 of Example 2.3,
then

InstP1(C{t})({a(1), a(2)}) = {t(f(1))← a(1), not q(1)., t(f(2))← a(2), not q(2)}
InstP1(C{p,q})({a(1), a(2), t(f(1)), t(f(2)), q(g(1))}) = {q(g(1)).,

p(1, 1)← q(g(1)), t(f(1)), a(1)., p(1, 2)← q(g(1)), t(f(2)), a(2).,
p(2, 3)← p(2, 1).}

InstP1(C{p,q})({a(1), a(2), t(f(1)), t(f(2)), q(g(1)), p(1, 1), p(1, 2)}) = {q(g(1)).,
p(1, 1)← q(g(1)), t(f(1)), a(1)., p(1, 2)← q(g(1)), t(f(2)), a(2).,
q(1)← t(f(1)), p(1, 1), not a(3)., q(2)← t(f(2)), p(1, 2), not a(3).,
p(2, 3)← p(2, 1).}

Assuming the program is evaluated from the bottom up using the component ordering,
we can identify rule groundings that do not matter for the computation of answer sets
and we can simplify the bodies of some others.

Definition 2.19. Given a program P and a component ordering (C0, . . . , Cn) for P , a
set Sj of ground rules for component Cj and a set of ground rulesR for the components
preceding Cj , the simplification of Sj with respect to R, Simpl(Sj ,R) is obtained from
Sj by

(1) deleting each rule whose body contains some negative literal not a such that a ∈
Facts(R).

(2) eliminating from the remaining rules in Sj each literal l such that
(a) l is positive and l ∈ Facts(R); or
(b) l = not a, pred(a) ∈ Ci, i < j, and a 6∈ Heads(R).

Example 2.20. Given program P1 of Example 2.3, then

Simpl({a(1)., a(2)← not p(1, 2).}, ∅) =
{a(1)., a(2)← not p(1, 2).}

Simpl({t(f(1))← a(1), not q(1)., t(f(2))← a(2), not q(2).},
{a(1)., a(2)← not p(1, 2).}) =
{t(f(1))← not q(1)., t(f(2))← a(2), not q(2).}

Simpl({p(1, 1)← q(g(1)), t(f(1)), a(1)., p(1, 2)← q(g(1)), t(f(2)), a(2).,

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Terminating Evaluation of Logic Programs with Finite Three-Valued Models A:9

p(2, 3)← p(2, 1).},
{a(1)., a(2)← not p(1, 2)., t(f(1))← not q(1)., t(f(2))← a(2), not q(2).} =
{p(1, 1)← q(g(1)), t(f(1))., p(1, 2)← q(g(1)), t(f(2)), a(2).,
p(2, 3)← p(2, 1).}

Simpl({q(1)← t(f(1)), p(1, 1), not a(3)., q(2)← t(f(2)), p(1, 2), not a(3).},
{t(f(1))← not q(1)., t(f(2))← a(2), not q(2).,
p(1, 1)← q(g(1)), t(f(1))., p(1, 2)← q(g(1)), t(f(2)), a(2).} =
{q(1)← t(f(1)), p(1, 1)., q(2)← t(f(2)), p(1, 2).}

The operator φ defined below is used to select and simplify ground rules from a module
P (Cj) on the basis of a set of ground rules for preceding modules.

Definition 2.21. Let P be a program with component ordering C = (C0, . . . , Cn), a
component Cj , a set Xj of ground rules of P (Cj), and a setR of ground rules of modules
of components Ci with i < j, let

φCj ,R(Xj) = Simpl(InstP (Cj)(Heads(R∪ Xj)),R)

Since Simpl(Sj ,R) is monotonic in its first argument, φCj ,Rj
is monotonic as well and

has a least fixed point lfp(φCj ,Sj−1
(∅)). We can consider lfp(φCj ,Sj−1

(∅)) as an operator
to be applied to components in order to drop many rules that do not influence answer
set computation.

Definition 2.22. Let P be a program and C = (C0, . . . , Cn) a component ordering for
P . The intelligent instantiation P C of P for C is the last element Sn of the sequence

S0 = lfp(φC0,∅(∅));Sj = Sj−1 ∪ lfp(φCj ,Sj−1
(∅))

Example 2.23. Given program P1 of Example 2.3, then

φ1
C0,∅

(∅) = {a(1)., a(2)← not p(1, 2).}
φ2
C0,∅

(∅) = φ1
C0,∅

(∅))
S0 = lfp(φC0,∅(∅)) = {a(1)., a(2)← not p(1, 2).}

φ1
C1,S0

(∅) = {t(f(1))← not q(1)., t(f(2))← a(2), not q(2).}
φ2
C1,S0

(∅) = φ1
C1,S0

(∅))
S1 = S0 ∪ lfp(φC1,S0

(∅)) = {a(1)., a(2)← not p(1, 2).,
t(f(1))← not q(1)., t(f(2))← a(2), not q(2).}

φ1
C2,S1

(∅) = {q(g(1)).,
p(2, 3)← p(2, 1).}

φ2
C2,S1

(∅) = {q(g(1))., p(1, 1)← t(f(1))., p(1, 2)← t(f(2)), a(2).,
p(2, 3)← p(2, 1).}

φ3
C2,S1

(∅) = {q(g(1))., p(1, 1)← t(f(1))., p(1, 2)← t(f(2)), a(2).,
q(1)← t(f(1)), p(1, 1)., q(2)← t(f(1)), p(1, 2).,
p(2, 3)← p(2, 1).}

φ4
C2,S1

(∅) = φ3
C2,S1

(∅))
S2 = S1 ∪ lfp(φC2,S1

(∅)) = {a(1)., a(2)← not p(1, 2).,
t(f(1))← not q(1)., t(f(2))← a(2), not q(2).,
q(g(1))., p(1, 1)← t(f(1))., p(1, 2)← t(f(2)), a(2).,
q(1)← t(f(1)), p(1, 1)., q(2)← t(f(1)), p(1, 2).,
p(2, 3)← p(2, 1).}

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 F. Riguzzi and T. Swift

We are now ready to define finitely ground programs.

Definition 2.24. A program P is finitely ground if its intelligent instantiation P C is
finite for all component orderings C.

Example 2.25. Program P1 of Example 2.3 is finitely ground as its intelligent in-
stantiation is finite for the only component ordering.

Finitely ground programs enjoy the following property [Calimeri et al. 2008].

THEOREM 2.26. A finitely ground program has finitely many answer sets, and each
of them is finite.

3. STRONGLY BOUNDED TERM-SIZE PROGRAMS AND QUERIES

A program that is bounded term-size may have an infinite number of undefined atoms.
We define here strongly bounded term-size programs and queries.

Definition 3.1. A normal program P is strongly bounded term-size iff it is bounded
term-size, and in addition, undef (WFMP) is finite.

In [Riguzzi and Swift 2013] it was shown that for a normal program P , P is bounded
term-size iff WFMP has a finite number of true atoms. The following statement holds
as a simple extension:

THEOREM 3.2. Let P be a safe normal program. Then WFMP is has a canonical
finite well-founded modele iff P is strongly bounded term-size.

PROOF. Theorem 1 from [Riguzzi and Swift 2013] states that if P is a safe nor-
mal program, true(WFMP) is finite iff P has the bounded term-size property. Defini-
tion 3.1 directly ensures that undef (WFMP) is also finite iff P is strongly bounded
term-size.

THEOREM 3.3. Let P be a safe normal program. If P is finitely ground then P is
strongly bounded term-size.

PROOF. By Theorem 2.8, an atom is true iff it is present in all answer sets. Again by
Theorem 2.8, an atom is undefined iff it is present in some stable models and absent
in others. Since P is finitely ground, by Theorem 2.26, it has finitely many answer sets
and each of them is finite. Therefore the sets of true and undefined atoms are both
finite and so P is strongly bounded term-size.

Program P1 of Example 2.3 is both finitely ground and strongly bounded term-size.

Example 3.4. The set of finitely ground program is a strict subset of the set of
strongly bounded term-size programs. For example, the following program is strongly
bounded term-size (and in fact, bounded term-size) but not finitely ground.

p(0) ← not q.
p(f(X)) ← p(X).
q.
q ← not p(1).
q ← p(1).

Its well-founded models is {q},B \ {q}〉. Its components are C0 = {p} and C1 = {q}, it
has a strong path from {p} to {q} and weak paths from {p} to {q} and vice-versa so its
only component ordering is 〈C0, C1〉 and its intelligent instantiation is

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Terminating Evaluation of Logic Programs with Finite Three-Valued Models A:11

p(0) ← not q.
p(f(0)) ← p(0).
p(f(f(0))) ← p(f(0)).

· · ·
q.
q ← not p(1).
q ← p(1).

Theorem 3.3 together with Example 3.4 imply the following.

COROLLARY 3.5. The class of safe programs that are strongly bounded term-size
strictly includes the class of normal programs that are finitely ground.

Strongly Bounded Term-size queries are defined analogously to bounded term-size
queries.

Definition 3.6 (Strongly Bounded Term-size Queries). Let P be a normal program,
and Q an atomic query to P (not necessarily ground). Then Q is strongly bounded
term-size if PQ is a strongly bounded term-size program.

4. TABLED EVALUATION OF STRONGLY BOUNDED TERM-SIZE PROGRAMS

In this section we present a tabled evaluation method that correctly evaluates strongly
bounded term-size programs. Our approach is based on SLG evaluation [Chen and
Warren 1996] which models well-founded computation for logic programs at an op-
erational level, ensuring goal-directedness, termination and optimal complexity for a
large class of programs. In this section we first present the main aspects of SLG infor-
mally through an example, and then briefly recall the definitions of SLG. Afterwards,
we present our extension, SLGSA along with its properties.

4.1. An Informal Review of SLG

In the forest-of-trees model of SLG [Swift 1999], an evaluation is a possibly transfinite
sequence of forests (sets) of trees that correspond to subgoals that have been encoun-
tered in an evaluation. The nodes in each tree contains sets of literals divided into
those literals that have not been examined, and others that have been examined, but
their resolution delayed (cf. Definition 4.2). The need to delay some literals arises for
the following reason. Modern Prolog engines rely on a fixed order for selecting literals
in a rule, e.g., always left-to-right. However, well-founded computations cannot be per-
formed using a fixed-order literal selection function. Hence, in SLG, the DELAY opera-
tion may postpone evaluation of some literals, which may be later resolved through an
operation called SIMPLIFICATION. In addition to supporting the operational behavior
of Prolog, the use of delay and simplification supports the termination and complexity
results discussed later in this section.

Example 4.1.
Consider the following program

r1 = p(b).
r2 = p(c) ← not p(a).
r3 = p(X) ← t(X,Y, Z), not p(Y), not p(Z).
r4 = p(a) ← p(b), p(a).
r5 = t(a, a, b).
r6 = t(a, b, a).

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 F. Riguzzi and T. Swift

and query p(c). The SLG forest at the end of this evaluation is shown in Figure 2 where
each node is labeled with a number indicating the order in which it was created.

Nodes consist of either the symbol fail, or of a head representing the bindings made
to an atomic subgoal and a body with a set of Delays, followed by the | symbol, followed
by Goals that are still to be examined. The evaluation begins by creating a tree for
the initial query with root p(c) ← |p(c) in node 1. Children of root nodes are created
via the operation PROGRAM CLAUSE RESOLUTION just as in the SLD resolution of
Prolog. Accordingly, the evaluation uses rule r2 to create node 2. The (only possible)

23. complete

21. complete

8. complete 13. complete

17. p(c)<− |t(c,X,Y),not p(X),not p(Y)

1. p(c) <− | p(c)

2. p(c)<− | not p(a)

3. p(a) <− | p(a)

4. p(a)<− |t(a,X,Y),not p(X),not p(Y) 15. p(a)<− |p(b),p(a).

9. p(a)<− |not p(a),not p(b) 10. p(b)<− |not p(b),not p(a) 16. p(a)<− |p(a).

14. fail

5. t(a,X,Y) <− |t(a,X,Y) 11. p(b) <− | p(b)

6. t(a,a.b) <− | 7. t(a,b,a) <− | 12. p(b) <− |

22. p(c) <− |

21. fail

20. fail

19. p(a)<− not p(a)|not p(b)

18. p(c)<− not p(a)|

Fig. 2. Final forest for the query p(c) to P1.

literal not p(a) in node 2 is selected. This literal has an underlying subgoal p(a) that
does not correspond to the root of any tree in the forest so far. Thus, the SLG operation
NEW SUBGOAL creates a new tree for p(a) (node 3), whose child, node 4, is created by
PROGRAM CLAUSE RESOLUTION using rule r3. The NEW SUBGOAL operation is again
used to create a new tree for the selected literal t(a,X, Y) (node 5), and children nodes
6 and 7 are created by PROGRAM CLAUSE RESOLUTION from rules r5 and r6. These
latter nodes have empty Goals and are termed answers; moreover, since they also have
empty Delays, they are unconditional answers.5 Any atom in the ground instantiation
of an unconditional answer is true in the well-founded model, cf. Theorem 4.13. The
SLG operation POSITIVE RETURN is used to resolve the first of these answers against
the selected literal of node 4, producing node 9. The selected literal of this latter node
has p(a) as its underlying subgoal, but there is already a tree for p(a) in the forest and
there are no answers for p(a) to return. Since there is another unconditional answer for
t(a,X, Y) (node 7), POSITIVE RETURN can be used to produce node 10. The underlying

5In a practical program, a predicate defined by simple facts would not be evaluated using tabling, but rather
would use SLD resolution as in Prolog.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Terminating Evaluation of Logic Programs with Finite Three-Valued Models A:13

subgoal p(b) is selected, the tree for p(b) is created by NEW SUBGOAL (node 11), and
it is eventually determined that the subgoal p(b) has an unconditional answer (node
12); accordingly, using the NEGATION FAILURE operation, the failure node, node 14,
is created. Then the computation, via PROGRAM CLAUSE RESOLUTION and rule r4,
produces another child for p(a), node 15, and resolves away p(b) creating node 16. At
this stage (up to node 16) the subgoal p(a) is neither true, as no unconditional answers
have been derived for it; nor false as one of its possible derivations, node 9, effectively
has a loop through negation. However, it is possible to apply the DELAYING operation
to the selected negative literal, by moving it from the Goals to the right of the | symbol
into the Delays to the left of the | symbol. This DELAYING operation produces node 18,
which is termed a conditional answer, as it has empty Goals but non-empty Delays 6.
DELAYING also produces node 19 whose new selected literal not p(b) now fails (given
the unconditional answer in node 12), producing the failure node 20. At this stage,
all possible operations for non-answer nodes in p(a) and the trees it depends on have
been performed so that p(a) may be completed (step 21). The completed subgoal p(a)
has no answers, and so is termed failed and is false in the well-founded model. This
failed literal can be removed from the Delays of node 18 through the SIMPLIFICATION

operation producing the unconditional answer node 22.

4.2. SLG Evaluation

SLG does not especially differ from other Prolog-like tabling formalisms in the case
of programs that do not use default negation. However, as indicated in Example 4.1,
for negation it introduces the concept of delaying literals in order to be able to find
witnesses of failure anywhere in a rule, along with the concept of simplifying these
delayed literals whenever their truth value becomes known.

An SLG evaluation proceeds by constructing a sequence of forests according to the
set of SLG operations. Such forests, and the trees and nodes it contains are defined as
follows:

Definition 4.2. A node has the form

AnswerTemplate← Delays|Goals or fail.

In the first form, AnswerTemplate is an atom, while Delays and Goals are sequences of
literals. The second form is called a failure node. An SLG tree T has a root of the form
S ← |S for some atom S: we call S the root node for T and T the tree for S. An SLG
forest F is a set of SLG trees. A node N is an answer when it is a leaf node for which
Goals is empty. If the Delays of an answer is empty, it is termed an unconditional
answer, otherwise, it is a conditional answer. A tree T may be marked with the symbol
complete.

The underlying subgoal of a literal L is L if L is a positive literal; otherwise it is S if
L = not S .

An SLG evaluation E of an atomic query Q to a program P is a sequence of forests.
E starts with an initial forest containing the single node Q ← |Q and creates the nth

forest in the sequence by applying an SLG operation if n is a successor ordinal, or by
taking the union of forests in previous sequences if n is a limit ordinal. If no further
operation is applicable, then the final forest for the evaluation of Q has been reached.
If there are selected non-ground negative literals in F then the evaluation is termed
floundered. We introduce SLG operations incrementally, in Definitions 4.4, 4.6, and
4.9. Before we present the first set of operations, we present the definition of answer

6Choosing DELAYING in this order is not optimal and is made for purposes of illustrating the operations of
SLG. This does not affect the result of the query itself since SLG is confluent [Chen and Warren 1996].

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 F. Riguzzi and T. Swift

resolution, which differs from resolution in SLD in order to take account of Delays in
conditional answers.

Definition 4.3. Let N be a node A← D|L1, ..., Ln, where n > 0. Let Ans = A′ ← D′|
be an answer whose variables are disjoint from N . N is SLG resolvable with Ans if ∃i,
1 ≤ i ≤ n, such that Li and A′ are unifiable with a most general unifier θ. The SLG
resolvent of N and Ans on Li has the form:

(A← D|L1, ..., Li−1, Li+1, ..., Ln)θ

if D′ is empty; otherwise the SLG resolvent has the form:

(A← D,Li|L1, ..., Li−1, Li+1, ..., Ln)θ

SLG resolution delays Li rather than propagating the answer’s Delays, D′, which
means that Li in the Delays is only resolved once all of the delay literals of D′ have
become true or false. This is necessary, as shown in [Chen and Warren 1996], to ensure
polynomial data complexity.7

Definition 4.4 (SLG Operations: 1). Let P be a program and assume that a leftmost
selection function is used to select a literal from the Goals in a node. Given a forest Fn

of an SLG evaluation of P , Fn+1 may be produced by one of the following operations.

(1) NEW SUBGOAL: Let Fn contain a tree with non-root node

N = Ans← Delays|G,Goals

where S is the underlying subgoal of G. Assume Fn contains no tree with root S.
Then add the tree S ← |S to Fn.

(2) PROGRAM CLAUSE RESOLUTION: Let Fn contain a tree with root node N = S ← |S
and C be a rule Head ← Body such that Head unifies with S with mgu θ. Assume
that in Fn, N does not have a child Nchild = (S ← |Body)θ. Then add Nchild as a
child of N .

(3) POSITIVE RETURN: Let Fn contain a tree with non-root node N whose selected lit-
eral S is positive. Let Ans be an answer for S in Fn and Nchild be the SLG resolvent
of N and Ans on S. Assume that in Fn, N does not have a child Nchild. Then add
Nchild as a child of N .

As illustrated in Example 4.1, NEW SUBGOAL creates a new tree in the forest F for a
selected literal in the Goals of some (non-root) node in a tree in F . Once a root node N
is created, the PROGRAM CLAUSE RESOLUTION operation can create children for N ,
given the rules in the knowledge base. POSITIVE RETURN resolves positive literals in
nodes with answers already in the forest, using SLG resolution according to Definition
4.3.

If a sequence of SLG operations yields a (possibly intermediate) forest containing
an unconditional answer, then this answer is considered to be true. Likewise, if no
more operations are applicable to a set of trees, and none of them contains an uncondi-
tional answer, i.e., the set of literals associated to these trees is completely evaluated
(see Definition 4.7), then we can interpret all these literals as false. Extending this
correspondence, we associate an SLG forest with a partial interpretation. This inter-
pretation is shown to correspond to the well-founded model. (cf. Theorem 4.13 below).

Definition 4.5. Let F be a SLG forest. Then the interpretation induced by F , IF , is
the smallest set of literals such that:

7If Delays were propagated directly, then the Delays could effectively contain all derivations which could be
exponentially many in the worst case.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Terminating Evaluation of Logic Programs with Finite Three-Valued Models A:15

— A (ground) atom A ∈ IF iff A is in the ground instantiation of some unconditional
answer Ans← | in F .

— A (ground) literal notA ∈ IF iff A is in the ground instantiation of an atom whose
tree in F is marked as complete, and A is not in the ground instantiation of any
answer in a tree in F .

An atom S is successful (resp. failed) in F if S′ (resp. not S′) is in IF for every S′ in the
ground instantiation of S. An atom not S is successful (resp. failed) in F if not S′ (resp.
S′) is in IF for every S′ in the ground instantiation of S.

Given a three-valued interpretation J and forest F , the restriction of J to F , J |F is
the interpretation such that true(J |F) (false(J |F)) consists of those atoms in true(J)
(false(J)) that are in the ground instantiation of some subgoal whose tree is in F

Whenever an atom A is successful, we can fail its default negation notA. If an atom
A is failed, then we can simplify away notA. Ground default negated literals that are
neither failed nor successful may be delayed and later simplified. More precisely:

Definition 4.6 (SLG Operations: 2). Let P be program and assume a selection func-
tion as in Definition 4.4. Given a forest Fn of an SLG evaluation of P , Fn+1 may be
produced by one of the following operations.

(4) NEGATIVE RETURN: Let Fn contain a tree with a leaf node, whose selected literal
not S is ground

N = Ans← Delays|not S,Goals.

(a) NEGATION SUCCESS: If S is failed in Fn then create a child for N of the form:
Ans← Delays|Goals.

(b) NEGATION FAILURE: If S succeeds in Fn, then create a child for N of the form
fail.

(5) DELAYING: Let Fn contain a tree with leaf node

N = Ans← Delays|not S,Goals

whose selected literal not S is ground, but S is neither successful nor failed in Fn.
Then create a child for N of the form Ans← Delays, not S|Goals.

(6) SIMPLIFICATION: Let Fn contain a tree with leaf node

N = Ans← Delays|

and let L ∈ Delays
(a) If L is failed in F then create a child fail for N .
(b) If L is successful in F , then create a child Ans← Delays′| for N , where Delays′

= Delays \ {L}.

SLG also includes an operation that marks a set of trees as complete if the correspond-
ing set of subgoals is completely evaluated.

Definition 4.7. A set S of subgoals in a forest F is completely evaluated if at least
one of the conditions holds for each S ∈ S

(1) The tree for S contains an answer S ← |; or
(2) For each node N in the tree for S:

(a) The underlying subgoal of the selected literal of N is marked as complete; or
(b) The underlying subgoal of the selected literal of N is in S and there are no ap-

plicable NEW SUBGOAL, PROGRAM CLAUSE RESOLUTION, POSITIVE RETURN

(Definition 4.4), NEGATIVE RETURN or DELAYING (Definition 4.6) operations
for N .

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 F. Riguzzi and T. Swift

Once a set of subgoals is determined to be completely evaluated, a COMPLETION op-
eration marks the trees for each subgoal (Definition 4.2). If condition 1 does not hold,
condition 2(b) of the above definition prevents the COMPLETION operation from be-
ing applied to a tree from a set if certain other operations are applicable to the trees
in the set. This notion of completion is incremental in the sense that once a set S of
mutually dependent subgoals is fully evaluated, the derivation need not be concerned
with the trees for S apart from any answers they contain. In an actual implementation
resources for such trees are reclaimed.

In certain cases the propagation of delayed literals through SLG resolution (Defini-
tion 4.3) can lead to a set of unsupported answers – conditional answers that are false
in the well founded model 8. Intuitively, these answers, which have positive mutual de-
pendencies through delay literals, correspond to an unfounded set, but their technical
definition is based on the form of conditional answers.

Definition 4.8. Let F be an SLG forest, and A be an atom that occurs in the head
of some answer in a tree with root S. Then A is supported in F if and only if:

(1) S is not completely evaluated; or
(2) there exists an answer node A′ ← Delays| in S such that A′ subsumes A and for

every positive literal L ∈ Delays, L is supported in F .

We are now able to characterize the last two SLG operations: one allows the comple-
tion of trees, and the other removes unsupported answers.

Definition 4.9 (SLG Operations: 3). Let P be a program. Given a forest Fn of an
SLG evaluation of P , Fn+1 may also be produced by one of the following operations.

(8) COMPLETION: Given a completely evaluated set S of subgoals (Definition 4.7),
mark the trees for all subgoals in S as complete.

(9) ANSWER COMPLETION: Given a set of unsupported atoms UA, create a failure
node as a child for each answer whose head is in UA.

Each of the operations (1)–(9), in Definitions 4.4, 4.6 and 4.9, can be seen as a function
that associates a forest with a new forest by adding a new tree, adding a new node to
an existing tree, or marking a set of trees as complete.

4.3. Extending SLG with Subgoal Abstractions

An abstraction of a term t, denoted abs(t), may replace subterms of t by position vari-
ables: formally, abs(t) is a term such that if abs(t)|π ∈ (F ∪ V), then abs(t)|π = t|π. For
instance p(f(g(X1.1.1), X1.2), X2) is an abstraction of p(f(g(a), X), X). It is easy to see
that abs(t) subsumes t. An abstraction abs is finitary if the cardinality of {abs(t)|t ∈ HL}
is finite. Norms and abstractions may be applied to atoms by taking those atoms as
terms.

Example 4.10. A depth norm, denoted depth(·), is a norm that maps t to the maxi-
mal depth of any position in t, where the depth of the outermost function symbol of t
is 1 and the depth of a position π.i is the depth of π plus 1 if t|π.i is a not a position
variable, and is the depth of π otherwise. For a positive integer k, we define a depth-k
abstraction: an abstraction that maps a term t to itself if depth(t) is less than or equal to
k, and to the maximal abstraction of t with depth k otherwise. It is easy to see that the
maximal depth-k abstraction of t must be unique. Within the atom A = p(a, f(b, g(c)))
the depth of c is 4. The depth 3 abstraction of A is p(a, f(b, g(X2.2.1))), and the depth 2

8As an aside, we note that unsupported answers appear to be uncommon in evaluation strategies that
minimize the use of delay, such as those used by XSB [Swift and Warren 2012].

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Terminating Evaluation of Logic Programs with Finite Three-Valued Models A:17

abstraction of A is p(a, f(X2.1, X2.2)). Both the depth norm and the family of depth-k
abstractions are finitary for any positive integer k. As a convention, we consider the
identity function as a depth-ω abstraction.

Depth-k abstractions are simple to understand and to implement. However the num-
ber of terms whose depth is less than k may grow exponentially in many languages.
Thus, other abstractions can be practically useful: such as those based on the size of
a term, or those that weigh the occurrence of certain types of function symbols over
others (e.g., weighing list symbols less than other function symbols). Finally, note that
the identity function on terms is an abstraction function, but is not finitary.

The single extension to basic SLG needed to ensure finite evaluations for strongly
bounded term-size programs is the addition of abstraction functions to the NEW SUB-
GOAL operation.

Definition 4.11. NEW SUBGOAL: Let Fn contain a tree with non-root node

N = Ans← Delays|G,Goals

where S is the underlying subgoal of G. Assume Fn contains no tree with root abs(S).
Then add the tree abs(S)← |abs(S) to Fn.

We denote this extended version as SLGSA to distinguish it from previous versions in
the literature.

Example 4.12. Consider the goal p(1) to the program Pfin from Example 1.1. If this
goal is evaluated with basic SLG, an infinite number of goals will be created: p(1),
p(f(1)), p(f(f(1))), and so on. However, if evaluated with a depth-3 abstraction func-
tion, only the first two of these goals together with p(f(f(X1.1.1))) would be created,
neither of which would have any answers. Note that the technique of call subsump-
tion, which is used by some tabling methods, would not help in the basic case where
subgoal abstraction is not used, as none of the goals p(1), p(f(1)), p(f(f(1))), . . . sub-
sume one another.

4.4. Results

The following theorem shows that SLGSA has the same correctness property as SLG,
regardless of whether it is evaluating a query to a program that is strongly bounded
term-size or not. Correctness does not require safety, and may involve transfinite eval-
uation.

THEOREM 4.13. Let E be an SLGSA evaluation of a query Q to a safe program P ,
Then IFfin

= WFM(P)|Ffin
.

As stated below, SLGSA terminates on any strongly bounded term-size program, al-
though the use of subgoal abstraction on goals to rules with non-safe negation may
introduce floundering.

THEOREM 4.14. Let Q be a query to a strongly bounded term-size program P . Then
any SLGSAevaluation E of Q that uses a finitary abstraction operation reaches a final
forest Ffin after a finite number of steps. If P is safe, then Ffin will not be floundered.

4.5. SLGSA and Intelligent Instantiation

SLGSA and intelligent instantiation both terminate on the same class of programs, so
it is natural to compare the two approaches.

Example 4.15. Consider the program:

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 F. Riguzzi and T. Swift

p(X,Y) ← t(X,Y, Z), not p(Y,Z).
t(a, b, c).

The intelligent instantiation of this program is the set of clauses

{t(a, b, c)., p(a, b)← not p(b, c).}

Note that because p(b, c) and p(a, b) are in the same component, not p(b, c) cannot be
removed from the body of the second clause. However, because SLG evaluates negation
based on dynamic dependencies, the interpretation of the final forest for the top-level
goal p(X,Y) will assign p(a, b) as true, and all other instantiations of p(X,Y) as false.

In order to compare SLGSA to intelligent instantiation more precisely, we need a
framework to compare their results. First, since intelligent instantiation grounds an
entire program while SLGSA is query-oriented, we introduce the notion of a grounding
predicate to ensure that an entire program is reduced. Let P be a safe normal program
for which every predicate is tabled. Then the grounding predicate Pgrounding is defined
by the set of rules:

Pgrounding ← pred1(~X1)

Pgrounding ← predn(~Xn)

where for each predicate, predi occurring in P , predi(~Xi) is an atom of predi whose
arguments consist solely of position variables.

Next, we specify a way to compare two ground instantiations of the same program.
Let r1 = Head ← Body1 and r2 = Head ← Body2 be ground clauses: r1 is at least as
reduced than r2, r1 ≥red r2, iff literals(Body1) ⊆ literals(Body2). Similarly, for ground
programs P1, P2, P1 ≥red P2 iff for every rule r1 in P1 there is a rule r2 in P2 r1 ≥red r2.
Finally as notation, if F is an SLGSA forest, then answers(F) is the set of answers in
F taken as program clauses.

The following theorem indicates that, for finitely ground programs, SLGSA is at least
as effective a grounder as intelligent instantiation. Its proof essentially follows from
the correctness of SLG (and SLGSA) with respect to the stable model semantics, com-
bined with Theorem 2.26.

THEOREM 4.16. Let P be a safe, finitely ground program P . Let E be a SLGSA

evaluation of a grounding predicate of P whose final forest is Ffin, and Ptabled =
answers(Ffin).

(1) ground(Ptabled) is equal to
ground(P)
WFM(P) .

(2) Let Pii be the intelligent instantiation of P . Then ground(Ptabled) ≥red Pii.

4.6. Complexity of SLGSA

While the abstract complexity of query evaluation has been studied for SLG and its
extensions (e.g., [Chen and Warren 1996; Alferes et al. 2013]), the results obtained are
typically that evaluation of a ground query has polynomial complexity in the size of a
given function-free program. Since SLGSA differs only from SLG in its NEW SUBGOAL

operation, a similar result can be shown for SLGSA, assuming proper conditions for
abs(·). However, such a result does not provide any insight into the behavior of SLGSA

on strongly bounded term-size programs that contain function symbols: the very type
of programs it is designed to address.

In previous approaches to complexity (e.g., [van Gelder 1989]) P is a (finite) ground
program without function symbols. Define size(r) for a rule r as one plus the number

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Terminating Evaluation of Logic Programs with Finite Three-Valued Models A:19

of body literals in r; size(P) for a program P is the sum of the size of each rule. Next,
let atoms(P) indicate the set of atoms appearing in P . Then the best currently known
bound on worst case complexity for computing the well-founded semantics of an unre-
stricted normal program P is size(P)× |atoms(P)| [van Gelder 1989], and is shown by
induction on the alternating fixed point computation of P .

In order to determine the complexity of SLGSA on strongly bounded term-size pro-
grams that contain function symbols, a new cost model Cfunction is needed, as neither P
nor PQ (Definition 3.6) need be finite. Accordingly, let P be a ground strongly bounded
term-size program with function symbols, and Q a ground query. In the cost model
Cfunction, the size of a rule r is defined as above: that is, one plus the number of body
literals in r. Therefore size(·) does not consider the number of symbols or the depth
of terms within an atom or literal, but treats size as a constant. By Theorem 4.14,
an SLGSA evaluation E of Q against P that uses a finitary abstraction function will
produce a final forest Ffin after a finite number of steps, and Ffin will itself be finite.
Given E , we can construct the set of (ground) rules that were used in some PROGRAM

CLAUSE RESOLUTION operation and denote this set as PQ(E). Since PQ is constructed
from the atom dependency graph rather than from a dynamic computation, it is evi-
dent that PQ(E) ⊆ PQ, and since E is finite, PQ(E) must always be finite. Next, define
atoms(Ffin) as the set of atoms that occur as the head of some node in Ffin. Note that
this set may contain every atom in PQ plus those roots of trees that have been ab-
stracted via a non-trivial application of the depth-k abstraction function. However in
this case, |atoms(Ffin)| is bounded by 2×|atoms(PQ)| if atoms(PQ) is finite. In addition,
it is evident that atoms(Ffin) (the set of atoms occurring in any node in Ffin) is finite,
although atoms(PQ) may not be.

We state these observations formally.

LEMMA 4.17. Let P be a ground strongly bounded term-size program and Q a
ground query. Let E be an SLGSA evaluation of Q against PQ that uses a fini-
tary abstraction function, and let the final forest of E be Ffin. Then PQ(E) is finite
and PQ(E) ⊆ PQ. In addition atoms(Ffin) is finite, and if atoms(PQ) is also finite
|atoms(Ffin)| ≤ 2× |(atoms(PQ)|.

The goal is thus to prove a complexity bound of size(PQ(E)) × |atoms(Ffin)| which
is finite and at most size(P) × 2 × |atoms(P)|. Towards this end, the following lemma
bounds the number of nodes in the final forest of an evaluation. Its proof depends on
showing that a ground program clause is used to produce a node in exactly one tree
in a computation. This property holds under Cfunction for depth-k abstractions, and
remains open for arbitrary abstractions.

LEMMA 4.18. Let P be a ground program, Q a ground query, and E a terminating
SLGSA evaluation of Q against P that uses depth-k abstraction. Then the number of
nodes in the final forest Ffin is at most O(size(PQ(E))).

As a next step in defining Cfunction, we consider the cost of each SLGSA operation.
First, since the scope of an abstraction function is an atom, the cost of applying an
abstraction function is constant in Cfunction

9. Note that the NEW SUBGOAL operation
creates a root node for a given atomic subgoal, and thus may be considered a constant-
time operation. Similarly the PROGRAM CLAUSE RESOLUTION, POSITIVE RETURN,
NEGATIVE RETURN, DELAYING, and SIMPLIFICATION operations each affect one goal
or delay literal and may also be considered constant-time. The COMPLETION opera-
tion, however, applies to a set of subgoals S in a forest F and its cost is proportional

9Of course a practical implementation of an abstraction function should have a low cost as a function of the
actual size of an atom to which it is applied.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 F. Riguzzi and T. Swift

to the cardinality of S: in the worst case this is |atoms(F)|. Similarly, the ANSWER

COMPLETION operation must determine an unsupported set of answers and its worst
case is size(PQ(E)).

The cost model Cfunction thus consists of the definition of the size of a program that
contains function symbols, along with constants for each individual SLGSA operation.

THEOREM 4.19. Let P be a ground program, Q a ground query, and E a terminating
SLGSA evaluation of Q against P that uses depth-k abstraction, and with final forest
Ffin. Then under the cost model Cfunction, the cost of E isO(|atoms(Ffin)|×size(PQ(E))).

5. IMPLEMENTATION OF SUBGOAL ABSTRACTION

Depth-k subgoal abstraction is built into the XSB engine and can be invoked in Version
3.3.8 of XSB (xsb.sourceforge.net) in two ways. First, a default maximum depth can be
set for tabled subgoals, along with an action to take if that depth is exceeded: both
the depth and action are changeable by Prolog flags. The default action is abstract
which gives the semantics discussed in previous sections, but can be set to error which
causes a Prolog permission error to be thrown, or warning. In addition to setting it by
a default flag, the subgoal depth can be set on a per-predicate basis by the directive:

:- table <predspec> as subgoal depth(<n>),...

This depth declaration overrides the default, and subgoal depth(<n>) is a table prop-
erty that can be combined with other properties such as incremental, thread-private,
thread-shared, and so on 10. In order to avoid the creation of floundering subgoals, XSB
only abstracts positive literals; however, this limitation does not affect termination for
bounded term-size programs that are safe, as the binding of each variable in a nega-
tive goal must have been produced as part of an answer to a positive subgoal. Within
XSB, abstraction is permitted on subgoals with attributed variables, which support
constraint-based reasoning, as described below.

At a high level, the implementation of subgoal abstraction can be seen as a dynami-
cally performed rewrite of a subgoal:

. . . , Gθ, . . .⇒ . . . , abs(Gθ), abs(Gθ) = Gθ, . . . (2)

i.e., the goal Gθ is replaced by the depth-k abstraction abs(Gθ) and abs(Gθ) is called;
any answers returned for abs(Gθ) are unified with the original goal Gθ – a step we
term post-unification.

Example 5.1. As a concrete example, suppose the goal p(X) was made to the pro-
gram Psbts

p(1) ← p(f(1)).
p(f(f(X))) ← q(X).
q(0).
q(1).

in an evaluation where depth-3 abstraction is used. The tabled subgoal p(1) pro-
duces the subgoal p(f(1)) by PROGRAM CLAUSE RESOLUTION against the clause
p(X) ← p(f(X)), and then the subgoal p(f(f(1))) is produced by resolution against
the same clause. Setting Gθ = p(f(f(1))), then its depth-3 abstraction, abs(Gθ), is
p(f(f(X1.1.1))) and by formula 2, the subgoal p(f(f(X1.1.1))) would be called. This sub-
goal is completely evaluated producing the answers p(f(f(0))) and p(f(f(1))). After-

10See the XSB manual for the current list of properties with which depth-k abstraction is compatible.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Terminating Evaluation of Logic Programs with Finite Three-Valued Models A:21

wards, both solutions to p(f(f(X1.1.1))) would be post-unified with p(f(f(1))) but would
succeed only for p(f(f(1))), which allows X1.1.1 to unify with 1.

Implementation within the SLG-WAM. Our description of engine-level details of
subgoal abstraction assumes some knowledge of the SLG-WAM engine, as presented
in [Sagonas and Swift 1998; Ramakrishnan et al. 1999]. Let Gθ be a tabled subgoal
and assume that a maximum depth, n, has been set for the underlying predicate, GP ,
of Gθ and that the action is set to abstract. The abstraction is performed during the
tabletry instruction (the SLG-WAM instruction corresponding to the NEW SUBGOAL

operation). Within this instruction, a single-pass check-insert traversal of the subgoal
Gθ checks whether a variant of Gθ has already been encountered during an evalua-
tion, and creates a table for the subgoal if not. During this traversal, a depth counter
is initialized by checking a cell in the table information frame for the predicate GP ; if
the depth n is reached at position πk, a pointer to the subterm rooted at πk (Gθ|πk

) is
added to an abstraction stack together with the (heap) address of πk; then a free (posi-
tion) variable Xπk

is created at position πk, and trailed with a pre-assignment cell in its
trail frame, as used for mutable variables in XSB and other Prolog systems. Such a cell
contains information about the value of a variable before a binding, and so supports
backtrackable “destructive” assignment within a Prolog engine. After the abstraction
and trailing, Xπk

is copied to the table in the normal manner. If Gθ is part of a set
of mutually dependent subgoals, the SLG-WAM may need to repeatedly suspend and
resume computation of abs(Gθ) as answers for other subgoals are derived and used for
resolution. In general, the trail for the SLG-WAM supports suspending and resuming
environments with a value cell: that is, it trails the value of the binding to a variable
along with the variable itself. However, abstractions may also need to be undone and
re-applied during environment switching; because pre-assignment trailing is used, the
abstracted variables are reset to their prior (non-abstracted) terms when backtracking
above the call to Gθ, then reset to their abstracted value via the value cell. To sum-
marize, trail frames for abstracted variables require 1) the pre-assignment cell (in this
case, pointing to Gθ|πk

); 2) the value cell (in this case, pointing to Xπk
); and 3) the vari-

able address cell, just as in the WAM (in this case, the address of Xπk
). Trailing for

non-abstracted variables does not require the pre-assignment cell 11.
During the same check-insert traversal of the subgoal Gθ, the SLG-WAM creates a

substitution factor: a vector that corresponds to the set of variables in Gθ. Substitution
factors are maintained in the heap, and are not part of permanent table storage. The
use of substitution factors allows the SLG-WAM to represent answers in a table as
substitutions to the variables in a subgoal, which is more compact than representing
answers as atoms that are instantiations of the subgoal [Ramakrishnan et al. 1999].
Using the substitution factor, when an answer is derived for a generator of Gθ or re-
turned to a consumer of Gθ, the engine need only copy bindings into or out of the table
by traversing the substitution factor, rather than having to re-traverse the entire sub-
goal and answer. When subgoal abstraction is used for Gθ, the abstraction code ensures
that the frames of the abstraction stack are also added to the substitution factor. The
abstraction frames are then used for post-unification: the subterm in each abstracted
position of the answer (abs(Gθ)η|πk

) is unified with the original subterm at that posi-
tion (Gθ|πk

). Only if all such unifications succeed is the answer return successful.

Example 5.2. Continuing from Example 5.1, for the abstracted subgoal
p(f(f(X1.1.1))), the substitution factor would consist of the variable X1.1.1. When

11As noted in [Sagonas and Swift 1998] since the SLG-WAM trail represents a tree rather than a stack,
frames also contain a cell that points to their previous trail frame. Such a cell is required regardless of
whether a trailed variable has been abstracted.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 F. Riguzzi and T. Swift

p_1(X,F):- q_1(X). p_1(X,F):- succ1mil(X,Z),p_1(Z,F).

p_2(X,F,Y):- q_2(X,Y). p_2(X,F,Y):- succ1mil(X,Z),p_2(Z,F,Y).

Fig. 3. Benchmark program.

evaluating p(f(f(X1.1.1))) the use of the substitution factor allows the engine to
traverse only the bindings (0 and 1) to X1.1.1 when copying answers into the table,
and to store only these bindings: as indicated in [Ramakrishnan et al. 1999], no
retraversal or storage of ancestor positions is necessary. In addition to the substitution
factor, support for SLGSA requires augmenting the substitution factor with a series
of abstraction frames, here a single frame containing X1.1.1 and 1. When copying
answers out of the table the variable X1.1.1 of the substitution factor is bound, and
once this is accomplished, the post-unifications of the abstraction stack are performed:
here unifying the bound value of X1.1.1 with 1, so that only the binding X1.1.1 = 1
succeeds.

If a tabled subgoal contains attributed variables, the attributed variables are han-
dled as follows. XSB tables subgoals with attributed variables by copying variable at-
tributes into the table as specially designated terms. Suppose subgoal abstraction re-
places a term t rooted in position π with a free variable Xπ. If t contains an attributed
variable as a subterm, then the post-unification of the attributed variable may call a
unification hook, just as any unification would, so that the abstraction code need not
treat such abstracted variables in a special manner. However, if the depth bound is ex-
ceeded while traversing a variable attribute, abstraction is disabled until the attribute
has been traversed. The reason for this is that abstracting midway through a variable
attribute would break the unification hooks for many classes of attributes.

To summarize, engine-level implementation of subgoal abstraction first requires the
ability to calculate the norm of a goal, and to apply an abstraction function. In the
case of depth-k abstraction, calculation of the norm and abstraction application can be
done without an additional term traversal beyond that needed for tabling. Once the
abstraction is performed, the abstraction vector and trail both maintain information
on how to map the original term to the abstracted term. This information must be used
whenever backtracking above the abstraction point or returning answers from the ab-
stracted subgoal. While the implementation of subgoal abstraction demands care, the
implementation of the above mechanisms: the depth check and abstraction, of abstrac-
tion vectors, and of the post-unification of abstracted answers with the original goal
require a total of about 300-400 lines of code.

5.1. Performance Overhead

Subgoal abstraction obviously improves performance by ensuring termination when
the atom dependency graph of a program contains an infinite path (as in Pfin of Ex-
ample 1.1). Additionally, if an abstraction allows different subgoals to share the same
table that otherwise would not, it can benefit performance in a similar manner as call
subsumption. Because of these obvious benefits, its is natural to ask if there are cases
when subgoal abstraction should not be used, a question we address here by measuring
the performance overhead of subgoal abstraction.

To investigate the overhead of subgoal abstraction, a series of benchmark programs
(Figure 3) were executed on a Macintosh laptop with a 2.43 GHz Intel Core i5 proces-
sor and 4 GBytes of memory, running OS X 10.6.8. Timings on this platform show a
variance of up to 6% for timings of the same executable and program.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Terminating Evaluation of Logic Programs with Finite Three-Valued Models A:23

Table I. Benchmark results for tests of subgoal abstraction (times in seconds)

Program 1 f(1) f2(1) f4(1) f8(1) f16(1) f32(1)

p 1/2 (no answers) no abstr. 0.424 0.471 0.517 0.693 0.96 1.214 1.702
p 1/2 (no answers) abstr. 0.431 0.489 0.533 0.72 0.864 0.862 0.864
p 1/2 (1 answer) no abstr 0.524 0.576 0.62 0.808 1.071 1.324 1.841
p 1/2 (1 answer) abstr 0.529 0.579 0.621 0.809 1.009 1.008 1.01
p 1/2 (1 answer + 4) no abstr 0.534 0.583 0.623 0.809 1.072 1.332 1.839
p 1/2 (1 answer + 4) abstr 0.524 0.578 0.623 0.81 1.375 1.376 1.377
p 1/2 (1 answer + 16) no abstr 0.529 0.582 0.623 0.809 1.069 1.32 1.831
p 1/2 (1 answer + 16) abstr 0.525 0.58 0.625 0.809 2.336 2.341 2.352
p 2/3 (1 answer) no abstr. 0.633 0.676 0.765 0.928 1.147 1.398 1.917
p 2/3 (1 answer) abstr. 0.625 0.664 0.769 0.938 1.135 1.14 1.136
p 2/3 (4 answers) no abstr. 1.042 1.079 1.187 1.351 1.553 1.812 2.316
p 2/3 (4 answers) abstr. 1.024 1.067 1.168 1.334 1.651 1.658 1.649
p 2/3 (8 answers) no abstr. 1.485 1.535 1.625 1.795 2.016 2.256 2.768
p 2/3 (8 answers) abstr. 1.489 1.529 1.623 1.797 2.199 2.209 2.202

A first set of timings compared a version of XSB with subgoal abstraction imple-
mented but not turned on, to the previous version without subgoal abstraction for
various cases of linear recursion. These timings showed a difference in times well be-
low the noise level. This is not surprising, as if subgoal abstraction is not invoked its
only overhead is the maintenance of the depth counter during the check-insert step for
tabled subgoals.

The next two series of timings test the overhead of subgoal abstraction when it is
turned on, but does not provide an advantage in sharing tables for different subgoals.
In these series, each benchmark makes use of the predicate succ1mil/2, the succes-
sor function for integers less than 1 million. The first series of benchmarks was con-
structed as follows.

— For p 1/2 the base predicate q 1/1 was first set so that it never succeeded. Under
this setting, the goal p 1(0,F) creates 1 million variant subgoals, but no answers for
any of these subgoals.

— Second, the fact q 1(1000000) was added so that each of the million goals for p 1/2
contained a single answer.

— Next, 4 or 16 facts of the form p 1(,) were also added. In these tests each subgoal
had one answer that was redundantly rederived 4 or 16 times.

The second series of benchmarks was similar, but here the base predicate, q 2/2, was
adjusted so that 1, 4, or 8 answers was derived for each of 1 million subgoals. In this
second series, no redundant answers were derived.

The benchmark series had two additional parameters. For each set of benchmarks
the depth limit was either turned off or set to 6. In addition, the top-level goals were
p 1(0,F) or p 2(0,F,) – where in each case F was bound to terms of the form fn(1) for n
equal to 0, 2, 4, 8, 16 and 32 (i.e., f0(1) = 1, f1(1) = f(1), f2(1) = f(f(1)), etc.). Note that
the different values of F do not affect the number of answers derived for any of these
benchmark programs, but when F was set to fn(1) for n = 8, 16, and 32 the subgoals
are (non-trivially) abstracted if the depth-limit is set.

We first consider p 1/2. When no answers are derived, the timings for p 1/2 (Ta-
ble I) show that subgoal abstraction reduces runtime up to 98% in the case of f32(1)
compared to the runtime when subgoal abstraction is not used (cf. the first two lines of
table Table I). In this case, if subgoal abstraction is not used, each goal needs to be fully
traversed and copied into the table, but when subgoal abstraction is used, subterms
with depth greater than k do not need to be traversed: instead a pointer to the subterm
is simply added to the abstraction stack, leading to efficiency for subgoal abstraction.
As a contravening factor, if abstraction is not used, the F argument is ground, while

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 F. Riguzzi and T. Swift

if abstraction is used the abstracted variable is added to the substitution factor, and
must be traversed when copying an answer into or out of the table. Accordingly, when
p 1/2 derives a single answer per goal, subgoal abstraction still shows improvement
above the noise level for f16(1) and f32(1). However as further redundant answers are
derived the cost of traversing the binding to the redundant answer for the abstracted
goal outweighs the savings made for the abstracted call, by up to 217% when 16 re-
dundant answers are derived per goal. In the p 1/2 benchmarks, all answers but one
per subgoal were redundant, so that scaling up to to extra answers per subgoal and to
deeper bindings to F measured only the cost of checking whether a given answer was
already in the table. The post unification step was used only once, for the single non-
redundant answer. On the other hand no answers for p 2/2 are redundant, so that in
addition to the cost of answer check/insert, the cost of post-unification of each answer
is also measured. Timings for p 2/3 overall show less savings than those for p 1/2 for
abstraction compared to non-abstraction; however the p 2/3 series still shows savings
for f16(1) and f32(1).

These timings show that subgoal abstraction can be implemented so that its over-
head is negligible if it is not used. If the number of answers per subgoal is relatively low
and the subgoals are large, subgoal abstraction provides performance improvement by
traversing the subgoal in almost a “lazy” manner. However, the cost for this is that the
bindings for answers to abstracted goals will be larger than for non-abstracted goals,
and traversing these answers to check for redundancy or to perform post-unification
can lead to performance degradation, particularly when there are numerous answers
per subgoal.

Comparisons with DLV. To our knowledge, the only other engine that is complete for
(strongly) bounded term-size programs is that of DLV [Leone et al. 2002]. While XSB is
an ISO-Prolog that supports tabling, DLV is an ASP system that has been extended to
support function symbols [Alviano et al. 2010]. Despite their differences, the function-
ality of the two systems overlaps when computing queries to stratified programs, or
grounding non-stratified programs. Repeated independent comparisons of DLV, XSB
and other systems have been made in 2009, 2010 and 2011 by [OpenRuleBench 2011].
Although the last such comparison was performed in March 2011, the comparisons as
a whole illustrate general performance differences between the two systems. XSB is
generally faster and sometimes greatly faster than DLV for a variety of queries to def-
inite programs including transitive closure, queries with stratified and non-stratified
negation, and non-synthetic queries such as Wordnet 12.

6. DISCUSSION

In this paper, we have examined the class of programs with canonical finite mod-
els and shown that it coincides with the class of strongly bounded term-size pro-
grams, whose definition is adapted from a well-known iterated fixed point definition of
WFS [Przymusinski 1989]. Strongly bounded term-size programs in their turn, strictly
include normal finitely ground programs, a class motivated by termination properties
of grounders. The extension of SLG with the subgoal abstraction operation provides
termination for queries to strongly bounded term-size programs so that the various
decidable subclasses of finitely ground programs that have been identified in the lit-
erature can be used for analysis of termination for tabling systems as well as for ASP
systems (e.g., [Syrjanen 2001; Gebser et al. 2007; Lierler and Lifshitz 2009; Eiter and

S̆imkus 2009]. In addition, the query-orientation of SLGSA makes it comparable with

12Exceptions are large tabled joins (where XSB consumes too much memory leading to thrashing), along
with a puzzle example that includes function symbols.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Terminating Evaluation of Logic Programs with Finite Three-Valued Models A:25

the technique of [Baselice and Bonatti 2010] on finitely recursive programs for which
given queries may be strongly bounded term-size, but that may not have finitely repre-
sentable models. SLGSA has optimal complexity when using depth-k abstractions (The-
orem 4.19), and may produce a smaller program than other grounders (Theorem 4.16).
Together these facts indicate that SLGSA may perform well as a component of an ASP
grounder. Finally, subgoal abstraction has been implemented at the engine level of XSB
with good performance results in terms of overhead, query optimization, and compari-
son with other systems. The general approach presented here should be implementable
without undue effort by other tabled Prologs, at least for definite programs.

Continued work with subgoal abstraction is needed to fully exploit its use in practi-
cal programs. One avenue for this is to explore abstraction methods other than depth-
k: while depth-k abstraction ensures termination and the best known complexity, the
number of terms in HP of k or less can be large, even for small values of k. Accordingly
the use of abstractions based on size or on a term-based weight should be explored,
even if such abstractions are implemented by Prolog hooks, rather than within the
engine itself. A second avenue is to support subgoal abstraction as a compiler opti-
mization based on termination or cost analysis. Even without these features, however,
subgoal abstraction increases the power of tabled logic programming for grounders,
knowledge bases, and other applications.

REFERENCES

J.J. Alferes, M. Knorr, and T. Swift. 2013. Query-driven Procedures for Hybrid MKNF Knowledge Bases.
ACM Transactions on Computational Logic 14, 2 (2013).

M. Alviano, W. Faber, and N. Leone. 2010. Disjunctive ASP with Functions: Decidable Queries and Effective
Computation. Theory and Practicce of Logic Programming 10, 4-6 (2010), 497–512.

S. Baselice and P. Bonatti. 2010. A decidable subclass of finitary programs. Theory and Practicce of Logic
Programming 10, 4-6 (2010), 481–496.

S. Baselice, P. Bonatti, and G. Criscuolo. 2009. On finitely recursive programs. Theory and Practice of Logic
Programming 9, 2 (2009), 213–238.

F. Calimeri, S. Cozza, G. Ianni, and N. Leone. 2008. Computable Functions in ASP: Theory and Implemen-
tation. In International Conference on Logic Programming (LNCS), Vol. 5366. Springer, 407–424.

W. Chen and D. S. Warren. 1996. Tabled Evaluation with Delaying for General Logic Programs. Journal of
the Association for Computing Machinery 43, 1 (1996), 20–74.

S. Decorte, D. De Schreye, and H. Vandecasteele. 1999. Constraint-based Termination Analysis of Logic
Programs. ACM Transactions on Programming Languages and Systems 21 (1999), 1137–1195.

T. Eiter and M. S̆imkus. 2009. FDNC: Decidable Nonmontonic Disjunctive Logic Progrmas with Function
Symbols. ACM Transactions on Computational Logic 9, 9 (2009), 1–45.

M. Gebser, T. Schaub, and S. Thiele. 2007. GrinGo: A New Grounder for Answer Set Programs. In Logic
Programming and Non-Monotonic Reasoning. 267–280.

M. Gelfond and V. Lifschitz. 1988. The Stable Model Semantics for Logic Programming. In International
Conference and Symposium on Logic Programming. 1070–1080.

B. Grosof, M. Dean, and M. Kifer. 2012. Semantic Web Rules: Fundamentals, Applications, and Standards.
(2012). Tutorial, 11th International Semantic Web Conference.

N. Leone, G. Pfeifer, W. Faber, F. Calimeri, T. Dell’Armi, T. Eiter, G. Gottlob, G. Ianni, G. Ielpa, K. Koch, S.
Perri, and A. Polleres. 2002. The DLV system. In JELIA. 537–540.

Y. Lierler and V. Lifshitz. 2009. One more decidable class of finitely ground progrmas. In International
Conference on Logic Programming.

J. W. Lloyd. 1987. Foundations of Logic Programming (2nd extended ed.). Springer-Verlag.

OpenRuleBench. 2009-2011. OpenRuleBench: Benchmarks for Semantic Web Rule Engines. (2009-2011).
\sfrulebench.projects.semwebcentral.org

T. Przymusinski. 1989. Every Logic Program has a Natural Stratification and an Iterated Least Fixed Point
Model. In ACM Symposium on Principles of Database Systems. 11–21.

I. V. Ramakrishnan, P. Rao, K. Sagonas, T. Swift, and D. S. Warren. 1999. Efficient Access Mechanisms for
Tabled Logic Programs. Journal of Logic Programming 38, 1 (1999), 31–55.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 F. Riguzzi and T. Swift

F. Riguzzi and T. Swift. 2013. Well-Definedness and Efficient Inference for Probabilistic Logic Programming
under the Distribution Semantics. (2013). To appear in Theory and Practice of Logic Programming.
Available at journals.cambridge.org/article S1471068411000664.

K. Sagonas and T. Swift. 1998. An Abstract Machine for Tabled Execution of Fixed-Order Stratified Logic
Programs. ACM Transactions on Programming Languages and Systems 20, 3 (May 1998), 586 – 635.

T. Swift. 1999. A New Formulation of Tabled Resolution with Delay. In Recent Advances in Artifiial Intelli-
gence (LNAI), Vol. 1695. Springer, 163–177.

T. Swift and D.S. Warren. 2012. XSB: Extending the Power of Prolog using Tabling. Theory and Practicce of
Logic Programming 12, 1-2 (2012), 157–187.

T. Syrjanen. 2001. Omega-Restricted Logic Programs. In Logic Programming and Non-Monotonic Reason-
ing. 267–280.

H. Tamaki and T. Sato. 1986. OLDT Resolution with Tabulation. In International Conference on Logic Pro-
gramming (LNCS), Vol. 225. Springer, 84–98.

A. van Gelder. 1989. The Alternating Fixpoint of Logic Programs with Negation. In ACM Symposium on
Principles of Database Systems. 1–10.

A. van Gelder, K. A. Ross, and J. S. Schlipf. 1991. The Well-founded Semantics for General Logic Programs.
Journal of the Association for Computing Machinery 38, 3 (1991), 620–650.

S. Verbaeten, D. De Schreye, and K. Sagonas. 2001. Termination proofs for logic programs with tabling.
ACM Transactions on Computational Logic 2, 1 (2001), 57–92.

D. Voets and D. De Schreye. 2011. Non-termination analysis of logic programs with integer arithmetics.
Theory and Practicce of Logic Programming 11, 4-5 (2011), 521–536.

G. Yang, M. Kifer, H. Wan, and C. Zhao. 2012. FLORA-2: User’s Manual Version 0.97.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Terminating Evaluation of Logic Programs with Finite Three-Valued Models A:27

A. LONGER PROOFS

A.1. Proofs for Results of Section 4.4 (Correctness and Termination of SLGSA)

THEOREM 4.13 Let E be an SLGSA evaluation of a query Q to a safe program P . Then
IFfin

= WFMP |Ffin
.

PROOF. Note that the only difference between SLGSA and the version of SLG from
Section 4.2 is that in SLGSA the root subgoals of some trees in a forest F ∈ E may have
been abstracted. We consider the two cases in which an abstraction operation may
be used and show that the action of the abstraction function is the same as a simple
rewriting of a rule that preserves logical equivalence, but can be evaluated by SLG
without an abstraction function. The theorem then holds by the correctness of SLG (cf.
[Chen and Warren 1996], and [Swift 1999] for the forest of trees model).

— Positive selected literals. Let N = (G ← Delays|Goals)θ be a node with selected
positive literal S. Note that N must have an ancestor in the tree for G that was
created by a program clause

r = H ← A1, . . . , A, . . . , Ln

and assume that S corresponds to the selected literal A so that S = Aθ. Suppose
that a NEW SUBGOAL operation creates a tree with root subgoal A′ = abs(Aθ). We
have that Aθ = A′η for some η, as A′ subsumes Aθ.
Let

r′ = (H ← A1, . . . , abs(A,A
′), A′, A′ = A, . . . , Ln)

The predicate abs/2 simply sets A′ = abs(A) (its implementation is outside of the
semantics of the SLG evaluation E). A′ is then called, and if it succeeds, A′ is unified
with A. Note that r′ is logically equivalent to r: A′ subsumes A so that every solution
to A will also be a solution to A′, and the unification A′ = A in r′ ensures that only
those solutions that also unify with A will succeed.

— Negative selected literals. The argument is essentially the same, but the transfor-
mation is instead:

r′ = (H ← A1, . . . , abs(A,A
′), not exists ans(A′, A), . . . , Ln)

where

exists ans(A′, A)← A′, A = A′.

By assumption, P is safe, so that A′ is ground when the literal A′ = A is called. Note
that not exists ans(A′, A) succeeds iff there is no (ground) answer to the goal A′ that
unifies with the ground A. As above, the program r′ is logically equivalent to r.

The program P ′ is constructed from P by the transformations of the various rules
(sometimes replacing a rule by a series of transformations), and adding abs/2 and ex-
ists ans/2. Note that the transformation is completely local to a rule, so that replacing
all rules in P by forms equivalent to r′ makes P ′ a conservative extension of P .

THEOREM 4.14 Let Q be a query to a strongly bounded term-size program P . Then any
SLGSA evaluation E of Q that uses a finitary abstraction operation reaches a final forest
Ffin after a finite number of steps. If P is safe, then Ffin will not be floundered.

PROOF. We first prove the statement that any SLG evaluation E of Q that uses a
finitary abstraction operation reaches a final forest Ffin after a finite number of steps.
The proof is by induction on the maximal dynamic stratum of any answer in E .

— For the base case, assume the maximal stratum is 1 (Definition 2.2). Because Q is in
stratum 1, the only applicable SLG operations in E are NEW SUBGOAL, PROGRAM

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 F. Riguzzi and T. Swift

CLAUSE RESOLUTION, POSITIVE RETURN, and COMPLETION. Note that each of
these operations is applicable only once to a given node or set of subgoals.
— NEW SUBGOAL: The use of a finitary abstraction operation means that there may

only be a finite number of NEW SUBGOAL operations in E , and hence a finite
number of trees in any forest of E .

— PROGRAM CLAUSE RESOLUTION: Since there are a finite number of trees, and a
finite number of program clauses resolvable against the root subgoal of any tree,
E contains only a finite number of PROGRAM CLAUSE RESOLUTION operations,
and the root of any tree has only a finite number of immediate children.

— POSITIVE RETURN: Next, since P is strongly bounded term-size, true(WFMP)
is finite, and since the maximal stratum of E is 1, any answer returned will be
unconditional. Accordingly there are a finite number of answers that can be re-
solved against any selected subgoal. Because interior nodes of SLG trees can only
be extended by POSITIVE RETURN operations, any non-root node in any tree may
have only a finite number of children. In addition, the depth of any tree in E is
bounded by the maximal number of body literals in any rule in P , which is finite.
Thus the subtrees of any tree in E have a finite depth and a finite branching fac-
tor, and so are finite. There can thus be only a finite number of POSITIVE RETURN

operations.
— COMPLETION: Finally, since there are a finite number of trees in any forest, there

can be only a finite number of COMPLETION operations.
Since the number of occurrences of each type of operation in E is finite, E itself must
be finite.

— For the inductive case, assume that the statement is true for all atoms whose (finite)
stratum is less than n in order to prove it true for those atoms whose stratum is n.
— NEW SUBGOAL, PROGRAM CLAUSE RESOLUTION and COMPLETION are argued

in the same manner as for the base case.
— POSITIVE RETURN: Because P is strongly bounded term-size there are only a

finite number of undefined atoms. Since each literal in the Delays of a node must
come from delaying or SLG resolution of a literal in the body of a rule, and the
maximum number of literals in the body of a rule is finite, there are only a finite
number of conditional answers. The statement that there are only a finite number
of POSITIVE RETURN operations follows as for the base case.

— NEGATIVE RETURN: First, consider that a NEGATIVE RETURN operation can be
applied at most once to any node N . As a result of this operation, any node N
to which a NEGATIVE RETURN operation is applied can have only a single child:
either a failure node in the case of NEGATION FAILURE, or a single child with the
selected literal removed from the Goals of N in the case of NEGATION SUCCESS.
In the case of NEGATION FAILURE this is enough to show that the finiteness of
E is not affected, as a failure node cannot be further expanded. In the case of
NEGATION SUCCESS, the fact that the selected literal is removed from Goals,
means that the child of N will have a smaller Goals sequence. Since Goals is
finite, any path from N may have only a finite number of NEGATIVE RETURN

operations.
— DELAYING: Considerations analogous to the NEGATION SUCCESS case show that

DELAYING will not affect the finiteness of E .
— ANSWER COMPLETION: Next, note that ANSWER COMPLETION will produce a

single failure node as a child of each answer node to which it is applied, and
a failure node cannot be further expanded. So ANSWER COMPLETION does not
affect the finiteness of any forest, no matter how many times it is applied.

— In the case of SIMPLIFICATION, an application of the SIMPLIFICATION operation
that produces a failure node does not affect the finiteness of any forest (Defini-

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Terminating Evaluation of Logic Programs with Finite Three-Valued Models A:29

tion 4.6, 6a) as a failure node cannot be further expanded.. On the other hand, if
an application of a SIMPLIFICATION operation to a node N produces a non-failure
child (Definition 4.6, 6b), note that similar to the case of NEGATION SUCCESS,
the child of N will have a smaller Delays. Since Delays is finite, any path from N
to its descendents may have only a finite number of SIMPLIFICATION operations.

Since each operation can be applied only a finite number of times, E must be finite.

Note that the proof of the previous statement shows that E is finite, but Ffin may
be floundered: i.e., a node in Ffin may have a selected non-ground negative literal. We
next show that if P is safe, then Ffin will not be floundered. It is straightforward to
show that if P is safe, any answer in any forest in E will be ground. Then, let r be a
rule in a safe program P , and Lj a given negative literal in r. Because of the safety of
P , the action of PROGRAM CLAUSE RESOLUTION and POSITIVE RETURN operations
on previously selected subgoals to the left of Lj in r will ensure that Lj is ground by
the time it becomes a selected subgoal.

A.2. Proofs for Results of Section 4.5 (Comparison with Intelligent Instantiation)

THEOREM 4.16
Let P be a safe, finitely ground program P . Let E be a SLGSA evaluation of a grounding
predicate of P whose final forest is Ffin, and Ptabled = answers(Ffin).

(1) Ptabled is equal to ground(P)
WFMP .

(2) Let Pii be the intelligent instantiation of P . Then Ptabled ≥red Pii.

PROOF.

(1) (Sketch) We consider first the case of SLG (i.e., where no abstraction operation is
used). By the correctness of SLG, the use of the grounding predicate ensures that
IFfin

= WFMP . The safety of P ensures that all answers are ground, regardless of
whether they are conditional. In such a case, the correctness of SLG with respect
to the stable model semantics (cf. [Chen and Warren 1996]), ensures that if there

is rule r with a non-empty body in ground(P)
WFMP , then r must be a conditional answer

in Ffin.

For SLGSA, Theorem 4.13 ensures that Ptabled is also equal to ground(P)
WFMP . Note that

the final forest of an SLG and an SLGSA evaluation will both have the same trees
for subgoals immediatedly called by the grounding predicate (which we call here
the grounding subgoals), and the answers in each of these trees will be the same.
For other trees, suppose that the SLGSA ESA evaluation differed from the SLG eval-
uation E in that ESA created a tree for an abstracted subgoal, while E did not. Both
of these subgoals are more specific than the grounding subgoals, and the (ground)
answers of both are contained in the set of ground answers for the grounding sub-
goals.

(2) Follows immediately from Lemma 2.26 and part 1 of this theorem.

A.3. Proofs for Complexity Results of Section 4.6

LEMMA 4.18. Let P be a ground program, Q a ground query, and E a terminating
SLGSA evaluation of Q against P that uses depth-k abstraction. Then the number of
nodes in the final forest Ffin is at most O(size(PQ(E)))..

PROOF. First note that since no step of an SLGSA evaluation ever removes a node
or tree from a forest, showing the upper bound for Ffin carries over to all forests in

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 F. Riguzzi and T. Swift

E . We consider first the special case in which Q (finitely) terminates using the iden-
tity function as an abstraction function (i.e., depth-ω abstraction), before the case of
general abstraction functions.

(1) abs(·) is the identity function. Within this case, we consider first the subcase where
P is definite, and then consider the case where P is any normal program.
— P is definite. First, since P is ground, no two trees in any forest of E may have root

subgoals that unify. Because of this fact, each rule in PQ may be used for resolu-
tion in at most one tree in Ffin. Continuing, consider a rule r of PQ that creates
a node nr in some tree in Ffin. The number of descendants of nr is at most the
number of literals in the body of r. To see this, first note that the selected literal
of any node is ground and thus may have at most once descendant. Next, since
each POSITIVE RETURN answer operation removes a body literal from the Goals
of a node when creating a new node, the number of descendants of n is limited
to the number of body literals in nr. Thus there are at most size(PQ) non-root
nodes in Ffin and O(size(PQ(E))) nodes overall.

— P is a normal program. If P is not definite, then a node nr as above may have
at most 2 × size(r) descendents, as each body literal first may be delayed and
then either simplified or failed via an ANSWER COMPLETION operation. So in
this case there are still O(size(PQ(E))) nodes overall.

(2) abs(·) is a depth-k abstraction function for positive integer k. To show this result,we
first show a subsidiary statement.
Consider two subgoals abs(S1) and abs(S2) at the root of two distinct trees in Ffin

generated from the application of NEW SUBGOAL to S1 and S2. We show that
abs(S1) cannot unify with abs(S2). Recall that abs(S1) and abs(S2) cannot be identi-
cal (up to variance), since they would not correspond to distinct trees in that case.
There are three cases to consider.
(a) abs(S1) = S1 and abs(S2) = S2. Since P is ground, this means that S1 and S2

are ground, so abs(S1) does not unify with abs(S2).
(b) abs(S1) = S1 but abs(S2) 6= S2. In this case, there must be a position π in S2

in which a constant or function symbol was replaced by a position variable.
However, S1 is ground since P is ground, but S1 does not have a position of
depth k as abs(S1) = S1. Accordingly there must be some position π′ that is a
constant in abs(S1), but is a non-constant function symbol in abs(S2), so that
abs(S1) and abs(S2) do not unify.

(c) abs(S1) 6= S1 and abs(S2) 6= S2. In this case,

i. Either there is some position π in one of the subgoals, say abs(S1) that is
not a position variable, while abs(S2) has a position variable at π. For this
subcase the argument is identical to case 2(b) above.

ii. Otherwise if abs(S1) and abs(S2) contain position variables in exactly the
same positions, recall that abs(S1) and abs(S2) cannot be identical (variants)
of each other, so there must be some position π in which abs(S1) differs from
abs(S2) and neither abs(S1)|π nor abs(S2)|π is a position variable. Since P is
ground, abs(S1)|π cannot unify with abs(S2)|π

Since no two subgoals for trees in any forest F of E may unify and since P is ground,
each program clause of PQ can appear in at most one tree in F . Given this fact the
argument of case 1 can be applied when depth-k abstraction is performed for some
integer k > 0.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Terminating Evaluation of Logic Programs with Finite Three-Valued Models A:31

THEOREM 4.19. Let P be a ground program, Q a ground query, and E a terminating
SLGSA evaluation of Q against P that uses depth-k abstraction. Then under the cost
model Cfunction, the cost of E is O(|atoms(Ffin))| × size(PQ(E))).

PROOF. From Lemma 4.18 there are O(size(PQ(E))) nodes in Ffin. First note that
each SLGSA operation either produces a distinct node or nodes in Ffin or marks a set
of trees in Ffin as complete. Thus, the cost of E can be broken down by analyzing the
costs of creating distinct set of nodes.

— NEW SUBGOAL, PROGRAM CLAUSE RESOLUTION, POSITIVE RETURN, NEGA-
TIVE RETURN, DELAYING, SIMPLIFICATION. Since each of these operations is
constant-time in Cfunction, they produce a node in Ffin and there can be at
most O(size(PQ(E))) such operations, the combined cost of these operations is
O(size(PQ(E))).

— COMPLETION. The cost of the COMPLETION operation is non-constant; rather, its
cost is the number of trees it marks as complete. Since each tree is marked as
completed only once, the combined cost of the COMPLETION operations is at most
|atoms(Ffin)|.

— ANSWER COMPLETION. The cost of the ANSWER COMPLETION operation is
again non-constant. The cost of an ANSWER COMPLETION operation is at most
size(PQ(E)), however each ANSWER COMPLETION operation must produce failure
nodes for all answers whose head is some unsupported atom A. Afterwards, A will no
longer be subject to an ANSWER COMPLETION operation. Since P is ground, A cor-
responds to an element of atoms(Ffin)). Thus there are thus at most |atoms(Ffin))|
ANSWER COMPLETION operations.

The total worst-case cost of E is thus the cost of the constant time operations
O(size(PQ(E))) plus the cost of the COMPLETION operations O(|atoms(Ffin)|), plus the
cost of the ANSWER COMPLETION operations O(|atoms(Ffin)| × size(PQ(E))) so that
the total cost of E is O(|atoms(Ffin)| × size(PQ(E))).

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

