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Gregor Gössler and Lăcrămioara Aştefănoaei

October 28, 2014

Abstract

In component-based safety-critical real-time systems it is crucial to determine which com-
ponent(s) caused the violation of a required system-level safety property, be it to issue a
precise alert, or to determine liability of component providers. In this paper we present an
approach for blaming in real-time systems whose component specifications are given as timed
automata. The analysis is based on a single execution trace violating a safety property P.
We formalize blaming using counterfactual reasoning (“what would have been the outcome if
component C had behaved correctly?”) to distinguish component failures that actually con-
tributed to the outcome from failures that had no impact on the violation of P. We then show
how to effectively implement blaming by reducing it to a model-checking problem for timed
automata, and demonstrate the feasibility of our approach on the models of a pacemaker and
of a chemical reactor.

1 Introduction

In component-based real-time systems such as autonomous cars or interconnected medical devices,
determining the cause of an observed failure is a pivotal question. Establishing a causal link
between the failure of one or more components and the violation of a system-level safety property
is instrumental to blame components, be it to issue a precise alert or establish the contractual
liability of component providers. However, we currently lack a general framework for blaming in
component-based real-time systems.

In this paper, we address this problem by proposing a diagnostic mechanism that relies on
counterfactual reasoning (“what would have been the outcome if component C had behaved cor-
rectly?”) to distinguish component failures that actually contributed to the outcome from failures
that had no impact on the system-level failure.

Analyzing causality is a hard task for a couple of reasons: an event e may not directly cause a
failure f , but through a causal chain; f may be caused by any of two observed events e1 and e2,
or by the conjunction of both. The quest to formalize causality goes back at least to Hume [12]:

[...] we may define a cause to be an object, followed by another, and where all the
objects similar to the first are followed by objects similar to the second. Or in other
words where, if the first object had not been, the second never had existed.

Following Hume, analyzing causality of an event e is based on counterfactuals, that is, fictious
scenarios that resemble the observed scenario, but where e does not happen. We illustrate this
idea, and the subtleties in formalizing it, on a simple example. Consider a set of three processes
sharing a resource, where mutual exclusion is ensured by time division, as shown in Figure 1. P1

is required to access the resource within one time unit, P2 after 3 to 4 time units, and P3 after at
least 7 time units; each process may keep the resource for at most 1 time unit.1 Let us consider the
failure scenario shown in Figure 2(a) where both P2 and P3 access the resource early. Intuitively,

∗published at EMSOFT’14
1Although this is a made-up example, mutual exclusion actually relies on time slicing in some safety-critical

systems [20].
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Figure 1: Mutual exclusion example.

the early access by P2 entails a violation of mutual exclusion, whereas the early access by P3 is
not in conflict with any other process. Using the counterfactual approach, we may try to analyze
whether the failure of P2 is a cause for the violation of mutual exclusion, by replacing the trace of
P2 by a correct trace, as shown in Figure 2(b). However, the obtained set of traces is not a valid
counterfactual scenario in the sense that the traces are inconsistent: they are not observations
of any system execution. This is because the behavior of the resource remains the same, and
consequently, there is a mismatch between the unchanged delay of 1 preceding the second access
of the resource and the corrected delay of 2 in P2.

P1 1 p! 1 v! 4 1
P2 1 1 p! v! 4 1
P3 1 1 4 p! 1 v!

resource 1 p? 1 p? v? v? 4 p? 1 v?
(a) Scenario violating mutual exclusion.

P1 1 p! 1 v! 4 1
P2 1 2 p! v! 3 1
P3 1 1 4 p! 1 v!

resource 1 p? 1 p? v? v? 4 p? 1 v?
(b) The trace of P2 is corrected.

Figure 2: A failure scenario and a simple counterfactual scenario. Each line is a component trace;
vertical alignments of delays and interactions are added to make the scenario more readable.
Substituted suffixes are written in bold.

In this work we introduce the notion of unaffected prefixes, which allows us to take the impact
of component failures on other components into account. Based on unaffected prefixes we leverage
the definition of necessary causality introduced in [9] in order to formalize blaming in real-time
systems. We consider a set of black-box components, each equipped with a specification in the form
of a timed automaton. On a given execution trace, causality of the components having violated
their specifications is analyzed with respect to the violation of a system-level safety property. As in
the setting of timed automata we usually have to cope with an infinite number of counterfactuals,
we also propose a symbolic encoding.

The paper is organized as follows. Section 2 reviews related work. Section 3 introduces
definitions for handling timed automata and traces. Section 4 formalizes our definition and analysis
of logical causality, and proposes a symbolic encoding. In Section 5 we apply the approach to two
case studies. Sections 6 concludes.
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2 Related Work

Generally speaking, causality analysis frameworks may take several pieces of information into
account: the actual, observed behavior (e.g. execution traces, or inputs and outputs), a causal
model of the system, and the expected behavior (in the form of specifications). Most existing
approaches consider subsets of these entities. There is no single generally agreed-on definition of
causality; rather, several definitions have been proposed to meet different needs.

In Halpern and Pearl’s influential structural equations model [11], counterfactual reasoning is
used to define actual causality on a model of causal dependencies between propositional variables.
However, as their approach requires the structural equations to be given, it cannot be applied to
single execution traces of black-box components.

In [9] a language-based framework for causality analysis on execution traces has been intro-
duced. Causality of the failures of components in an index set I for the violation of a system-level
property P is analyzed in two steps. First, temporal causality in the sense of Lamport [17] is ana-
lyzed by computing the cone of influence spanned by the failures of components in I. Then, logical
causality is determined by substituting the cone with the possible correct suffixes of the impacted
components. If all obtained counterfactual scenarios satisfy P, the violation of P is blamed on the
failures of components in I. Real-time systems can be cast in this framework by modeling time
progress as explicit synchronizations between all components. However, the proposed analysis of
temporal causality would then compute a cone of influence that grossly over-estimates the actual
impact of the component failures, thus leading to false positives.

A causality analysis for real-time systems similar to our framework is presented in [24]. The
main difference with respect to the approach we present here is that [24] does not systematically
take dependencies between component traces into account. Therefore fault propagation may be
under-estimated, resulting in the possibility of inconsistent counterfactual scenarios and hence,
false positives by vacuity. To our knowledge, [24] is the only approach to cope with blaming in
real-time systems.

In [6] causality of a vector of boolean signals with respect to the violation of an LTL property
is analyzed using a variant of [11]. The approach determines, for each signal, the instants where
the signal value is, in some context, a cause for the violation of the property. This technique
is limited to synchronous Boolean signals and LTL specifications. [15] extends the definition of
actual causality of [11] to totally ordered sequences of events, and uses this definition to construct
from a set of traces a fault tree. Using a probabilistic model, the fault tree is annotated with
probabilities. The accuracy of the diagnostic depends on the number of traces used to construct
the model.

With the goal of localizing faults in source code, [5] uses model-checking to determine program
faults as pieces of code that belong to an error trace but not to any correct trace. Given a counter-
example in model-checking, [10] uses a distance metric to determine an explanation of the property
violation as the difference between the error trace and a closest correct trace. [23] explains a failed
assertion c in a program by computing the weakest precondition of c along a counter-example
trace and checking at which point the weakest precondition becomes false. More recently, a game-
theoretic approach to locate and fix faults has been proposed in [14]. Delta debugging [26] is a
technique for automatically isolating a cause of some error in transformational systems where the
transformation is a black box on which different inputs can be replayed.

Fault diagnosis (see e.g. [22]) and fault localization aim at determining what unobservable error
events occurred, and where in a system. In contrast, our goal is to establish the existence of a
causal chain between observed component failures — that is, errors in the sense of [4] — and a
system failure.

Temporal causality in the sense of Lamport [17] determines the set of events in the execution
of a distributed system that are known to have been posterior to a given event e, but they are
not necessarily caused by e in a logical sense. Finally, there is a large body of work on defining
causally consistent operational semantics. Basically, the goal is to provide a constructive way of
extending an execution prefix to a possibly infinite run satisfying a set of constraints, see [19] for
an example. Being constructive, these approaches do not rely on counterfactual reasoning.
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3 Preliminaries

We recall the definitions of the timed automata and networks of timed automata (NTA) we use.
These are a subclass of the timed automata implemented in Uppaal [7].

Definition 1 (Timed automaton) A timed automaton is a tuple (L, l0, X, inv, ch,Σ, E) where:

• L is a finite set of locations, and l0 ∈ L is the initial location;

• X is a finite set of clocks;

• inv : L → C assigns an invariant to each location;

• ch is a finite set of channels, partitioned into the set chs of synchronous channels and the
set chb of broadcast channels;

• Σ ⊆ {c! | c ∈ ch} ∪ {c? | c ∈ ch} ∪ {τ} is a finite action alphabet;

• E ⊆ L × (Σ × C × 2X) × L is a set of edges labeled with an action, a guard, and a set of
clocks to be reset. Edges labeled by c? with c being a broadcast channel have the guard true.

C is the set of clock constraints. A clock constraint is defined by the grammar C ::= true | false |
x#c | x− y#c | C ∧ C with x, y ∈ X, # ∈ {<,≤,=,≥, >} and c ∈ Z. Invariants are restricted to
constraints of the type x ≤ c.

Definition 2 (Semantics of a timed automaton) The semantics of a timed automaton T =
(L, l0, X, inv, ch,Σ, E) is given by the labeled transition system (LTS) sem(T ) = (Q,Σ,→, q0)
where:

• Q = L× V denotes the states of T;

• q0 = (l0,0) denotes the initial state of T (we require that inv(l0)(0));

• → ⊆ Q× (Σ ∪ R≥0)×Q denotes the transitions according to the rules:

– (l, v)
d
→ (l, v + d) if ∀d′ ∈ [0, d], inv(l)(v + d′) (time progress);

– (l, v)
a
→ (l′, v′) if there exists a transition

(

l, (a, g, r), l′
)

in E such that g(v) ∧ inv(l′)(v′) with v′ = v[r] (action transition).

V is the set of all clock valuation functions v : X → R≥0, and 0 is the valuation where all clocks
are 0. For a constraint C, C(v) denotes the evaluation of C in v. The notation v+ d represents a
new valuation function v′ defined as v′(x) = v(x) + d while v[r] represents v′ defined as v′(x) = 0
if x ∈ r, and v′(x) = v(x) otherwise.

Definition 3 (Semantics of a NTA) The semantics of a network T = ‖ni=1Ti of n timed au-
tomata Ti with disjoint sets Xi of clocks, sem(Ti) =

(

Qi,Σi,→i, (l
0
i ,0)

)

, and channels chs ∪ chb,
is given by the LTS (Q,Σ,→, q0) where:

• Q =
{

(~l, v) | ∀i = 1, ..., n : (li, vi) ∈ Qi

}

;

• Σ =
{

(a1, ..., an) ∈ Σǫ
1 × ... × Σǫ

n |
(

∃c ∈ chs ∃i, j : ai = c! ∧ aj = c? ∧ ∀k /∈ {i, j} : ai =

ǫ
)

∨
(

∃c ∈ chb ∃i : ai = c! ∧ ∀j 6= i : aj ∈ {c?, ǫ}
)}

∪ {τ} with Σǫ
i = Σi ∪ {ǫ};

• q0 =
(

(l01, ..., l
0
n),0

)

;

• → ⊆ Q× (Σ ∪ R≥0)×Q given by:

– (~l, v)
d
→ (~l, v + d) if ∀i : (li, vi)

d
→i (li, vi + d) (time progress);
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– (~l, v)
τ
→ (~l′, v′) if there exists i such that (li, vi)

τ
→i (l

′
i, v

′
i) and ∀j 6= i : (l′j , v

′
j) = (lj , vj)

(internal transition);

– (~l, v)
α
→ (~l′, v′) with α = (a1, ..., an) if there exist:

1. either a channel c ∈ chs and indices i, j such that ai = c!, aj = c?, (li, vi)
c!
→i

(l′i, v
′
i), (lj , vj)

c?
→j (l

′
j , v

′
j), and ∀k /∈ {i, j} : (l′k, v

′
k) = (lk, vk) (synchronization);

2. or a channel c ∈ chb and an index i such that ai = c!, (li, vi)
c!
→i (l

′
i, v

′
i), ∀j ∈ J :

aj = c? and (lj , vj)
c?
→j (l′j , v

′
j), and ∀k /∈ {i} ∪ J : ak = ǫ and (l′k, v

′
k) = (lk, vk),

where J = {j | ∃l′′j , v
′′
j : (lj , vj)

c?
→j (l

′′
j , v

′′
j )} (broadcast)

where we write ~l for the vector (l1, ..., ln), and vi stands for the restriction of v to the domain Xi.

The alphabet consists of a set of tuples over the component alphabets, indicating for communi-
cations the action of each component, and an internal action τ . The intuition behind Definition 3
is as follows. Time can progress uniformly if all timed automata agree on time progress. Internal
τ transitions interleave, resulting in an internal transition of T . Two components may interact
with complementary actions over a synchronous channel whenever both components are ready to
do so. Whenever a send action on a broadcast channel c is enabled in some component, the broad-
cast may take place and all components having an enabled c? transition take it simultaneously.
The symbol ǫ stands for the absence of a component in a communication over a (synchronous or
broadcast) channel.

A timed trace over alphabet Σ is a word in
(

(Σ \ {τ}) ∪ N
)∗ 2. Given a timed trace tr =

α1α2 · · ·αk and an index i ∈ N, let tr[1..i] = α1α2 · · ·αi and let tr[i] = αi. A run of a timed
automaton or network of timed automata with semantics (Q,Σ,→, q0) is a finite sequence of

transitions r = (l0, v0)
α1→ (l1, v1)

α2→ ...
αm→ (lm, vm) such that (l0, v0) = q0. The timed trace

accepted by r is obtained by removing from α1α2 · · ·αm all τ -symbols. Let L(T ) be the set of all
timed traces accepted by some run of T .

Definition 4 (Projection π) Consider a network of timed automata Ti with alphabets Σi, and
let T = ‖ni=1Ti with alphabet Σ. The projection of an action α = (a1, ..., an) ∈ Σ on Σk, written
πk(α), is the component action ak. The projection of a time delay d is d. The projection of an
internal action τ is ǫ. The projection of a timed trace tr = α1α2 · · · of T on Σk, written πk(tr),
is the timed trace of Tk obtained by removing all ǫ-symbols in πk(α1)πk(α2) · · · .

Hence, internal actions are unobservable in the projection.
The canonical form of a timed trace tr over Σ, written CF(tr), is obtained by replacing in tr

any maximal sub-sequence d1d2 · · · dm of time delays by a single time delay d1 + d2 + · · · + dm,
and removing all zero delays.

Definition 5 (Prefix �, ⊓, ⊔) A timed trace tr′ is a prefix of tr, written tr′ � tr, if there exists
an index ℓ such that either CF(tr′) = CF(tr[1..ℓ]), or there exist d1, d2 ∈ N such that tr[ℓ] = d1+d2
and CF(tr′) = CF(tr[1..ℓ− 1].d1).

For a set P of prefixes of a given trace let
d

P and
⊔

P denote the minimal and the maximal
element of {CF(w) | w ∈ P} with respect to �, respectively. We write tr1 ⊓ tr2 for

d
{tr1, tr2}.

For instance, 1.1.p!.1 � 2.p!.2.v!;
d
{1.1, 2.p!.2} = 2;

⊔

{1.1, 2.p!.2} = 2.p!.2.
Next we define a timed automaton that accepts exactly a given timed trace by reaching its

final state.

Definition 6 (T ) Let tr be a timed trace over Σ. We suppose w.l.o.g. that tr = d0a1...dn−1andn
for n ≥ 0 with di ∈ N and ai ∈ Σ, that is, discrete and time steps alternate. Let nbcr(i)
denote the number of receptions on a broadcast channel in a1a2...ai (we put nbcr(0) = 0), and let

2Integer delays are a realistic assumption since logged events will be time-stamped by some discrete clock.
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Figure 3: Timed automaton recognizing the trace 1.p?.1 by reaching the final state (l2, x = 1).

m = n+ nbcr(n). We construct a timed automaton T (tr) = (L, l0, {x, x
′}, inv, ch,Σ, E) accepting

exactly tr as follows. Let L = {l0, ..., lm} with inv(l0) = (x ≤ d0), and E = {(lj−1, (bj , gj , rj), lj) |
1 ≤ j ≤ m}. The invariants and transition labels are defined as follows. For 1 ≤ i ≤ n,

• if ai is a reception on a broadcast channel, we use two subsequent transitions to model its
timing:

1. bki
= ai, gki

= true, rki
= {x′}, inv(lki

) = (x ≤ di−1 ∧ x′ − x ≤ −di−1);

2. bki+1 = τ , gki+1 = true, rki+1 = {x}, inv(lki+1) = (x ≤ di).

• Otherwise, bki
= ai, gki

= (x = di−1), rki
= {x}, and inv(lki

) = (x ≤ di)

where ki = i+ nbcr(i− 1).
Let completeT (tr) = (lm, x ≥ dn) identify the states where tr has been accepted.

Since Uppaal does not support guarded receive transitions on broadcast channels (see Defini-
tion 1), we encode such a reception by a sequence of two transitions. In the first transition, an
auxiliary clock x′ is reset to measure the time elapsed since the reception. The invariant of the
location between both transitions ensures that only timely broadcasts are accepted. For instance,
Figure 3 shows T (tr) for tr = 1.p?.1, where p is a broadcast channel. The encoding of binary
synchronization in a single transition is straight-forward.

Whether tr ∈ L(T ), for a timed trace tr and a timed automaton T = (L, l0, X, inv, ch,Σ, E),
can be decided as follows. Let tr′ be the trace obtained by complementing all synchronizations
in tr (that is, substituting c? with c! and vice versa, for each channel c ∈ ch), and let B be
the network of timed automata obtained by transforming in T (tr′)‖T all broadcast channels into
synchronous channels. Then, tr ∈ L(T ) iff B |= ∃♦completeT (tr′), that is, if the final state of
T (tr′) is reachable in the composition.

4 Causality Analysis

In this section we define causality of component traces for the violation of a system-level property.
A system is specified by a system signature:

Definition 7 (System signature) A system signature is a tuple (S,Σ,P) where

• S = (S1, ...,Sn) is a tuple of component specifications given as timed automata;

• Σ is the alphabet of ‖ni=1Si;

• P is a safety property such that L(‖ni=1Si) ⊆ P.

The last condition means that property P may be violated only if at least one of the components
violates its specification.

For our analysis we suppose the following inputs to be given:

• A system signature (S,Σ,P) with component specifications S = (Si, ...,Sn) over alphabets
Σ1, ...,Σn.

• A vector of observed component traces ~tr = (tr1, ..., trn) over Σi that are projections of some
system-level trace. In the case where the behavior of two or more components is logged into
a common trace, the trace of each component is obtained by projection.

6



• A set I ⊆ {1, ..., n} of component indices, indicating the set of components to be jointly
analyzed for causality. Being able to reason about group causality is useful, for instance, in
helping to determine liability of component providers that are responsible for more than one
component.

The mere fact that the violation of P is preceded by the violation of a component specification
Sk, is not sufficient to establish that the latter is a logical cause of the former. Therefore, we will
now turn to the formal definition and analysis of logical causality.

4.1 A Definition of Logical Causality

Intuitively, in order to verify whether the violations of Si by tri, i ∈ I, are a cause for the violation
of P in ~tr, we have to identify and remove the effect of these component failures on ~tr and replace it
with behaviors that are consistent with a correct execution of the components in I. The obtained
behaviors are called counterfactuals. The violations of Si in tri, i ∈ I, are a cause for the violation
of P if all counterfactual traces are in P, that is, if without those violations, P would have been
satisfied. In order to determine and eliminate the impact of component failures on the traces of
the remaining components, we first compute the set of prefixes that are unaffected by the failures.

Definition 8 (Critical prefix cp) Given a timed trace tr = α1α2 · · · over Σ and a timed
automaton S over Σ, let cp(tr,S) =

⊔

{tr′ | tr′ � tr ∧ tr′ ∈ L(S)} be the critical prefix of tr with
respect to S.

The critical prefix cp(tr,S) is the longest prefix of tr that is accepted by S.
We can now define the unaffected prefixes of a log ~tr with respect to a set I of components as

the longest prefixes of ~tr that could also have been observed if the components in I had satisfied
their specifications, and the counterfactuals.

Definition 9 (Unaffected prefixes, counterfact.) Given a system signature (S,Σ,P), a vec-
tor ~tr of component traces, and an index set I ⊆ {1, ..., n}, we define the unaffected prefixes of ~tr
as follows. Let

tr0i =

{

cp(tri,Si) if i ∈ I
tri otherwise

and ∀i = 1, ..., n:

tr∗i =
⊔

{

tr0i ⊓ πi(tr
′) | tr′ ∈ (Σ ∪ N)∗ ∧

∀j ∃w ∈ extendL(Sj)(tr
0
j ) : πj(tr

′) � w
}

where

extendL(tr) =

{

p-refineL(tr) if tr ∈ L
{tr} otherwise

and p-refineL(tr) = {tr′ ∈ L | tr � tr′}.
Let UPS(~tr, I) = (tr∗1 , ..., tr

∗
n) be the vector of prefixes of ~tr that are unaffected by the failures

of components in I. Let

CS(~tr, I) = {tr′ ∈ (Σ ∪ N)∗ | ∀i : πi(tr
′) ∈ extendL(Si)(tr

∗
i )}

be the set of counterfactuals to ~tr.

Intuitively, the vector of unaffected prefixes tr∗i is computed by first removing the incorrect
suffixes from tri, i ∈ I, and then removing suffixes that are infeasible in any system-level trace
where each component i starts with tr0i . More precisely, tr∗i is the longest prefix of tr0i that is the
projection of some system-level trace tr′ whose projections are prefixes of the trace extensions.
The set of extensions extendL(tr) of a trace tr in L(Sj) is the sub-language of the component
specification that starts with tr, or {tr} if tr is not accepted by any run of Sj .

7



P1 1 p! 1 v! 1 3 1
P2 1 1 1 p! 3 v! 1
P3 1 1 1 3 p! 1 v!

resource 1 p? 1 v? 1 p? 3 p? v? 1 v?

Table 1: Second scenario violating mutual exclusion: both {P2} and {P3} are causes.

The unaffected prefixes (tr∗1 , ..., tr
∗
n) are thus constructed as maximal prefixes that could also

have been observed if all components in I had behaved correctly, whereas the suffixes s1, ..., sn —
such that tri = tr∗i .si — are impacted by the failures of components in I. The counterfactuals
reflect the impact of “undoing” the failures of traces in I. The set of counterfactuals is the set
of system-level traces whose projections on the components extend the unaffected prefixes with
correct behaviors unless the unaffected prefix is itself incorrect. In particular, CS(~tr, I) contains
all system-level traces with projections tr∗1 , ..., tr

∗
n.

Example 1 The unaffected prefixes of the traces (tr1, ..., tr4) in Figure 2(a) with respect to the
failures of component P2 are UPS(~tr, {P2}) = (tr1, tr

′
2, tr3, tr

′
4) with tr′2 = 2 and tr′4 = 1.p?.1.

On the other hand, for component P3 we get UPS(~tr, {P3}) = (tr1, tr2, tr
′
3, tr

′′
4 ) with tr′3 = 6 and

tr′′4 = 1.p?.1.p?.v?.v?.4.

Definition 10 (Causality) Consider a system signature (S,Σ,P) and traces ~tr = (tr1, ..., trn)
such that ∃w ∈ (Σ ∪ N)∗ \ P ∀i : πi(w) = tri, and a subset I ⊆ {1, ..., n} of component indices.
The incorrect suffixes of the traces indexed by I are a cause of the violation of the property P if

CS(~tr, I) ⊆ P

That is, the set of incorrect suffixes in I is a cause for the violation of P by ~tr if for any coun-
terfactual trace w — sharing with ~tr the prefixes that are unaffected by the failures of components
in I, and after which no more failures occur —, P would have been satisfied. In other words, the
failures of components in I are necessary for the violation of P. Note that P may be satisfied by
the unaffected prefixes although its violation may be unavoidable in the sequel (and thus, occur
in the counterfactuals). By abuse of language we say that the set of components indexed by I is
a cause when their incorrect suffixes are a cause.

Example 2 (Two causes) Applied to our running example and the unaffected prefixes computed
in Example 1, Definition 10 determines P2 to be a cause, whereas P3 is not. Now consider the
modified scenario (tr1, tr2, tr3, tr4) shown in Table 1. P2 releases the resource late, and P3 accesses
it early. The unaffected prefixes UPS(~tr, {P2}) are (tr1, tr

′
2, tr3, tr

′
4) with tr′2 = 3.p!.1 and tr′4 =

1.p?.1.v?.1.p?.1. On the other hand, for component P3 we get UPS(~tr, {P3}) = (tr1, tr2, tr
′
3, tr

′′
4 )

with tr′3 = 6 and tr′′4 = 1.p?.1.v?.1.p?.3. According to Definition 10, both {P2} and {P3} are
causes: a correct behavior of any of them would have resulted in the satisfaction of P.

Our blame assignment is sound and complete:

Theorem 1 (Soundness) Each cause contains an incorrect trace.

Proof 1 Consider a set I ⊆ {i | tri ∈ L(Si)}. We show that the set of traces indexed by I is not a
cause for the violation of P by ~tr = (tr1, ..., trn). If all components in I satisfy their specifications,
then (tr∗1 , ..., tr

∗
n) = UPS(~tr, I) = ~tr. By the hypothesis of Definition 10 there exists w ∈ (Σ ∪N)∗

such that w /∈ P ∧ ∀i : πi(w) = tri = tr∗i . Thus I is not a cause according to Definition 10.

Theorem 2 (Completeness) Each violation of P has a cause.

Proof 2 Let I = {i | tri /∈ L(Si)}, ~tr = (tr1, ..., trn), and (tr∗1 , ..., tr
∗
n) = UPS(~tr, I). By

construction of ~tr
0
— and thus of ~tr

∗
—, all traces in ~tr

∗
are prefixes of the traces in ~tr and satisfy

the component specifications. Since (S,Σ,P) is a system signature and hence L(‖ni=1Si) ⊆ P, and
P is prefix-closed, all counterfactual traces satisfying the condition of Definition 10 are in P.
Hence, I is a cause for the violation of P by ~tr.

8



RCl0

x<=1

l1

x <=1 and 

x’ - x <=-1

l2

x <=1

v?

p?

x == 1
link!

p?
x’=0 x=0

Figure 4: p-refineresource(1.p?.1).

4.2 Symbolic Analysis

In general there may be an infinite number of counterfactual traces. The next definitions will be
useful to symbolically construct counterfactual scenarios and analyze causality.

4.2.1 Computing the unaffected prefixes.

First we define p-refine in terms of timed automata. For the sake of simplicity we assume that
the component specifications Si are such that for all observable actions a ∈ Σi \ {τ} and edges
(

l1, (a, g1, r1), l
′
1

)

and
(

l2, (a, g2, r2), l
′
2

)

, r1 = r2. That is, all clock resets are uniquely defined by
the action. We thus denote them with r(a).

Definition 11 (p-refineTA) Consider a timed trace tr = d1a1 · · · dn ∈ (Σ∪N≥0)
∗ with T (tr) =

(L1, l
0
1, X, inv1, ch,Σ, E1) and a timed automaton B = (L2, l

0
2, X, inv2, ch,Σ, E2) such that tr ∈

L(B). Let lf1 ∈ L1 be the final location of T (tr) and l∗2 ∈ L2 be the location reached in B after
accepting tr. Let p-refineB(tr) = (L, l01, X, inv, ch ∪ {link},Σ, E) where L = L1 ∪ L2,

∀l ∈ L : inv(l) =

{

inv1(l) if l ∈ L1

inv2(l) if l ∈ L2 ,

link is a fresh broadcast channel, E = E′
1 ∪E2 ∪{(lf1 , (link!, x = dn, ∅), l

∗
2)}, and E′

1 = {(l, (a, g, r ∪
r(a)), l′) | (l, (a, g, r), l′) ∈ E1}.

Let completep-refine(B, tr) be the predicate characterizing the locations in L2.

The timed automaton p-refineB(tr) is a refinement of B that accepts exactly those traces
accepted by B that start with tr. For instance, Figure 4 shows p-refineB(tr) for tr = 1.p?.1 and
B being the shared resource in Figure 1(d). Labeling the link transition with a dummy broadcast
rather than with an internal τ -transition helps us to ensure compositionality of the symbolic
representation, as will be explained in Section 4.2.2.

Using p-refineB we define a symbolic variant of extendL:

extendB(tr) =

{

p-refineB(tr) if tr ∈ L(B)
T (tr) otherwise

where B is a timed automaton. Next we define the feasible prefix of a component trace in a system
where all components behave according to given timed automata.

Definition 12 (Feasible prefix FP) For a trace tr of component k and a vector ~B of timed
automata whose composition has alphabet Σ, let

FPk(tr, ~B) =
⊔

{tr ⊓ πk(tr
′) | tr′ ∈ (Σ ∪ N)∗ ∧

∀i : πi(tr
′) ∈ L(Bi)}

FPk(trk, ~B) is the longest prefix of trk that is the projection of some trace accepted by ‖ni=1Bi.

We can symbolically compute FPk(trk, ~B) by determining the longest prefix tr′k of trk for which
T (tr′k) ‖

∥

∥

i 6=k
Bi |= ∃♦completeT (tr′k).

We are now able to symbolically compute the unaffected prefixes as follows. Let

(tr0i , B
0
i ) =

{ (

cpi, p-refineSi
(cpi)

)

if i ∈ I ∨ tri ∈ L(Si)
(

tri, T (tri)
)

otherwise

9



where cpi = cp(tri,Si), and ∀i = 1, ..., n:

tr∗i = FPi(tr
0
i ,

~B0)

B∗
i = extendSi

(tr∗i )

The symbolic computation of tr∗i satisfies Definition 9, and we can show that ~tr
∗
= UPS(~tr, I).

4.2.2 Computing the counterfactuals.

According to Definition 9, the set of counterfactual traces CS(~tr, I) is the set of traces whose
projections extend the unaffected prefixes ~tr∗. In order to symbolically represent the set of coun-
terfactual traces, we have to ensure that the composition B = ‖ni=1B

∗
i of the symbolic models

constructed above produces (up to prefix-closure) exactly the counterfactual traces in CS(~tr, I).
In particular, we have to avoid that some timed automaton Bi = p-refineSi

(tr∗i ) that has finished
accepting the prefix tr∗i is still in the final location of T (tr∗i ) while another component j sends
on a broadcast channel to which i should be listening, according to Si, after accepting tr∗i . To
this end we use the possibility of Uppaal to give priority to link (see Definition 11) over all other
channels.

4.2.3 Verifying causality.

In order to effectively analyze causality we assume the safety property P to be given as an observer
OP , that is, a timed automaton whose only discrete actions are receptions on broadcast channels,
with a dedicated location ⊥ indicating that P has been violated. Let

complete =
∧

i

{

completep-refine(B∗
i , tr

∗
i ) if tr∗i ∈ L(B∗

i )
completeT (tr∗i ) otherwise

characterize the set of states of B where all prefixes ~tr
∗
have been accepted. In order to decide

causality according to Definition 10 we have to tell whether every complete trace of B satisfies the
property P, which is equivalent to model-checking whether

B‖OP 6|= ∃♦(complete ∧ ⊥) (1)

that is, whether no complete execution — whose projections are extensions of the unaffected
prefixes, and which is thus a counterfactual trace — violates P.

The reason why we use an observer for P, rather than taking a property in the Tctl fragment
that Uppaal model-checks [7], is that P has to be a property over traces — and thus, refer to
occurrences of component actions —, whereas Tctl refers to propositional variables (i.e., states).
Observers can, for instance, be constructed from properties in the metric interval temporal logic
Mitl [2, 18], or written by hand as in our case studies.

5 Case Studies

We have implemented the symbolic analysis presented in the previous section in the prototype
tool LoCA (Logical Causality Analyzer) written in Scala, using Uppaal as a backend. In this
section we describe two of our experiments with LoCA. For each experiment, the execution times
for constructing the counterfactual model and verifying which component to blame are shown in
Table 2. These timings were obtained on an Intel Core i7 with 16 GB RAM running Linux.

5.1 The Pacemaker Model

This model is that of a dual chamber implantable pacemaker [13, 21]. It consists of seven compo-
nents whose specifications are shown in Figure 5:
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• atrium, modeling random behavior of the atrium chamber of a heart. The model assumes
an interval [MinW , MaxW ] = [200ms, 1200ms] between two consecutive events Ain!.

• ventricle, modeling the ventricle chamber, with the same timing assumption. Atrium and
ventricle are used as a model of the environment of the pacemaker.

• LRI , for lower rate interval, ensures a maximal interval LRId = 1000ms between a sensed
or paced ventricular event and the next atrial event. Past this delay, an atrial pacing event
a p! is delivered.

• AVI , a component ensuring an upper bound of AVId = 150ms between an atrial event
(sensed or paced) and a ventricular event. After an elapsed time of AVId , a ventricular
pacing event v p! is delivered.

• URI , for upper rate interval, ensures a minimal delay of URId = 400ms between a ventricular
event and the next ventricular pacing event by delaying the delivery of v p! by AVI . A
broadcast on uri ready signals that the minimal delay has elapsed.

• PVARP (post ventricular atrial refractory period) and VRP (ventricular refractory period)
filter out noise and early events.

All channels are broadcast channels. The locations labeled with C are committed, that is, they
must be left immediately [7].

ta<=MaxW

a_p?
ta=0

ta>=MinWait
Ain!

ta=0

(a) Atrium

tv<=MaxW

v_p?
tv=0

tv>=MinWait
Vin!
tv=0

(b) Ventricle

t_lri<=LRId-AVId

t_lri>=LRId-AVId
a_p!

t_lri=0

v_p?
t_lri=0

v_s?
t_lri=0

v_p?

t_lri=0

v_s?

t_lri=0

a_s?

(c) SLRI

t_avi<=AVId

v_s?

t_avi>=AVId && URIex==1
v_p!v_p!

uri_ready?

t_avi>=AVId && URIex==0

v_s?

a_p?
t_avi=0

a_s?
t_avi=0

(d) SAVI

t_uri<=URId

v_p?
t_uri=0

v_s?
t_uri=0

v_s?
t_uri=0, URIex=0

v_p?

t_uri=0, URIex=0

t_uri>=URId

uri_ready!
URIex = 1

(e) SURI

tp<=ARPd

tp>=ARPd

v_s?
tp=0

v_p?
tp=0

a_s!

Ain?

(f) SPVARP

tv<=VRPd

v_s!
tv=0

Vin?
tv=0

tv>=VRPd

v_p?
tv=0

(g) SVRP

Figure 5: The Pacemaker model.

Let us consider the failure scenario shown in Fig. 7(a). Two of the traces violate their specifi-
cations: LRI due to an early atrial pacing event a p!, and URI due to a missing uri ready ! event
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a_p?
ota=0

a_s?
ota=0

v_p?
otv=0

v_s?
otv=0

otv>=LRId-AVId

otv<LRId-AVId

fail!

a_p?

otv==0

otv>=URId

otv>0 && otv<URId

fail!

v_p?

botfail?

Figure 6: The observer.

after 400ms. The safety property P we are interested in is part of the pacemaker specification
cited in [21]:

1. atrial pacing cannot occur during the interval tv ∈ [0,LRId − AVId);

2. ventricular pacing cannot occur during the interval tv ∈ (0,URId)

where tv measures the time elapsed since the last ventricular event. The observer for P is shown
in Figure 6. The execution of Fig. 7(a) violates the first condition of P since at the moment of
a p!, the time elapsed since the last ventricular event is 200ms < LRId − AVId = 850ms. Our
goal is to find out whether to blame the violation of P on LRI , or whether the violation of P by
LRI was indirectly caused by the preceding failure of URI .

atrium 500 Ain! 100 200 a p? 150
ventricle 500 100 Vin! 200 150 v p?
AVI 500 a s? 100 200 150 uri ready? v p!
LRI 500 a s? 100 v s? 200 a p! 150

URI 500 100 v s? 200 150 uri ready !
PVARP 500 Ain? a s! 100 v s? 200 150 v p?
VRP 500 100 Vin? v s! 200 150 v p?

(a) Traces ~tr. Violations of component specifications are underlined.

atrium 500 Ain! 100 200 a p? 150
ventricle 500 100 Vin! 200 150
AVI 500 a s? 100 200 150
LRI 500 a s? 100 v s? 200 a p! 150

URI 400
PVARP 500 Ain? a s! 100 v s? 200 150
VRP 500 100 Vin? v s! 200 150

(b) Unaffected prefixes UPS(~tr, {URI}).

Figure 7: The failure scenario.

Let us first analyze causality of the incorrect suffix of URI . Figure 7(b) shows the unaffected
prefixes UPS(~tr, {URI }) for the violation of SURI . In particular, the early a p! event turns out to
be independent of URI ’s failure. By constructing the set of counterfactual scenarios, Definition 10
establishes that the incorrect suffix of URI is a not a cause for the violation of P. In contrast, the
incorrect suffix of LRI is a cause for the violation of P: without a p! being sent early P would
have been satisfied. Thus, only LRI is to blame for the violation of P.

5.2 The Temperature Controller Model

This model of a chemical reactor is an adaptation from [1]. The system being modeled consists of a
controller moving n identical rods in order to maintain the temperature between the bounds tLow
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construction of model-checking
I

CS(~tr, I) Eq. (1) cause?

{LRI } 7.2 s 6.0 s yes
{URI } 4.7 s 8 ms no

{controller} 4.0 s 108 ms yes
{rod1} 1.3 s 7 ms no
{rod2} 2.8 s 7 ms yes

Table 2: Execution times of the queries on the failure scenario in the pacemaker model (top) and
the chemical reactor model (bottom).

and tHigh: when the temperature in the reactor reaches tHigh (resp. tLow), a rod must be used
to cool (resp. heat) the reactor. Once moved, a rod can be moved again only after ctr = tHigh×n
units of time. The controller is designed such that the time interval between a cooling and heating
is of at most tLow time units. Any violations of this safety property leads to shutdown. Our
analysis concentrates precisely on this property. To implement an observer which monitors it, the
controller is modeled such that it sends a broadcast doneCool! (resp. doneRest!) to signal when
a cooling action (resp. resting) just took place. The interactions between the controller and the
rods are implemented by means of synchronous communication on the channels cool and rest. All
timed automata are depicted in Figure 8.

lc1

cc <= tLow

lc0

cc <= tHigh

doneRest!

doneCool!

cc == tLow
rest?
cc = 0

cc == tHigh
cool?
cc = 0

(a) SController

l0 l1 l2
cool!

rest!

rc = 0

rc >= ctr

cool!

(b) SRod

o3 boto2o1

t<=tLow

doneRest? t > tLowdoneCool?

t=0

(c) Observer

Figure 8: The temperature controller model and its observer.

Compared to the pacemaker model, this model is more regular: there are only two different
specifications (one for the controller and one for each of the rods), and their only possible inter-
actions are basically synchronizations on cool and rest. The difficulty here comes more from the
possibly great number of rods the controller must interact with. Figure 9(a) shows an excerpt
from a log recording the execution of a controller in parallel with 7 rods. The prefix corresponds
to observations during the first 14 time units for the values of 6, resp. 3 for tHigh and resp. tLow.
Two of the traces of the rods, as well as that of the controller have local violations: the rods send
their second cool too early and the controller breaks the timing requirements in its specification.
Especially the second delay of 4 time units before a rest action entails the invalidation of the
global safety property. Among the three candidates, only the controller and the second rod are
causes for the global violation: rod1 cannot be blamed because in any counterfactual scenario
constructed from the unaffected prefixes UPS(~tr, {rod1}) in Figure 9(b), the global violation due
to the late rest between rod2 and the controller occurs nevertheless. On the contrary, had either
one of rod2 or the controller behaved correctly, the safety property would have been satisfied.
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rod1 11.cool!.3.rest!.cool!.rest!
rod2 7.cool!.rest!.cool!.4.rest!.3
rod3 14.cool!.rest!
rod4 14.cool!.rest!
rod5 14.cool!.3.rest!.7
rod6 14.cool!.rest!
rod7 14.cool!.rest!

controller 4.cool?.doneCool!.3.rest?.doneRest!.cool?.doneCool!.rest?.doneRest!.cool?.doneCool!.4.rest?.doneRest!.

cool?.doneCool!.3.rest?.doneRest!.cool?.doneCool!.rest?.doneRest!.cool?.doneCool!.rest?.doneRest!.
cool?.doneCool!.rest?.doneRest!.cool?.doneCool!.rest?.doneRest!.cool?.doneCool!.rest?.doneRest!

(a) Traces ~tr. The first violations of component specifications are underlined. The double underlined delay in the trace
of the controller indicates the position where the global violation happens.

rod1 11.cool!.3.rest!
rod2 7.cool!.rest!.cool!.4.rest!.3
rod3 14.cool!.rest!
rod4 14.cool!.rest!
rod5 14.cool!.3.rest!.7
rod6 14.cool!.rest!
rod7 14.cool!.rest!

controller 4.cool?.doneCool!.3.rest?.doneRest!.cool?.doneCool!.rest?.doneRest!.cool?.doneCool!.4.rest?.doneRest!.

cool?.doneCool!.3.rest?.doneRest!.cool?.doneCool!.rest?.doneRest!.cool?.doneCool!.rest?.doneRest!.
cool?.doneCool!.rest?.doneRest!

(b) Unaffected prefixes UPS(~tr, {rod1}).

Figure 9: The failure scenario for the chemical reactor model.

6 Conclusion

We have given a formalization of blaming in real-time systems composed of black-box components,
and provided a symbolic approach for effective blame assignment. The approach has been imple-
mented and successfully applied to the models of a dual chamber implantable pacemaker and that
of a chemical reactor, where the described approach could be used to read out logs periodically
and identify the components causing safety hazards.

Our work opens several directions for future research. First, we would like to investigate
possible applications, in particular, to blame assignment in actual safety-critical systems. We
believe that ensuring accountability [16] by construction, that is, the possibility of automatic
blame assignment after a system failure, should become a requirement in the design of any safety-
critical system. Another application of our approach is in system validation by model-checking or
testing where the analysis is applied to (possibly symbolic) counterexample traces.

A first extension we will investigate is the distinction between observable and non-observable
events, only the former of which are logged. In particular, whenever component failures are not
observable, we have to combine fault diagnosis [22] and causality analysis.

In closed-loop systems, an alternative behavior of the control part will impact the physical
process. Therefore the counterfactual behavior of the former should be propagated through a
model of the latter. For the pacemaker example, more realistic models of the heart that could
be used for this purpose are [25, 8], at the price of constructing and verifying counterfactuals in
the more expressive framework of (stochastic) hybrid automata. We also intend to study how our
observation-based approach can be combined with a model-based approach such as [11] to allow
reasoning about white-box systems for which causal models are (partially) available.

Our experimental results are promising. In particular, they suggest that the cost for causality
analysis of smaller problems is very reasonable. In order to tackle larger models — where the cost
should be dominated by model-checking Equation (1) —, it would be of interest to investigate the
use of compositional verification for timed automata [3].

Acknowledgment The first author thanks Insup Lee and Oleg Sokolsky for their feed-back on
an early version of this work and for suggesting the pacemaker as a case study.
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