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Abstract

We present deterministic distributed algorithms for computing approximate maximum
cardinality matchings and approximate maximum weight matchings. Our algorithm for
the unweighted case computes a matching whose size is at least (1 − ε) times the optimal
in ∆O(1/ε) + O

(

1
ε2

)

· log∗(n) rounds wheren is the number of vertices in the graph and
∆ is the maximum degree. Our algorithm for the edge-weighted case computes a match-
ing whose weight is at least(1 − ε) times the optimal inlog(min{1/wmin, n/ε})

O(1/ε) ·
(∆O(1/ε) + log∗(n)) rounds for edge-weights in[wmin, 1].

The best previous algorithms for both the unweighted case and the weighted case are
by Lotker, Patt-Shamir, and Pettie (SPAA 2008). For the unweighted case they give a
randomized(1 − ε)-approximation algorithm that runs inO((log(n))/ε3) rounds. For
the weighted case they give a randomized(1/2 − ε)-approximation algorithm that runs
in O(log(ε−1) · log(n)) rounds. Hence, our results improve on the previous ones when
the parameters∆, ε andwmin are constants (where we reduce the number of runs from
O(log(n)) to O(log∗(n))), and more generally when∆, 1/ε and1/wmin are sufficiently
slowly increasing functions ofn. Moreover, our algorithms are deterministic rather than
randomized.

Keywords. Centralized Local Algorithms, Distributed Local Algorithms, Maximum Match-
ing, Maximum Weighted Matching, Graph Algorithms.

1 Introduction

In this work we consider the problem of distributively computing an approximate maximum
(weighted) matching in bounded degree graphs. LetG = (V,E) denote an edge weighted
graph withn vertices and maximum degree∆. Assume that the maximum edge weight is1
and letwmin denote the minimum edge weight. Denoting byMCM(G) the maximum cardinality
of a matching inG and byMWM (G) the maximum weight of a matching inG, we present the
following results:
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• A deterministic distributed algorithm that for anyε ∈ (0, 1) computes a matching whose
size is at least(1− ε) · MCM(G) in

∆O(1/ε) +O

(

1

ε2

)

· log∗(n)

rounds.

• A deterministic distributed algorithm that and for anyε ∈ (0, 1) computes a matching
whose weight is at least(1− ε) · MWM (G) in

log(min{1/wmin, n/ε})
O(1/ε) · (∆O(1/ε) + log∗(n))

rounds.

The best previous algorithms for both the unweighted and weighted cases are by Lotker, Patt-
Shamir, and Pettie [LPSP08]. For the unweighted case they give a randomized(1 − ε)-
approximation algorithm that runs inO((log(n))/ε3) rounds with high probability1 (w.h.p).
Hence we get an improved result when∆O(1/ε) = o(log(n)). In particular, for constant∆
andε, the number of rounds isO(log∗(n)). Note that anO(1)-approximation of a maximum
matching in ann-node ring cannot be computed by any deterministic distributed algorithm in
o(log∗(n)) rounds [CHW08, LW08]. For the weighted case, they give a randomized(1/2− ǫ)-
approximation algorithm that runs inO(log(ε−1) · log(n)) rounds (w.h.p)2. Our MWM approx-
imation algorithm runs in significantly fewer rounds for various settings of the parameters∆,
1/ε, and1/wmin. In particular, when they are constants, the number of rounds isO(log∗(n)).

Previous work Here (Deterministic)

problem # rounds success prob. apx. ratio. # rounds apx. ratio.

MCM
O( log(n)

ε3
) 1− 1

poly(n) 1− ε [LPSP08]
∆O( 1

ε ) +O
(

1
ε2

)

· log∗(n) 1− ε

∆O( 1

ε
) 1−Θ(1) 1− ε [NO08] [Thm. 8]

MWM
O
(

log(ε−1) · log(n)
)

1− 1
poly(n) 1/2− ε [LPSP08]

logO(
1

ε )(Γ) ·
(

∆O( 1

ε ) + log∗(n)
)

1− ε

O
(

log4(n)
ε

· log(Γ)
)

deterministic 1/6− ε [PS10] [Thm. 12]

Table 1:A comparison betweenMCM andMWM DISTLOCAL algorithms. The ratio between the maxi-
mum to minimum edge weight is denoted byΓ (we may assume thatΓ ≤ n/ε).

1.1 Techniques

1.1.1 Centralized local computation algorithms

For both the unweighted and the weighted versions of the problem we design (deterministic)
Centralized Local Computation Algorithms, which translate into distributed algorithms. Cen-
tralized local computation (CENTLOCAL) algorithms, as defined by Rubinfeld et al. [RTVX11],

1We say that an event occurs with high probability if it occurswith probability at least1− 1
poly(n) .

2Lotker, Patt-Shamir and Pettie remark [LPSP08, Sec. 4] thata(1−ε)-MWM can be obtained inO(ε−4 log2 n)
rounds (using messages of linear size), by adapting the algorithm of Hougardy and Vinkemeir [HV06] (where
details are not provided in the paper).
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are algorithms that answer queries regarding (global) solutions to computational problems by
performing local (sublinear time) computations on the input. The answers to all queries must
be consistent with a single solution regardless of the number of possible solutions. In particu-
lar, for the problems we study, each query is an edgee in the graphG, and the algorithm needs
to answer whethere belongs to a matchingM whose size (or weight) is at least(1 − ε) times
the optimal. Consistency means that all answers to the queries must be according to the same
matchingM . To this end the algorithm can probe the graphG by asking about the neighbors of
vertices of its choice. In this manner the algorithm can obtain the local neighborhood of each
queried edgee.

A CENTLOCAL algorithm may be randomized, so that the solution accordingto which it
answers queries may depend on its internal coin flips. However, the solution should not depend
on the sequence of the queries (this property is called queryorder obliviousness [RTVX11]).
The main performance measure of CENTLOCAL algorithms is the maximum number of probes
performed per query. In this work we will actually be interested in the probe-radius, that is,
the maximum distance in the graph of a probe from the queried edge. This translates into the
number of rounds performed by the corresponding distributed algorithm.

We believe that using the design methodology of first describing and analyzing a CENT-
LOCAL algorithm and then transforming it into a distributed local3 (DISTLOCAL) algorithm
makes both the presentation and the analysis simpler and easier to follow. The benefit of de-
signing CENTLOCAL algorithms is that it removes the need for coordination between vertices
when performing computations on auxiliary graphs (for discussion on these graphs see the fol-
lowing subsection). The transformation from a CENTLOCAL algorithm to a DISTLOCAL one
is especially straightforward when the CENTLOCAL algorithm is deterministic (and stateless –
Section 2.4).

1.1.2 A Global Algorithm for Approximate Maximum Cardinali ty Matching

Previous CENTLOCAL and DISTLOCAL-algorithms for finding an approximate maximum
cardinality matching are based on the following framework [NO08, LPSP08, MV13]. First
consider a global/abstract algorithm whose correctness isbased on a result of Hopcroft and
Karp [HK73]. The algorithm works iteratively, where in eachiteration it constructs a new
matching (starting from the empty matching). Each new matching is constructed based on a
maximal set of vertex disjoint paths that are augmenting paths with respect to the previous
matching. Such a maximal set is a maximal independent set (MIS) in the intersection graph
over the augmenting paths. (See Algorithm. 1 for precise details.) The question is how to sim-
ulate this global algorithm in a local/distributed fashion, and in particular, how to compute the
maximal independent sets over the intersection graphs.

1.1.3 Local Simulation

Our CENTLOCAL algorithm for approximateMCM follows Nguyen and Onak’s [NO08] sub-
linear algorithm for approximating the size of a maximum matching (see also [MV13]). The
algorithm works recursively, where recursion is applied todetermine membership in the previ-
ous matching (defined by the global algorithm) as well as membership in an augmenting path
that belongs to the maximal set of augmenting paths.

3Strictly speaking, a distributed algorithm is consideredlocal if it performs a number of rounds that does not
depend onn. Here we allow a weak dependence onn (i.e., log∗(n) or evenpolylog(n)).
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We differ from [NO08] and [MV13] in the CENTLOCAL MIS algorithm that we apply,
which is the algorithm presented in [EMR14]. Recall that theMIS algorithm is applied to
intersection graphs over augmenting paths. TheMIS algorithm works by computing an acyclic
orientation of the edges of the graph, where the radius of theorientation (the longest directed
path in the oriented graph) ispoly(∆). This in turn is performed by coloring the vertices
in poly(∆) colors. An acyclic orientation induces a partial ordering over the vertices, which
enables to (locally) simulate the simple greedy sequentialalgorithm forMIS. The main issue is
analyzing the total probe-radius of the resulting combinedCENTLOCAL algorithm.

1.1.4 Weighted Matchings

Our CENTLOCAL algorithm for approximateMWM is also based on the abovementionedMIS

algorithm as an “inner” building block. As the “outer” building block we use a result described
in [Ona10] (and mentioned in [NO08]) for approximating the maximum weight of a matching,
which in turn builds on work of Pettie and Sanders [PS04].

1.2 Related Work

We compare our results to previous ones in Table 1. The first line refers to the aforementioned
algorithm by Lotker, Patt-Shamir, and Pettie [LPSP08] for the unweighted case. The second
line in Table 1 refers to an algorithm of Nguyen and Onak [NO08]. As they observe, their algo-
rithm for approximating the size of a maximum matching in sublinear time can be transformed
into a randomized distributed algorithm that succeeds withconstant probability (say,2/3) and
runs in∆O(1/ε) rounds. The third line refers to the aforementioned algorithm by Lotker, Patt-
Shamir, and Pettie [LPSP08] for the weighted case. The fourth line refers to the algorithm
by Panconesi and Sozio [PS10] for weighted matching. They devise a deterministic distributed

(1/6−ε)-approximation algorithm that runs inO
(

log4(n)
ε

· log(Γ)
)

rounds, whereΓ is the ratio

between the maximum to minimum edge weight.
We remark that the randomized CENTLOCAL-algorithm by Mansour and Vardi [MV13] for

(1 − ε)-approximate maximum cardinality matching in bounded-degree graphs can be trans-
formed into a randomized DISTLOCAL-algorithm for(1− ε)-approximate maximum cardinal-
ity matching (whose success probability is1 − 1/poly(n)). Their focus is on bounding the
number of probes, which they show is polylogarithmic inn for constant∆ andε. To the best
of our understanding, an analysis of the probe-radius of their algorithm will not imply a DIS-
TLOCAL-algorithm that runs in fewer rounds than the algorithm of Lotker, Patt-Shamir, and
Pettie [LPSP08].

2 Preliminaries

2.1 Notations

Let G = (V,E) denote an undirected graph. Letn(G) denote the number of vertices. We
denote the degree ofv by degG(v). Let ∆(G) denote the maximum degree, i.e.,∆(G) ,

maxv∈V {degG(v)}. The length of a path equals the number of edges along the path. We denote
the length of a pathp by |p|. Foru, v ∈ V let distG(u, v) denote the length of the shortest path
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betweenu andv in the graphG. The ball of radiusr centered atv in the graphG is defined by

BG
r (v) , {u ∈ V | distG(v, u) ≤ r} .

If the graphG is clear from the context, we may drop it from the notation, e.g., we simply write
n,m, deg(v), or∆.

For k ∈ N
+ andn > 0, let log(k)(n) denote thekth iterated logarithm ofn. Note that

log(0)(n) , n and if log(i)(n) = 0, we definelog(j)(n) = 0, for everyj > i. Forn ≥ 1, define
log∗(n) , min{i : log(i)(n) ≤ 1}.

A subsetI ⊆ V is anindependent set if no two vertices inI are an edge inE. An indepen-
dent setI is maximal if I ∪ {v} is not an independent set for everyv ∈ V \ I. We useMIS as
an abbreviation of a maximal independent set.

A subsetM ⊆ E is a matching if no two edges inM share an endpoint. LetM∗ denote
a maximum cardinality matching ofG. We say that a matchingM is a (1 − ε)-approximate
maximum matching if

|M | ≥ (1− ε) · |M∗| .

Let w(e) denote the weight of an edgee ∈ E. The weight of a subsetF ⊆ E is
∑

e∈F w(e)
and is denoted byw(F ). LetM∗

w denote a maximum weight matching ofG. A matchingM is
a (1− ε)-approximate maximum weight matching ifw(M) ≥ (1− ε) ·w(M∗

w). We abbreviate
the terms maximum cardinality matching and maximum weight matching byMCM andMWM ,
respectively.

2.2 The DistLocal Model

The model of local distributed computation is a classical model (e.g., [Lin92, Pel00, Suo13]).
A distributed computation takes place in an undirected labeled graphG = (V,E). In a labeled
graph vertices have unique identifies (IDs). The neighbors of each vertexv are numbered from
1 to deg(v) in an arbitrary but fixed manner. Ports are used to point to theneighbors ofv; the
ith port points to theith neighbor. Each vertex in the labeled graph models a processor, and
communication is possible only between neighboring processors. All processors execute the
same algorithm. Initially, everyv ∈ V is input a local input. The computation is done inr ∈ N

synchronous rounds as follows. In every round: (1) every processor receives a message from
each neighbor, (2) every processor performs a computation based on its local input and the
messages received from its neighbors, (3) every processor sends a message to each neighbor.
We assume that a message sent in the end of roundi is received in the beginning of roundi+1.
After therth round, every processor computes a local output.

The following assumptions are made in the DISTLOCAL model: (1) The local input to each
vertexv includes the ID ofv, the degree of the vertexv, the maximum degree∆, the number
of verticesn, and the ports ofv to its neighbors. (2) The IDs are distinct and bounded by a
polynomial inn. (3) The length of the messages sent in each round is not bounded.

We say that a distributed algorithm is a DISTLOCAL [r]-algorithm if the number of com-
munication rounds isr. Strictly speaking, a distributed algorithm is consideredlocal if
r is bounded by a constant. We say that a DISTLOCAL [r]-algorithm is almost local if
r = O(log∗(n)). When it is obvious from the context we refer to an almost DISTLOCAL

algorithm simply by a DISTLOCAL algorithm.
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2.3 The CentLocal Model

In this section we present the model of centralized local computations that was defined
in [RTVX11]. The presentation focuses on problems over labeled graphs (i.e., maximal in-
dependent set and maximum matching).

Probes In the CENTLOCAL model, access to the labeled graph is limited to probes. Aprobe
is a pair(v, i) that asks “who is theith neighbor ofv?”. The answer to a probe(v, i) is as
follows. (1) If degG(v) < i, then the answer is “null”. (2) IfdegG(v) ≥ i, then the answer is
the (ID of) vertexu that is pointed to by theith port ofv. For simplicity, we assume that the
answer also contains the port numberj such thatv is thejth neighbor ofu. (This assumption
reduces the number of probes by at most a factor of∆.)

Online Property of CENTL OCAL -algorithms The set of solutions for problemΠ over a
labeled graphG is denoted bysol(G,Π). A deterministic CENTLOCAL-algorithm ALG for
problemΠ over labeled graphs is defined as follows. The input for the algorithm consists of
three parts: (1) access to a labeled graphG via probes, (2) the number of verticesn and the
maximum degree∆ of the graphG, and (3) a sequence{qi}Ni=1 of queries. Each queryqi is
a request for an evaluation off(qi) wheref ∈ sol(G,Π). Let yi denote the output ofALG to
queryqi. We view algorithmALG as an online algorithm because it must outputyi without any
knowledge of subsequent queries.

A CENTLOCAL-algorithm ALG for Π must satisfy the following condition, calledconsis-
tency,

∃f ∈ sol(G,Π) s.t. ∀N ∈ N ∀{qi}
N
i=1 ∀i : yi = f(qi) . (1)

Resources and Performance MeasuresThe main performance measure is themaximum
number of probes that the CENTLOCAL-algorithm performs per query. We consider an addi-
tional measure calledprobe radius. The probe radius of a CENTLOCAL-algorithmC is r if, for
every queryq, all the probes that algorithmC performs inG are contained in the ball of radius
r centered atq.

Stateless Algorithms A state of a CENTLOCAL-algorithm is the maximum number of bits
stored between consecutive queries. A CENTLOCAL-algorithm isstateless if the algorithm
does not store any information between queries. In particular, a stateless algorithm does not
store previous queries, answers to previous probes, or answers given to previous queries.4 In
this paper all our CENTLOCAL-algorithms are stateless.

Example Consider the problem of computing a maximal independent set. The CENTLOCAL-
algorithm is input a sequence of queries, each of which is a vertex. The algorithm outputs
whetherqi is in I, for some maximal independent setI ⊆ V . Consistency in this example
means that the algorithm has to satisfy this specification even though it does not probe all ofG,
and obviously does not store the maximal independent setI. Moreover, a stateless algorithm

4We remark that in [RTVX11] no distinction was made between the space needed to answer a query and the
space needed to store the state between queries. Our approach is different and follows the DISTLOCAL model
in which one does not count the space and running time of the vertices during the execution of the distributed
algorithm. Hence, we ignore the space and running time of theCENTLOCAL-algorithm during the processing of
a query.
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does not even remember the answers it gave to previous queries. Note that if a vertex is queried
twice, then the algorithm must return the same answer. Similarly, if two queries are neighbors,
then the algorithm may not answer that both are in the independent set. If all vertices are
queried, then the answers constitute the maximal independent setI.

2.4 Simulation of CentLocal by DistLocal

Based on an observation made in [PR07] in a slightly different setting, CENTLOCAL-
algorithms can simulate DISTLOCAL-algorithms. In this section we consider simulations in
the converse direction.

The following definition considers CENTLOCAL-algorithms whose queries are vertices of
a graph. The definition can be easily extended to edge queries.

Definition 1. A DISTLOCAL-algorithm D simulates a CENTLOCAL-algorithm C if, for every
vertex v, the local output of D in vertex v equals the answer that algorithm C computes for the
query v.

The following proposition states that CENTLOCAL-algorithm can be simulated by a
DISTLOCAL [r] algorithm provided that the probe radius isr. Message lengths grow at a rate
of O(∆r+1 · log n) as information (e.g., IDs and existence of edges) is accumulated.

Proposition 1. Every stateless deterministic CENTLOCAL-algorithm C whose probe radius is
at most r can be simulated by a deterministic DISTLOCAL [r]-algorithm D.

Proof. The distributed algorithmD collects, for everyv, all the information in the ball of
radiusr centered atv. (This information includes the IDs of the vertices in the ball and the
edges between them.)

After this information is collected, the vertexv locally runs the CENTLOCAL-algorithmC
with the queryv. Because algorithmC is stateless, the vertex has all the information required
to answer every probe ofC.

Proposition 1 suggests a design methodology for distributed algorithms. For example, sup-
pose that we wish to design a distributed algorithm for maximum matching. We begin by
designing a CENTLOCAL-algorithmC for computing a maximum matching. Letr denote the
probe radius of the CENTLOCAL-algorithmC. The proposition tells us that we can compute
the same matching (that is computed byC) by a distributedr-round algorithm.

3 Acyclic Orientation with Bounded Radius (O-RAD)

In this section we define the problem ofAcyclic Orientation with Bounded Radius (O-RAD).
We then design a CENTLOCAL algorithm forO-RAD based on vertex coloring.

Definitions An orientation of an undirected graphG = (V,E) is a directed graphH =
(V,A), where{u, v} ∈ E if and only if (u, v) ∈ A or (v, u) ∈ A but not both. An orientation
H is acyclic if there are no directed closed paths inH. Theradius of an acyclic orientationH is
the length of the longest directed path inH. We denote the radius of an orientation byrad(H).
In the problem of acyclic orientation with bounded radius (O-RAD), the input is an undirected
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graph. The output is an orientationH of G that is acyclic. The goal is to compute an acyclic
orientationH of G that minimizesrad(H).

As in [EMR14], an acyclic orientation is induced by a vertex coloring. Previous works
obtain an acyclic orientation by random vertex ranking [NO08, YYI12, ARVX12, MRVX12,
MV13].

Proposition 2 (Orientation via coloring). Every coloring by c colors induces an acyclic orien-
tation H with

rad(H) ≤ c− 1.

Proof. Direct each edge from a high color to a low color. By monotonicity the orientation
is acyclic. Every directed path has at mostc vertices, and hence the radius is bounded as
required.

Many distributed coloring algorithms find a vertex coloringinO(log∗(n)+poly(∆)) rounds
(giving us the same upper bound on the probe-radius of the corresponding CENTLOCAL-
algorithm) and usepoly(∆) colors (see, for example, [BE09, Lin92, CV86, PR01, Kuh09]).
For concreteness, in this paper, we employ a CENTLOCAL simulation of a distributed vertex
coloring algorithm withO(log∗(n) + poly(∆)) rounds that usespoly(∆) colors.

We remark that a CENTLOCAL-algorithm forO-RAD simply computes, for every vertexv
and every porti, whether the edge incident tov at porti is an incoming edge or an outgoing
edge in the orientation.

4 A CentLocal-Algorithm for MIS

In this section we briefly describe a CENTLOCAL-algorithm for theMIS problem. The algo-
rithm is a special case of a more general technique of designing CENTLOCAL-algorithms from
“greedy” (global) sequential algorithms (see [EMR14, MRVX12]).

Suppose we wish to compute a maximal independent setMIS of a graphG = (V,E). The
greedy algorithm proceeds by scanning the vertices in some orderingσ. A vertexv is added
to theMIS if none of its neighbors that appear beforev in σ have been added to theMIS. Let
MISσ denote theMIS that is computed by the greedy algorithm if the vertices are scanned by
the orderingσ.

Every acyclic orientationH = (V,A) of G induces a partial orderPH simply by considering
the transitive closure ofH. The key observation is thatMISσ = MISτ for every two linear
orderingsσ andτ that are linear extensions ofPH . Let MISPH

denote theMIS that corresponds
to MISσ for linear extensionsσ of PH .

A CENTLOCAL-algorithm can computeMISPH
as follows. Givenv, the algorithm performs

a directed DFS fromv according to the directed edgesA. When the DFS backtracks from a
nodeu, it addsu to MISPH

if none of the descendants ofu in the DFS tree are inMISPH
.

We conclude with the following lemma that summarizes the above description.

Lemma 3. Let AO denote a stateless CENTLOCAL-algorithm that computes an acyclic orien-
tation H = (V,A) of a graph G = (V,E). Let r denote the probe radius of AO. Then, there
exists a stateless CENTLOCAL-algorithm for MIS whose probe radius is at most r + rad(H).

Let L-MIS denote the CENTLOCAL MIS-algorithm in Lemma 3. LetL-MIS(G, v) denote
the Boolean predicate that indicates ifv is in theMIS of G computed by AlgorithmL-MIS.
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5 A CentLocal Approximate MCM Algorithm

In this section we present a stateless deterministic CENTLOCAL algorithm that computes a
(1−ε)-approximation of a maximum cardinality matching. The algorithm is based on a CENT-
LOCAL-algorithm for maximal independent set (see Lemma 3) and on the local improvement
technique of Nguyen and Onak [NO08].

Terminology and Notation Let M be a matching inG = (V,E). A vertexv ∈ V is M-free
if v is not an endpoint of an edge inM . A simple path isM-alternating if it consists of edges
drawn alternately fromM and fromE \ M . A path isM-augmenting if it is M-alternating
and if both of the path’s endpoints areM-free vertices. Note that the length of an augmenting
path must be odd. The set of edges in a pathp is denoted byE(p), and the set of edges in a
collectionP of paths is denoted byE(P ). Let A ⊕ B denote the symmetric difference of the
setsA andB.

Description of The Global Algorithm Similarly to [LPSP08, NO08, MV13] our local algo-
rithm simulates the global algorithm listed as Algorithm 1.This global algorithm builds on the
next two lemmas of Hopcroft and Karp [HK73], and Nguyen and Onak [NO08], respectively.

Lemma 4 ([HK73]). Let M be a matching in a graph G. Let k denote the length of a shortest
M-augmenting path. Let P ∗ be a maximal set of vertex disjoint M-augmenting paths of length
k. Then, (M ⊕ E(P ∗)) is a matching and the length of every (M ⊕ E(P ∗))-augmenting path
is at least k + 2.

Lemma 5 ([NO08, Lemma 6]). Let M∗ be a maximum matching and M be a matching in a
graph G. Let 2k + 1 denote the length of a shortest M-augmenting path. Then

|M | ≥
k

k + 1
· |M∗| .

Algorithm 1 Global-APX-MCM(G, ε).
Input: A graphG = (V, E) and0 < ε < 1.
Output: A (1− ε)-approximate matching

1: M0 ← ∅.
2: k ← ⌈ 1

ε
⌉.

3: for i = 0 to k do
4: Pi+1 ← {p | p is anMi-augmenting path, |p| = 2i+ 1}.
5: P ∗

i+1 ⊆ Pi+1 is a maximal vertex disjoint subset of paths.

6: Mi+1 , Mi ⊕ E(P ∗

i+1).

7: end for
8: Return Mk+1.

Algorithm 2 Global-APX-MCM’(G, ε).
Input: A graphG = (V, E) and0 < ε < 1.
Output: A (1− ε)-approximate matching

1: M0 ← ∅.
2: k ← ⌈ 1

ε
⌉.

3: for i = 0 to k do
4: Construct the intersection graphHi overPi.
5: P ∗

i+1 ← MIS(Hi).

6: Mi+1 , Mi ⊕ E(P ∗

i+1).
7: end for
8: Return Mk+1.
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Algorithm 1 is given as input a graphG and an approximation parameterε ∈ (0, 1). The
algorithm works ink iterations, wherek = ⌈1

ε
⌉. Initially, M0 = ∅. The invariant of the

algorithm is thatMi is a matching, every augmenting path of which has length at least2i + 1.
GivenMi, a new matchingMi+1 is computed as follows. LetPi+1 denote the set of shortestMi-
augmenting paths. LetP ∗i+1 ⊆ Pi+1 denote a maximal subset of vertex disjoint paths. Define
Mi+1 , Mi ⊕ E(P ∗i+1). By Lemmas 4 and 5, we obtain the following result.

Theorem 6. The matching Mk+1 computed by Algorithm 1 is a (1 − ε)-approximation of a
maximum matching.

The intersection graph Define the intersection graphHi = (Pi, Ci) as follows. The set of
nodesPi is the set ofMi−1-augmenting paths of length2i − 1. We connect two pathsp and
q in Pi by an edge(p, q) ∈ Ci if p andq intersect (i.e., share a vertex inV ). Note thatH1

is the line graph ofG and thatM1 is simply a maximal matching inG. Observe thatP ∗i as
defined above is a maximal independent set inHi. Thus, iterationi of the global algorithm
can be conceptualized by the following steps (see Algorithm2): construct the intersection
graphHi, compute a maximal independent setP ∗i in Hi, and augment the matching byMi ,

Mi−1 ⊕ (E(P ∗i )).

Implementation by a stateless deterministic CENTL OCAL Algorithm The recursive local
improvement technique in [NO08, Section 3.3] simulates theglobal algorithm. It is based
on a recursive oracleOi. The input to oracleOi is an edgee ∈ E, and the output is a bit that
indicates whethere ∈ Mi. OracleOi proceeds by computing two bitsτ andρ (see Algorithm 3).
The bit τ indicates whethere ∈ Mi−1, and is computed by invoking oracleOi−1. The bitρ
indicates whethere ∈ E(P ∗i ) (whereP ∗i is anMIS in Hi−1). OracleOi returnsτ ⊕ ρ because
Mi = Mi−1 ⊕E(P ∗i ).

We determine whethere ∈ E(P ∗i ) by running the CENTLOCAL-algorithmAi overHi (see
Algorithm 4). Note thatA1 simply computes a maximal matching (i.e., a maximal independent
set of the line graphH1 of G). The main difficulty we need to address is how to simulate the
construction ofHi and probes to vertices inHi. We answer the question whethere ∈ E(P ∗i )
by executing the following steps: (1) Listing: construct the setPi(e) , {p ∈ Pi | e ∈ E(p)}.
Note thate ∈ E(P ∗i ) if and only if Pi(e) ∩ P ∗i 6= ∅. (2) MIS-step: for eachp ∈ Pi(e), input the
queryp to anMIS-algorithm forHi to test whetherp ∈ P ∗i . If an affirmative answer is given to
one of these queries, then we conclude thate ∈ E(P ∗i ). We now elaborate on how the listing
step and theMIS-step are carried out by a CENTLOCAL-algorithm.

The listing of all the paths inPi(e) uses two preprocessing steps: (1) Find the balls of radius
2i − 1 in G centered at the endpoints ofe. (2) Check ife′ ∈ Mi−1 for each edgee′ incident
to vertices in the balls. We can then exhaustively check for each pathp of length2i − 1 that
containse whetherp is anMi−1-augmenting path.

TheMIS-step answers a queryp ∈ P ∗i by simulating theMIS CENTLOCAL-algorithm over
Hi. TheMIS-algorithm probesHi. A probe toHi consists of anMi−1-augmenting pathq and
a port number. We suggest to implement this probe by probing all the neighbors ofq in Hi (so
the port number does not influence the first part of implementing a probe). See Algorithm 5.
As in the listing step, a probeq in Hi can be obtained by (1) finding the balls inG of radius
2i − 1 centered at endpoints of edges inE(q), and (2) finding out which edges within these
balls are inMi−1. The first two steps enable us to list all of the neighbors ofq in Hi (i.e., the
Mi−1-augmenting paths that intersectq). These neighbors are ordered (e.g., by lexicographic
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order of the node IDs along the path). If the probe asks for theneighbor ofq in port i, then the
implementation of the probe returns theith neighbor ofq in the ordering.

By combining the recursive local improvement technique with our deterministic stateless
CENTLOCAL MIS-algorithm, we obtain a deterministic stateless CENTLOCAL-algorithm that
computes a(1−ε)-approximation for maximum matching. The algorithm is invoked by calling
the oracleOk+1. The next lemma can be proved by induction.

Lemma 7. The oracle Oi(e) computes whether e ∈ Mi.

Algorithm 3 Oi(e) - a recursive oracle for membership in the approximate matching.
Input: A querye ∈ E.
Output: Is e an edge in the matchingMi?

1: If i = 0 then return false.
2: τ ← Oi−1(e).
3: ρ← Ai(e).
4: Return τ ⊕ ρ.

Algorithm 4 Ai(e = (u, v)) - a procedure for checking membership of an edgee in one of the
paths inP ∗i .

Input: An edgee ∈ E.
Output: Doese belong to a pathp ∈ P ∗

i ?
1: Listing step: ⊲ Compute all shortestMi−1-augmenting paths that containe.
2: Bu ← BFSG(u) with depth2i− 1.
3: Bv ← BFSG(v) with depth2i− 1.
4: For every edgee′ in the subgraph ofG induced byBu ∪Bv : χe′ ← Oi−1(e

′).
5: Pi(e)← all Mi−1-augmenting paths of length2i− 1 that containe.
6: MIS-step: ⊲ Check if one of the augmenting paths is inP ∗

i .
7: For everyp ∈ Pi(e): If L-MIS(Hi, p) Return true.
8: Return false.

Algorithm 5 probe(i, p) - simulation of a probe to the intersection graphHi via probes toG.
Input: A pathp ∈ Pi and the ability to probeG.
Output: The set ofMi−1-augmenting paths of length2i− 1 that intersectp.

1: For everyv ∈ p do
2: Bv ← BFSG(v) with depth2i− 1.
3: For every edgee′ ∈ Bv : χe ← Oi−1(e). ⊲ determine whether the path is alternating and whether the endpoints areMi−1-free.
4: Pi(v) ← all Mi−1-augmenting paths of length2i− 1 that containv.
5: Return

⋃

v∈p Pi(v).

6 A DistLocal Approximate MCM Algorithm

In this section, we present a DISTLOCAL-algorithm that computes a(1− ε)-approximate max-
imum cardinality matching. The algorithm is based on collecting information from balls and
then simulating the CENTLOCAL algorithm presented in Section 5.

Theorem 8. There is a deterministic DISTLOCAL [∆O(1/ε) + O
(

1
ε2

)

· log∗(n)]-algorithm for
computing a (1− ε)-approximate MCM .

Proof. The proof of the theorem is based on the simulation of a CENTLOCAL-algorithm by a
DISTLOCAL-algorithm, as summarized in Section 2.4. In Lemma 9 we provethat the probes
are restricted to a ball of radius∆O(1/ε) +O

(

1
ε2

)

· log∗(n), and the theorem follows.
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Lemma 9. The probe radius of the CENTLOCAL-algorithm O1+⌈1/ε⌉ is

r = ∆O(1/ε) +O

(

1

ε2

)

· log∗(n) .

Proof. Consider a graphG′ and a CENTLOCAL-algorithmA that probesG′. Let rG′(A) denote
the probe radius of algorithmA with respect to the graphG′.

The description of the oracleOi implies that the probe radiusrG(Oi) satisfies the following
recurrence:

rG(Oi) =











0 if i = 0,

rG(A1) if i = 1,

max{rG(Oi−1), rG(Ai)} if i ≥ 2.

The description of the procedureAi implies that the probe radiusrG(Ai) satisfies the fol-
lowing recurrence:

rG(Ai) ≤ max{2i+ rG(Oi−1), 2i− 1 + rG(L-MIS(Hi))}

We bound the probe radiusrG(L-MIS(Hi)) by composing the radiusrHi
(L-MIS(Hi)) with

the increase in radius incurred by the simulation of probes to Hi by probes toG. Recall that
theL-MIS-algorithm is based on a deterministic coloring algorithmC. We denote the number
of colors used byC to color a graphG′ by |C(G′)|.

TheMIS-algorithm orients the edges by coloring the vertices. The radius of the orientation
is at most the number of colors. It follows that

rHi
(L-MIS(Hi)) ≤ rHi

(C(Hi)) + |C(Hi)|.

The simulation of probes toHi requires an increase in the radius by a factor of2i−1 in addition
to the radius of the probes. Hence,

rG(L-MIS(Hi)) ≤ (2i− 1) · rHi
(L-MIS(Hi)) + rG(probe(i, p)).

Many distributed coloring algorithms find a vertex coloringinO(log∗(n)+poly(∆)) rounds
(giving us the same upper bound on the probe-radius of the corresponding CENTLOCAL-
algorithm) and usepoly(∆) colors (see, for example, [BE09, Lin92, CV86, PR01, Kuh09]).
Plugging these parameters in the recurrences yields

rG(Oi) ≤ 2i+ rG(L-MIS(Hi))

≤ 2i · (1 + rHi
(L-MIS(Hi))) + rG(probe(i, p))

≤ rG(Oi−1) +O
(

i · log∗(n(Hi)) + poly(∆(Hi))
)

,

Since∆(Hi) ≤ (2i)2∆2i−1 andn(Hi) ≤ n2i we get that

rG(Ok) ≤
k

∑

i=1

O
(

i · log∗(n) + poly((2i)2 ·∆2i)
)

= O(k2 · log∗(n)) + ∆O(k).

Let k = 1 + ⌈1
ε
⌉, and the lemma follows.
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7 A CentLocal Approximate MWM Algorithm

In this section we present a deterministic stateless CENTLOCAL-algorithm that computes a(1−
ε)-approximation of a maximum weighted matching. The algorithm is based on the sublinear
approximation algorithm for weighted matching [Ona10, NO08]; we replace the randomized
MIS-algorithm by our deterministicMIS-algorithm. The pseudo-code is listed in the Appendix.

Terminology and Notation In addition to the terminology and notation used in the un-
weighted case, we define the following terms. For a matchingM and an alternating pathp,
thegain of p is defined by

gM(p) , w(p \M)− w(p ∩M) .

We say that anM-alternating pathp is M-augmenting if: (1) p is a simple path or a simple
cycle, (2)M ⊕ E(p) is a matching, and (3)gM(p) > 0. We say that a pathp is (M, [1, k])-
augmenting if p is M-augmenting and|E(p) \ M | ≤ k. Note that an(M, [1, k])-augmenting
path may contain at most2k + 1 edges.

Preprocessing and Discretization of Weights We assume that the edge weights are positive
as nonpositive weight edges do not contribute to the weight of the matching. We also assume
that the maximum edge weight is known to all the vertices. By normalizing the weights, we
obtain that the edge weights are in the interval(0, 1]. Note, that at least one edge has weight1.
As we are interested in a(1 − ε)-approximation, we preprocess the edge weights by ignoring
lightweight edges and rounding down weights as follows: (1)An edgee is lightweight if w(e) <
ε/n. The contribution of the lightweight edges to any matching is at mostε/2. It follows that
ignoring lightweight edges decreases the approximation ratio by at most a factor of(1− ε/2).
(2) We round down the edge weights to the nearest integer power of (1 − ε/2). Let w(e)
denote the original edge weights and letw′(e) denote the rounded down weights. Therefore,
w(e) · (1 − ε/2) < w′(e) ≤ w(e). It follows that, for every matchingM , we havew′(M) ≥
(1 − ε/2) · w(M). The combined effect of ignoring lightweight edges and discretization of
edge weights decreases the approximation factor by at most afactor of (1 − ε). We therefore
assume, without loss of generality, that the edge weightsw(e) are integer powers of(1 − ε/2)
in the interval[ε/n, 1]. Let

wmin(ε) , max{ε/n,min
e

w(e)}.

In particular, ifwmin(ε) < 1 (i.e., the weighted case), then there are at most

W , Θ

(

1

ε
· log

(

1

wmin(ε)

))

distinct weights. This implies that the set of all possible gains achievable by(M, [1, k])-
augmenting paths is bounded byTk , Θ(W 2k+1). We denote the set ofTk possible gains
by {g1, . . . , gTk

}, wheregi > gi+1.

Description of The Global Algorithm The starting point is the global algorithm of Pettie
and Sanders [PS04] for approximating anMWM . Onak [Ona10] suggested an implementation
of this algorithm that is amenable to localization (See Algorithm 6 and 7 in the Appendix). The
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main difference between the algorithms for the weighted case and the unweighted case is that
the maximum length of the augmenting paths (and cycles) doesnot grow; instead, during every
step,(M, [1, k])-augmenting paths are used. In [PS04], a maximal set of augmenting paths
is computed by greedily adding augmenting paths in decreasing gain order. Discretization of
edge weights enables one to simulate this greedy procedure by listing the augmenting paths in
decreasing gain order [Ona10].

Algorithm Notation The global algorithm uses the following notation. The algorithm com-
putes a sequence of matchingsMi,j that are doubly indexed (wherei ∈ [1, L] andj ∈ [1, Tk]).
We denote the initial empty matching byM1,0. These matchings are ordered in the lexico-
graphic ordering of their indexes, andMprev(i,j) denotes the predecessor ofMi,j . LetPi,j denote
the set of(Mprev(i,j), [1, k])-augmenting paths whose gain isgj. LetHi,j denote the intersection
graph overPi,j with edges between paths whenever the paths share a vertex. Let Gk denote
the intersection graph over all paths of length at most2k + 1 in G. Note that eachHi,j is the
subgraph ofGk induced byPi,j. Hence, a vertex coloring ofGk is also a vertex coloring of
Hi,j. LetP ∗i,j denote a maximal independent set inHi,j.

Implementation by a Stateless Deterministic CENTL OCAL Algorithm The CENTLOCAL

implementation of the global algorithm is an adaptation of the CENTLOCAL-algorithm from
Section 5. The oracleOi,j is doubly indexed and so is the procedureAi,j. The algorithm is
invoked by calling the oracleOL,Tk

. The next lemma can be proved by induction.

Lemma 10. The oracle Oi,j(e) computes whether e ∈ Mi,j .

The proof of the following theorem is based on the proof of Theorem 2.4.7 in [Ona10].

Theorem 11. Algorithm 7 computes a (1− ε)-approximate maximum weighted matching.

8 A DistLocal Approximate MWM Algorithm

In this section, we present a DISTLOCAL-algorithm that computes a(1 − ε)-approximate
weighted matching. The algorithm is based on the same designmethodology as in Section 6.
Namely, we bound the probe radius of the CENTLOCAL-algorithm forMWM (see Lemma 13)
and apply the simulation technique (see Section 2.4).

Theorem 12. There is a deterministic DISTLOCAL [r] -algorithm for computing a (1 − ε)-
approximate MWM with

r = (log∗(n) + ∆O(1/ε)) ·

(

log

(

1

wmin(ε)

))O(1/ε)

.

The proof of Theorem 12 is based on the following lemma. Recall that ignoring lightweight
edges implies that 1

wmin(ε)
≤ n

ε
.

Lemma 13. The probe radius of the CENTLOCAL-algorithm OL,Tk
is

rG(OL,Tk
) ≤ (log∗(n) + ∆O(1/ε)) ·

(

log

(

1

wmin(ε)

))O(1/ε)

14



Proof. The description of the oracleOi,j implies that the probe radiusrG(Oi,j) satisfies the
following recurrence:

rG(Oi,j) =

{

0 if (i, j) = (1, 0),

max{rG(Oprev(i,j)), rG(Ai,j)} else.

The description of the procedureAi,j implies that the probe radiusrG(Ai,j) satisfies the fol-
lowing recurrence:

rG(Ai,j) ≤ O(k) + max{rG(Oprev(i,j)), rG(L-MIS(Hi,j))}.

The simulation of probes toHi,j implies an increase in the radius by a factor of2k + 1 in
addition to the radius of the probes. Hence,

rG(L-MIS(Hi,j)) ≤ (2k + 1) · rHi,j
(L-MIS(Hi,j))

+ rG(probe(i, j, p)).

The orientation ofHi,j can be based on a coloring of the intersection graphGk. Hence, by
Lemma 3

rHi,j
(L-MIS(Hi,j)) ≤ rGk

(C(Gk)) + |C(Gk)|.

By employing a distributed vertex coloring algorithm withO(log∗(n) + poly(∆)) rounds
that usespoly(∆) colors, we obtain

rG(Oi,j) ≤ O(k) + rG(L-MIS(Hi,j))

≤ O(k) · rHi,j
(L-MIS(Hi,j)) + rG(probe(i, j, p))

≤ rG(Oprev(i,j))

+O
(

k · log∗(n(Gk)) + poly(∆(Gk))
)

,

Since∆(Gk) ≤ (2k + 1)2∆2k+1 andn(Gk) ≤ n2k+1 we get that

rG(OL,Tk
) ≤ L · Tk · O

(

k · log∗(n) + poly
(

∆k
))

= O

(

1

ε
· log

(

1

ε

)

·WO( 1
ε) ·

(

1

ε
· log∗(n) + poly

(

∆
1
ε

)

))

=
(

log∗(n) + poly
(

∆
1
ε

))

· poly

(

1

ε

)

· poly
(

W
1
ε

)

,

and the lemma follows.

9 Future Work

In the full version we present an improved algorithm for the(1 − ε)-approximateMWM . This
improved algorithm computes a(1− ε)-approximateMWM within

O

(

1

ε2
· log

1

ε

)

· log∗ n+∆O(1/ε) · log

(

1

wmin(ε)

)

rounds.
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A Pseudo-Code for CentLocal(1 − ε)-approximate MWM-
Algorithm

Algorithm 6 Global-APX-MWM(G, ε) -Onak’s adaption [Ona10] of the global algorithm of
Pettie and Sanders [PS04].

Input: A graphG = (V, E) with edge weightsw(e) ∈ (0, 1] that are integer powers of1− ε
3

for 0 < ε < 1.
Output: A (1− ε)-approximate weighted matching

1: k ← ⌈ 3
ε
⌉.

2: L← Θ
(

1
ε
· log

(

1
ε

))

.

3: Tk = Θ
(

1
ε
· log

(

1
wmin(ε)

))2k+1
. ⊲ Tk is an upper bound on the number of distinct gains of augmenting paths of length at most

2k + 1.
4: M ← ∅.
5: for i = 1 to L do
6: for j = 1 to Tk do
7: P ∗

i,j is a maximal set of vertex disjoint(M, [1, k])-augmenting paths with gaingj .

8: M ←M ⊕ E(P ∗

i,j).

9: end for
10: end for
11: Return M .
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Algorithm 7 Global-APX-MWM’(G, ε) -Rewriting of Algorithm 6 using the intersection
graphHi,j.

Input: A graphG = (V, E) with edge weightsw(e) ∈ (0, 1] that are integer powers of1− ε
3

for 0 < ε < 1.
Output: A (1− ε)-approximate weighted matching

1: k,L, Tk as in Algorithm 6
2: M1,0 ← ∅.
3: for i = 1 to L do
4: for j = 1 to Tk do
5: Pi,j ← set of(Mprev(i,j), [1, k])-augmenting paths with gaingj .
6: Construct the intersection graphHi,j overPi,j .
7: P ∗

i,j ← MIS(Hi,j).

8: Mi,j ←Mprev(i,j) ⊕ E(P ∗

i,j).

9: end for
10: end for
11: Return ML,Tk

.

Algorithm 8 Oi,j(e) - a recursive oracle for membership in the approximate weighted match-
ing.

Input: A querye ∈ E.
Output: Is e an edge in the weighted matchingMi,j?

1: If (i, j) = (1, 0) then return false.
2: τ ← Oprev(i,j)(e).
3: ρ← Ai,j(e).
4: Return τ ⊕ ρ.

Algorithm 9 Ai,j(e = (u, v)) - a procedure for checking membership of an edgee in one of
the paths inP ∗i,j.

Input: An edgee ∈ E.
Output: Doese belong to a pathp ∈ P ∗

i,j?

1: Listing step: ⊲ Compute all shortestMi−1-augmenting paths that containe.
2: Bu ← BFSG(u) with depth2k.
3: Bv ← BFSG(v) with depth2k.
4: For every edgee′ in the subgraph ofG induced byBu ∪Bv : χe′ ← Oprev(i,j)(e

′).
5: Pi,j(e)← all (Mprev(i,j), [1, k])-augmenting paths that containe with gaingj
6: MIS-step: ⊲ Check if one of the augmenting paths is inP ∗

i .
7: For everyp ∈ Pi,j(e): If L-MIS(Hi,j , p) Return true.
8: Return false.

Algorithm 10 probe(i, j, p) - simulation of a probe to the intersection graphHi,j via probes to
G.

Input: A pathp ∈ Pi and the ability to probeG.
Output: The set of(Mprev(i,j), k

∗)-augmenting paths with gaingj that intersectp.
1: For everyv ∈ p do
2: Bv ← BFSG(v) with depth2k + 1.
3: For every edgee′ ∈ Bv : χe ← Oprev(i,j)(e). ⊲ determines whether the path is alternating and whether the endpoints are free.
4: Pi,j(v)← all (Mprev(i,j), [1, k])-augmenting paths that containv with gaingj .
5: Return

⋃

v∈p Pi,j(v).
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